
942 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 5, MAY 2014

Learning Nonlinear Functions Using
Regularized Greedy Forest

Rie Johnson and Tong Zhang

Abstract—We consider the problem of learning a forest of nonlinear decision rules with general loss functions. The standard
methods employ boosted decision trees such as Adaboost for exponential loss and Friedman’s gradient boosting for general loss. In
contrast to these traditional boosting algorithms that treat a tree learner as a black box, the method we propose directly learns
decision forests via fully-corrective regularized greedy search using the underlying forest structure. Our method achieves higher
accuracy and smaller models than gradient boosting on many of the datasets we have tested on.

Index Terms—Boosting, decision tree, decision forest, ensemble, greedy algorithm

1 INTRODUCTION

MANY application problems in machine learning
require learning nonlinear functions from data. A

popular method to solve this problem is through deci-
sion tree learning (such as CART [4] and C4.5 [23]), which
has an important advantage for handling heterogeneous
data with ease when different features come from different
sources. This makes decision trees a popular “off-the-shelf”
machine learning method that can be readily applied to any
data without much tuning; in comparison, alternative algo-
rithms such as neural networks require significantly more
tuning. However, a disadvantage of decision tree learning
is that it does not generally achieve the most accurate pre-
diction performance, when compared to other methods. A
remedy for this problem is through boosting [12], [15], [25],
where one builds an additive model of decision trees by
sequentially building trees one by one. In general “boosted
decision trees” is regarded as the most effective off-the-shelf
nonlinear learning method for a wide range of application
problems.

In the boosted tree approach, one considers an addi-
tive model over multiple decision trees, and thus, we will
refer to the resulting function as a decision forest. Other
approach to learning decision forests include bagging and
random forests [5], [6]. In this context, we may view boosted
decision tree algorithms as methods to learn decision forests
by applying a greedy algorithm (boosting) on top of a deci-
sion tree base learner. This indirect approach is sometimes
referred to as a wrapper approach (in this case, wrap-
ping boosting procedure over decision tree base learner);

• R. Johnson is with RJ Research Consulting, Tarrytown, NY 10591 USA.
E-mail: riejohnson@gmail.com.

• T. Zhang is with the Statistics Department, Rutgers University,
Piscataway, NJ 08854 USA. E-mail: tongz@rci.rutgers.edu.

Manuscript received 26 Sep. 2012; revised 10 May 2013; accepted 21 July
2013. Date of publication 20 Aug. 2013. Date of current version 29 Apr.
2014.
Recommended for acceptance by G. Lanckriet.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier 10.1109/TPAMI.2013.159

the boosting wrapper simply treats the decision tree base
learner as a black box and it does not take advantage of
the tree structure itself. The advantage of such a wrapper
approach is that the underlying base learner can be changed
to other procedures with the same wrapper; the disadvan-
tage is that for any specific base learner which may have
additional structure to explore, a generic wrapper might
not be the optimal aggregator.

Due to the practical importance of boosted decision
trees in applications, it is natural to ask whether one can
design a more direct procedure that specifically learns deci-
sion forests without using a black-box decision tree learner
under the wrapper. The purpose of doing so is that by
directly taking advantage of the underlying tree struc-
ture, we shall be able to design a more effective algorithm
for learning the final nonlinear decision forest. This paper
attempts to address this issue, where we propose a direct
decision forest learning algorithm called Regularized Greedy
Forest or RGF. We are specifically interested in an approach
that can handle general loss functions (while, for example,
Adaboost is specific to a certain loss function), which leads
to a wider range of applicability. An existing method with
this property is gradient boosting decision tree (GBDT) [15].
We show that RGF can deliver better results than GBDT on
a number of datasets we have tested on.

2 PROBLEM SETUP

We consider the problem of learning a single nonlinear
function h(x) on some input vector x = [x[1], . . . , x[d]] ∈ R

d

from a set of training examples. In supervised learning, we
are given a set of input vectors X = [x1, . . . , xn] with labels
Y = [y1, . . . , ym] (here m may not equal to n). Our training
goal is to find a nonlinear prediction function ĥ(x) from a
function class H that minimizes a risk function

ĥ = arg min
h∈H

L(h(X), Y). (1)

Here H is a pre-defined nonlinear function class, h(X) =
[h(x1), . . . , h(xn)] is a vector of size n, and L(h, ·) is a general
loss function of vector h ∈ R

n.
0162-8828 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 26,2020 at 06:12:04 UTC from IEEE Xplore. Restrictions apply.

JOHNSON AND ZHANG: LEARNING NONLINEAR FUNCTIONS USING REGULARIZED GREEDY FOREST 943

Fig. 1. Decision tree.

The loss function L(·, ·) is given by the underlying prob-
lem. For example, for regression problems, we have yi ∈ R

and m = n. If we are interested in the conditional mean of
y given x, then the underlying loss function corresponds to
least squares regression as follows:

L(h(X), Y) =
n∑

i=1

(h(xi)− yi)
2.

In binary classification, we assume that yi ∈ {±1} and m =
n. We may consider the logistic regression loss function as
follows:

L(h(X), Y) =
n∑

i=1

ln(1+ e−h(xi)yi).

Another important problem that has drawn much atten-
tion in recent years is the pair-wise preference learning (for
example, see [13], [19]), where the goal is to learn a non-
linear function h(x) so that h(x) > h(x′) when x is preferred
over x′. In this case, m = n(n − 1), and the labels encode
pair-wise preference as y(i,i′) = 1 when xi is preferred over
xi′ , and y(i,i′) = 0 otherwise. For this problem, we may con-
sider the following loss function that suffers a loss when
h(x) ≤ h(x′)+1. That is, the formulation encourages the sep-
aration of h(x) and h(x′) by a margin when x is preferred
over x′:

L(h(X), Y) = ∑
(i,i′):y(i,i′)=1

max(0, 1− (h(xi)− h(xi′)))2.

Given data (X, Y) and a general loss function L(·, ·) in
(1), there are two basic questions to address for nonlinear
learning. The first is the form of nonlinear function class
H, and the second is the learning/optimization algorithm.
This paper achieves nonlinearity by using additive models
of the form:

H =
⎧
⎨

⎩h(·):h(x) =
K∑

j=1

αjbj(x); ∀j, bj ∈ C
⎫
⎬

⎭ , (2)

where each αj ∈ R is a coefficient that can be optimized, and
each bj(x) is by itself a nonlinear function (which we may
refer to as a nonlinear basis function or an atom) taken from
a base function class C. The base function class typically has
a simple form that can be used in the underlying algorithm.
This work considers decision rules as the underlying base
function class that is of the form

C =
⎧
⎨

⎩b(·):b(x) =
∏

j

I(x[ij] ≤ tj)
∏

k

I(x[ik] > tk)

⎫
⎬

⎭ , (3)

where {(ij, tj), (ik, tk)} are a set of (feature-index, threshold)
pair, and I(x) denotes the indicator function: I(p) = 1 if p

Algorithm 1: Gradient Boosted Decision Tree
(GBDT) [15]

h0(x)← arg minρ L(ρ, Y)

for k = 1 to K do
Ỹk←− ∂L(h, Y)/∂h|h=hk−1(X)

Build a J-leaf decision tree Tk←A(X, Ỹk) with
leaf-nodes {bk,j}Jj=1
for j = 1 to J do
βk,j← arg minβ∈R L(hk−1(X)+ β · bk,j(X), Y)

hk(x)←hk−1(x)+ s
∑J

j=1 βk,j · bk,j(x)

// s is a shrinkage parameter
end
return h(x) = hK(x)

is true; 0 otherwise. Decision rules can be graphically rep-
resented with a tree structure. In Fig. 1, each tree edge e is
associated with a variable ke and threshold te, and denotes a
decision of the form I(x[ke] ≤ te) or I(x[ke] > te). Each node
denotes a nonlinear decision rule of the form (3), which is
the product of decisions along the edges leading from the
root to this node.

