
Mathematical Analysis of Machine Learning

Algorithms

Tong Zhang





Contents

List of illustrations viii

Preface ix

1 Introduction 1
1.1 Standard Model for Supervised Learning 2
1.2 Online Learning and Sequential Decision Making 3
1.3 Computational Consideration 5
1.4 Basic Concepts in Generalization Analysis 5
1.5 Historical and Bibliographical Remarks 7

2 Basic Probability Inequalities 9
2.1 Normal Random Variable 9
2.2 Markov’s Inequality 11
2.3 Exponential Tail Inequality 12
2.4 Sub-Gaussian Random Variable 16
2.5 Hoeffding’s Inequality 17
2.6 Bennett’s Inequality 21
2.7 Bernstein’s Inequality 23
2.8 Non-identically Distributed Random Variables 24
2.9 Tail Inequality for χ2 25
2.10 Historical and Bibliographical Remarks 26

Exercises 28

3 Uniform Convergence 29
3.1 Probably Approximately Correct Learning 29
3.2 Analysis of PAC Learning 31
3.3 Empirical Process 35
3.4 Covering Number 38
3.5 A Simple Example 41
3.6 Uniform Bernstein’s Inequality 43
3.7 General Bracketing Number 48
3.8 Historical and Bibliographical Remarks 50

Exercises 51

4 Empirical Covering Number Analysis 52
4.1 Metric and Empirical Covering Numbers 52
4.2 Symmetrization 54

iii



CHAPTER 0. CONTENTS iv

4.3 Uniform L1 Covering Number Analysis 58
4.4 Vapnik-Chervonenkis Dimension 61
4.5 Uniform L2 Covering Number Analysis 63
4.6 Uniform L∞ Covering Number Analysis 65
4.7 Historical and Bibliographical Remarks 68

Exercises 70

5 Covering Number Estimates 72
5.1 Packing Number 72
5.2 Lipschitz Function in Finite Dimension 73
5.3 Empirical Lp Covering Numbers of VC-class 74
5.4 VC-subgraph Class 76
5.5 Convex Hull Class 77
5.6 Regularized Linear Function Classes 81
5.7 Historical and Bibliographical Remarks 82

Exercises 84

6 Rademacher Complexity 85
6.1 Rademacher Complexity 85
6.2 Offset Rademacher Complexity 87
6.3 Concentration Inequality 92
6.4 Estimating Rademacher Complexity 97
6.5 Local Rademacher Complexity Analysis 103
6.6 Historical and Bibliographical Remarks 113

Exercises 115

7 Stability Analysis 117
7.1 Algorithmic Stability 117
7.2 Regularized Empirical Risk Minimization 121
7.3 Stochastic Gradient Descent 126
7.4 Gibbs Algorithm for Non-convex Problems 129
7.5 Stochastic Gradient Langevin Dynamics 133
7.6 Concentration of Uniformly Stable Algorithm 135
7.7 Historical and Bibliographical Remarks 140

Exercises 141

8 Model Selection 142
8.1 Model Selection Problem 142
8.2 Model Selection on Validation Data 144
8.3 Model Selection on Training Data 147
8.4 Bayesian Model Selection and Averaging 153
8.5 Historical and Bibliographical Remarks 154

Exercises 157

9 Kernel Methods 158
9.1 Introduction to Kernel Learning 158
9.2 Universal Approximation 164
9.3 Generalization Analysis 168

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



v

9.4 Vector Valued Functions 173
9.5 Refined Analysis: Ridge Regression 177
9.6 G-Optimal Design in RKHS 182
9.7 Historical and Bibliographical Remarks 186

Exercises 188

10 Additive Models 189
10.1 Sparse Model Combination 189
10.2 L1 Regularization 193
10.3 Information Theoretic Analysis 201
10.4 Boosting and Greedy Algorithm 208
10.5 Sparse Recovery Analysis 215
10.6 Historical and Bibliographical Remarks 222

Exercises 224

11 Neural Networks 226
11.1 Introduction to Neural Networks 226
11.2 Function Approximation 228
11.3 Random Feature Method 230
11.4 Neural Tangent Kernel 233
11.5 Mean-Field Formulation 238
11.6 Analysis of Deep Neural Networks 244
11.7 Double Descent and Benign Overfitting 245
11.8 Historical and Bibliographical Remarks 250

Exercises 253

12 Lower Bounds and Minimax Analysis 254
12.1 Lower Bounds for Empirical Processes 254
12.2 Minimax Analysis for Statistical Estimation 257
12.3 Lower Bounds Using Fano’s Inequality 259
12.4 Minimax Analysis for Least Squares Regression 262
12.5 Minimax Analysis for Density Estimation 268
12.6 Lower Bounds using Assouad’s Lemma 269
12.7 Historical and Bibliographical Remarks 272

Exercises 274

13 Sequential Random Variables 275
13.1 Martingale Exponential Inequalities 276
13.2 Self-Normalizing Vector Martingale Inequalities 280
13.3 Uniform Convergence 283
13.4 Minimax Analysis for Sequential Estimation 287
13.5 Historical and Bibliographical Remarks 293

Exercises 295

14 Online Learning 298
14.1 Online Learning Model 298
14.2 Perceptron Algorithms 299
14.3 Online to Batch Conversion 302

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



CHAPTER 0. CONTENTS vi

14.4 Online Convex Optimization 304
14.5 Online Nonconvex Optimization 310
14.6 Historical and Bibliographical Remarks 313

Exercises 315

15 Online Aggregation 316
15.1 Bayesian Posterior Averaging 316
15.2 Ridge Regression as Bayesian Posterior Averaging 319
15.3 Exponential Model Aggregation 325
15.4 Second Order Online Convex Optimization 328
15.5 Adaptive Gradient Method 330
15.6 Historical and Bibliographical Remarks 332

Exercises 334

16 Multi-armed Bandits 335
16.1 Multi-armed Bandit Problem 335
16.2 Upper Confidence Bound for Stochastic MAB 336
16.3 Lower Bounds for Stochastic MAB 345
16.4 Arm Elimination for Stochastic Linear Bandits 346
16.5 Thompson Sampling for Stochastic MAB 349
16.6 EXP3 for Adversarial MAB 350
16.7 Historical and Bibliographical Remarks 353

Exercises 354

17 Contextual Bandits 355
17.1 EXP4 for Adversarial Contextual Bandits 356
17.2 Linear UCB for Stochastic Contextual Bandits 361
17.3 Nonlinear UCB with Eluder Coefficient 367
17.4 Nonlinear Bandits with Decoupling Coefficient 372
17.5 Nonlinear Bandits with Coverage Coefficient 379
17.6 Historical and Bibliographical Remarks 381

Exercises 383

18 Reinforcement Learning 384
18.1 Value Functions of Episodic MDP 386
18.2 Q-type Model-Free Linear MDP 392
18.3 Least Squares Value Iteration 396
18.4 Model-Free V -type Bellman Eluder Coefficient 402
18.5 Model-based Reinforcement Learning 408
18.6 Linear Mixture MDP 417
18.7 Q-type Model-Based Linear MDP 419
18.8 Model-Based V -type Bellman Eluder Coefficient 421
18.9 Historical and Bibliographical Remarks 424

Exercises 426

Appendix A Basics of Convex Analysis 427
A.1 Definitions 427
A.2 Basic Properties 428

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



vii

A.3 Common Convex Functions 430
A.4 Matrix Trace Functions 431

Appendix B f-divergence of Probability Measures 433

References 441

Author index 457

Subject index 461

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



Illustrations

1.1 Training and test errors versus model complexity 6
3.1 Conditional probability Pr(y = 1|x) as a function of x 42
6.1 Smoothed Classification Loss 102
6.2 Rate function 105
11.1 Neural network activation functions 227
11.2 Four-layer fully-connected neural network 227
11.3 Plot of fk(x) with k = 0, 1, 2 229
11.4 Double descent curve 246
18.1 Episodic Markov decision process 385

viii



Preface

Machine learning is a relatively young scientific discipline with the goal of achiev-
ing the capability of human decision making by learning from past experience. It
is an interdisciplinary field that requires knowledge from statistics, optimization,
engineering, and many innovations in computing. In the past few decades, we have
seen a rapid development of empirically successful machine learning algorithms,
to the degree that machine learning has become an indispensable technology to
solve many challenging problems in the modern society. In the mean time, the
mathematical theory of machine learning has been developed by researchers in
computer science, statistics, optimization, and engineering, who are interested in
establishing a rigorous mathematical foundation that not only can explain the
current algorithms, but also can motivate principled approaches for the future.
However, many of the existing theoretical results are scattered in the literature.
While there are a number of introductory books and survey articles that have
tried to cover some of these theoretical results, there isn’t any in-depth text book
that is able to provide a comprehensive introduction to standard mathematical
tools that have been developed in the literature.

The goal of this book is to present a systematic treatment of the main math-
ematical techniques that are commonly used to analyze machine learning al-
gorithms in the current literature. Due to the space limitation, the book itself
does not explain various machine learning algorithms and their application back-
grounds in details. Therefore it is assumed that readers of the book are already
familiar with standard machine learning algorithms such as support vector ma-
chines, decision trees, boosting, neural networks etc. The readers of the book
should also have the basic mathematical knowledge of calculus, linear algebra,
and probability, as well as sufficient mathematical maturity to follow rigorous the-
oretical proofs. For such readers, the main purpose of this book is to introduce
the modern mathematical techniques that are commonly used to analyze these
machine learning algorithms. The selected material is at a level that can provide
the readers sufficient technical background and knowledge to read research papers
in theoretical machine learning without much difficulty.

The topics selected in the book are intended to cover the most useful and com-
monly encountered mathematical tools and results at the current research level.
Some more specialized topics (such as active learning, semisupervised learning,
loss function consistency, differential privacy, to name a few) are omitted, but
readers who have learned the technical tools presented in the book should have
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CHAPTER 0. PREFACE x

no difficulty following current research on these topics. The book can be used for
a graduate level course on theoretical machine learning, and it can also serve as
a reference for researchers working on theoretical machine learning. While the
most fundamental concepts are illustrated in sufficient depth, some other top-
ics of current interests are covered with less details. Due to the large number
of topics, some presentations are relatively concise, and some other topics are
presented with a level of abstraction which targets for the unification of different
special cases that have appeared in the literature. Such abstraction and the con-
cise presentation might lead to some difficulty at a first reading. To alleviate the
difficulty, many examples are included to provide concrete interpretations and
appropriate context of the theoretical results. Historical remarks are included to
give the original sources of the topics covered in the book, as well as extra reading
material for readers who are interested in deeper understanding. The exercises
provided at the end of each chapter can help the readers to check their mastery
of the main concepts. Most exercises require good knowledge of the material, but
not difficult. Moreover, some of the exercises are designed to provide additional
information for topics related but not directly covered in the main text.

The book contains two main parts. The first part, from Chapter 1 to Chapter
12, covers the analysis of supervised learning algorithms in the iid setting. It starts
with the standard exponential tail inequalities for sums of independent variables,
and then spends several chapters to develop the technical tools for uniform con-
vergence, which is the main mathematical machinery to analyze machine learning
algorithms. Key results are established using the classical concepts such as cov-
ering numbers, VC dimension, and Rademacher complexity. The first part of the
book also covers the more recently emerged technique of stability analysis, which
can handle specific learning procedures such as stochastic gradient descent. As
applications of these basic mathematical tools, analysis of several commonly used
machine learning models including kernel methods, additive models, and neural
networks have also been presented in varying degrees of details. Finally, the first
part concludes with standard lower bound analysis in Chapter 12, which covers
the commonly used techniques such as Fano’s inequality and Assouad’s lemma.
Examples on least squares regression and density estimation are also provided.

The second part of the book, starting from Chapter 13, covers the analysis of
sequential statistical estimation problems, including online learning, bandit prob-
lems, and reinforcement learning. It starts with a generalization of the exponential
tail inequalities and uniform convergence analysis from iid random variables to
martingales in the sequential setting. It then describes specific algorithms and
their analysis in the subsequent chapters in online learning, bandits, and rein-
forcement learning. Both upper bounds and lower bounds are provided.

The book contains sufficient material for a two-semester graduate level course,
one for each part of the book. It can also be used for a one-semester course
that covers part of the book. The author has taught graduate courses at the
Hong Kong University of Science and Technology based on the content of the
book. Students taking the courses have already learned basic machine learning
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xi

algorithms, and want to further study the mathematical tools to analyze these
algorithms.

For a one-semester class on the mathematical foundation of machine learning,
the following selected materials can be considered: Section 2.1-2.6 on exponential
inequalities, Chapter 3 on uniform convergence, Section 4.1-4.4 on VC theory,
Section 5.1-5.2 on covering numbers, Section 6.1-6.4 on Rademacher complex-
ity (covering only the standard Rademacher complexity, while leaving the offset
Rademacher complexity as reading material), Section 8.1-8.3 on model selection,
Section 9.1-9.3 on kernel methods, Section 10.1-10.3 on additive models, Section
11.3, 11.4, 11.6, 11.7 on neural networks, Section 12.3 and 12.4 on lower bounds,
Section 13.1 and 13.3 on martingales, Section 14.1-14.4 on online learning, Sec-
tion 16.1, 16.2, 16.6 on bandits, Section 17.1, 17.3, 17.4 on contextual bandits,
and Section 18.1-18.3 on reinforcement learning. Lecture slides on these topics
are available on the author’s website.

The author would like to thank students who read early drafts of the book, and
provided useful suggestions. In particular, Chutian Huang, Yujia Jin, Yong Lin,
Zhefeng Qiao, Yifei Shen, Wei Xiong, Mengyue Zha provided feedbacks on parts
of the book. I’d also like to thank the editorial staffs at Cambridge university
press, Johnathan Fuentes and Katie Leach for their helps and suggestions on the
writing of the book. Finally I want to thank my wife Yue for her tremendous
support on this undertaking, which has made the writing of the book possible.

Hong Kong Tong Zhang
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1

Introduction

The goal of mathematical analysis of machine learning algorithms is to study
the statistical and computational behaviors of methods that are commonly used
in machine learning, and to understand their theoretical properties such as the
statistical rate of convergence (usually deriving upper bounds for specific algo-
rithms), the optimality of a statistical method (whether the derived statistical
upper bound matches the information theoretical lower bound), and the compu-
tational efficiency for various learning models under different assumptions.

This book mainly focuses on the analysis of two common learning models:
supervised learning and sequential decision making problems.

In supervised learning, we train a machine learning model using training data,
and then evaluate the model’s prediction performance on unseen test data. In
this case, we want to investigate the performance of this model on test data.

A mathematical theory for supervised learning answers the following basic
questions, where we take the linear model as an example.

• Suppose that we learn a d-dimensional linear classifier with n training data by
minimizing the training error. Assume that the training error is 10%. What
is the classifier’s test error on the (unseen) test data? The test error in this
setting is also referred to as generalization error because it is not observed.

• Can we learn a linear classifier that has test error nearly as small as the optimal
linear classifier?

• Can we find a computationally efficient procedure to find a linear classifier with
small test error?

The online learning model is an example of sequential decision making prob-
lems. In online learning, we are interested in the sequential prediction problem,
where we train a statistical model using historic data, and then test it on the
data in the next time step. We then observe the true outcome after prediction.
This process is repeated in a sequential manner. The problem itself is motivated
from time series analysis and forecasting problems. We want to know the ability
of a learning algorithm to predict future events based on historic observations.

A mathematical theory for online learning needs to answer the following basic
questions, where we again take the linear model as an example.

• In the online sequential prediction setting. Given a time step t, can we construct

1



CHAPTER 1. INTRODUCTION 2

an online learning algorithm that predicts nearly as well as the optimal linear
classifier up to time step t?

This course develops the mathematical tools that can be used to answer the
above questions.

1.1 Standard Model for Supervised Learning

In supervised learning, we observe an input random variable (feature vector)
X ∈ Rd that represents the known information, and output variable (label) Y
that represents the unknown information which we want to predict. The goal is
to predict Y based on X.

As an example, we may want to predict whether an image (represented as input
vector X) contains a cat or a dog (label Y ).

In practice, the set of prediction rules are derived by parametrized functions
f(w, ·) : Rd → Rk, where w ∈ Ω is the model parameter that can be learned
on the training data. As an example, for k-class classification problem, where
Y ∈ {1, . . . , k}, we predict Y using the following prediction rule given function
f(w, x) = [f1(w, x), . . . , fk(w, x)] ∈ Rk:

q(x) = arg max
`∈{1,...,k}

f`(w, x).

The prediction quality is measured by a loss function L(f(x), y): the smaller
the loss, the better the prediction accuracy.

The supervised learning approach is to estimate ŵ ∈ Ω based on observed
(labeled) historical data Sn = [(X1, Y1), . . . , (Xn, Yn)].

A supervised learning algorithm A takes a set of training data Sn as input, and
outputs a function f(ŵ, ·), where ŵ = A(Sn) ∈ Ω. The most common algorithm,
which we will focus on in this course, is empirical risk minimization (ERM):

ŵ = arg min
w∈Ω

n∑
i=1

L(f(w,Xi), Yi). (1.1)

In the standard theoretical model for analyzing supervised learning problems,
we assume that the training data {(Xi, Yi) : i = 1, . . . , n} are iid (independent
and identically distributed) according to an unknown underlying distribution D.