Since the space of decision rules is rather large, for com-
putational purposes, we have to employ a structured search
over the set of decision rules. The optimization procedure
we propose is a structured greedy search algorithm which
we call regularized greedy forest (RGF). To introduce RGF,
we first discuss pros and cons of the existing method for
general loss, gradient boosting [15], in the next section.

3 GRADIENT BOOSTED DECISION TREE

Gradient boosting is a method to minimize (1) with additive
model (2) by assuming that there exists a nonlinear base
learner (or oracle) A that satisfies Assumption 1.

Assumption 1. A base learner for a nonlinear function class A
is a regression optimization method that takes as input any
pair X̃ = [x̃1, . . . , x̃n] and Ỹ = [ỹ1, . . . , ỹn] and outputs a
nonlinear function ĝ = A(X̃, Ỹ) that approximately solves
the regression problem:

b̂ ≈ arg min
b∈C

min
β∈R

n∑

j=1

(β · b(x̃j)− ỹj)
2.

The gradient boosting method is a wrapper (boosting)
algorithm that solves (1) with a base learner A defined
above and additive model defined in (2). Of special interest
for this paper and for general applications is the decision
tree base learner, for which C is the class of J-leaf decision
trees, with each node associated with a decision rule of the
form (3). In order to take advantage of the fact that each
element in C contains J (rather than one) decision rules,
the gradient boosting method can be modified by adding
a partially corrective update step that optimizes all J coef-
ficients associated with the J decision rules returned by A.
This adaption was suggested by Friedman. We shall refer to
this modification as gradient boosted decision tree (GBDT),
and the details are listed in Algorithm 1.

Gradient boosting may be regarded as a functional
generalization of gradient descent method hk ← hk−1 −

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 26,2020 at 06:12:04 UTC from IEEE Xplore. Restrictions apply.

944 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 5, MAY 2014

sk
∂L(h)

∂h |h=hk−1 , where the shrinkage parameter s corresponds
to the step size sk in gradient descent, and − ∂L(h)

∂h |h=hk−1 is
approximated using the regression tree output. The shrink-
age parameter s > 0 is a tuning parameter that can
affect performance, as noticed by Friedman. In fact, the
convergence of the algorithm generally requires choosing
sβk → 0 as indicated in the theoretical analysis of [29],
which is also natural when we consider that it is analo-
gous to step size in gradient descent. This is consistent
with Friedman’s own observation, who argued that in
order to achieve good prediction performance (rather than
computational efficiency), one should take as small a step
size as possible (preferably infinitesimal step size each
time), and the resulting procedure is often referred to
as ε-boosting.

GBDT constructs a decision forest which is an addi-
tive model of K decision trees. The method has been very
successful for many application problems, and its main
advantage is that the method can automatically find nonlin-
ear interactions via decision tree learning (which can easily
deal with heterogeneous data), and it has relatively few tun-
ing parameters for a nonlinear learning scheme (the main
tuning parameters are the shrinkage parameter s, number of
terminals per tree J, and the number of trees K). However,
it has a number of disadvantages as well. First, there is
no explicit regularization in the algorithm, and in fact, it
is argued in [29] that the shrinkage parameter s plus early
stopping (that is K) interact together as a form of regu-
larization. In addition, the number of nodes J can also be
regarded as a form of regularization. The interaction of
these parameters in terms of regularization is unclear, and
the resulting implicit regularization may not be effective.
The second issue is also a consequence of using small step
size s as implicit regularization. Use of small s could lead
to a huge model, which is very undesirable as it leads to
high computational cost of applications (i.e., making pre-
dictions). Third, the regression tree learner is treated as a
black box, and its only purpose is to return J nonlinear ter-
minal decision rule basis functions. This again may not be
effective because the procedure separates tree learning and
forest learning, and hence the algorithm itself is not neces-
sarily the most effective method to construct the decision
forest.

4 FULLY-CORRECTIVE GREEDY UPDATE AND
STRUCTURED SPARSITY REGULARIZATION

As mentioned above, one disadvantage of gradient boost-
ing is that according to Friedman, in order to achieve
good performance in practice, the shrinkage parameter s
may need to be small, and he also argued for infinitesi-
mal step size. This practical observation is supported by
the theoretical analysis in [29] which showed that if we
vary the shrinkage s for each iteration k as sk, then for
general loss functions with appropriate regularity condi-
tions, the procedure converges as k→∞ if we choose the
sequence sk such that

∑
k sk|βk| = ∞ and

∑
k s2

kβ
2
k < ∞.

This condition is analogous to a related condition for the
step size of gradient descent method which also requires
the step-size to approach zero. Fully Corrective Greedy
Algorithm is a modification of Gradient Boosting that can

Algorithm 2: Fully-Corrective Gradient Boosting [27]
h0(x)← arg minρ L(ρ, Y)

for k = 1 to K do
Ỹk←− ∂L(h, Y)/∂h|h=hk−1(X)

bk←A(X, Ỹk)

let Hk = {
∑k

j=1 βjbj(x):βj ∈ R}
hk(x)← arg minh∈Hk L(h(X), Y)

// fully-corrective step
end
return h(x) = hK(x)

avoid the potential small step size problem. The procedure
is described in Algorithm 2.

In gradient boosting or its variation with tree base
learner of Algorithm 1, the algorithm only does a partial
corrective step that optimizes either the coefficient of the
last basis function bk (or the last J coefficients). The main
difference of the fully-corrective gradient boosting is the
fully-corrective-step that optimizes all coefficients {βj}kj=1
for basis functions {bj}kj=1 obtained so far at each itera-
tion k. It was noticed empirically that such fully-corrective
step can significantly accelerate the convergence of boosting
procedures [28]. This observation was theoretically justi-
fied in [27] where the following rate of convergence was
obtained under suitable conditions: there exists a constant
C0 such that

L(hk(X), Y) ≤ inf
h∈H

[
L(h(X), Y)+ C0‖h‖2C

k

]
,

where C0 is a constant that depends on properties of L(·, ·)
and the function class H, and

‖h‖C = inf

⎧
⎨

⎩
∑

j

|αj|:h(X) =
∑

j

αjbj(X); bj ∈ C
⎫
⎬

⎭ .

In comparison, with only partial corrective optimization
as in the original gradient boosting, no such convergence
rate is possible. Therefore the fully-corrective step is not
only intuitively sensible, but also important theoretically.
The use of fully-corrective update (combined with regu-
larization) automatically removes the need for using the
undesirable small step s needed in the traditional gradient
boosting approach.

However, such an aggressive greedy procedure will lead
to quick overfitting of the data if not appropriately reg-
ularized (in gradient boosting, an implicit regularization
effect is achieved by small step size s, as argued in [29]).
Therefore we are forced to impose an explicit regularization
to prevent overfitting.

This leads to the second idea in our approach, which
is to impose explicit regularization via the concept of struc-
tured sparsity that has drawn much attention in recent years
[1]–[3], [20]–[22]. The general idea of structured sparsity is
that in a situation where a sparse solution is assumed, one
can take advantage of the sparsity structure underlying the
task. In our setting, we seek a sparse combination of deci-
sion rules (i.e., a compact model), and we have the forest

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 26,2020 at 06:12:04 UTC from IEEE Xplore. Restrictions apply.

JOHNSON AND ZHANG: LEARNING NONLINEAR FUNCTIONS USING REGULARIZED GREEDY FOREST 945

structure to explore, which can be viewed as graph spar-
sity structures. Moreover, the problem can be considered
as a variable selection problem. Search over all nonlinear
interactions (atoms) over C is computationally difficult or
infeasible; one has to impose structured search over atoms.
The idea of structured sparsity is that by exploring the
fact that not all sparsity patterns are equally likely, one
can select appropriate variables (corresponding to decision
rules in our setting) more effectively by preferring certain
sparsity patterns more than others. For our purpose, one
may impose structured regularization and search to prefer
one sparsity pattern over another, exploring the underlying
forest structure.

This work considers the special but important case of
learning a forest of nonlinear decision rules; although this
may be considered as a special case of the general struc-
tured sparsity learning with an underlying graph, the prob-
lem itself is rich and important enough and hence requires
a dedicated investigation. Specifically, we integrate this
framework with specific tree-structured regularization and
structured greedy search to obtain an effective algorithm
that can outperform the popular and important gradient
boosting method. In the context of nonlinear learning with
graph structured sparsity, we note that a variant of boost-
ing was proposed in [14], where the idea is to split trees
not only at the leaf nodes, but also at the internal nodes
at every step. However, the method is prone to overfitting
due to the lack of regularization, and is computationally
expensive due to the multiple splitting of internal nodes.
We shall avoid such a strategy in this work.

5 REGULARIZED GREEDY FOREST

The method we propose addresses the issues of the stan-
dard method GBDT described above by directly learning
a decision forest via fully-corrective regularized greedy
search. The key ideas discussed in Section 4 can be sum-
marized as follows.

First, we introduce an explicit regularization functional
on the nonlinear function h and optimize

ĥ = arg min
h∈H

[L(h(X), Y)+R(h)] (4)

instead of (1). In particular, we define regularizers that
explicitly take advantage of individual tree structures.

Second, we employ fully-corrective greedy algorithm
which repeatedly re-optimizes the coefficients of all the
decision rules obtained so far while rules are added into
the forest by greedy search. Although such an aggressive
greedy procedure could lead to quick overfitting if not
appropriately regularized, our formulation includes explicit
regularization to avoid overfitting and the problem of huge
models caused by small s.

Third, we perform structured greedy search directly over
forest nodes based on the forest structure (graph sparsity
structure) employing the concept of structured sparsity. At
the conceptual level, our nonlinear function h(x) is explicitly
defined as an additive model on forest nodes (rather than
trees) consistent with the underlying forest structure. In this
framework, it is also possible to build a forest by growing
multiple trees simultaneously.

Fig. 2. Decision forest.

Before going into more detail, we shall introduce some
definitions and notation that allow us to formally define
the underlying formulations and procedures.

5.1 Definitions and Notation
A forest is an ensemble of multiple decision trees
T1, . . . , TK. The forest shown in Fig. 2 contains three trees
T1, T2, and T3. Each tree edge e is associated with a vari-
able ke and threshold te, and denotes a decision of the form
I(x[ke] ≤ te) or I(x[ke] > te). Each node denotes a non-
linear decision rule of the form (3), which is the product
of decisions along the edges leading from the root to this
node.

Mathematically, each node v of the forest is associated
with a decision rule of the form

bv(x) =
∏

j

I(x[ij] ≤ tij)
∏

k

I(x[ik] > tik),

which serves as a basis function or atom for the additive
model considered in this paper. Note that if v1 and v2 are
the two children of v, then bv(x) = bv1(x) + bv2(x). This
means that any internal node is redundant in the sense that
an additive model with basis functions bv(x), bv1(x), bv2(x)

can be represented as an additive model over basis func-
tions bv1(x) and bv2(x). Therefore it can be shown that an
additive model over all tree nodes always has an equiva-
lent model (equivalent in terms of output) over leaf nodes
only. This property is important for computational effi-
ciency because it implies that we only have to consider
additive models over leaf nodes.

Let F represent a forest, and each node v of F is asso-
ciated with (bv, αv). Here bv is the basis function that this
node represents; αv is the weight or coefficient assigned to
this node. The additive model of this forest F considered
in this paper is: hF (x) =∑

v∈F αvbv(x) with αv = 0 for any
internal node v. In this setting, the regularized loss in (4) is
a function of decision forest:

Q(F) = L(hF (X), Y)+R(hF). (5)

5.2 Algorithmic Framework
The training objective of RGF is to build a forest that mini-
mizes Q(F) defined in (5). Since the exact optimum solution

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 26,2020 at 06:12:04 UTC from IEEE Xplore. Restrictions apply.

946 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 5, MAY 2014

Algorithm 3: Regularized greedy forest framework

1 F←{}.
repeat

2 F← the optimum forest that minimizes Q(F)

among all the forests that can be obtained by
applying one step of structure-changing operation
to the current forest F .

3 if some criterion is met then optimize the leaf
weights in F to minimize loss Q(F).

until some exit criterion is met;
Optimize the leaf weights in F to minimize loss Q(F).
return hF (x)

is difficult to find, we greedily select the basis functions and
optimize the weights. At a high level, we may summarize
RGF in a generic algorithm in Algorithm 3. It essentially
has two main components as follows.

• Fix the weights, and change the structure of the forest
(which changes basis functions) so that the loss Q(F)

is reduced the most (Line 2).
• Fix the structure of the forest, and change the weights

so that loss Q(F) is minimized (Line 3).

5.3 Specific Implementation
There may be more than one way to instantiate useful algo-
rithms based on Algorithm 3. Below, we describe what we
found effective and efficient.

5.3.1 Search for the Optimum Structure Change
(Line 2)

For computational efficiency, we only allow the following
two types of operations in the search strategy:

• to split an existing leaf node,
• to start a new tree (i.e., add a new stump to the

forest).
The operations include assigning weights to new leaf nodes
and setting zero to the node that was split. Search is done
with the weights of all the existing leaf nodes fixed, by
repeatedly evaluating the maximum loss reduction of all
the possible structure changes. When it is prohibitively
expensive to search the entire forest (and that is often the
case with practical applications), we limit the search to
the most recently-created t trees with the default choice
of t = 1. This is the strategy in our current implementa-
tion. For example, Fig. 3 shows that at the same stage as
Fig. 2, we may either consider splitting one of the leaf nodes
marked with symbol X or grow a new tree T4 (split T4’s
root).

Note that RGF does not require the tree size parameter
needed in GBDT. With RGF, the size of each tree is automat-
ically determined as a result of minimizing the regularized
loss.

a) Computation Consider the evaluation of loss reduc-
tion by splitting a node associated with (b, α) into the nodes
associated with (bu1 , α+δ1) and (bu2 , α+δ2), and let us write
F̃(δ1, δ2) for the new tree. Then the model associated with

Fig. 3. Decision forest splitting strategy (we may either split a leaf in T3
or start a new tree T4).

the new forest F̃(δ1, δ2) can be written as:

hF̃(δ1,δ2)
(x) = hF (x)− α · b(x)+

2∑

k=1

(α + δk)buk(x)

= hF (x)+
2∑

k=1

δk · buk(x). (6)

Recall that our additive models are over leaf nodes only.
The node that was split is no longer leaf and therefore
α · b(x) is removed from the model. The second equality
is from b(x) = bu1(x) + bu2(x) due to the parent-child rela-
tionship. Note that, for the purpose of finding the optimum
forest, we let F̃(δ1, δ2) go through all the possible forests
that can be obtained by splitting one leaf node of the cur-
rent forest F . However, our immediate goal here is to find
arg minδ1,δ2 Q(F̃(δ1, δ2)).