The loss of a classifier f̂(x) = f(ŵ, x) on the training data is the training error

training-loss(ŵ) =
1

n

n∑
i=1

L(f(ŵ,Xi), Yi).

Moreover, we assume that the test data (X,Y ) (future unseen data) are also
taken from the same distribution D, and we are interested in knowing the gener-
alization error of f̂ on the test data, defined as:

test-loss(ŵ) = E(X,Y )∼DL(f(ŵ,X), Y ).

Since we only observe the training error of f̂ = f(ŵ, ·), a major goal is to
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1.2. ONLINE LEARNING AND SEQUENTIAL DECISION MAKING 3

estimate the test error (i.e., generalization error) of f̂ based on its training error,
referred to as generalization bound, which is of the following form. Given ε ≥ 0,
we we want to determine δn(ε) so that:

Pr

(
E(X,Y )∼DL(f(ŵ,X), Y ) ≥ 1

n

n∑
i=1

L(f(ŵ,Xi), Yi) + ε

)
≤ δn(ε),

where the probability is with respect to the randomness over the training data
Sn. In general, δn(ε)→ 0 as n→∞.

In the literature, the above result is often stated in the following alternative
form, where we want to determine a function εn(δ) of δ, so that with probability
at least 1− δ (over the random sampling of the training data Sn):

E(X,Y )∼DL(f(ŵ,X), Y ) ≤ 1

n

n∑
i=1

L(f(ŵ,Xi), Yi) + εn(δ). (1.2)

We want to show that εn(δ)→ 0 as n→∞.
Another type of inequalities, often referred to as oracle inequalities, is to show

that with probability at least 1 − δ (over the random sampling of training data
Sn):

E(X,Y )∼DL(f(ŵ,X), Y ) ≤ inf
w∈Ω

E(X,Y )∼DL(f(w,X), Y ) + εn(δ). (1.3)

This shows that the test error achieved by the learning algorithm is nearly as
small as that of the optimal test error achieved by f(w, x) with w ∈ Ω. We say
the learning algorithm is consistent if εn(δ)→ 0 as n→ 0. Moreover, the rate of
convergence refers to the rate of εn(δ) converging to zero when n→∞.

Chapter 2 and Chapter 3 establish the basis mathematical tools in empirical
processes for analyzing supervised learning. Chapter 4, Chapter 5, and Chapter 6
further develop the techniques. Chapter 7 considers a different analysis which di-
rectly controls the complexity of a learning algorithm using stability. This analysis
is gaining popularity due to its ability to work directly with algorithmic proce-
dures such as SGD. Chapter 8 introduces some standard techniques for model
selection in the supervised learning setting. Chapter 9 analyzes the kernel meth-
ods. Chapter 10 analyzes additive models with a focus on sparsity and boosting.
Chapter 11 investigates the analysis of neural networks. Chapter 12 discusses
some common techniques and results for establishing statistical lower bounds.

1.2 Online Learning and Sequential Decision Making

In online learning, we consider observing (Xt, Yt) one by one in a time sequence
from t = 1, 2, . . .. An online algorithm A learns a model parameter ŵt at time t
based on previously observed data (X1, Y1), . . . , (Xt, Yt):

ŵt = A({(X1, Y1), . . . , (Xt, Yt)}).

We then observe the next input vector Xt+1, and make prediction f(ŵt, Xt+1). Af-
ter the prediction, we observe Yt+1, and then compute the loss L(f(ŵt, Xt+1), Yt+1).

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



CHAPTER 1. INTRODUCTION 4

The goal of online learning is to minimize the aggregated loss

T−1∑
t=0

L(f(ŵt, Xt+1), Yt+1).

In the mathematical analysis of online learning algorithms, we are interested
in the following inequality, referred to as regret bound, where the aggregated loss
of an online algorithm is compared to the optimal aggregated loss:

T−1∑
t=0

L(f(ŵt, Xt+1), Yt+1) ≤ inf
w∈Ω

T−1∑
t=0

L(f(w,Xt+1), Yt+1) + εT . (1.4)

The regret εT , is the extra loss suffered by the learning algorithm, compared to
that of the optimal model at time T in retrospect.

As an example, we consider the stock price prediction problem, where the
opening price of a certain stock at each trading day is p1, p2, . . . . At the beginning
of each day t, we observe p1, . . . , pt, and want to predict pt+1 on day t+1, so that
we use this prediction to trade the stock.

The input Xt+1 is a d-dimensional real valued vector in Rd that represents
the observed historical information of the stock on day t. The output Yt+1 =
ln(pt+1/pt) will be observed on day t+1. We consider linear model with f(w, x) =
w>x, with Ω = Rd. The quality is measured by the least squares error

L(f(w,Xt+1), Yt+1) = (f(w,Xt+1)− Yt+1)2.

The learning algorithm can be empirical risk minimization, where

ŵt = arg min
w∈Rd

1

t

t∑
i=1

(w>Xi − Yi)2.

In regret analysis, we compare the prediction error

T−1∑
t=0

(ŵ>t Xt+1 − Yt+1)2

to the optimal prediction

inf
w∈Rd

T−1∑
t=0

(w>Xt+1 − Yt+1)2.

Martingale inequalities used in the analysis of sequential decision problems
will be introduced in Chapter 13. The online learning model will be studied in
Chapter 14 and Chapter 15. The related bandit problem will be investigated in
Chapter 16 and Chapter 17. In the bandit problem, we investigate online prob-
lems with incomplete information, where Yt is only partially revealed based on
actions of the learning algorithm. The goal is to take an optimal sequence of
actions to maximize rewards (or minimize loss). Finally in Chapter 18, we will
introduce some basic techniques to analyze reinforcement learning. The reinforce-
ment learning model can be considered as a generalization of the bandit model,
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1.3. COMPUTATIONAL CONSIDERATION 5

where at each time step (epoch), multiple actions are taken to interact with the
environment. This is still an actively developing field, with major theoretical ad-
vances appearing in recent years. We will only cover some basic results that are
most closely related to the analysis of bandit problems.

1.3 Computational Consideration

In the ERM method, the model parameter ŵ is the solution of an optimization
problem. If the optimization problem is convex, then the solution can be efficiently
computed. If the optimization problem is non-convex, then its solution may not
be obtained easily.

Theoretically, we separately consider two different types of complexity. One is
statistical complexity, where we may ignore the complexity of computation, and
try to derive bounds (1.3) and (1.4) even though the computational complexity
of the underlying learning algorithm (such as ERM) may be high.

However, in practice an important consideration is computational complexity,
where we are interested in computationally efficient algorithms with good gen-
eralization performance or regret bounds. For non-convex models, this kind of
analysis can be rather complexity, and usually require problem specific analysis
that are not generally applicable.

A generally studied approach to nonconvex problem is to use convex approxi-
mation (also referred to convex relaxation) to solve the non-convex problem ap-
proximately. The related theoretical question is that under what circumstances,
the solution has statistical generalization performance comparable to that of the
non-convex methods. An example is the sparse learning problem, where the con-
vex formulation with L1 regularization is used as a proxy to the non-convex L0

regularization. In this case, we are interested in establishing the condition under
which one can obtain a solution from L1 regularization that is close to the true
sparse model.

The combined analysis of computational and statistical complexity is a major
research direction in theoretical machine learning. This book mainly covers the
statistical analysis aspect. Nevertheless, the computational complexity will also
be considered when practical algorithms are investigated.

1.4 Basic Concepts in Generalization Analysis

The goal of machine learning is to find a function f(ŵ, x) that predicts well on
unseen data (test data). However, we only observe the prediction accuracy of
f(ŵ, x) on the training data. In order to achieve high prediction accuracy, we
need to balance the following two aspects of learning:

• The prediction function should fit the training data well; that is, to achieve
small training error. This requires a more expressive model, with a larger pa-
rameter space Ω.

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



CHAPTER 1. INTRODUCTION 6

error

model complexity

test error

training error

low bias
high variance

high bias
low variance

Figure 1.1 Training and test errors versus model complexity

• Performance of prediction function on the test data should match that on
the training data. The difference is smaller for a less expressive model with a
smaller parameter space Ω.

The gap between the training error and test error depends on the model com-
plexity, which characterizes how large the model parameter space Ω is. When Ω is
too large, the training error becomes smaller, but the difference between training
error and test error increases. Therefore in practice there is a trade-off in machine
learning, and the best prediction performance is achieved with the right balance,
often via a tuning parameter in the learning algorithm that characterizes model
complexity. The phenomenon is described in Figure 1.1. Such a tuning process is
often referred to as hyperparameter optimization.

When the class of prediction functions is too large (or complex), then the
difference between training error and test error increases. This leads to so-called
overfitting phenomenon. A simple example for overfitting can be described as
follows. Let X be a one-dimensional feature uniformly distributed in [−1, 1], with
class label Y = 1 when X ≥ 0 and Y = −1 when X < 0. The optimal classifier
can achieve a test error of 0.

Given training data (Xi, Yi) (i = 1, . . . , n), and assume Xi are all different. If
we consider a prediction function class that contains all possible functions, then
the empirical risk minimization method with the following solution can fit data
perfectly:

f̂(X) =

{
Yi if X = Xi for some i

1 otherwise

The above model class has a high model complexity measured by its covering
number which we will study in the book. However, the resulting ERM prediction
rule does not make any meaningful prediction when X is not in the training data.
This is because although the training error of 0 is small, it is significantly different
from the test error of 0.5.

In contrast, if we let the prediction model contain only one function {f(x) :
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1.5. HISTORICAL AND BIBLIOGRAPHICAL REMARKS 7

f(x) ≡ 0}, then using the tail inequality of independent random variables of
Chapter 2, we know that the difference between the training error and the test
error will be small when n is large. However, since the training error of ≈ 0.5 is
large, the test error is also large.

Let 1(x ∈ A) be the set indicator function that takes value 1 if x ∈ A, and 0 if
x /∈ A. Assume that we pick the model function class {f(w, x) : f(w, x) = 21(x ≥
w)−1} parametrized by a parameter w ∈ R. Assume also that we find a classifier
f(ŵ, x) that minimizes the training error. Using techniques in Chapter 3, it can
be shown that both training error and test error of this classifier converge to zero
when n → ∞. This model class balances the training error and generalization
performance. In summary, a key technique of the mathematical theory for ma-
chine learning is to estimate the generalization performance (prediction accuracy
on unseen data) of learning algorithms, and quantify the degree of overfitting.

Finally it is worth pointing out that the mathematical theory developed for
limiting model size and preventing overfitting is the key classical technique to
obtain good generalization results in machine learning. However, in recent years,
this classical view point has evolved due to the empirical observation in modern
neural network models that large models nearly always perform better. For such
models, one observes the so-called benign overfitting phenomenon, where learning
algorithms with appropriate implicit bias can still achieve good test performance
even if the resulting model completely overfits the noise. This is an active research
area that is still developing rapidly. Consequently the related theoretical results
are less mature. We will thus only discuss some theoretical intuitions behind this
phenomenon in Section 11.7, but dedicate the main parts of the book to the
classical learning theory.

1.5 Historical and Bibliographical Remarks

Machine learning is now considered as the key technology for artificial intelligence
(AI), which has the goal of creating computing machines that can mimic the
problem solving skills of a human (McCarthy et al., 2006). In recent years,
machine learning has become an important scientific research field on its own, and
has many applications that have made significant impact in our modern society.
The term “machine learning” has often been attributed to Samuel (1959), who
defined it as the “field of study that gives computers the ability to learn without
being explicitly programmed”.

There are two approaches to machine learning (AI), one is to use statistical
methods to learn functions from data and past experience, in order to predict fu-
ture events. This is the approach considered in this book. An alternative approach
to AI is symbolic reasoning, which creates a knowledge base, and then use logic to
create rules that can perform inference (Haugeland, 1989). The latter approach
explicitly incorporates human knowledge into computer programs, without the
need for direct learning from past experiences. Although the symbolic approach
showed some promise in the early decades of AI research (Studer et al., 1998),
it has major limitations in dealing with uncertainty in real world applications.
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CHAPTER 1. INTRODUCTION 8

For complex problems, the symbolic rules needed to handle difficult situations
are often too complex to build and maintain. For this reason, the modern appli-
cations of machine learning heavily relied on the statistical approach, although
the hybrid of statistical based machine learning and symbolic AI is still an active
research direction.

The mathematical foundation of machine learning has its origin in probability
and theoretical statistics. In particular, the theory of empirical processes has been
used to analyze the generalization performance of machine learning algorithms.
The first part of the book will describe the basic tools of empirical processes
that are commonly used in machine learning. Learning in the sequential decision
setting is a different paradigm for theoretical analysis, and the key quantity of
interests, regret bound, has its origin in theoretical computer science. The tech-
niques used in the analysis is also closely related to stochastic optimization and
stochastic processes. Both computational and statistical aspects are considered in
some of the procedures while only the statistical aspects are considered for others.
The second part of the book will describe the mathematical tools for analyzing
learning problems in the sequential decision setting.
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2

Basic Probability Inequalities for Sums of
Independent Random Variables

In machine learning, the observations contain uncertainty, and to incorporate un-
certainty, these observations are modeled as random variables. When we observe
many data, a basic quantity of interest is the empirical mean of the observed
random variables, which converges to the expectation according to the law of
large numbers. We want to upper bound the probability of the event when the
empirical mean deviates significantly from the expectation, which is referred to as
the tail probability. This chapter studies the basic mathematical tools to estimate
tail probabilities by using exponential moment estimates.

Let X1, . . . , Xn be n real-valued independent and identically distributed (iid)
random variables, with expectation µ = EXi. Let

X̄n =
1

n

n∑
i=1

Xi. (2.1)

Given ε > 0, we are interested in estimating the following tail probabilities:

Pr(X̄n ≥ µ+ ε)

Pr(X̄n ≤ µ− ε).

In machine learning, we can regard X̄n as the training error observed on the
training data. The unknown mean µ is the test error which we want to infer from
the training error. Therefore in machine learning, these tail inequalities can be
interpreted as follows: with high probability, the test error is close to the training
error. Such results will be used to derive rigorous statements of generalization
error bounds in subsequent chapters.

2.1 Normal Random Variable

The general form of tail inequality for the sum of random variables (with relatively
light tails) is exponential in ε2. To motivate this general form, we will consider
the case of normal random variables. The bounds can be obtained using simple
calculus.

Theorem 2.1. Let X1, . . . , Xn be n iid Gaussian random variables Xi ∼ N(µ, σ2),
and let X̄n = n−1

∑n
i=1Xi. Then given any ε > 0:

0.5e−n(ε+σ/
√
n)2/2σ2

≤ Pr(X̄n ≥ µ+ ε) ≤ 0.5e−nε
2/2σ2

.

9
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Proof We first consider a standard normal random variable X ∼ N(0, 1), which
has probability density function

p(x) =
1√
2π
e−x

2/2.

Given ε > 0, we can upper bound the tail probability Pr(X ≥ ε) as follows.

Pr(X ≥ ε) =

∫ ∞
ε

1√
2π
e−x

2/2dx

=

∫ ∞
0

1√
2π
e−(x+ε)2/2dx ≤

∫ ∞
0

1√
2π
e−(x2+ε2)/2dx

=0.5e−ε
2/2.

We also have the following lower bound:

Pr(X ≥ ε) =

∫ ∞
ε

1√
2π
e−x

2/2dx

≥
∫ 1

0

1√
2π
e−(x+ε)2/2dx

≥
∫ 1

0

1√
2π
e−x

2/2e−(2ε+ε2)/2dx ≥ 0.34e−(2ε+ε2)/2

≥0.5e−(ε+1)2/2.

Therefore we have

0.5e−(ε+1)2/2 ≤ Pr(X ≥ ε) ≤ 0.5e−ε
2/2.

Since
√
n(X̄n − µ)/σ ∼ N(0, 1), by using

Pr(X̄n ≥ µ+ ε) = Pr(
√
n(X̄n − µ)/σ ≥

√
nε/σ),

we obtain the desired result.

We note that the tail probability of a normal random variable decays exponen-
tially fast, and such an inequality is referred to as an exponential inequality. This
exponential bound is asymptotically tight as n → ∞ in the following sense. For
any ε > 0, we have

lim
n→∞

1

n
ln Pr(|X̄n − µ| ≥ ε) = − ε2

2σ2
.

Such a result is also called a large deviation result, which is the regime when
the deviation ε of the empirical mean from the true mean µ is much larger than
the standard deviation σ/

√
n of X̄n (Deuschel and Stroock, 2001). The analysis

of normal random variable can rely on standard calculus. For general random
variables with exponentially decaying tail probabilities, we can use the technique
of exponential moment to derive similar results. This leads to a general technique
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2.2. MARKOV’S INEQUALITY 11

to estimate the probability of large deviation of the empirical mean from the true
mean.