Actual computation depends on the loss function and
the regularization term. In general, there may not be an
analytic solution for this optimization problem, whereas
we need to find the solution in an inexpensive manner
as this computation is repeated frequently. For fast com-
putation, one may employ gradient-descent approximation
as used in gradient boosting. However, the sub-problem
we are looking at is simpler, and thus instead of the
simpler gradient descent approximation, we perform one
Newton step which is more accurate; namely, we obtain
the approximately optimum δ̂k (k = 1, 2) as:

δ̂k = −
Q′δk

(F̃(δ1, δ2))

Q′′δk
(F̃(δ1, δ2))

|δ1=0,δ2=0 ,

where Q′δk
(·) and Q′′δk

(·) are the first and second partial
derivatives of Q(·) with respect to δk (k = 1, 2). For exam-
ple, with square loss and L2 regularization penalty, i.e.,
Q(F) = ∑n

i=1(hF (xi) − yi)
2 + λ

∑
v∈F α2

v with a constant λ,
we have

δ̂k =
∑

buk (xi)=1(yi − hF (xi))− nλα
∑

buk (xi)=1 1+ nλ
,

which is the exact optimum for the given split.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 26,2020 at 06:12:04 UTC from IEEE Xplore. Restrictions apply.

JOHNSON AND ZHANG: LEARNING NONLINEAR FUNCTIONS USING REGULARIZED GREEDY FOREST 947

Fig. 4. Example of equivalent models.

5.3.2 Weight Optimization/Correction (Line 3)
With the basis functions fixed, the weights can be optimized
using a standard procedure if the regularization penalty
is standard (e.g., L1- or L2-penalty). In our implementa-
tion we perform coordinate descent, which iteratively goes
through the basis functions and in each iteration updates
the weights by a Newton step with a small step size:

αv←αv − η · Q
′
δv

(F(δv))

Q′′δv
(F(δv))

|δv=0, (7)

where δv is the additive change to αv.
Since the initial weights of new leaf nodes set in Line 2

are approximately optimal at the moment, it is not neces-
sary to perform weight correction in every iteration, which
is relatively expensive. Based on the preliminary experi-
ments using synthesized data, we found that correcting the
weights every time k new leaf nodes are added works well.
Obviously, k’s setting (the interval between fully-corrective
updates) should not be extreme – if k is extremely large, it
would be equivalent to doing fully-corrective update just
once in the end and would lose the benefit of the inter-
leaving approach; if k is extremely small (e.g., k = 1), it
would slow down training. Empirically, as long as k is not
an extreme value, the choice of k is not crucial. Therefore,
we simply fixed k to 100 in all of our experiments including
the competitions we won, described later.

5.4 Tree-structured Regularization
Explicit regularization is a crucial component of this frame-
work. To simplify notation, we define regularizers over a
single tree. The regularizer over a forest can be obtained by
adding the regularizers described here over all the trees.
Therefore, suppose that we are given a tree T with an
additive model over leaf nodes:

hT(x) =
∑

v∈T

αvbv(x) , αv = 0 for v /∈ LT

where LT denotes the set of leaf nodes in T.
To consider useful regularizers, first recall that for any

additive model over leaf nodes only, there always exist
equivalent models over all the nodes of the same tree that
produce the same output. More precisely, let A(v) denote
the set of ancestor nodes of v and v itself, and let T(β) be a
tree that has the same topological structure as T but whose
node weights {αv} are replaced by {βv}. Then we have

∀u ∈ LT:
∑

v∈A(u)

βv = αu ⇔ hT(β)(x) ≡ hT(x)

as illustrated in Fig. 4. Our basic idea is that it is natural to
give the same regularization penalty to all equivalent mod-
els defined on the same tree topology. One way to define a
regularizer that satisfies this condition is to choose a model
of some desirable properties as the unique representation

for all the equivalent models and define the regulariza-
tion penalty based on this unique representation. This is
the high-level strategy we take. That is, we consider the
following form of regularization:

R(hT) =
∑

v∈T(β)

r(v) : hT(β)(x) ≡ hT(x) .

Here node v includes both internal and leaf nodes; the addi-
tive model hT(β)(x) serves as the unique representation of
the set of equivalent models; and r(v) is a penalty func-
tion of v’s weight βv and v’s attributes such as the node
depth. Each βv is a function of given leaf weights {αu}u∈LT ,
though the function may not be a closed form. Since reg-
ularizers in this form utilize the entire tree including its
topological structure, we call them tree-structured regular-
izers. Below, we describe three tree-structured regularizers
using three distinct unique representations.

5.4.1 L2 Regularization on Leaf-only Models
The first regularizer we introduce simply chooses the given
leaf-only model as the unique representation and uses the
standard L2 regularization. This leads to a regularization
term:

R(hT) = λ
∑

v∈T

α2
v/2 = λ

∑

v∈LT

α2
v/2

where λ is a constant for controlling the strength of regular-
ization. A desirable property of this unique representation
is that among the equivalent models, the leaf-only model is
often (but not always1) the one with the smallest number
of basis functions, i.e., the most sparse.

5.4.2 Minimum-penalty Regularization
Another approach we consider is to choose the model
that minimizes some penalty as the unique representative
of all the equivalent models, as it is the most preferable
model according to the defined penalty. We call this type of
regularizer a min-penalty regularizer. In the following min-
penalty regularizer, the complexity of a basis function is
explicitly regularized via the node depth.

R(hT) = λ ·min{βv}

{
∑

v∈T

1
2
γ dvβ2

v : hT(β)(x) ≡ hT(x)

}
. (8)

Here dv is the depth of node v, which is the distance
from the root, and γ is a constant. A larger γ > 1 penal-
izes deeper nodes more severely, which are associated with
more complex decision rules, and we assume that γ ≥ 1.

a) Computation To derive an algorithm for comput-
ing this regularizer, first we introduce auxiliary variables
{β̄v}v∈T, recursively defined as:

β̄oT = βoT , β̄v = βv + β̄p(v) ,

where oT is T’s root, and p(v) is v’s parent node, so that we
have

hT(β) ≡ hT ⇔ ∀v ∈ LT.
[
β̄v = αv

]
, (9)

1. For example, consider a leaf-only model on a stump whose two
sibling leaf nodes have the same weight α �= 0. Its equivalent model
with the fewest basis functions (with nonzero coefficients) is the one
whose weight is α on the root and zero on the two leaf nodes.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 26,2020 at 06:12:04 UTC from IEEE Xplore. Restrictions apply.