2.2 Markov’s Inequality

A standard technique to estimate the tail inequality of a random variable is
the Markov inequality. Let X1, . . . , Xn be n real-valued iid random variables
(that are not necessarily normal random variables) with mean µ. Let X̄n be the
empirical mean defined in (2.1), we are interested in estimating the tail bound
Pr(X̄n ≥ µ+ ε), and Markov’s inequality states as follows.

Theorem 2.2 (Markov’s Inequality). Given any non-negative function h(x) ≥ 0,
and a set S ⊂ R, we have

Pr(X̄n ∈ S) ≤ E h(X̄n)

infx∈S h(x)
.

Proof Since h(x) is non-negative, we have

E h(X̄n) ≥ EX̄n∈S h(X̄n) ≥ EX̄n∈S hS = Pr(X̄n ∈ S) hS,

where hS = infx∈S h(x). This leads to the desired bound.

In particular, we may consider the choice of h(z) = z2, which leads to Cheby-
shev’s inequality stated as below.

Corollary 2.3 (Chebyshev’s Inequality). We have

Pr(|X̄n − µ| ≥ ε) ≤
Var(X1)

nε2
. (2.2)

Proof Let h(x) = x2, then

E h(X̄n − µ) = E(X̄n − µ)2 =
1

n
Var(X1).

The desired bound follows from the Markov inequality with S = {|X̄n − µ| ≥
ε}.

Note that Chebyshev’s inequality employs h(z) = z2, which leads to a tail
inequality that is polynomial in n−1 and ε. It only requires that the variance
of a random variable is bounded. In comparison, the Gaussian tail inequality
has a much faster exponential decay. Exponential tail inequality is important for
analyzing learning algorithms. In the following, we show that such an inequality
can be established for sums of random variables with exponentially decaying tail
probabilities.
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2.3 Exponential Tail Inequality

In order to obtain exponential tail bounds, we will need to choose h(z) = eλnz in
Markov’s inequality with some tuning parameter λ ∈ R. Similar to Chebyshev’s
inequality, which requires that the variance of a random variable is bounded, we
assume that the exponential moment EeλX1 < ∞ for some λ 6= 0. This requires
that the random variable Xi has tail probability that decays exponentially fast.
The following definition is helpful in the analysis.

Definition 2.4. Given a random variable X, we may define its logarithmic mo-
ment generating function as

ΛX(λ) = lnEeλX .

Moreover, given z ∈ R, the rate function IX(z) is defined as

IX(z) =


supλ>0 [λz − ΛX(λ)] z > µ

0 z = µ

supλ<0 [λz − ΛX(λ)] z < µ,

where µ = E[X].

The above definition can be used to obtain exponential tail bounds for sums
of independent variables as follows.

Theorem 2.5. For any n and ε > 0:

1

n
ln Pr(X̄n ≥ µ+ ε) ≤− IX1

(µ+ ε) = inf
λ>0

[
−λ(µ+ ε) + lnEeλX1

]
,

1

n
ln Pr(X̄n ≤ µ− ε) ≤− IX1

(µ− ε) = inf
λ<0

[
−λ(µ− ε) + lnEeλX1

]
.

Proof We choose h(z) = eλnz in Theorem 2.2 with S = {X̄n−µ ≥ ε}. For λ > 0,
we have

Pr(X̄n ≥ µ+ ε) ≤ EeλnX̄n

eλn(µ+ε)
=

Eeλ
∑n
i=1Xi

eλn(µ+ε)

=
E
∏n
i=1 e

λXi

eλn(µ+ε)
= e−λn(µ+ε)

[
EeλX1

]n
.

The last equation used the independence of Xi as well as they are identically
distributed. Therefore by taking logarithm, we obtain

ln Pr(X̄n ≥ µ+ ε) ≤ n
[
−λ(µ+ ε) + lnE eλX1

]
.

Taking inf over λ > 0 on the right hand side, we obtain the first desired bound.
Similarly, we can obtain the second bound.

The first inequality of Theorem 2.5 can be rewritten as

Pr(X̄n ≥ µ+ ε) ≤ exp[−nIX1
(µ+ ε)].
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2.3. EXPONENTIAL TAIL INEQUALITY 13

It shows that the tail probability of the empirical mean decays exponentially fast,
if the rate function IX1

(·) is finite. More concrete exponential tail inequalities can
be obtained by applying Theorem 2.5 to specific random variables. For example,
for Gaussian random variables, we can derive a tail inequality using Theorem 2.5,
and compare to that of Theorem 2.1.

Example 2.6 (Gaussian Random Variable). Assume that Xi ∼ N(µ, σ2), then
the exponential moment is

Eeλ(X1−µ) =

∫ ∞
−∞

1√
2πσ

eλxe−x
2/2σ2

dx

=

∫ ∞
−∞

1√
2π
eλ

2σ2/2e−(x/σ−λσ)2/2dx/σ = eλ
2σ2/2.

Therefore,

IX1
(µ+ ε) = sup

λ>0

[
λε− lnEeλ(X1−µ)

]
= sup

λ>0

[
λε− λ2σ2

2

]
=

ε2

2σ2
,

where the optimal λ is achieved at λ = ε/σ2. Therefore

Pr(X̄n ≥ µ+ ε) ≤ exp[−nIX1
(µ+ ε)] = exp

[
−nε2

2σ2

]
.

This leads to the same probability bound as that of Theorem 2.1 up to a constant
factor.

The Gaussian example above, together with Theorem 2.1, implies that the
exponential inequality derived from Theorem 2.5 is asymptotically tight. This
result can be generalized to the large deviation inequality for general random
variables. In particular, we have the following theorem.

Theorem 2.7. For all ε′ > ε > 0:

limn→∞
1

n
ln Pr(X̄n ≥ µ+ ε) ≥ −IX1

(µ+ ε′).

Similarly,

limn→∞
1

n
ln Pr(X̄n ≤ µ− ε) ≥ −IX1

(µ− ε′).

Proof We only need to prove the first inequality. Consider Pr(Xi ≤ x) as a
function of x, and define a random variable X ′i with density at x as

dPr(X ′i ≤ x) = eλx−ΛX1
(λ)dPr(Xi ≤ x).

This choice implies that

d

dλ
ΛX1

(λ) =

∫
xeλxdPr(X1 ≤ x)∫
eλxdPr(X1 ≤ x)

= EX′1X
′
1.
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CHAPTER 2. BASIC PROBABILITY INEQUALITIES 14

We now take λ such that

λ = arg max
λ′>0

[λ′(µ+ ε′)− ΛX1
(λ′)] .

By setting the derivative to zero, we obtain

EX′1X
′
1 =

d

dλ
ΛX1

(λ) = µ+ ε′, (2.3)

− λ(µ+ ε′) + Λ(λ) = −I(µ+ ε′). (2.4)

Let X̄ ′n = n−1
∑n

i=1X
′
i. Then by the law of large numbers, we know that for

ε′′ > ε′, we obtain from (2.3)

lim
n→∞

Pr(X̄ ′n − µ ∈ [ε, ε′′]) = 1. (2.5)

Since the joint density of (X ′1, . . . , X
′
n) satisfies

e−λ
∑n
i=1 xi+nΛX1

(λ)
∏
i

dPr(X ′i ≤ xi) =
∏
i

dPr(Xi ≤ xi), (2.6)

by using 1(·) to denote the set indicator function, we obtain

Pr(X̄n ≥ µ+ ε) ≥Pr(X̄n − µ ∈ [ε, ε′′])

=EX1,...,Xn1(X̄n − µ ∈ [ε, ε′′])

=EX′1,...,X′ne
−λnX̄′n+nΛ(λ)

1(X̄ ′n − µ ∈ [ε, ε′′])

≥e−λn(µ+ε′′)+nΛ(λ) Pr(X̄ ′n − µ ∈ [ε, ε′′]).

The first equality used the definition of Pr(·). The second equality used (2.6). The
last inequality used Markov’s inequality. Now by taking logarithm, and divide by
n, we obtain

1

n
ln Pr(X̄n ≥ µ+ ε) (2.7)

≥− λ(µ+ ε′′) + Λ(λ) +
1

n
ln Pr(X̄ ′n − µ ∈ [ε, ε′′])

=− I(µ+ ε′)− λ(ε′′ − ε′) +
1

n
ln Pr(X̄ ′n − µ ∈ [ε, ε′′]), (2.8)

The equality used (2.4). Now we obtain the desired bound by letting n → ∞,
applying (2.5), and letting ε′′ → ε′ so that λ(ε′′ − ε′)→ 0 (this is true because λ
depends only on ε′).

The combination of Theorem 2.5 and Theorem 2.7 shows that the large devia-
tion tail probability is determined by the rate function. This result is referred to
as Cramér’s theorem (Cramér, 1938; Deuschel and Stroock, 2001).

For specific cases, one can obtain an estimate of Pr(X̄ ′n−µ ∈ [ε, ε′′]) in (2.8) with
finite n at ε′ = ε+ 2

√
Var(X1)/n and ε′′ = ε+ 4

√
Var(X1)/n. Using Chebyshev’s

inequality, we expect that Pr(X̄ ′n − µ ∈ [ε, ε′′]) is lower bounded by a constant.
This means that as n→∞, the exponential tail inequality of Theorem 2.5 is gen-
erally loose by no more than O(

√
Var(X1)/n) in terms of deviation ε. A concrete

calculation will be presented for bounded random variables in Section 2.5.
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2.3. EXPONENTIAL TAIL INEQUALITY 15

Before we investigate concrete examples of random variables, we state the fol-
lowing property of the logarithmic generating function of a random variable,
which provides intuitions on its behavior. The proof is left as an exercise.

Proposition 2.8. Given a random variable with finite variance. We have:

ΛX(λ)

∣∣∣∣
λ=0

= 0,
dΛX(λ)

dλ

∣∣∣∣
λ=0

= E[X],
d2ΛX(λ)

dλ2

∣∣∣∣
λ=0

= Var[X].

In the application of large deviation bounds, we are mostly interested in the
case that deviation ε is close to zero. As shown in Example 2.6, the optimal λ we
shall choose is λ = O(ε) ≈ 0. It is thus natural to consider the Taylor expansion
of the logarithmic moment generating function around λ = 0. Proposition 2.8
implies that the leading terms of the Taylor expansion are:

ΛX(λ) = λµ+
λ2

2
Var[X] + o(λ2),

where µ = E[X]. The first two terms match that of the normal random variable
in Example 2.6. When ε > 0 is small, then to obtain the rate function

IX(µ+ ε) = sup
λ>0

[
λ(µ+ ε)− λµ− λ2

2
Var[X]− o(λ2)

]
,

we should set the optimal λ approximately as λ ≈ ε/Var[X], and the correspond-
ing rate function becomes

IX(µ+ ε) ≈ ε2

2Var[X]
+ o(ε2).

For specific forms of logarithmic moment generation functions, one may obtain
more precise bounds of the rate function. In particular, the following general esti-
mate is useful in many applications. This estimate is what we will use throughout
the chapter.

Lemma 2.9. Consider a random variable X so that E[X] = µ. Assume that
there exists α > 0 and β ≥ 0 such that for λ ∈ [0, β−1):

ΛX(λ) ≤ λµ+
αλ2

2(1− βλ)
, (2.9)

then for ε > 0:

− IX(µ+ ε) ≤ − ε2

2(α+ βε)
,

− IX
(
µ+ ε+

βε2

2α

)
≤ − ε

2

2α
.
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CHAPTER 2. BASIC PROBABILITY INEQUALITIES 16

Proof Note that

−IX(µ+ ε) ≤ inf
λ>0

[
−λ(µ+ ε) + λµ+

αλ2

2(1− βλ)

]
.

We can take λ at λ̄ = ε/(α+ βε). This implies that αλ̄/(1− βλ̄) = ε. Therefore

−IX(µ+ ε) ≤− λ̄ε+
αλ̄2

2(1− βλ̄)
= − λ̄ε

2
= − ε2

2(α+ βε)
.

Moreover, with the same choice of λ̄, we have

−IX
(
µ+ ε+

β

2α
ε2
)
≤− λ̄ε

(
1 +

β

2α
ε

)
+

αλ̄2

2(1− βλ̄)
= − ε

2

2α
.

This proves the second desired bound.

Lemma 2.9 implies the following generic theorem.

Theorem 2.10. If X1 has a logarithmic moment generating function that satis-
fies (2.9) for λ > 0, then all ε > 0:

Pr(X̄n ≥ µ+ ε) ≤ exp

[
−nε2

2(α+ βε)

]
.

Moreover, for t > 0, we have

Pr

(
X̄n ≥ µ+

√
2αt

n
+
βt

n

)
≤ e−t.

Proof The first inequality of the theorem follows from the first inequality of
Lemma 2.9 and Theorem 2.5. The second inequality of the theorem follows from
the second inequality of Lemma 2.9 and Theorem 2.5, with ε =

√
2αt/n.

2.4 Sub-Gaussian Random Variable

The logarithmic moment generating function of a normal random variable is
quadratic in λ. More generally, we may define a sub-Gaussian random variable as
a random variable with logarithmic moment generating function dominated by
a quadratic function in λ. Such random variables have light tails, which implies
that they have a tail probability inequality similar to that of a Gaussian random
variable.

Definition 2.11. A sub-Gaussian random variable X has quadratic logarithmic
moment generating function for all λ ∈ R:

lnEeλX ≤ λµ+
λ2

2
b. (2.10)
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2.5. HOEFFDING’S INEQUALITY 17

Using (2.10), we can obtain an upper bound of the rate function for sub-
Gaussian random variables, which imply the following tail inequality.

Theorem 2.12. If X1 is sub-Gaussian as in (2.10), then for all t > 0:

Pr

(
X̄n ≥ µ+

√
2bt

n

)
≤e−t,

Pr

(
X̄n ≤ µ−

√
2bt

n

)
≤e−t.

Proof The result follows from Theorem 2.10 with α = b and β = 0.

Common examples of sub-Gaussian random variables include Gaussian random
variables and bounded random variables.

Example 2.13. A Gaussian random variable X1 ∼ N(µ, σ2) is sub-Gaussian
with b = σ2.

Example 2.14. Consider a bounded random variable: X1 ∈ [α, β]. Then X1 is
sub-Gaussian with b = (β − α)2/4.

The tail probability inequality of Theorem 2.12 can also be expressed in a
different form. Consider δ ∈ (0, 1) such that δ = exp(−t), we have t = ln(1/δ).
This means that we can alternatively express the first bound of Theorem 2.12 as
follows. With probability at least 1− δ, we have

X̄n < µ+

√
2b ln(1/δ)

n
.

This form is often preferred in the theoretical analysis of machine learning algo-
rithms.

2.5 Hoeffding’s Inequality

Hoeffding’s inequality (Hoeffding, 1963) is an exponential tail inequality for
bounded random variables. In the machine learning and computer science litera-
ture, it is often referred to as the Chernoff bound.

Lemma 2.15. Consider a random variable X ∈ [0, 1] and EX = µ. We have the
following inequality:

lnEeλX ≤ ln[(1− µ)e0 + µeλ] ≤ λµ+ λ2/8.

Proof Let hL(λ) = EeλX and hR(λ) = (1 − µ)e0 + µeλ. We know that hL(0) =
hR(0). Moreover, when λ ≥ 0:

h′L(λ) = EXeλX ≤ EXeλ = µeλ = h′R(λ),
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and similarly h′L(λ) ≥ h′R(λ) when λ ≤ 0. This proves the first inequality.
Now we let

h(λ) = ln[(1− µ)e0 + µeλ].

It implies that

h′(λ) =
µeλ

(1− µ)e0 + µeλ
,

and

h′′(λ) =
µeλ

(1− µ)e0 + µeλ
− (µeλ)2

[(1− µ)e0 + µeλ]2

=|h′(λ)|(1− |h′(λ)|) ≤ 1/4.

Using Taylor expansion, we obtain the inequality h(λ) ≤ h(0) + λh′(0) + λ2/8,
which proves the second inequality.

The lemma implies that the maximum logarithmic moment generating func-
tion of a random variable X taking values in [0, 1] is achieved by a {0, 1} valued
Bernoulli random variable with the same mean. Moreover, the random variable
X is sub-Gaussian. We can then apply the sub-Gaussian tail-inequality in Theo-
rem 2.12 to obtain the following additive form of Chernoff bound.

Theorem 2.16 (Additive Chernoff Bounds). Assume that X1 ∈ [0, 1]. Then for
all ε > 0:

Pr(X̄n ≥ µ+ ε) ≤e−2nε2 ,

Pr(X̄n ≤ µ− ε) ≤e−2nε2 .

Proof We simply take b = 1/4 and t = 2nε2 in Theorem 2.12 to obtain the first
inequality. The second inequality follows from the equivalence of X̄n ≤ µ− ε and
−X̄n ≤ −µ+ ε.

In some applications, one often needs to employ a more refined form of Chernoff
bound, which can be stated as follows.

Theorem 2.17. Assume that X1 ∈ [0, 1]. Then for all ε > 0, we have

Pr(X̄n ≥ µ+ ε) ≤e−nKL(µ+ε||µ),

Pr(X̄n ≤ µ− ε) ≤e−nKL(µ−ε||µ),

where KL(z||µ) is the Kullback-Leibler divergence (KL divergence) defined as

KL(z||µ) = z ln
z

µ
+ (1− z) ln

1− z
1− µ

.
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2.5. HOEFFDING’S INEQUALITY 19

Proof Consider the case z = µ+ ε. We have

−IX1
(z) ≤ inf

λ>0
[−λz + ln((1− µ)e0 + µeλ)].

Assume that the optimal value of λ on the right hand side is achieved at λ∗. By
setting the derivative to zero, we obtain the expression:

z =
µeλ∗

(1− µ)e0 + µeλ∗
,

which implies that

eλ∗ =
z(1− µ)

µ(1− z)
.

This implies that −IX1
(z) ≤ −KL(z||µ). The case of z = µ− ε is similar. We can

thus obtain the desired bound from Theorem 2.5.

In many applications, we will be interested in the situation µ ≈ 0. For ex-
ample, this happens when the classification error is close to zero. In this case,
Theorem 2.17 is superior to Theorem 2.16, and the result implies a simplified
form stated in the following corollary.

Corollary 2.18 (Multiplicative Chernoff Bounds). Assume that X1 ∈ [0, 1].
Then for all ε > 0:

Pr
(
X̄n ≥ (1 + ε)µ

)
≤ exp

[
−nµε2

2 + ε

]
,

Pr
(
X̄n ≤ (1− ε)µ

)
≤ exp

[
−nµε2

2

]
.

Moreover, for t > 0, we have:

Pr

(
X̄n ≥ µ+

√
2µt

n
+

t

3n

)
≤ e−t.

Proof The first and the second results can be obtained from Theorem 2.17 and
the inequality KL(z||µ) ≥ (z − µ)2/max(2µ, µ+ z) (which is left as an exercise).
We then take z = (1 + ε)µ and z = (1 − ε)µ respectively for the first and the
second inequalities.

For the third inequality (which is sharper than the first inequality), we may
apply Theorem 2.10. Just observe from Lemma 2.15 that when λ > 0:

ΛX1
(λ) ≤ ln[(1− µ)e0 + µeλ]

≤µ(eλ − 1) = µλ+ µ
∑
k≥2

λk

k!

≤µλ+
µλ2

2(1− λ/3)
.
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CHAPTER 2. BASIC PROBABILITY INEQUALITIES 20

In the above derivation, the equality used the Taylor expansion of exponential
function. The last inequality used k! ≥ 2 · 3k−2 and the sum of infinite geometric
series. We may take α = µ and β = 1/3 in Theorem 2.10 to obtain the desired
bound.

The multiplicative form of Chernoff bound can be expressed alternatively as
follows. With probability at least 1− δ:

µ < X̄n +

√
2µ ln(1/δ)

n
.

It implies that for any γ ∈ (0, 1):

X̄n > (1− γ)µ− ln(1/δ)

2γn
. (2.11)

Moreover, with probability at least 1− δ:

X̄n < µ+

√
2µ ln(1/δ)

n
+

ln(1/δ)

3n
.

It implies that for any γ > 0:

X̄n < (1 + γ)µ+
(3 + 2γ) ln(1/δ)

6γn
. (2.12)

For Bernoulli random variables with X1 ∈ {0, 1}, the moment generating function
achieves equality in Lemma 2.15, and thus the proof of Theorem 2.17 implies that
the rate function is given by

IX1
(z) = KL(z||µ).

We can obtain the following lower bound from (2.8), which suggests that the KL-
formulation of Hoeffding’s inequality is quite tight for Bernoulli random variables
when n is large.

Corollary 2.19. Assume that X1 ∈ {0, 1}. Then for all ε > 0 that satisfies

ε′ = ε+ 2
√

(µ+ ε)(1− (µ+ ε))/n < 1− µ,

and n ≥ (1− µ− ε)/(µ+ ε), we have

Pr(X̄n ≥ µ+ ε) ≥ 0.25 exp
[
−nKL(µ+ ε′||µ)−

√
n∆I

]
,

where

∆I = 2
√

(µ+ ε)(1− µ− ε) ln
(µ+ ε′)(1− µ)

(1− (µ+ ε′))µ
.

Proof In (2.8), we let ε′′ = 2ε′ − ε. Since X ′i ∈ {0, 1} and EX ′i = µ+ ε′, we have
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2.6. BENNETT’S INEQUALITY 21

Var(X ′1) = (µ+ ε′)(1− µ− ε′). Using Chebyshev’s inequality, we obtain

Pr
(
|X̄ ′n − (µ+ ε′)| ≥ ε′ − ε

)
≤ (µ+ ε′)(1− µ− ε′)

n(ε′ − ε)2

=
(µ+ ε′)(1− µ− ε′)

4(µ+ ε)(1− (µ+ ε))
≤ (µ+ ε′)

4(µ+ ε)
= 0.25 +

ε′ − ε
4(µ+ ε)

.

Therefore

Pr
(
X̄ ′n ∈ (µ+ ε, µ+ ε′′)

)
= 1− Pr

(
|X̄ ′n − (µ+ ε′)| ≥ ε′ − ε

)
≥0.75− ε′ − ε

4(µ+ ε)
= 0.75− 0.5

√
1− µ− ε
n(µ+ ε)

≥ 0.25.

The choice of λ in (2.4) is given by

λ = ln
(µ+ ε′)(1− µ)

(1− (µ+ ε′))µ
.

By using the above estimates, we can obtain the desired bound from (2.8).

2.6 Bennett’s Inequality

In Bennett’s inequality, we assume that the random variable is upper bounded,
and has a small variance. In this case, one can obtain a more refined estimate
of the moment generating function by using the variance of the random variable
(Bennett, 1962).

Lemma 2.20. If X − EX ≤ b, then ∀λ ≥ 0:

lnEeλX ≤ λEX + λ2φ(λb)Var(X),

where φ(z) = (ez − z − 1)/z2.

Proof Let X ′ = X − EX. We have

lnEeλX =λEX + lnEeλX
′

≤λEX + EeλX
′
− 1

=λEX + λ2E
eλX

′ − λX ′ − 1

(λX ′)2
(X ′)2

≤λEX + λ2Eφ(λb)(X ′)2,

where the first inequality used ln z ≤ z − 1; the second inequality follows from
the fact that the function φ(z) is non-decreasing (left as an exercise) and λX ′ ≤
λb.

The above lemma gives an estimate of the logarithmic moment generating
function, which implies the following result from Theorem 2.5.
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CHAPTER 2. BASIC PROBABILITY INEQUALITIES 22

Theorem 2.21 (Bennett’s Inequality). If X1 ≤ µ + b, for some b > 0. Let
ψ(z) = (1 + z) ln(1 + z)− z, then ∀ε > 0:

Pr[X̄n ≥ µ+ ε] ≤ exp

[
−nVar(X1)

b2
ψ

(
εb

Var(X1)

)]
,

Pr[X̄n ≥ µ+ ε] ≤ exp

[
−nε2

2Var(X1) + 2εb/3

]
.

Moreover, for t > 0:

Pr

[
X̄n ≥ µ+

√
2Var(X1)t

n
+
bt

3n

]
≤ e−t.

Proof Lemma 2.20 implies that

−IX1
(µ+ ε) ≤ inf

λ>0

[
−λε+ b−2(eλb − λb− 1)Var(X1)

]
.

We can set the derivative of the objective function on the right hand side with
respect to λ to zero at the minimum solution, and obtain the condition for the
optimal λ as follows:

−ε+ b−1(eλb − 1)Var(X1) = 0.

This gives the solution λ = b−1 ln(1 + εb/Var(X1)). Plugging this solution into
the objective function, we obtain

−IX1
(µ+ ε) ≤ −Var(X1)

b2
ψ

(
εb

Var(X1)

)
.

The first inequality of the theorem follows from an application of Theorem 2.5.
Given λ ∈ (0, 3/b), it is easy to verify the following inequality using the Taylor

expansion of the exponential function

ΛX1
(λ) ≤µλ+ b−2

[
eλb − λb− 1

]
Var(X1)

≤µλ+
Var(X1)λ2

2

∞∑
m=0

(λb/3)m = µλ+
Var(X1)λ2

2(1− λb/3)
. (2.13)

The second and the third desired bounds follow from direct applications of The-
orem 2.10 with α = Var(X1) and β = b/3.

Bennett’s inequality can be expressed alternatively as follows. Given any δ ∈
(0, 1), with probability at least 1− δ, we have

X̄n < µ+

√
2Var(X1) ln(1/δ)

n
+
b ln(1/δ)

3n
.

If we apply this to the case that Xi ∈ [0, 1], then using the variance estimation
Var(X1) ≤ µ(1− µ), and b ≤ 1− µ, the above bound implies

X̄n < µ+

√
2µ(1− µ) ln(1/δ)

n
+

(1− µ) ln(1/δ)

3n
.
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2.7. BERNSTEIN’S INEQUALITY 23

This is slightly tighter than the corresponding multiplicative Chernoff bound in
Corollary 2.18.

Compared to the tail bound for Gaussian random variables, this form of Ben-
nett’s inequality has an extra term b ln(1/δ)/(3n), which is of higher orderO(1/n).
Compared to the additive Chernoff bound, the Bennett’s inequality is superior
when Var(X1) is small.

2.7 Bernstein’s Inequality

In Bernstein’s inequality, we obtain results similar to Bennett’s inequality, but
using a moment condition (Bernstein, 1924) instead of the boundedness condition.
There are several different forms of such inequalities, and we only consider one
form, which relies on the following moment assumption.

Lemma 2.22. If X satisfies the following moment condition with b, V > 0 for
integers m ≥ 2:

E[X − c]m ≤ m!(b/3)m−2V/2,

where c is arbitrary. Then when λ ∈ (0, 3/b):

lnEeλX ≤ λEX +
λ2V

2(1− λb/3)
.

Proof We have the following estimation of logarithmic moment generating func-
tion:

lnEeλX ≤ λc+ Eeλ(X−c) − 1 ≤λEX + 0.5V λ2
∑
m=2

(b/3)m−2λm−2

=λEX + 0.5λ2V (1− λb/3)−1.

This implies the desired bound.

In general we may take c = E[X] and V = Var[X]. The following bound is a
direct consequence of Theorem 2.10.

Theorem 2.23 (Bernstein’s Inequality). Assume that X1 satisfies the moment
condition in Lemma 2.22. Then for all ε > 0:

Pr[X̄n ≥ µ+ ε] ≤ exp

[
−nε2

2V + 2εb/3

]
,

and for all t > 0:

Pr

[
X̄n ≥ µ+

√
2V t

n
+
bt

3n

]
≤ e−t.

Proof We simply set α = V and β = b/3 in Theorem 2.10.
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CHAPTER 2. BASIC PROBABILITY INEQUALITIES 24

Similar to Bennet’s inequality, Bernstein’s inequality can be alternatively ex-
pressed as follows. With probability at least 1− δ,

µ < X̄n +

√
2V ln(1/δ)

n
+
b ln(1/δ)

3n
,

which implies with probability at least 1 − δ, the following inequality holds for
all γ > 0:

µ < X̄n + (γ/b)V +
b(3 + 2γ) ln(1/δ)

6γn
. (2.14)

Example 2.24. If the random variable X is bounded with |X−µ| ≤ b, then the
moment condition of Lemma 2.22 holds with c = µ and V = Var(X).

2.8 Non-identically Distributed Random Variables

If X1, . . . , Xn are independent but not identically distributed random variables,
then a tail inequality similar to that of Theorem 2.5 holds. Let X̄n = n−1

∑n
i=1Xi,

and µ = EX̄n, then we have the following bound.

Theorem 2.25. We have for all ε > 0:

Pr(X̄n ≥ µ+ ε) ≤ inf
λ>0

[
−λn(µ+ ε) +

n∑
i=1

lnEeλXi
]
.

For sub-Gaussian random variables, we have the following bound.

Corollary 2.26. If {Xi} are independent sub-Gaussian random variables with
lnEeλXi ≤ λEXi + 0.5λ2bi, then for all ε > 0:

Pr(X̄n ≥ µ+ ε) ≤ exp

[
− n2ε2

2
∑n

i=1 bi

]
.

The following inequality is a useful application of the above sub-Gaussian
bound for Rademacher average. This bound, also referred to as the Chernoff
bound in the literature, is essential for the symmetrization argument of Chap-
ter 4.

Corollary 2.27. Let σi = {±1} be independent Bernoulli random variables (
each takes value ±1 with equal probability). Let ai be fixed numbers (i = 1, . . . , n).
Then for all ε > 0:

Pr

(
n−1

n∑
i=1

σiai ≥ ε
)
≤ exp

[
− nε2

2n−1
∑n

i=1 a
2
i

]
.

Proof Consider Xi = σiai in Corollary 2.26. We can take µ = 0 and bi = a2
i to

obtain the desired bound.

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



2.9. TAIL INEQUALITY FOR χ2 25

One can also derive a Bennett style tail probability bound.

Corollary 2.28. If Xi − EXi ≤ b for all i, then for all ε > 0:

Pr(X̄n ≥ µ+ ε) ≤ exp

[
− n2ε2

2
∑n

i=1 Var(Xi) + 2nbε/3

]
.

2.9 Tail Inequality for χ2

Let Xi ∼ N(0, 1) be iid normal random variables (i = 1, . . . , n), then the random
variable

Z =
n∑
i=1

X2
i

is distributed according to the chi-square distribution with n degrees of freedom,
which is often denoted by χ2

n.
This random variable plays an important role in the analysis of least squares

regression. More generally, we may consider the sum of independent sub-Gaussian
random variables, and obtain the following tail inequality from Theorem 2.5.

Theorem 2.29. Let {Xi}ni=1 be independent zero-mean sub-Gaussian random
variables that satisfies

lnEXi exp(λXi) ≤
λ2bi

2
,

then for λ < 0.5bi, we have

lnEXi exp(λX2
i ) ≤ −1

2
ln(1− 2λbi).

Let Z =
∑n

i=1X
2
i , then

Pr

Z ≥ n∑
i=1

bi + 2

√√√√t
n∑
i=1

b2
i + 2t(max

i
bi)

 ≤ e−t
and

Pr

Z ≤ n∑
i=1

bi − 2

√√√√t
n∑
i=1

b2
i

 ≤ e−t.

Proof Let ξ ∼ N(0, 1) which is independent of Xi. Then for all λbi < 0.5, we
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CHAPTER 2. BASIC PROBABILITY INEQUALITIES 26

have

ΛX2
i
(λ) = lnEXi exp(λX2

i )

= lnEXiEξ exp(
√

2λξXi)

= lnEξEXi exp(
√

2λξXi)

≤ lnEξ exp(λξ2bi)

=− 1

2
ln(1− 2λbi),

where the inequality used the sub-Gaussian assumption. The second and the last
equalities can be obtained using Gaussian integration. This proves the first bound
of the theorem.

For λ ≥ 0, we obtain

ΛX2
i
(λ) ≤− 0.5 ln(1− 2λbi)

=0.5
∞∑
k=1

(2λbi)
k

k

≤λbi + (λbi)
2
∑
k≥0

(2λbi)
k

=λbi +
(λbi)

2

1− 2λbi
.

The first probability inequality of the theorem follows from Theorem 2.10 with
µ = n−1

∑n
i=1 bi, α = (2/n)

∑n
i=1 b

2
i and β = 2 maxi bi.

If λ ≤ 0, then

ΛX2
i
(λ) ≤ −0.5 ln(1− 2λbi) ≤ λbi + λ2b2

i .

The second probability inequality of the theorem follows from the sub-Gaussian
tail inequality of Theorem 2.12 with µ = n−1

∑n
i=1 bi and b = (2/n)

∑n
i=1 b

2
i .

From Theorem 2.29, we can obtain the following expressions for χ2
n tail bound

by taking bi = 1. With probability at least 1− δ:

Z ≤ n+ 2
√
n ln(1/δ) + 2 ln(1/δ),

and with probability at least 1− δ:

Z ≥ n− 2
√
n ln(1/δ).

One may also obtain a tail bound estimate for χ2
n distributions using direct inte-

gration. We leave it as an exercise.

2.10 Historical and Bibliographical Remarks

Chebyshev’s inequality is named after the Russian mathematician Pafnuty Cheby-
shev, and was known in the 19th century. The investigation of exponential tail
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inequalities for sums of independent random variables occurred in the early 20th
century. Bernstein’s inequality was one of the first such results. The large devia-
tion principle was established by Cramér, and was later rediscovered by Chernoff
(1952). In the following decade, several important inequalities were obtained
such as Hoeffding’s inequality and Bennett’s inequality. The tail bounds in Theo-
rem 2.29 for χ2 random variables was first documented in (Laurent and Massart,
2000), where they were used to analyze least squares regression problems with
Gaussian noise. It was later extended to arbitrary quadratic forms of independent
sub-Gaussian random variables by Hsu et al. (2012b).
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Exercises

2.1 Assume that X1, X2, . . . , Xn are real-valued iid random variables with density function

p(x) =
x2

√
2π

exp(−x2/2).

Let µ = EX1, and X̄n = n−1∑n
i=1Xi.