948 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 5, MAY 2014

Algorithm 4: Min-penalty regularization with (8)

for v ∈ T do β̄v,0←
{

αv v ∈ LT
0 v /∈ LT

for i = 1 to m do
for v ∈ LT do β̄v,i←αv

for v /∈ LT do β̄v,i←
⎧
⎨

⎩

β̄p(v),i−1+
∑

p(w)=v γ β̄w,i−1
1+2γ

v �= oT∑
p(w)=v γ β̄w,i−1

1+2γ
v = oT

end
return {β̄v,m}

and (8) can be rewritten as:

R(hT) = λ ·min
{β̄v}

{
f ({β̄v}):∀v ∈ LT.[β̄v = αv]

}

where f ({β̄v}) =
∑

v �=oT

γ dv(β̄v − β̄p(v))
2/2+ β̄2

oT
/2 .

Setting f ’s partial derivatives to zero, we obtain that at the
optimum,

∀v /∈ LT: β̄v =
⎧
⎨

⎩

β̄p(v)+∑
p(w)=v γ β̄w

1+2γ
v �= oT∑

p(w)=v γ β̄w

1+2γ
v = oT

, (10)

i.e., essentially, β̄v is the weighted average of the neighbors.
This naturally leads to an iterative algorithm summarized
in Algorithm 4.

5.4.3 Min-penalty Regularization with Sum-to-zero
Sibling Constraints

Another regularizer we introduce is based on the same
basic idea as above but is computationally simpler. We
add to (8) the constraint that the sum of weights for every
sibling pair must be zero,

R(hT) = λ ·min{βv}

{
∑

v∈T

γ dvβ2
v/2: hT(β)(x) ≡ hT(x) ;

∀v /∈ LT.

⎡

⎣
∑

p(w)=v

βw = 0

⎤

⎦

⎫
⎬

⎭ ,

as illustrated in Fig. 5. The intuition behind this sum-to-
zero sibling constraints is that less redundant models are
preferable and that the models are the least redundant when
branches at every internal node lead to completely opposite
actions, namely, ‘adding x to’ versus ‘subtracting x from’ the
output value.

Using the auxiliary variables {β̄v} as defined above, it is
straightforward to show that any set of equivalent models
has exactly one model that satisfies the sum-to-zero sib-
ling constraints. This model can be obtained through the
following recursive computation on the auxiliary variables:

β̄v =
{

αv v ∈ LT∑
p(w)=v β̄w/2 v /∈ LT

.

5.5 Extension of Regularized Greedy Forest
We introduce an extension, which allows the process of for-
est growing and the process of weight correction to have

Fig. 5. Example of sum-to-zero sibling model.

different regularization parameters. The motivation is that
the regularization parameter optimum for weight correc-
tion may not necessarily be optimal for forest growing, as
the former is fully-corrective and therefore global whereas
the latter is greedy and is localized to the leaf nodes of inter-
est. Therefore, it is sensible to allow distinct regularization
parameters for these two distinct processes. Furthermore,
there could be an extension that allows one to change the
strength of regularization as the forest grows, though we
did not pursue this direction in the current work.

6 EXPERIMENTS

This section reports empirical studies of RGF in comparison
with GBDT and several tree ensemble methods. In particular,
we report the results of entering competitions using RGF.
Our implementation of RGF used for the experiments is
available from http://riejohnson.com/rgf_download.html.

For clarity, the experiments focus on regression tasks
and binary classification tasks. However, note that since the
method is designed for optimizing general loss, there are
other applicable tasks. For example, multi-class categoriza-
tion can be performed by combining binary classification
tasks in the “one-vs-others” or other encoding schemes, as
is commonly done with the methods that optimize gen-
eral loss. In addition, there are multi-class training methods
for, for example, GBDT and AdaBoost, and RGF can be
extended similarly.

6.1 On the Synthesized Datasets Controlling
Complexity of Target Functions

First we study the performance of the methods in rela-
tion to the complexity of target functions using synthesized
datasets. To synthesize datasets, first we defined the target
function by randomly generating 100 q-leaf regression trees;
then we randomly generated data points and applied the
target function to them to assign the output/target values.
In more detail, (1) generate 100 trees of q leaf nodes by ran-
domly choosing a node to split and also randomly choosing
features and threshold values for split; (2) assign weights
0, 1, . . . , q to the leaf nodes of each tree; (3) generate data
points of 10 dimensions so that the components distribute
uniformly over {0, 1, . . . , 99}; (4) apply the tree ensemble
generated above to each data point. The obtained value is
an interim target value. To generate regression problems,
normalize the interim target value by subtracting the mean
and dividing by the standard deviation. Note that a larger
tree size q makes the target function more complex.

The results shown in Table 1 are in the root mean square
error (RMSE) averaged over three runs. In each run, ran-
domly chosen 2K data points were used for training and the
number of test data points was 20K. The parameters were
chosen by 2-fold cross validation on the training data. Since
the task is regression, the loss function for RGF and GBDT

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 26,2020 at 06:12:04 UTC from IEEE Xplore. Restrictions apply.

JOHNSON AND ZHANG: LEARNING NONLINEAR FUNCTIONS USING REGULARIZED GREEDY FOREST 949

TABLE 1
Regression Results on Synthesized Datasets

RMSE. Average of 3 runs, each of which used randomly-drawn 2K training data points. RGF-L2 outperforms GBDT. RGF min-penalty (with or without the sibling
constraint) further improves accuracy; the numbers in parentheses are accuracy improvements over RGF-L2.

were set to square loss. RGF used here is the most basic
version, which does L2 regularization with one parameter λ

for both forest growing and weight correction. λ was chosen
from {1, 0.1, 0.01}. For GBDT, we used R package gbm2 [24].
The tree size (in terms of the number of leaf nodes) and
the shrinkage parameter were chosen from {5, 10, 15, 20, 25}
and {0.5, 0.1, 0.05, 0.01, 0.005, 0.001}, respectively. Table 1
shows that RMSE achieves smaller error than GBDT on all
types of datasets.

RGF with min-penalty regularizer with the sibling con-
straints further improves RMSE over RGF-L2 by 0.0315,
0.0210, 0.0033 on the 5-leaf, 10-leaf, and 20-leaf synthesized
datasets, respectively. RGF with min-penalty regularizer
without the sibling constraints also achieved the similar
performances. Based on the amount of improvements, min-
penalty regularizer appears to be more effective on simpler
targets. Fig. 6 plots RMSE in relation to the model size
in terms of the number of basis functions or leaf nodes.
RGF produces better RMSE at all the model sizes; in other
words, to achieve similar RMSE, RGF requires a smaller
model than GBDT.

The synthesized datasets used in this section are pro-
vided with the RGF software.

6.2 Regression and 2-way Classification Tasks on
the Real-world Datasets

The first suite of real-world experiments use relatively small
training data of 2K data points to facilitate experiment-
ing with a wide variety of datasets. The criteria of data
choice were (1) having over 5000 data points in total to
ensure a decent amount of test data and (2) to cover a
variety of domains. The datasets and tasks are summa-
rized in Table 2. All except Houses (downloaded from
http://lib.stat.cmu.edu) are from the UCI repository [11].
All the results are the average of 3 runs, each of which used
randomly-drawn 2K training data points. For multi-class
data, binary tasks were generated as in Table 2. The official
test sets were used as test sets if any (Letter, Adult, and
MSD). For relatively large Nursery and Houses, 5K data
points were held out as test sets. For relatively small Musk
and Waveform, in each run, 2K data points were randomly
chosen as training sets, and the rest were used as test sets
(4598 data points for Musk and 3000 for Waveform). The
exact partitions of training and test data are provided with
the RGF software.