• Estimate lnE exp(λX1)

• Estimate Pr(X̄n ≥ µ+ ε)

• Estimate Pr(X̄n ≤ µ− ε)
2.2 Prove Proposition 2.8.

2.3 Prove the following inequality

KL(z||µ) ≥ (z − µ)2

max(z + µ, 2µ)
,

which is needed in the proof of Corollary 2.18.

2.4 Prove that the function φ(z) = (ez − z − 1)/z2 is non-decreasing in z.

2.5 Assume that the density function of a distributionD on R is (1−p)U(−1, 1)+pU(−1/p, 1/p)

for p ∈ (0, 0.5), where U(·) denotes the density of the uniform distribution. Let X1, . . . , Xn
be iid samples from D. For ε > 0, estimate the probability

Pr

(
1

n

n∑
i=1

Xi ≥ ε

)
using Bernstein’s inequality.

2.6 Write down the density of χ2 distribution, and use integration to estimate the tail in-

equalities. Compare the results to those of Theorem 2.29.

2.7 Prove Corollary 2.26 and Corollary 2.28.
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3

Uniform Convergence and Generalization
Analysis

3.1 Probably Approximately Correct Learning

Probabilistic Approximately Correct (PAC) learning is a mathematical model
for analyzing algorithms that can learn Boolean functions (Valiant, 1984) from
random examples. This is analogous to supervised learning, except that there is
a computational complexity requirement.

In this model, we observe a binary valued vector X ∈ {0, 1}d as input. A
Boolean function f maps a binary vector X to a binary output Y ∈ {0, 1}. Such
a Boolean function is also referred to as a concept in the literature. A concept class
C, is a set of such Boolean functions: {0, 1}d → {0, 1}. In the machine learning
literature, a concept is also referred to as a hypothesis, and a concept class is also
referred to as a hypothesis space or hypothesis class. In machine learning, C is also
called a model class.

Example 3.1 (AND Function Class). Each member of AND function class can
be written as

f(x) =
∏
j∈J

xj, J ⊂ {1, . . . , d}.

Example 3.2 (Decision List). A decision list is a function of the following form.
Let {i1, . . . , id} be a permutation of {1, . . . , d}, and let ai, bi ∈ {0, 1} for i =
1, . . . , d + 1. The function f(x) can be computed as follows. if xi1 = a1 then
f(x) = b1; else if xi2 = a2 then f(x) = b2, · · · , else if xid = ad then f(x) = bd;
else f(x) = bd+1.

Assume now that there is an unknown true function f∗(x) ∈ C which we want
to learn. In the PAC learning model, the input X is taken from an unknown
distribution D, and there is an oracle O that can sample from this distribution.
Each call to O returns a sample X ∼ D, together with the value Y = f∗(X). The
goal of a PAC learner is to learn this function approximately up to an accuracy
ε with respect to D by randomly sampling its inputs.

More formally, the (generalization) error of a learned function f(x) is defined
as

errD(f) = EX∼D1(f(x) 6= f∗(x)).

We may call O n times to form a training data Sn = {(Xi, Yi)}i=1,...,n ∼ Dn.

The learner A takes Sn and returns a function f̂ ∈ C. Due to the randomness of

29
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Sn, the function f̂ is also random. Therefore the quality of the learner should be
stated in probabilistic terms.

Definition 3.3 (PAC Learning). A concept class C is PAC learnable if there
exists a learner A so that for all f∗ ∈ C, distribution D on the input, approxima-
tion error ε > 0 and probability δ ∈ (0, 1), the following statement holds. With
probability at least 1 − δ over samples from the oracle O over D, the learner
produces a function f̂ such that

errD(f̂) ≤ ε,

with the computational complexity polynomial in (ε−1, δ−1, d).

The term probabilistic approximately correct is due to the fact that the state-
ment is with probability at least 1−δ, and the correctness is up to approximation
error ε. The PAC learning model is similar to the supervised learning framework,
except for the additional requirement that the computational complex should be
polynomial. One may also extend the basic notation of PAC learning by assuming
that the oracle O may take additional information, so that the learning algorithm
can interact with the oracle sequentially.

In Definition 3.3, we assume that the output Y is generated by a function
f∗ ∈ C. This is referred to as realizable in the learning theory literature, and re-
ferred to as correctly specified model (or well-specified) in the statistics literature.
In general, one may also extend the definition of PAC learning to non-realizable

situations, where the output Y is not generated by a function f∗ ∈ C. This corre-
sponds to the situation of misspecified model in statistics. We will only consider
the realizable case in this section, but will consider more general situations in
subsequent sections.

In the statistical complexity analysis of learning algorithms, the computational
complexity requirement is de-emphasized. The analysis will focus on the sample
complexity, which is the minimum sample size n as a function of (ε−1, δ−1, d),
required to achieve ε accuracy with probability 1− δ.

Definition 3.4 (ERM). Define the training error of f ∈ C as

êrrSn(f) =
1

n

n∑
i=1

1(f(Xi) 6= Yi).

The ERM (empirical risk minimization) method finds a function f̂ ∈ C that
minimizes the training error.

Since by the realizable assumption of PAC learning, f∗ ∈ C achieves zero train-
ing error, the empirical minimizer also finds a function f̂ that achieves zero train-
ing error. That is:

êrrSn(f̂) = 0.

However, there may be more than one functions that can achieve zero-error on
any given training data. The algorithm simply returns an arbitrarily picked one
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3.2. ANALYSIS OF PAC LEARNING 31

of such functions. More generally, we may consider approximate ERM, which
returns f̂ so that

êrrSn(f̂) ≤ ε′ (3.1)

for some accuracy ε′ > 0.
Next we show that by using union bound and Hoeffding’s inequality, we can

obtain a sample complexity bound for PAC learning analysis.

3.2 Analysis of PAC Learning

In the analysis of the ERM learner, we are interested in bounding the difference
of the test error errD(f̂) and the optimal test error errD(f∗), using a decomposi-
tion described below. Note that although in the realizable PAC learning setting,
errD(f∗) = 0, in the more general case considered in later sections, the optimal
test error may be nonzero. The following decomposition can be applied both
to the realizable PAC learning setting, and the more general situation where
errD(f∗) 6= 0.

errD(f̂)− errD(f∗)

= [errD(f̂)− êrrSn(f̂)]︸ ︷︷ ︸
A

+ [êrrSn(f̂)− êrrSn(f∗)]︸ ︷︷ ︸
B

+ [êrrSn(f∗)− errD(f∗)]︸ ︷︷ ︸
C

≤ sup
f∈F

[errD(f)− êrrSn(f)]︸ ︷︷ ︸
A′

+0 + [êrrSn(f∗)− errD(f∗)]︸ ︷︷ ︸
C

≤2 sup
f∈F
|errD(f)− êrrSn(f)|︸ ︷︷ ︸

A′′

.

In the above decomposition, the key idea is to bound the test error in term of the
training error. The inequality B ≤ 0 follows from the fact that ERM achieves the
smallest training error. The inequality A ≤ A′ follows from f̂ ∈ F . The quantity
C can be bounded using probability inequalities of Chapter 2. The quantity A′

or A′′ requires that the convergence of empirical mean to the true mean holds for
all f ∈ F . Such a convergence result is referred to as uniform convergence, and
probability inequalities of Chapter 2 are not immediately applicable.

The key mathematical tool to analyze uniform convergence is the union bound,
described in Proposition 3.5. In this book, we employs one-sided uniform conver-
gence A′, and the quantity C will be analyzed separately. The bounding of C is
relatively simple, and it doesn’t require uniform convergence because f∗ is a fixed
function. The one-sided analysis makes it easier to handle probability inequalities
that may have different forms in the case of under estimating the true mean ver-
sus over estimating the true mean (for example, this happens with multiplicative
Chernoff bounds). However, we note that in the literature, many of the existing
analysis considers the two-sided uniform convergence quantity A′′ for the sake of
simplicity.
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CHAPTER 3. UNIFORM CONVERGENCE 32

Proposition 3.5 (Union Bound). Consider m events E1, . . . Em. The following
probability inequality holds:

Pr (E1 ∪ · · · ∪ Em) ≤
m∑
j=1

Pr(Ej).

The union bound has an alternative expression, which is often used in the
learning theory analysis. If each Ej occurs with probability at least 1 − δj for
j = 1, . . . ,m, then with probability at least 1−

∑m
j=1 δj, all of events {Ej} occur

simultaneously for j = 1, . . . ,m.
In the application of union bound, we generally assume that the probability∑m
j=1 Pr(Ej) is small. In such case, Exercises 3.1 implies that when the events

{Ej : j = 1, . . . ,m} are independent. then the union bound is relatively tight. If
{Ej} are correlated, then the union bound may not be tight. For example when
they are completely correlated: E1 = · · · = Em, then

Pr(E1 ∪ · · · ∪ Em) = Pr(E1) =
1

m

m∑
j=1

Pr(Ej),

which can be significantly smaller than the union bound. Therefore in some the-
oretical analysis, in order to obtain sharp results from the union bound, we may
need to carefully define events so that they are not highly correlated.

We will use the union bound to derive sample complexity bounds for PAC
learning using ERM. To simplify the analysis, we will first assume that the con-
cept class C contains N different functions.

An important observation is that we cannot directly apply the Chernoff bound
of Theorem 2.16 to the function f̂ learned from the training data Sn, because it
is a random function that depends on Sn. Instead, we can apply Theorem 2.16 to
each fixed function f(x) ∈ C, and rely on the union bound to obtain the desired
result that holds uniformly for all f(x) ∈ C given any sample Sn. Since the bound

holds uniformly for all f(x) ∈ C, it also holds for f̂ that depends on Sn.
To illustrate the basic argument, we first apply the additive Chernoff bound of

Theorem 2.16 to obtain for each fixed f ∈ C:

Pr (errD(f) ≥ êrrSn(f) + ε) ≤ exp(−2nε2).

Therefore

Pr

(
sup
f∈C

[errD(f)− êrrSn(f)] ≥ ε
)

= Pr (∃f ∈ C : errD(f) ≥ êrrSn(f) + ε)

≤
∑
f∈C

Pr (errD(f) ≥ êrrSn(f) + ε) ≤ N exp(−2nε2).

The first inequality used the union bound, and the second inequality used Theo-
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rem 2.16. Now by setting N exp(−2nε2) = δ and solving for ε to get

ε =

√
ln(N/δ)

2n
,

we obtain the following equivalent statement. With probability at least 1− δ, the
following inequality holds for all f ∈ C:

errD(f) < êrrSn(f) +

√
ln(N/δ)

2n
.

Such a result is called uniform convergence, because given an empirical sample
Sn, the inequality holds for all f ∈ C, and thus it also holds for the output f̂ of
any learning algorithm.

By applying the uniform convergence result to the approximate ERM learner
of (3.1), we obtain the following generalization bound. With probability at least
1− δ, the following inequality holds for the ERM PAC learner (3.1) for all γ > 0:

errD(f̂) < ε′ +

√
ln(N/δ)

2n
= (1 + γ)

√
ln(N/δ)

2n
, (3.2)

with

ε′ = γ

√
ln(N/δ)

2n
.

In the generalization analysis, we are interested in the dependency of the gener-
alization error on the training sample size n. The bound on the right hand side
implies a statistical convergence rate of O(1/

√
n). It can be expressed in another

form of sample complexity bound. If we let

n ≥ (1 + γ)2 ln(N/δ)

2ε2
,

then errD(f̂) < ε with probability at least 1 − δ. That is, with large probabil-
ity, the result implies a sample complexity bound of n = O(1/ε2) to achieve ε
generalization error.

Next, we show that for the realizable case considered here, we can obtain a
better result by applying the union bound, together with the multiplicative form
of Chernoff bound in Corollary 2.18.

Theorem 3.6. Consider a concept class C with N elements. With probability at
least 1− δ, the ERM PAC learner (3.1) with

ε′ = γ2 2 ln(N/δ)

n

for some γ > 0 satisfies

errD(f̂) ≤ (1 + γ)2 2 ln(N/δ)

n
.
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Proof Given any f ∈ C, we have from Corollary 2.18 that

Pr (errD(f) ≥ êrrSn(f) + ε) ≤ exp

(
−nε2

2errD(f)

)
.

Now by setting exp(−nε2/2errD(f)) = δ/N , and solve for ε:

ε =

√
2errD(f) ln(N/δ)

n
,

we obtain the following equivalent statement. With probability at least 1− δ/N :

errD(f) ≤ êrrSn(f) +

√
2errD(f) ln(N/δ)

n
.

The union bound thus implies the following statement. With probability at least
1− δ, for all f ∈ C:

errD(f) ≤ êrrSn(f) +

√
2errD(f) ln(N/δ)

n
.

The above inequality also holds for the ERM PAC learner solution (3.1). We thus
obtain

errD(f̂) ≤êrrSn(f̂) +

√
2errD(f̂) ln(N/δ)

n

≤γ2 2 ln(N/δ)

n
+

√
2errD(f̂) ln(N/δ)

n
.

The second inequality uses the assumption of the theorem on the approximate
ERM solution. We can solve the above inequality for errD(f̂) and obtain

errD(f̂) ≤ (γ2 + 0.5 +
√
γ2 + 0.25)

2 ln(N/δ)

n
,

which implies the desired bound because γ2 + 0.5 +
√
γ2 + 0.25 ≤ (1 + γ)2.

Note that compared to (3.2), which shows that the generalization error errD(f̂)
decays at a rate of O(1/

√
n), Theorem 3.6 implies that the generalization error

decays at a faster rate of O(1/n). This means that the multiplicative Chernoff
bound is preferred to the additive Chernoff bound for the realizable case, where
Y is generated by f∗(X) for some f∗ ∈ C.

Theorem 3.6 implies the following sample complexity bound. Given δ ∈ (0, 1).
For all sample size

n ≥ (1 + γ)2 2 ln(N/δ)

ε
,

we have errD(f̂) < ε with probability at least 1− δ.
The generalization error bound has a logarithmic dependency lnN on the con-

cept class sizeN . This logarithmic dependency is important for analyzing machine
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3.3. EMPIRICAL PROCESS 35

learning algorithms, and such a dependency requires the exponential tail proba-
bility bounds developed in Chapter 2. Since the generalization analysis does not
depend on the underlying distribution D, the resulting bound is referred to as a
distribution free generalization bound.

Example 3.7. The AND concept class C is PAC learnable. To show this, we will
prove that the ERM (3.1) solution can be obtained in a computationally efficient
way with ε′ = 0. If this is true, then Theorem 3.6 implies that C is PAC-learnable
because the number of AND functions cannot be more than N = 2d. Therefore
lnN ≤ d ln 2.

In the following, we show that ERM solution can be efficiently obtained. Given
Sn = {(X1, Y1), . . . , (Xn, Yn)} ∼ Dn, we define Ĵ = {j : ∀1 ≤ i ≤ n,Xi,j ≥ Yi}
(where Xij denotes the j-th component of the i-th training data Xi) and f̂(x) =∏
j∈Ĵ xj. This choice implies that f̂(Xi) = Yi when Yi = 1. It can be easily

verified that if the true target is f∗(x) =
∏
j∈J xj, then Ĵ ⊃ J . This implies that

f̂(x) ≤ f∗(x). This implies that f̂(Xi) = Yi when Yi = 0, and hence êrrSn(f̂) = 0.

3.3 Empirical Process

The analysis of realizable PAC learning can be generalized to deal with general
non-binary-valued function classes which may contain an infinitely number of
functions. It may also be generalized to handle the non-realizable case where
f∗(x) /∈ C or when the observation Y contains noise. For such cases, the corre-
sponding analysis requires the technical tool of empirical processes.

To simplify the notations, in the general setting, we may denote the obser-
vations as Zi = (Xi, Yi) ∈ Z = X × Y, prediction function as f(Xi) (which is
often a vector-valued-function) and loss function as L(f(Xi), Yi). Assume fur-
ther that f(x) is parametrized by w ∈ Ω as f(w, x), and the hypothesis space is
{f(w, ·) : w ∈ Ω}.

Let training data Sn = {Zi = (Xi, Yi) : i = 1, . . . , n}. In the following, we
consider a more general form of ERM, approximate ERM, which satisfies the
following inequality for some ε′ > 0:

1

n

n∑
i=1

L(f(ŵ,Xi), Yi) ≤ inf
w∈Ω

[
1

n

n∑
i=1

L(f(w,Xi), Yi)

]
+ ε′. (3.3)

The quantity ε′ > 0 indicates how accurately we solve the ERM problem.
We introduce the following simplified notation that will be used throughout

the book.