All the parameters were chosen by 2-fold cross val-
idation on the training data. The RGF tested here is

2. In the rest of the paper, gbm was used for the GBDT experiments
unless otherwise specified.

RGF-L2 with the extension in which the processes of
forest growing and weight correction can have regu-
larization parameters of different values, which we call
λg (‘g’ for ‘growing’) and λ, respectively. The value of
λ was chosen from {10, 1, 0.1, 0.01} with square loss,
and from {10, 1, 0.1, 0.01, 1e − 10, 1e − 20, 1e − 30} with
logistic loss and exponential loss. λg was chosen from
{λ, λ

100 }. The tree size for GBDT was chosen from {5, 10,

15, 20, 25}, and the shrinkage parameter was from {0.5, 0.1,

0.05, 0.01, 0.005, 0.001}.
In addition to GBDT, we also tested two other tree

ensemble methods: random forests [7] and Bayesian addi-
tive regression trees (BART) [10]. We used the R pack-
age randomForest [7] and performed random forest
training with the number of randomly-drawn features in
{ d4 , d

3 , d
2 , 3d

5 , 7d
10 , 4d

5 , 9d
10 ,
√

d}, where d is the feature dimen-
sionality; the number of trees set to 1000; and other param-
eters set to default values. BART is a Bayesian approach to
tree ensemble learning. The motivation to test BART was
that it shares some high-level strategies with RGF such
as explicit regularization and non-black-box approaches
to tree learners. We used the R package BayesTree [9]
and chose the parameter k, which adjusts the degree of
regularization, from {1, 2, 3}.

Table 3 shows the regression results in RMSE. RGF
achieves lower error than all others.

Table 4 shows binary classification results in accu-
racy(%). RGF achieves the best performance on the three
datasets, whereas GBDT achieves the best performance on
only one dataset.

The min-penalty regularizer was found to be effective
on Musk, improving the accuracy of RGF-L2 with square
loss from 97.83% to 98.39%, but it did not improve per-
formance on other datasets. Based on the synthesized data
experiments in the previous section, we presume that this

Fig. 6. Regression results in relation to model size. One particular run
on the data synthesized from 10-leaf trees.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 26,2020 at 06:12:04 UTC from IEEE Xplore. Restrictions apply.

950 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 5, MAY 2014

TABLE 2
Real-World Datasets

We report the average of 3 runs, each of which uses 2K training data points.
The numbers in parentheses indicate the dimensionality after converting categor-
ical attributes to indicator vectors.

TABLE 3
Regression Results

RMSE. Average of 3 runs, each of which used randomly-drawn 2K training data
points. The best and second best results are in bold and italic, respectively.

is because the target functions underlying these real-world
datasets are mostly complex.

On the binary classification tasks, AdaBoost with three
configurations was also tested3: AdaBoost with deci-
sion stumps both with and without unregularized fully-
corrective weight update to minimize exponential loss as
post processing, and a publicly available AdaBoost imple-
mentation with tree ensembles. For the third configura-
tion (labeled as ‘AdaBoost reg.’ in the table) we used
the R package ada and set the parameter “cp”, which
controls the degree of regularization of the tree learner,
from {0.1, 0.01, 0.001} by cross validation. AdaBoost is a
meta learner known to produce highly accurate classi-
fiers, and in particular, AdaBoost with decision stumps
has been intensively studied. The unregularized fully-
corrective weight update of AdaBoost is discussed in the
Appendix of [26].

As shown in Table 4, the accuracy of AdaBoost with deci-
sion stumps turned out to be generally poor, for example,
the accuracy on Letter is about 12% lower than the other
methods. Among the three configurations of AdaBoost,
‘AdaBoost reg.’ is the most competitive, which indicates
that the success of the meta learner AdaBoost relies on the
appropriate regularization of the base learner. Apparently,
the degree of regularization implicitly provided by restrict-
ing the base learner to decision stumps is not the opti-
mum on the three (Letter, Musk, and Nursery) out of
five datasets, causing accuracy to degrade by 1%, 6%,
and 12% compared with RGF. The unregularized fully-
corrective update (as suggested in [26]) was found to
degrade accuracy on all the datasets. This is not surpris-
ing because it is known that the exponential loss used in
Adaboost is prone to overfitting, especially without regular-
ization. These AdaBoost results provide further support for

3. Note that AdaBoost cannot be used for regression tasks since the
loss function associated with AdaBoost is specifically the exponential
loss.

Fig. 7. RMSE/Accuracy in relation to model size. One particular run on
the representative datasets.

our methodology of incorporating fully-corrective weight
updates with explicit regularization.

Regarding model sizes, we noticed that random forests
and BART require far larger models than RGF to achieve
the performances shown in the Table 4; for example, all the
BART’s models consist of over 400K leaf nodes whereas
the RGF models reach the best performance with 20K leaf
nodes or fewer. Similarly, AdaBoost with stumps requires
far larger models (200K leaf nodes) on Letter and Musk
and yet it achieves lower accuracy than RGF. Fig. 7 shows
the RMSE/accuracy of RGF and GBDT (and AdaBoost for
classification) in relation to the model sizes on the represen-
tative datasets. Similar to Fig. 6 (on the synthesized data),
RGF is more accurate than GBDT (and AdaBoost) at all
model sizes; in other words, to achieve similar accuracy,
RGF only requires a smaller model than GBDT.

6.3 GBDT with Post Processing of Fully-Corrective
Updates

A two-stage approach was proposed in [17], [18]4 that,
in essence, first performs GBDT to learn basis functions
and then fits their weights with L1 penalty in the post-
processing stage. Note that by contrast RGF generates
basis functions and optimizes their weights in an interleav-
ing manner so that fully-corrected weights can influence
generation of the next basis functions.

Table 5 shows the performance results of the two-stage
approach on the regression and 2-way classification tasks
described in Section 6.2. As is well known, L1 regulariza-
tion has “feature selection” effects, assigning zero weights
to more and more features with stronger regularization.
After performing GBDT5 with the parameter chosen by
cross validation on the training data, we used the R pack-
age glmnet [16] to compute the entire L1 path in which
the regularization parameter goes down gradually and thus
more and more basis functions obtain nonzero weights, and
chose the L1 regularization parameter by 3-fold cross vali-
dation using the cross validation functionality of glmnet.
In the table, the numbers in the parentheses compare the
sizes of the models with and without post-processing of the
two-stage approach; for example, on Adult, the size of
the model after post-processing is 13.5% compared with

4. Although [18] discusses various techniques regarding rules, we
focus on the aspect of the two-stage approach which [18] derives
from [17], since it is the most relevant portion to our work due to
its contrast with our interleaving approach.

5. We used our own implementation of GBDT for this purpose, as
gbm does not have the functionality to output the features generated
by tree learning.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 26,2020 at 06:12:04 UTC from IEEE Xplore. Restrictions apply.

JOHNSON AND ZHANG: LEARNING NONLINEAR FUNCTIONS USING REGULARIZED GREEDY FOREST 951

TABLE 4
Binary Classification Results

Accuracy (%). Average of 3 runs, each of which used randomly-drawn 2K training data points. “Sq.”, “Log.”, “Expo.” stand for the square loss, logistic loss, and exponential
loss, respectively. “w/full” is AdaBoost with stumps with fully-corrective update as post-processing. “Reg.” is AdaBoost with the regularized tree learner. The best and
second best results are in bold and italic, respectively.

the GBDT model without post-processing and accuracy is
0.52% lower. The results show that the L1 post process-
ing makes the models smaller, but it noticeably degrades
accuracy on all but one dataset. We view that for achiev-
ing better accuracy, RGF’s interleaving approach has a clear
advantage.