Definition 3.8. We define

φ(w, z) = L(f(w, x), y)− L∗(x, y), (3.4)

for w ∈ Ω and z = (x, y) ∈ Z = X × Y, and a pre-chosen L∗(x, y) of z = (x, y)
that does not depend on w.
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CHAPTER 3. UNIFORM CONVERGENCE 36

For training data Sn = {Zi = (Xi, Yi) : i = 1, . . . , n}, we define the training
loss for w ∈ Ω as

φ(w,Sn) =
1

n

n∑
i=1

φ(w,Zi). (3.5)

Moreover, for a distribution D on Z, we define the test loss for w ∈ Ω as:

φ(w,D) = EZ∈Dφ(w,Z). (3.6)

Since L∗(x, y) does not depend on w, the ERM solution with respect to the loss
L(·) is equivalent to the ERM solution with respect to φ(w, ·). Therefore with
the simplified notations, the approximate ERM method (3.3) is a special case of
the following method:

φ(ŵ,Sn) ≤ inf
w∈Ω

φ(w,Sn) + ε′. (3.7)

In general, we may simply take L∗(x, y) = 0 in (3.4). However, for some appli-
cations, we may choose a non-zero L∗(x, y) so that

L(f(w, x), y)− L∗(x, y)

has a small variance. For least squares loss, this can be achieved with L∗(x, y) =
L(f∗(x), y) where f∗(x) is the optimal prediction function that minimizes the test
loss as shown in Example 3.9. The smaller variance, combined with Bernstein’s
inequality, implies better generalization bound (see Section 3.6 for more details).

Example 3.9. Consider linear model f(w, x) = w>x, and let L(f(w, x), y) =
(w>x− y)2 be the least squares loss. Then with L∗(x, y) = 0, we have φ(w, z) =
(w>x− y)2 for z = (x, y).

If we further assume that the problem is realizable by linear model, and w∗
is the true weight vector: E[y|x] = w>∗ x. It follows that we may take L∗(x, y) =
(w>∗ x− y)2, and

φ(w, z) = (w>x− y)2 − (w>∗ x− y)2,

which has a small variance when w ≈ w∗ because limw→w∗ φ(w, z) = 0.

We assume now that training data Zi are iid samples from an unknown test
distribution D. Similar to the PAC learning analysis, we are interested in bound-
ing the test error φ(ŵ,D) in terms of the training error φ(ŵ,Sn) for the ERM
method (3.7).

The family of loss functions forms a function class {φ(w, z) : w ∈ Ω} indexed
by w ∈ Ω. We call {φ(w,Sn) : w ∈ Ω} an empirical process indexed by Ω.
Similar to the PAC learning analysis in Section 3.2, we need to bound the uniform
convergence of training error to test error that holds true for all w ∈ Ω. This is also
referred to as uniform convergence of the empirical process {φ(w,Sn) : w ∈ Ω}.
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Definition 3.10 (Uniform Convergence). Given a model space Ω, and distri-
bution D. Let Sn ∼ Dn be n iid examples sampled from D on Z. We say that
φ(w,Sn) (w ∈ Ω) converges to φ(w,D) uniformly in probability if for all ε > 0:

lim
n→∞

Pr

(
sup
w∈Ω
|φ(w,Sn)− φ(w,D)| > ε

)
= 0,

where the probability is over iid samples of Sn ∼ Dn.

Uniform convergence is also referred to as the uniform law of large numbers.
It says that the law of large numbers holds for all ŵ ∈ Ω that may depend
on the training data Sn. It can thus be applied to the output of any learning
algorithm. While two-sided uniform convergence of Definition 3.10 are frequently
used in the literature, we will employ one-sided uniform convergence which is
more convenient for multiplicative bounds.

Similar to the analysis of PAC learning, the uniform convergence result can be
used to obtain an oracle inequality for the approximate ERM solution as in the
following lemma. Note that for a Chernoff style bound, we may take α = α′ = 1.
However, if we apply multiplicative Chernoff bound, or Bernstein’s inequality,
then we often choose multiplicative factors α < 1 and α′ > 1.

Lemma 3.11. Assume that for any δ ∈ (0, 1), the following uniform convergence
result holds with some α > 0 (we allow α to depend on Sn). With probability at
least 1− δ1,

∀w ∈ Ω : αφ(w,D) ≤ φ(w,Sn) + εn(δ1, w).

Moreover, ∀w ∈ Ω, the following inequality holds with some α′ > 0 (we allow α′

to depend on Sn). With probability at least 1− δ2,

φ(w,Sn) ≤ α′φ(w,D) + ε′n(δ2, w).

Then the following statement holds. With probability at least 1 − δ1 − δ2, the
approximate ERM method (3.7) satisfies the oracle inequality:

αφ(ŵ,D) ≤ inf
w∈Ω

[α′φ(w,D) + ε′n(δ2, w)] + ε′ + εn(δ1, ŵ).

Proof Consider an arbitrary w ∈ Ω. We have with probability at least 1− δ1:

αφ(ŵ,D) ≤φ(ŵ,Sn) + εn(δ1, ŵ)

≤φ(w,Sn) + ε′ + εn(δ1, ŵ), (3.8)

where the first inequality is due to uniform convergence, and the second inequality
is due to (3.7). Moreover, with probability at least 1− δ2:

φ(w,Sn) ≤ α′φ(w,D) + ε′n(δ2, w). (3.9)

Taking the union bound of the two events, we obtain with probability at least
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1− δ1 − δ2, both (3.8) and (3.9) hold. It follows that

αφ(ŵ,D) ≤φ(w,Sn) + ε′ + εn(δ1, ŵ)

≤α′φ(w,D) + ε′n(δ2, w) + ε′ + εn(δ1, ŵ).

Since w is arbitrary, we let w approach the minimum of the right hand side, and
obtain the desired bound.

We observe that in Lemma 3.11, the first condition requires one sided uni-
form convergence for all w ∈ Ω. The second condition does not require uniform
convergence, but only requires that a tail bound of Chapter 2 holds for all indi-
vidual w ∈ Ω. The above result shows that the uniform convergence of empirical
processes can be used to derive oracle inequalities for the ERM method.

Example 3.12. We consider the PAC learning example of Theorem 3.6, but
assume that inff errD(f) 6= 0. We have the following uniform convergence result
from the proof of Theorem 3.6. With probability 1− δ1,

∀f : errD(f) ≤ êrrSn(f)+

√
2errD(f) ln(N/δ1)

n
≤ êrrSn(f)+γerrD(f)+

ln(N/δ1)

2γn
.

In addition, from (2.12), we have for all f , with probability 1− δ2,

êrrSn(f) < (1 + γ)errD(f) +
(3 + 2γ) ln(1/δ2)

6γn
.

We can thus take α = 1 − γ, α′ = 1 + γ, εn = ln(N/δ1)

2γn
, and ε′n = (3+2γ) ln(1/δ2)

6γn
in

Lemma 3.11. Let δ = δ1/2 = δ2/2, we obtain the following oracle inequality from
Lemma 3.11. With probability at least 1− δ:

(1− γ)errD(f̂) ≤ (1 + γ) inf
f

errD(f) + ε′ +
ln(2N/δ)

2γn
+

(3 + 2γ) ln(2/δ)

6γn
.

Next we will investigate the main technique to derive uniform convergence
bounds.

3.4 Covering Number

If Ω is finite, then we can use union bound to obtain uniform convergence of
empirical processes. If Ω is infinite, then we can approximate the function class

G = {φ(w, z) : w ∈ Ω}

using a finite function class. We can then apply union bound to this finite ap-
proximation. Different types of approximations lead to different types of covering,
which lead to different definitions of covering numbers. This section introduces a
simple covering number which is easy to apply.

Definition 3.13 (Lower Bracketing Cover). Given a distribution D. A finite
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3.4. COVERING NUMBER 39

function class G(ε) = {φ1(z), . . . , φN(z)} is an ε lower bracketing cover of G (with
L1(D) metric) if for all w ∈ Ω, there exists j = j(w) such that

∀z : φj(z) ≤ φ(w, z), EZ∼Dφj(Z) ≥ EZ∼Dφ(w,Z)− ε.

The ε-lower bracketing number of G, denoted by NLB(ε,G, L1(D)), is the smallest
cardinality of such G(ε). The quantity lnNLB(ε,G, L1(D)) is referred to as the
ε-lower bracketing entropy.

We shall mention that the functions φj(z) may not necessarily belong to G.
Next we show that the lower bracketing number can be used to obtain uniform
convergence bounds for infinite function classes.

Theorem 3.14. Assume that φ(w, z) ∈ [0, 1] for all w ∈ Ω and z ∈ Z. Let
G = {φ(w, z) : w ∈ Ω}. Then given δ ∈ (0, 1), with probability at least 1 − δ, the
following inequality holds:

∀w ∈ Ω : φ(w,D) ≤ [φ(w,Sn) + εn(δ,G,D)] ,

where

εn(δ,G,D) = inf
ε>0

[
ε+

√
ln(NLB(ε,G, L1(D))/δ)

2n

]
.

Moreover, with probability at least 1− δ, the following inequality holds:

∀γ ∈ (0, 1),∀w ∈ Ω : (1− γ)φ(w,D) ≤ φ(w,Sn) + εγn(δ,G,D),

where

εγn(δ,G,D) = inf
ε>0

[
(1− γ)ε+

ln(NLB(ε,G, L1(D))/δ)

2γn

]
.

Proof For any ε > 0, let G(ε) = {φ1(z), . . . , φN(z)} be an ε lower bracketing
cover of G with N = NLB(ε,G, L1(D)). We may assume that φj(z) ∈ [0, 1] for all
j (otherwise, we may set φj(z) to min(1,max(0, φj(z)))). In the following, we let
j = j(w) for simplified notation:

1

n

n∑
i=1

φ(w,Zi)− EZ∼Dφ(w,Z) ≥ 1

n

n∑
i=1

φj(Zi)− EZ∼Dφj(Z)− ε. (3.10)
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Let ε′′ =
√

ln(N/δ)/2n. It follows from the union bound on j that

Pr

(
∃w ∈ Ω :

[
1

n

n∑
i=1

φ(w,Zi)− EZ∼Dφ(w,Z) + ε+ ε′′
]
≤ 0

)

≤Pr

(
∃j :

[
1

n

n∑
i=1

φj(Zi)− EZ∼Dφj(Z) + ε′′
]
≤ 0

)

≤
N∑
j=1

Pr

(
1

n

n∑
i=1

φj(Zi)− EZ∼Dφj(Z) + ε′′ ≤ 0

)
≤N exp(−2n(ε′′)2) = δ.

The first inequality used (3.10). The second inequality used the union bound.
The last inequality used the additive Chernoff bound (Theorem 2.16). This leads
to the first desired bound of the theorem.

Moreover, using the multiplicative Chernoff bound (2.11) and the union bound,
we obtain the following statement. With probability at least 1− δ, the following
inequality holds for all j:

(1− γ)EZ∼Dφj(Z) ≤ 1

n

n∑
i=1

φj(Zi) +
1

2γ

ln(N/δ)

n
. (3.11)

Therefore for all w ∈ Ω, let j = j(w), we obtain

(1− γ)EZ∼Dφ(w,Z) ≤(1− γ)EZ∼Dφj(Z) + (1− γ)ε

≤ 1

n

n∑
i=1

φj(Zi) +
1

2γ

ln(N/δ)

n
+ (1− γ)ε

≤ 1

n

n∑
i=1

φ(w,Zi) +
1

2γ

ln(N/δ)

n
+ (1− γ)ε.

The first and the third inequalities used the definition of lower bracketing cover.
The second inequality used (3.11). This leads to the second desired bound.

The uniform convergence bounds in Theorem 3.14 imply generalization bounds
as follows. We may take φ(w, z) = L(f(w, x), y) with L∗(x, y) = 0 to obtain an
oracle inequality for the approximate ERM method (3.3).

Corollary 3.15. Assume that φ(w, z) ∈ [0, 1] for all w ∈ Ω and z ∈ Z. Let
G = {φ(w, z) : w ∈ Ω}. With probability at least 1 − δ, the approximate ERM
method (3.7) satisfies the (additive) oracle inequality:

φ(ŵ,D) ≤ inf
w∈Ω

φ(w,D) + ε′ + inf
ε>0

[
ε+

√
2 ln(2NLB(ε,G, L1(D))/δ)

n

]
.

Moreover, with probability at least 1 − δ, we have the following (multiplicative)
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oracle inequality for all γ ∈ (0, 1):

(1− γ)φ(ŵ,D) ≤ inf
w∈Ω

(1 + γ)φ(w,D) + ε′

+ inf
ε>0

[
(1− γ)ε+

(γ + 2) ln(2NLB(ε,G, L1(D))/δ)

2γn

]
.

Proof We can set α = 1 and take εn(δ/2, w) = εn(δ/2,G,D), as defined in
the first bound of Theorem 3.14. We then use the additive Chernoff bound of
Theorem 2.16, and set α′ = 1 and

ε′n(δ/2, w) =

√
ln(2/δ)

2n
≤
√

ln(2NLB(ε,G, L1(D))/δ)

2n

for an arbitrary ε > 0. The conditions of Lemma 3.11 hold. We can then use the
above upper bound on ε′n(δ/2, w) to simplify the result of Lemma 3.11, and take
the minimum over ε to obtain the first desired bound of the corollary.

To derive the second desired inequality of the corollary, we can set α = (1− γ)
and εn(δ/2, w) = εγn(δ/2,G,D), as defined in the second bound of Theorem 3.14.
We then use the multiplicative Chernoff bound as in (2.12), and set α′ = 1 + γ
and

ε′n(δ/2, w) =
(1 + γ) ln(2/δ)

2γn
≤ (1 + γ) ln(2NLB(ε,G, L1(D))/δ)

2γn

for an arbitrary ε > 0. Now by combining these estimates with the second bound
of Theorem 3.14, we can obtain the desired bounds from Lemma 3.11.

3.5 A Simple Example

We consider a one dimensional classification problem, where the input x is uni-
formly distributed in [0, 1], and the output y ∈ {±1} is generated according to

Pr(y = 1|x) =

{
p if x ≥ w∗
(1− p) otherwise

(3.12)

for some unknown w∗ ∈ [0, 1] and p ∈ (0.5, 1]. See Figure 3.1.
Since we don’t know the true threshold w∗, we can consider a family of classifiers

f(w, x) = 21(x ≥ w)− 1 =

{
1 if x ≥ w
−1 otherwise

,

where w ∈ Ω = [0, 1] is the model parameter to be learned from the training data.
Here 1(·) is the binary indicator function, which takes value 1 if the condition in
1(·) holds, and value 0 otherwise.

In this example, we consider the following classification error loss function

L(f(x), y) = 1(f(x) 6= y).
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x

Pr(y = 1|x) = 1− p

Pr(y = 1|x) = p

0 w∗ 1

1

Figure 3.1 Conditional probability Pr(y = 1|x) as a function of x

In this case, the optimal Bayes classifier is f∗(x) = 21(x ≥ w∗) − 1, and the
optimal Bayes error is

EX,Y L(f(w∗, X), Y ) = 1− p.

We will study the generalization performance of empirical risk minimization.
Since for this example, it is easy to find a model parameter ŵ to minimize the
empirical risk (the solution may not be unique), we will set ε′ = 0 in (3.3).

Lower bracketing cover

Given any ε > 0, we let wj = 0 + jε for j = 1, . . . , d1/εe. Let

φj(z) =

{
0 if x ∈ [wj − ε, wj]
φ(wj, z) otherwise,

where z = (x, y). Note that φj /∈ G.
It follows that for any w ∈ [0, 1], if we let wj be the smallest j such that wj ≥ w,

then we have φj(z) = 0 ≤ φ(w, z) when x ∈ [wj − ε, wj], and φj(z) = φ(w, z)
otherwise, where z = (x, y). Moreover,

EZ∼D[φj(Z)− φ(w,Z)] = EX∈[wj−ε,wj ][0− φ(w,Z)] ≥ −ε.

This means that {φj(z)} is an ε lower bracketing cover of G, and thus

NLB(ε,G, L1(D)) ≤ 1 + ε−1.

Oracle inequalities

We have (by picking ε = 2/n):

inf
ε>0

[
ε+

√
2 ln(2NLB(ε,G, L1(D))/δ)

n

]
≤ 2

n
+

√
2 ln((n+ 2)/δ)

n
.
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This implies the following additive oracle inequality from Corollary 3.15 with
φ(w, z) = L(f(w, x), y). With probability at least 1− δ,

E(X,Y )∼DL(f(ŵ,X), Y ) ≤(1− p) +
2

n
+

√
2 ln((n+ 2)/δ)

n
.

In addition, we have (by picking ε = 2/n):

inf
ε>0

[
(1− γ)ε+

(γ + 2) ln(2NLB(ε,G, L1(D))/δ)

2γn

]
≤2(1− γ)

n
+

(γ + 2) ln((n+ 2)/δ)

2γn
.

This implies the following multiplicative oracle inequality from Corollary 3.15
with φ(w, z) = L(f(w, x), y). With probability at least 1− δ, for all γ ∈ (0, 1):

E(X,Y )∼DL(f(ŵ,X), Y ) ≤ 1 + γ

1− γ
(1− p) +

2

n
+

(γ + 2) ln((n+ 2)/δ)

2γ(1− γ)n
.

The multiplicative bound is superior to the additive bound when the Bayes error
is small, such as when p = 1. In this case, the multiplicative bound implies a
convergence rate of lnn/n instead of

√
lnn/n from the additive form.

3.6 Uniform Bernstein’s Inequality

In this section, we show that better bounds can be obtained with Bernstein’s
inequality under the following condition.