6.4 RGF in the Competitions
To further test RGF in practical settings, we entered three
machine learning competitions (listed in Table 6) and
obtained good results. The competitions were held in the
“Netflix Prize” style. That is, participants submit predic-
tions on the test data (whose labels are not disclosed) and
receive performance results on the public portion of the test
data as feedback on the public Leaderboard. The goal is to
maximize the performance on the private portion of the test
data, and neither the private score nor the standing on the
private Leaderboard is disclosed until the competition ends.

In all of the three competitions, RGF produced more
accurate models than GBDT. This demonstrates that RGF
can achieve performance superior to GBDT even in the
most competitive situation.

Bond Price Prediction
We were awarded with the First Place Prize in Benchmark
Bond Trade Price Challenge (www.kaggle.com/c/
benchmark-bond-trade-price-challenge). The task was
to predict bond trade prices based on the information such
as past trade recordings.

The evaluation metric was weighted mean absolute
error,

∑
i wi|yi − f (xi)|, with the weights set to be larger for

the bonds whose price prediction is considered to be harder.
We trained RGF with L1-L2 hybrid loss [8],

√
1+ r2 − 1

where r is the residual, which behaves like L2 loss when
|r| is small and L1 when |r| is large. Our winning submis-
sion was the average of 62 RGF runs, each of which used
different data pre-processing.

In the table above, “RGF-L2 (single run)” is one of
the RGF runs used to make the winning submission, and
“GBDT (single run)” is GBDT6 using exactly the same
features as “RGF-L2 (single run)”. RGF produces smaller
error than GBDT on both public and private portions.
Furthermore, by comparison with the performance of the
second best team (which blended random forest runs and
GBDT runs), we observe that not only the average of the
62 RGF runs but also the single RGF run could have won
the first place prize. whereas the single GBDT run would
have fallen behind the second best team.

In Fig. 8, accuracy (in terms of WMAE) is shown in rela-
tion to model sizes on the 2-to-1 split of the data provided
for training. RGF is more accurate than GBDT at all the
model sizes; in other words, to achieve similar accuracy,
RGF requires a smaller model than GBDT.

Biological Response Prediction
The task of Predicting a Biological Response (www.kaggle.
com/c/bioresponse) was to predict a biological response
(1/0) of molecules from their chemical properties. We were
in the fourth place with a small difference from the first
place.

Our best submission combined the predictions of RGF
and other methods with some data conversion. For the
purpose of this paper, we show the performance of RGF
and GBDT on the original data for easy reproduction of

6. As gbm does not support the L1-L2 loss, we used our own
implementation.

TABLE 5
Comparison of GBDT with and without Fully-Corrective Post Processing Proposed by [18]

RMSE/accuracy(%) and model sizes (in parentheses) relative to those without post-processing. Square loss. Average of 3 runs. The post-processing decreases the
model size, but noticeably degrades accuracy on all but one dataset.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 26,2020 at 06:12:04 UTC from IEEE Xplore. Restrictions apply.

952 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 5, MAY 2014

Fig. 8. Accuracy in relation to model size.

the results. Although the evaluation metric was log loss,
− 1

n
∑n

i=1 yi log(f (xi))+ (1− yi) log(1− f (xi)), we found that
with both RGF and GBDT, better results can be obtained by
training with square loss and then calibrating the predic-
tions by: g(x) = (0.05 + x)/2 if x < 0.05; (0.95 + x)/2 if x >

0.95; x otherwise. The log loss results shown in the table
below were obtained this way. RGF produces better results
than GBDT on both public and private sets. The same
model size was used for both RGF and GBDT, which was
found to generally produce the best accuracy for both.

Predicting Days in a Hospital—$3M Grand Prize
After two kaggle competitions with good results, we
decided to enter the highest profile kaggle competition
at the time—Heritage Provider Network Health Prize
(www.heritagehealthprize.com/c/hhp). This was a two-
year-long competition with $3,000,000 Grand Prize and
three milestones, which attracted 1660 teams. We entered
the competition right before the 3rd/final milestone, in
which we achieved the 2nd place, and then we were asked
by other milestone winners to merge with them. The com-
petition has concluded, and our team won the 1st place
(though the threshold for the $3M was not achieved).

The task was to predict the number of days people will
spend in a hospital in the next year based on “historical
claims data”. We show the public Leaderboard performance
of an RGF run and a GBDT run applied to the same
features in the table below. Both runs were part of the win-
ning submission. We also show the 5-fold cross validation
results of our testing using training data on the same fea-
tures. Again RGF achieves lower error than GBDT in both
comparisons.

Furthermore, we have 5-fold cross validation results of
RGF and GBDT on 53 datasets each of which uses features
composed differently. Their corresponding official runs are
all part of the winning submission. On all of the 53 datasets,
RGF produced lower error than GBDT with the average of
error differences 0.0005, which is significant on this data.

The superiority of RGF is consistent on these datasets. This
provides us competitive advantage to do well in all three
competitions we have entered.

In Fig. 8, accuracy (in terms of RMSE) is shown in rela-
tion to model sizes on the 4-to-1 split of the data provided
for training. RGF is more accurate than GBDT at all the
model sizes; in other words, to achieve similar accuracy,
RGF requires a smaller model than GBDT.

7 RUNNING TIME

Compared with GBDT, computation of RGF involves
additional complexity mainly for fully-corrective weight
updates; however, running time of RGF is linear in the
number of training data points. Below we analyze running
time in terms of the following factors: �, the number of leaf
nodes generated during training; d, dimensionality of the
original input space; n, the number of training data points;
c, how many times the fully-corrective weight optimization
is done; and z, the number of leaf nodes in one tree, or tree
size. In RGF, tree size depends on the characteristics of data
and strength of regularization. Although tree size can differ
from tree to tree, for simplicity we treat it as one quantity,
which should be approximated by the average tree size in
applications.

In typical tree ensemble learning implementation, for
efficiency, the data points are sorted according to feature
values at the beginning of training. The following analysis
assumes that this “pre-sorting” has been done. Pre-sorting
runs in O(nd log(n)), but its actual running time seems prac-
tically negligible compared with the other part of training
even when n is as large as 100,000.

Recall that RGF training consists of two major parts:
one grows the forest, and the other optimizes/corrects
the weights of leaf nodes. The part to grow the forest
excluding regularization runs in O(nd�), same as GBDT.
Weight optimization takes place c times, and each time
we have an optimization problem of n data points each of

TABLE 6
Competition Data Statistics

The “Dim” (feature dimensionality) and #train are shown for the data used by
one particular run for each competition for which we show the leaderboard
performance in Section 6.4.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 26,2020 at 06:12:04 UTC from IEEE Xplore. Restrictions apply.

JOHNSON AND ZHANG: LEARNING NONLINEAR FUNCTIONS USING REGULARIZED GREEDY FOREST 953

which has at most �
z nonzero entries; therefore, the running

time for optimization, excluding regularization, is O(n�c
z)

using coordinate descent implemented with sparse matrix
representation.

During forest building, the partial derivatives and the
reduction of regularization penalty are referred to O(nd�)

times. During weight optimization, the partial derivatives
of the penalty are required O(�c) times. With RGF-L2,
computation of these quantities is practically negligible.
Computation of min-penalty regularizers involves O(z)
nodes; however, with efficient implementation that stores
and reuses invariant quantities, extra running time for
min-penalty regularizers during forest building can be
reduced to O(nd�) + O(�z2) from O(nd�z). The extra run-
ning time during weight optimization is O(�cz), but the
constant part can be substantially reduced by efficient
implementation.

Actual execution time for training depends on not only
the data but also the design of the parameter selection
process. In our experiments in the previous section, we
performed 2-fold cross validation for parameter selection
from 8 (RGF-L2) and 30 (GBDT) parameter combinations
for square loss; the total time for parameter selection on,
for example, Letter, was 128 seconds with RGF-L2 and
191 seconds with GBDT. That is, even though RGF train-
ing tends to take longer than GBDT individually, the total
time for parameter selection could be shorter with RGF. On
the same Letter dataset, parameter selection for AdaBoost
with stumps (which was simply for deciding how large the
model should be) took only 33 seconds; however, its accu-
racy is 12% lower than RGF, which makes longer training
time for RGF worthwhile.

8 CONCLUSION

This paper introduced a new method that learns a non-
linear function by using an additive model over nonlinear
decision rules. Unlike the traditional boosted decision tree
approach, the proposed method directly works with the
underlying forest structure. The resulting method, which
we refer to as regularized greedy forest (RGF), integrates
two ideas: one is to include tree-structured regularization
into the learning formulation; and the other is to employ
the fully-corrective regularized greedy algorithm. Since in
this approach we are able to take advantage of the spe-
cial structure of the decision forest, the resulting learning
method is effective and principled. Our empirical studies
showed that the new method can achieve more accurate
predictions than existing methods which we tested.

ACKNOWLEDGMENTS

T. Zhang is supported by the following grants: NSF IIS-
1016061, NSF DMS-1007527, and NSF IIS-1250985.

REFERENCES

[1] F. Bach, “Exploring large feature spaces with hierarchical multiple
kernel learning,” in Proc. NIPS, 2008.

[2] F. Bach, “High-dimensional non-linear variable selection through
hierarchical kernel learning,” Tech. Rep. 00413473, HAL, 2009.

[3] R. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model
based compressive sensing,” IEEE Trans. Inf. Theory, vol. 56, no. 4,
pp. 1982–2001, Apr. 2010.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees. Belmont, CA, USA: Wadsworth
Advanced Books and Software, 1984.

[5] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123–140, Aug. 1996.

[6] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1,
pp. 5–32, 2001.

[7] L. Breiman, A. Cutler, A. Liaw, and M. Wiener, Package
‘RandomForest’, 2010.

[8] K. Bube and R. Langan, “Hybrid �1/�2 minimization with appli-
cation to tomography,” Geophysics, vol. 62, no. 4, pp. 1183–1195,
1997.

[9] H. Chipman and R. McCulloch, Package ‘BayesTree’, 2010.
[10] H. A. Chipman, E. I. George, and R. E. McCulloch, “BART:

Bayesian additive regression trees,” Ann. Appl. Statist., vol. 4,
no. 1, pp. 266–298, 2010.

[11] A. Frank and A. Asuncion. (2010). “UCI machine learning repos-
itory,” School Inform. Comput. Sci., Univ. California, Irvine, CA,
USA [Online]. Available: http://archive.ics.uci.edu/ml

[12] Y. Freund and R. E. Schapire, “A decision-theoretic generalization
of on-line learning and an application to boosting,” J. Comput.
Syst. Sci., vol. 55, no. 1, pp. 119–139, 1997.

[13] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient
boosting algorithm for combining preferences,” JMLR, vol. 4,
pp. 933–969, Nov. 2003.

[14] Y. Freund and L. Mason, “The alternating decision tree learn-
ing algorithm,” in Proc. ICML, San Francisco, CA, USA, 1999,
pp. 124–133.

[15] J. Friedman, “Greedy function approximation: A gradient boost-
ing machine,” Ann. Statist., vol. 29, no. 5, pp. 1189–1536, 2001.

[16] J. Friedman, T. Hastie, and R. Tibshirani, Package ‘glmnet’, 2011.
[17] J. H. Friedman and B. E. Popescu, “Importance sampled learning

ensembles,” Dept. Stat., Stanford Univ., Tech. Rep., 2003.
[18] J. H. Friedman and B. E. Popescu, “Predictive learning via rule

ensembles,” Ann. Appl. Statist., vol. 2, no. 3, pp. 916–954, 2008.
[19] R. Herbrich, T. Graepel, and K. Obermayer, “Large margin rank

boundaries for ordinal regression,” in Advances in Large Margin
Classifiers, B. Schölkopf A. Smola, P. Bartlett and D. Schuurmans,
Eds. Cambridge, MA, USA: MIT Press, 2000, pp. 115–132.

[20] J. Huang, T. Zhang, and D. Metaxas, “Learning with structured
sparsity,” JMLR, vol. 12, pp. 3371–3412, Nov. 2011.

[21] L. Jacob, G. Obozinski, and J. Vert, “Group lasso with overlap and
graph lasso,” in Proc. 26th ICML, Montreal, QC, Canada, 2009.

[22] R. Jenatton, J.-Y. Audibert, and F. Bach, “Structured variable selec-
tion with sparsity-inducing norms,” JMLR, vol. 12, pp. 2777–2824,
Oct. 2011.

[23] J. Ross Quinlan, C4.5: Programs for Machine Learning. San Mateo,
CA, USA: Morgan Kaufmann, 1993.

[24] G. Ridgeway, Package ‘gbm’ v1, 2006.
[25] R. E. Schapire, “The boosting approach to machine learning: An

overview,” in Nonlinear Estimation Classification. New York, NY,
USA: Springer, 2003.

[26] R. E. Schapire and Y. Singer, “Improved boosting algorithms
using confidence-rated predictions,” Mach. Learn., vol. 37, no. 3,
pp. 297–336, 1997.

[27] S. Shalev-Shwartz, N. Srebro, and T. Zhang, “Trading accuracy
for sparsity in optimization problems with sparsity constraints,”
SIAM J. Optim., vol. 20, no. 6, pp. 2807–2832, Aug. 2010.

[28] M. Warmuth, J. Liao, and G. Ratsch, “Totally corrective boost-
ing algorithms that maximize the margin,” in Proc. 23rd ICML,
Pittsburgh, PA, USA, 2006.

[29] T. Zhang and B. Yu, “Boosting with early stopping: Convergence
and consistency,” Ann. Statist., vol. 33, no. 4, pp. 1538–1579, 2005.

Rie Johnson received the Ph.D. degree in com-
puter science from Cornell University, Ithaca,
NY, USA, in 2001. She was a research scien-
tist with the IBM T.J. Watson Research Center,
Yorktown Heights, NY, USA, until 2007. Her cur-
rent research interests include machine learning
and its applications.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 26,2020 at 06:12:04 UTC from IEEE Xplore. Restrictions apply.

954 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 5, MAY 2014

Tong Zhang received the B.A. degree in math-
ematics and computer science from Cornell
University, Ithaca, NY, USA, in 1994 and the
Ph.D. degree in computer science from Stanford
University, Stanford, CA, USA, in 1999. After
graduation, he was with the IBM T.J. Watson
Research Center, Yorktown Heights, NY, USA,
and Yahoo Research, New York, NY, USA.
Currently, he is a professor of statistics with
Rutgers University, New Brunswick, NJ, USA. His
current research interests include machine learn-

ing, statistical algorithms, their mathematical analysis and applications.

� For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on October 26,2020 at 06:12:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