Definition 3.16 (Variance Condition). Given a function class G. We say it sat-
isfies the variance condition if there exists c0, c1 > 0 such that for all φ(z) ∈ G:

VarZ∼D(φ(Z)) ≤ c2
0 + c1EZ∼Dφ(Z), (3.13)

where we require that EZ∼Dφ(Z) ≥ −c2
0/c1 for all φ ∈ G.

In applications, the following modification of the variance condition is often
more convenient to employ

EZ∼D[φ(Z)2] ≤ c2
0 + c1EZ∼Dφ(Z). (3.14)

It is easy to see that (3.14) implies (3.13). If φ(Z) is bounded, then the two
conditions are equivalent.

In general, if the variance condition (3.13) only holds for c1 = 0, then we can
only obtain a convergence rate that is O(1/

√
n) at the best. When the variance

condition holds for c1 > 0 and c0 = 0, then we may be able to obtain a con-
vergence rate faster than O(1/

√
n) by using Bernstein’s inequality. The ability

to achieve faster convergence is the main reason to study this condition. The
following examples satisfy the variance condition.

Example 3.17 (Bounded Function). Let G = {φ(·) : ∀z, φ(z) ∈ [0, 1]}. Then G
satisfies the variance condition (3.14) with c0 = 0 and c1 = 1.
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Example 3.18 (Least Squares). Consider the least squares method L(f(x), y) =
(f(x)−y)2, with bounded response: L(f(x), y) ≤M2 for some M > 0. Let F be a
convex function class (that is, for any f1, f2 ∈ F , and α ∈ (0, 1), αf1 +(1−α)f2 ∈
F), and define the optimal function in F as:

fopt = arg min
f∈F

E(x,y)∼DL(f(x), y). (3.15)

Let z = (x, y), and

G = {φ(·) : φ(z) = L(f(x), y)− L(fopt(x), y), f(x) ∈ F}.

Then G satisfies the variance condition (3.14) with c0 = 0, and c1 = 4M2. We
leave the proof as an exercise.

More generally, if F is bounded nonconvex function class with f(x) ∈ [0,M ]
for all f ∈ F . If we assume that y ∈ [0,M ], then the variance condition may not
hold with fopt in (3.15). However, if we replace fopt by f∗(x) = E[Y |X = x] in
the definition of G as follows:

G = {φ(·) : φ(z) = L(f(x), y)− L(f∗(x), y), f(x) ∈ F},

then all functions in G satisfy the variance condition (3.14) with c0 = 0, and
c1 = 2M2. Note that in general f∗ may not belong to F . However if the problem
is well-specified (that is, f∗(x) ∈ F), then the variance condition holds with
fopt = f∗.

Example 3.19 (Tsybakov’s Noise Condition). Consider the binary classification
problem on X × Y with y ∈ {0, 1}. A distribution D on X × Y satisfies the
Tsybakov’s noise condition if there exists β ∈ (0, 1], c > 0, and ε0 ∈ (0, 0.5] so
that

Pr
X∼D

[|Pr(Y = 1|X)− 0.5| ≤ ε] ≤ cεβ/(1−β)

for ε ∈ [0, ε0].
This condition says that the ambiguous points Pr(Y = 1|X) ≈ 0.5 occur with

small probability. In particular, if β = 1, then |Pr(Y = 1|X) − 0.5| ≥ ε0 for all
X.

Under the Tsybakov’s noise condition, for any binary function class f(w, x) :
Ω×X → {0, 1}, the binary classification loss

φ(w, z) = 1(f(w, x) 6= y)− 1(f∗(x) 6= y)

satisfies the following generalized variance condition, where f∗(x) = 1(Pr(Y =
1|X = x) ≥ 0.5) is the optimal Bayes classifier. There exists cβ > 0 so that

EZ∼D[φ(w,Z)2] ≤ c2−β
β [EZ∼Dφ(w,Z)]β. (3.16)

We leave the proof as an exercise. When β = 1, this is equivalent to (3.14) with
c0 = 0. When β < 1, it also implies the variance condition of (3.14) with

c0 = (1− β)0.5γ0.5/(1−β)cβ, c1 = βcβγ
−1/β,

where γ > 0 is a tuning parameter.
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Example 3.20. In the example of Section 3.5, there exist p dependent constants
c0(p) and c1(p) such that the ε lower bracket cover of G satisfies (3.14) with
c2

0 = c0(p)ε and c1 = c1(p). The proof is left as an exercise.

Under the variance-condition (3.13), we can obtain the following uniform con-
vergence result using Bernstein’s inequality. The statement allows unbounded loss
function φ(w, z) because the logarithmic moment generating function estimate in
Lemma 2.22 for Bernstein’s inequality allows unbounded functions. The condition
holds automatically for bounded functions such that maxφ(z)−minφ(z) ≤ b for
all φ ∈ G.

Theorem 3.21. Assume that for all ε ∈ [0, ε0], G = {φ(w, z) : w ∈ Ω} has an ε
lower-bracketing cover G(ε) with NLB(ε,G, L1(D)) members so that G(ε) satisfies
the variance condition (3.13).

Moreover, assume for all φ(z) = φ(w, z) ∈ G ∪G(ε) as a function of z ∈ Z, the
random variable φ(z) satisfies the conditions of Lemma 2.22 with V = Var(φ(Z)),
and EZ∼Dφ(Z) ≥ 0. Then ∀δ ∈ (0, 1), with probability at least 1− δ, the following
inequality holds for all γ ∈ (0, 1) and w ∈ Ω:

(1− γ)φ(w,D) ≤ φ(w,Sn) + εγn(δ,G,D),

where

εγn(δ,G,D) = inf
ε∈[0,ε0]

[
(1− γ)ε+ c0

(
2 ln(NLB(ε,G, L1(D))/δ)

n

)1/2

(3.17)

+
(3c1 + 2γb) ln(NLB(ε,G, L1(D))/δ)

6γn

]
.

Proof For any ε > 0, let G(ε) = {φ1(z), . . . , φN(z)} be an ε lower bracketing
cover of G with N = NLB(ε,G, L1(D)).

Using Bernstein’s inequalities and the union bound, we obtain the following
statement. With probability at least 1 − δ, the following inequality holds for all
j:

EZ∼Dφj(Z) ≤ 1

n

n∑
i=1

φj(Zi) +

√
2VarZ∼Dφj(Z) ln(N/δ)

n
+
b ln(N/δ)

3n

≤ 1

n

n∑
i=1

φj(Zi) +

√
2c2

0 ln(N/δ)

n
+

√
2c1[EZ∼Dφj(Z)] ln(N/δ)

n
+
b ln(N/δ)

3n

≤ 1

n

n∑
i=1

φj(Zi) + c0

√
2 ln(N/δ)

n
+ γEZ∼Dφj(Z) +

c1 ln(N/δ)

2γn
+
b ln(N/δ)

3n
.

(3.18)

The derivation of the first inequality used Bernstein’s inequality. The derivation
of the second inequality used the fact that φj(z) satisfies the variance (3.13), and
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used the inequality
√
a+ b ≤

√
a +
√
b to simplify the result. The derivation of

the third inequality used
√

2ab ≤ γa+ (b/2γ).
Therefore for all w ∈ Ω, let j = j(w), we obtain

(1− γ)EZ∼Dφ(w,Z)

≤(1− γ)EZ∼Dφj(Z) + (1− γ)ε

≤ 1

n

n∑
i=1

φj(Zi) + c0

(
2 ln(N/δ)

n

)1/2

+
(3c1 + 2γb) ln(N/δ)

6γn
+ (1− γ)ε

≤ 1

n

n∑
i=1

φ(w,Zi) + c0

(
2 ln(N/δ)

n

)1/2

+
(3c1 + 2γb) ln(N/δ)

6γn
+ (1− γ)ε.

In the above derivation, the first inequality and the third inequality used the
definition of lower bracket cover. The second inequality used (3.18). This implies
the desired bound.

Similar to Corollary 3.15, we can obtain from Theorem 3.21 and Lemma 3.11
the following oracle inequality.

Corollary 3.22. Let w∗ = arg minw∈Ω E(X,Y )∼DL(f(w,X), Y ), and assume that
the conditions of Theorem 3.21 hold with φ(w, z) = L(f(w, x), y)−L(f(w∗, x), y).
Then, with probability at least 1− δ, the approximate ERM method (3.3) satisfies
the following oracle inequality

E(X,Y )∼DL(f(ŵ,X), Y ) ≤ E(X,Y )∼DL(f(w∗, X), Y ) + 2(ε0.5n (δ,G,D) + ε′),

where εγn(δ,G,D) is given by (3.17).

Proof Theorem 3.21 implies the following. ∀δ ∈ (0, 1), with probability at least
1− δ

(1− γ)φ(ŵ,D) ≤ φ(ŵ,Sn) + εγn(δ,G,D).

Since the approximate empirical risk minimizer satisfies

φ(ŵ,Sn) ≤ ε′,

we obtain

(1− γ)φ(ŵ,D) ≤ ε′ + εγn(δ,G,D).

This implies the desired bound with γ = 0.5.

We use the following example to illustrate Corollary 3.22.

Example 3.23. Consider the example of Section 3.5. We consider the following
modified definition of φ(w, z):

φ(w, z) = 1(f(w, x) 6= y)− 1(f(w∗, x) 6= y),

and the functions φ′j(z) = φj(z)−1(f(w∗, x) 6= y) with φj(z) defined in Section 3.5
form an ε lower-bracketing cover of {φ(w, z) : w ∈ [0, 1]}. Example 3.20 implies
that for this cover, the conditions of Theorem 3.21 hold for ε ≤ ε0 with c2

0 =
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c0(p)ε0, c1 = c1(p). We may also take b = 2. By taking γ = 0.5, ε = ε0 = 2/n,
ε′ = 0, together with NLB(ε,G, L1(D)) ≤ (n+ 2)/2, we obtain

εγn(δ/2,G,D) = O

(
ln(n/δ)

n

)
.

Note also that E(X,Y )∼D 1(f(w∗, X) 6= Y ) = 1− p, we obtain from Corollary 3.22
that with probability at least 1− δ:

E(X,Y )∼D1(f(ŵ,X) 6= Y ) ≤ (1− p) +O

(
ln(n/δ)

n

)
.

This shows the ERM method has generalization error converging to the Bayes
error at a rate of O(lnn/n). This result achieves a better convergence rate than
those in Section 3.5 when p ∈ (0.5, 1). The rate O(lnn/n) can be improved to
O(1/n) using a slightly more refined technique referred to as “peeling”. We leave
it as an exercise.

Example 3.24. In general, for bounded parametric function classes with d real-
valued parameters (such as linear models f(w, x) = w>x defined on a compact
subset of Rd), we expect the entropy (more details can be found in Section 5.2)
to behave as

lnNLB(ε,G, L1(D)) = O(d ln(1/ε)).

Assume that the variance condition (3.16) holds. Then it implies (3.14) with
appropriate tuning c0 and c1. By optimizing the trade-off between c0 and c1, it can
be shown that the generalization bound in Corollary 3.22 implies a convergence
rate of

EDL(f(ŵ,X), Y ) ≤ EDL(f(w∗, X), Y ) +O

((
ln(nd/δ)

n

)1/(2−β)
)
.

Example 3.25. Consider the parametric least squares regression problem with
either a convex or a nonconvex but realizable function class F . Example 3.18
implies that the variance condition holds with fopt(x) ∈ F . Example 3.24 shows
that by using Corollary 3.22, we obtain with probability at least 1− δ:

EDL(f̂(X), Y ) ≤ EDL(fopt(X), Y ) +O

(
M2 ln(nd/δ)

n

)
,

where f̂ is the empirical risk minimizer in F with the least squares loss.
However, if the function class F is nonconvex, then the variance condition does

not hold with respect to fopt when the model is misspecified (that is when f∗(x) =
E[y|x] /∈ F). This implies a convergence rate of O(1/

√
n) when competing with

fopt. In fact, even for problems with two functions, one can obtain a convergence
no better than O(1/

√
n) for least squares problem in the worst case. For example,

we can assume f∗(X) = 0, and assume Y ∼ N(0, 1). Consider F = {f1, f2}, with
fopt(X) = f1(X) = −1 and f2(X) = 1 + 1/

√
n. Then with n observations, ERM
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will choose f2 with constant probability, which implies a test loss that is Ω(1/
√
n)

worse than the optimal function fopt = f1 (also Proposition 8.12). This suggests
the importance of convex function classes for least squares regression.

For nonparametric function classes such as kernel methods, we generally expect
the entropy to grow polynomially in 1/ε as

lnNLB(ε,G, L1(D)) = O(1/εq)

for some q > 0 (see Chapter 5). Another way to view nonparametric models is that
the “effective dimension” of nonparametric models depends on the approximation
scale ε, and it increases as d ≈ 1/εq when ε→ 0.

Example 3.26. Let G be the class of monotone functions [0, 1] → [0, 1]. Then
the low bracketing entropy of G satisfies lnNLB(ε,G, L1(D)) = O(1/ε).

In the case of nonparametric functions, Corollary 3.22 may not be tight. It
can be improved by using a technique called “chaining”, which requires the use
of L2(D) bracketing number (see Definition 3.27), instead of the L1 lower brack-
eting number considered here. In this book, we will only explain the chaining
technique for L2-empirical covering numbers in Chapter 4. A similar analysis for
L2-bracketing numbers can be found in (van der Vaart and Wellner, 1996).

3.7 General Bracketing Number

In some applications, we are interested in two-sided uniform convergence, which
bounds the error

sup
w∈Ω
|φ(w,Sn)− φ(w,D)|.

In order to obtain such a uniform convergence result, we may employ two-sided
bracketing cover defined as follows.

Definition 3.27 (Bracketing Number). Let G = {φ(w, ·) : w ∈ Ω} be a real-
valued function class, equipped with a pseudometric d. We say

G(ε) = {[φL1 (z), φU1 (z)], . . . , [φLN(z), φUN(z)]}

is an ε-bracket of G under metric d if for all w ∈ Ω, there exists j = j(w) such
that ∀z:

φLj (z) ≤ φ(w, z) ≤ φUj (z), d(φLj , φ
U
j ) ≤ ε.

The ε-bracketing number is the smallest cardinality N[](ε,G, d) of such G(ε). The
quantity lnN[](ε,G, d) is called ε bracketing entropy.

In particular, given a distribution D and p ≥ 1, we define Lp-seminorm in
function space as

‖f − f ′‖Lp(D) = [EZ∼D|f(Z)− f ′(Z)|p]1/p . (3.19)
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It induces a pseudometric, denoted as d = Lp(D), and the corresponding brack-
eting number is N[](ε,G, Lp(D)).

For p = ∞, the L∞(D)-seminorm is defined as the essential supremum semi-
norm, which leads to the pseudometric

d(f, f ′) = inf {ω : PrD[|f(Z)− f ′(Z)| ≤ ω] = 1} .

However, when p = ∞, instead of using the L∞ bracketing number, it is more
conventional to use the equivalent notion of L∞ covering number (see Proposi-
tion 4.3).

We have the following relationship of lower bracketing number and bracketing
numbers with different norms.

Proposition 3.28. We have for all p ≥ 1:

NLB(ε,G, L1(D)) ≤ N[](ε,G, L1(D)) ≤ N[](ε,G, Lp(D)).

Proposition 3.28 implies that Theorem 3.14 also holds for the Lp(D) brack-
eting numbers (p ≥ 1). Under the variance condition, Theorem 3.21 also holds
for the Lp(D) bracketing numbers (p ≥ 1). It follows that Theorem 3.14 and
Theorem 3.21 applies for all N[](ε,G, Lp(D)) with p ≥ 1. However, for p ≥ 2,
one may use the chaining technique to derive better uniform convergence bounds
than that of Theorem 3.21. We will not develop such refined analysis for brack-
eting numbers in this book because bracketing numbers are not used as widely
as empirical and uniform covering numbers in the machine learning literature.
We will thus only derive the consequence of the chaining analysis for L2-uniform
covering numbers in Chapter 4. The analysis for the bracketing numbers, using
Bernstein’s inequality, will be similar.

We also have the following property of bracketing numbers, which can be used
to derive bracketing numbers for compositions of function classes.

Proposition 3.29. Consider function classes F and G. For any real number α
and β, define the function class

αF + βG = {αf(z) + βg(z) : f ∈ F , g ∈ G},

then

lnN[](|α|ε1 + |β|ε2, αF + βG, Lp(D)) ≤ lnN[](ε1,F , Lp(D)) + lnN[](ε2,G, Lp(D)).

Moreover, let ψ(a) : R→ R be a Lipschitz function: |ψ(a)− ψ(b)| ≤ γ|a− b|. Let
ψ(F) = {ψ(f(z)) : f ∈ F}, then

lnN[](γε, ψ(F), Lp(D)) ≤ lnN[](ε,F , Lp(D)).
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3.8 Historical and Bibliographical Remarks

The theory of empirical process was started from the study of the convergence
property of empirical distributions of real valued random variables. In our nota-
tion, this corresponds to the choice of function class φ(w, z) = 1(z ≤ w), where
w ∈ R and z ∈ R. It was shown in (Cantelli, 1933; Glivenko, 1933) that the uni-
form law of large numbers hold for this function class. Therefore function classes
that satisfy the uniform law of large numbers are also called Glivenko-Cantelli
classes. Similar to Theorem 3.14, it can be shown (see van der Vaart and Wellner,
1996, chapter 2.4) that G is a Glivenko-Cantelli class under distribution D if

∀ε > 0, N[](ε,G, L1(D)) <∞.

One can further prove a functional extension of the central limit theorem for
certain empirical processes (Donsker, 1952), and function classes that satisfy such
central limit theorems are called Donsker classes. It is known (see Chapter 2.5 of
van der Vaart and Wellner, 1996) that G is a Donsker class if∫ ∞

0

√
lnN[](ε,G, L2(D)) dε <∞.

We will not consider central limit theorems in this book, and refer the readers
to (van der Vaart and Wellner, 1996) for further readings on empirical processes.

The first use of empirical process to analyze empirical risk minimization is
attributed to Vapnik and Chervonenkis (1968, 1971) during the late 1960’s.
The theory is also referred to as the VC theory, which was described in some
recent papers and books by Vapnik (1999, 2013). The modern theory of machine
learning covers a much broader range of techniques and problems. The PAC
learning framework, introduced by Valiant (1984), incorporated computational
constraints into statistical learning. The theoretical study of machine learning
algorithm with computational constraints is often referred to as computational
learning theory.

The variance condition (3.14) and its extension in (3.16) are widely used in
the recent learning theory literature to obtain faster than O(1/

√
n) convergence

rates for ERM. In particular, for binary classification problems, the condition
is implied by the Tsybakov’s noise condition of Example 3.19 (Mammen and
Tsybakov, 1999; Tsybakov, 2004).
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Exercises

3.1 Assume that Ej (j = 1, . . . ,m) are independent events. Prove

Pr(E1 ∪ · · · ∪ Em) ≥
m∑
j=1

Pr(Ej)− 0.5

 m∑
j=1

Pr(Ej)

2

.

3.2 Describe a computationally efficient learning algorithm for Decision List, and show that

it is PAC learnable.

3.3 In Section 3.4, if we assume that all functions φ ∈ G ∪ G(ε) are sub-Gaussians. That is,

there is a constant V so that

lnEZ exp(λφ(Z)) ≤ λEφ(Z) +
λ2

2
V.

Derive an oracle inequality for approximate ERM in the form of Corollary 3.1.

3.4 Prove Example 3.18.

3.5 Prove Example 3.19.

3.6 In Example 3.20, compute c0(p) and c1(p).

3.7 Consider Example 3.23. We illustrate how to remove the lnn factor in the resulting gen-

eralization bound using the peeling technique, which considers a sequence of local covers.

Let ε0 = c ln(4/δ)/n for a sufficiently large constant c. For ` = 1, 2, . . ., let ε` = 2`ε0, and

define Ω` = {w : φ(w,D) ∈ [ε`, ε`+1]}.
• Show that G` = {φ(w, z) : w ∈ Ω`} has a constant ε`/4-bracketing cover.

• Apply Theorem 3.21 to G` (` ≥ 1) and show that when c is sufficiently large and γ = 0.5:

εγn(δ/(`(`+ 1)),G`,D) < (1− γ)ε`.

Show that this implies Pr(∀w ∈ Ω` : φ(w,Sn) > 0) ≥ 1− δ/(`(`+ 1)).

• Show that with probability at least 1 − δ, the empirical risk minimizer ŵ /∈ Ω` for all

` ≥ 1. This implies that with probability at least 1− δ: φ(ŵ,D) ≤ 2ε0.

3.8 Prove Example 3.24

3.9 Consider a modification of the Example in Section 3.5, where we assume that the condi-

tional probability in (3.12) is replaced by

Pr(y = 1|x) = 0.5 + 0.5(x− w∗).

Show this example satisfies an appropriate Tsybakov noise condition, and use this condi-

tion to derive a variance condition (3.16). Derive the corresponding oracle inequality using

Corollary 3.22.

3.10 Prove Example 3.26.

3.11 Prove Proposition 3.29.
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4

Empirical Covering Number Analysis and
Symmetrization

In the seminal paper of Vapnik and Chervonenkis (1971), a mathematical theory
was developed to analyze the generalization performance of binary classification
algorithms. It influenced the development of computational learning theory, in-
cluding PAC learning described in Chapter 3. An essential component of the
analysis is a bound on the empirical covering number of binary functions (which
can be considered as a family of sets) using VC-dimension; another essential com-
ponent is the uniform convergence analysis using empirical covering numbers.

In Chapter 3, we have shown uniform convergence results can be established
using lower-bracketing covers, which directly estimate the number of functions
over the unknown test distribution. To analyze empirical covering numbers, we
need to introduce an additional technique, leading to the analysis of symmetrized
empirical processes. The symmetrization method is also used in the analysis of
Rademacher complexity, which is studied in Chapter 6.

In this chapter, we will consider a version of the symmetrization argument
for empirical covering numbers. The key idea is to consider a validation set of
size n, and analyze the empirical validation performance on the validation data,
with model trained on the training data of size n. The uniform convergence
is with respect to the convergence of training loss to the validation loss under
random assignments of pairs of data to training and validation sets. We show
that the uniform convergence with respect to the validation data can be used to
derive a generalization bound on the test distribution. We note that the method
for partitioning a dataset randomly into training and validation subsets is also a
technique heavily used in the empirical evaluation of machine learning algorithms.
A typical scheme in practice employs random permutation. The permutation
argument was also used in the original analysis of Vapnik and Chervonenkis
(1971). We will not study the permutation technique, but rather employ the
related symmetrization argument instead of permutation because it is also used
in the Rademacher complexity analysis (see Chapter 6).

4.1 Metric and Empirical Covering Numbers

We introduce metric covering numbers on a general pseudometrics space as fol-
lows.

Definition 4.1. Let (V, d) be a pseudometric space with metric d(·, ·). A finite
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set G(ε) ⊂ V is an ε cover (or ε net) of G ⊂ V if, for all φ ∈ G, there exists
φ′ ∈ G(ε) so that d(φ′, φ) ≤ ε. The ε-covering number of G with metric d is the
smallest cardinality N(ε,G, d) of such G(ε). The number lnN(ε,G, d) is called the
ε-entropy.

For a function class G with seminorm Lp(D) in (3.19), we denote the corre-
sponding Lp(D)-covering number as N(ε,G, Lp(D)). When 1 ≤ p ≤ q, we have

N(ε,G, Lp(D)) ≤ N(ε,G, Lq(D)).

It is easy to verify the following relationship, which implies that Lp(D) brack-
eting cover is a stronger requirement than Lp(D) cover.

Proposition 4.2. The following result holds:

N(ε,G, Lp(D)) ≤ N[](2ε,G, Lp(D)).

Proof Let {[φL1 (z), φU1 (z)] . . . , [φLN(z), φUN(z)]} be an 2ε Lp(D)-bracketing cover
of G. Let φj(z) = (φLj (z) +φUj (z))/2, then {φ1(z), . . . , φN(z)} is an ε Lp(D)-cover
of G.

The following result shows that with p = ∞, the reverse of Proposition 4.2
holds. That is, the L∞(D) bracketing cover is equivalent to L∞(D) cover. This
means that the analysis in Chapter 3, which employs lower bracketing number,
can be applied to L∞(D) covering number as well.

Proposition 4.3. We have

N[](ε,G, L∞(D)) = N(ε/2,G, L∞(D)).

Proof Let {φj} be an ε/2 L∞(D) cover of G. Let φLj = φj − ε/2 and φUj =
φj + ε/2. Then [φLj , φ

U
j ] forms an ε bracketing cover. The reverse is also true as

in Proposition 4.2.

The above result implies that L∞(D) covering number leads to an upper bound
of L1(D) bracketing number. Consequently, one can obtain uniform convergence
result using L∞(D) covering number as indicated by Theorem 3.14. However, one
cannot directly obtain uniform convergence using Lp(D) covering number directly
with p < ∞. In order to do so, one needs to introduce the concept of empirical
and uniform covering numbers.

Definition 4.4 (Empirical and Uniform Covering Number). Given an empirical
distribution Sn = {Z1, . . . , Zn}, we define the pseudometric d = Lp(Sn) as

d(φ, φ′) =

[
1

n

n∑
i=1

|φ(Zi)− φ′(Zi)|p
]1/p

.

The corresponding metric covering number N(ε,G, Lp(Sn)) is referred to as the
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empirical Lp covering number. Given n, the largest Lp covering number over
empirical distribution Sn is referred to as the uniform Lp covering number

Np(ε,G, n) = sup
Sn

N(ε,G, Lp(Sn)).

Since the Lp(Sn) pseudometric increases with p, we have the following simple
result.

Proposition 4.5. For 1 ≤ p ≤ q, we have

N(ε,G, Lp(Sn)) ≤ N(ε,G, Lq(Sn)),

and

Np(ε,G, n) ≤ Nq(ε,G, n).

We will later show that the uniform L1 covering number can be used to obtain
uniform convergence and oracle inequalities. First, we show that it is easy to
obtain an estimate of the empirical L∞ covering number for linear classifiers,
which implies a bound on the uniform L1 covering number.

Example 4.6. Consider {0, 1} valued linear classifiers in d dimension of the form
f(w, x) = 1(w>x ≥ 0), where w ∈ Ω = Rd and ∈ X = Rd. Let Y ∈ {0, 1}, then
classification error is φ(w, z) = 1(f(w, x) 6= y), where z = (x, y). Note that it is
difficult to obtain bracketing cover for such problems with arbitrary D. However
it is easy to obtain L∞ empirical covering number. A general bound of uniform
L∞ covering numbers can be obtained using the concept of VC-dimension. One
may also use convex optimization to obtain a bound for linear classifiers as

N∞(G, ε, n) ≤ (2n)d,

with ε = 0. See Exercise 4.4.

4.2 Symmetrization

Using the notations in Chapter 3, we let Z = (X,Y ). Consider the setting that
we observe training data Sn = {Z1, . . . , Zn}, drawn independently from D, and a
separate validation data S ′n = {Z ′1, . . . , Z ′n}, also drawn independently from D.

Given a function f(Z), we may define the training loss and the validation loss
as

f(Sn) =
1

n

∑
Z∈Sn

f(Z), f(S ′n) =
1

n

∑
Z∈S′n

f(Z)

for each partition (Sn,S ′n). A natural question is how to bound the validation
loss in terms of training loss. Note that such a validation result can be naturally
converted into a generalization result with respect to the test distribution D.

In the symmetrization argument, we bound the validation loss using the uni-
form convergence of symmetrized empirical process, which is defined as follows.
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Since the symmetrized empirical process only depends on the empirical data Sn,
it can be analyzed using covering numbers on the empirical data.

Definition 4.7. Consider a real-valued function family F : Z → R. Consider n
iid Bernoulli random variables σi ∈ {±1}, where Pr(σi = 1) = Pr(σi = −1) = 0.5.
The symmetrized empirical process is

f(σ,Sn) =
1

n

n∑
i=1

σif(Zi) f ∈ F ,

where the randomness is with respect to both Sn = {Zi} and σ = {σi}.

Note that in order to bound the symmetrized empirical process, we only need
a covering number result on Sn. Therefore the symmetrization analysis allows us
to work with empirical covering numbers. Next we will show that a bound on
the symmetrized empirical process can be used to obtain uniform convergence
of the empirical process {f(Sn) : f ∈ F} to the corresponding result on the
validation data. Since one can relate the validation loss of a learning algorithm
to its generalization error on the test data, we can use this result to obtain
generalization bounds.

The following lemma shows that if we can obtain an upper bound on the
symmetrized empirical process {f(σ,Sn) : f ∈ F}, and the upper bound satisfies
a superadditive property, then we can obtain the uniform convergence of the
empirical process {f(Sn) : f ∈ F} on the training data Sn to the corresponding
result on the validation data S ′n.

Lemma 4.8 (Symmetrization). Consider a real valued function family F = {f :
Z → R}. Assume there exists a function ψ : F × Zn → R and εn : (0, 1)→ R so
that with probability at least 1− δ:

∀f ∈ F , f(σ,Sn) ≤ ψ(f,Sn) + εn(δ),

where the randomness is over both Sn ∼ Dn and σ. If there exists ψ̃(f,Sn ∪ S ′n)
so that the following superadditive inequality holds for all (Sn,S ′n)

ψ(f,Sn) + ψ(f,S ′n) ≤ ψ̃(f,Sn ∪ S ′n),

then with probability at least 1− δ over independent random data (Sn,S ′n) ∼ D2n:

∀f ∈ F , f(S ′n) ≤ f(Sn) + ψ̃(f,Sn ∪ S ′n) + 2εn(δ/2).

Proof Consider independent random samples (Sn,S ′n) ∼ D2n. The distribution
of f(Sn)−f(S ′n) is the same as that of f(σ,Sn)−f(σ,S ′n), and the latter contains
additional randomness from Bernoulli random variables σ, drawn independently
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of (Sn,S ′n), as in Definition 4.7. It follows that

Pr
(
∃f ∈ F , f(S ′n) > f(Sn) + ψ̃(f,Sn ∪ S ′n) + 2εn(δ/2)

)
= Pr

(
∃f ∈ F , f(σ,S ′n) > f(σ,Sn) + ψ̃(f,Sn ∪ S ′n) + 2εn(δ/2)

)
(a)

≤ Pr

∃f ∈ F , f(σ,S ′n) > f(σ,Sn) + (ψ(f,Sn) + ψ(f,S ′n)) + 2εn(δ/2)︸ ︷︷ ︸
E0


(b)

≤ Pr

∃f ∈ F , f(σ,S ′n) > ψ(f,S ′n) + εn(δ/2)︸ ︷︷ ︸
E1


+ Pr

∃f ∈ F ,−f(σ,Sn) > ψ(f,Sn) + εn(δ/2)︸ ︷︷ ︸
E2


=2 Pr (∃f ∈ F , f(σ,Sn) > ψ(f,Sn) + εn(δ/2)) ≤ 2(δ/2).

In the above derivation, the first equation used the fact that f(Sn)− f(S ′n) and
f(σ,Sn)−f(σ,S ′n) have the same distributions. (a) used the assumption ψ(Sn) +

ψ(S ′n) ≤ ψ̃(Sn ∪ S ′n). (b) used the union bound, and the fact that if event E0

holds, then either event E1 holds or event E2 holds. The next equation used the
symmetry of −f(σ,Sn) and f(σ,Sn), and the last inequality used the assumption
of the lemma. The result implies the desired bound.

Lemma 4.8 shows that symmetrized empirical process can be used to obtain a
uniform convergence result of a properly defined training statistics (e.g. training
loss) to validation statistics (e.g. validation loss). The following example illus-
trates the consequences.

Example 4.9. We may take ψ = ψ̃ = 0 in Lemma 4.8. Assume we have the
following bound for the symmetrized empirical process:

∀f ∈ F , f(σ,Sn) ≤ εn(δ),

then with probability at least 1− δ:

∀f ∈ F , f(S ′n) ≤ f(Sn) + 2εn(δ/2).

Example 4.10. In Lemma 4.8, we may also take γ ∈ (0, 1). Let

ψ(f,Sn) = γf(Sn) =
γ

n

n∑
i=1

f(Zi), ψ̃(f,Sn ∪ S ′n) =
γ

n

n∑
i=1

[f(Zi) + f(Z ′i)].

Assume that we have the following bound for the symmetrized empirical process:
with probability at least 1− δ,

∀f ∈ F , f(σ,Sn) ≤ γf(Sn) + εn(δ),
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then we obtain with probability at least 1− δ:

∀f ∈ F , (1− γ)f(S ′n) ≤ (1 + γ)f(Sn) + 2εn(δ/2).

The following result can be used with Lemma 4.8 to obtain the uniform con-
vergence of training statistics to the test statistics (e.g. test loss). The resulting
bound can then be used with Lemma 3.11 to obtain oracle inequalities for em-
pirical risk minimization.

Lemma 4.11. Let ψtrn : F × Zn → R, ψval : F × Zn → R, ψtst : F × D →
R be appropriately training (where D denotes probability distributions on Z),
validation, and test statistics. Assume that for any δ1 ∈ (0, 1), the following
uniform convergence result holds. With probability at least 1 − δ1 over randomly
drawn training and validation sets (Sn,S ′n) ∼ D2n:

∀f ∈ F : ψval(f,S ′n) ≤ ψtrn(f,Sn) + ε1n(δ1).

Moreover, assume ∀f ∈ F , we have with probability 1− δ2 over randomly drawn
S ′n ∼ D:

ψtst(f,D) ≤ ψval(f,S ′n) + ε2n(δ2).

Then the following uniform convergence statement holds. With probability at least
1− δ1 − δ2,

∀f ∈ F : ψtst(f,D) ≤ ψtrn(f,Sn) + ε1n(δ1) + ε2n(δ2).

Proof Let Q(f,Sn) = ψtst(f,D)−ψtrn(f,Sn)−(ε1n(δ1)+ε2n(δ2)), and let E be the

event that supf∈F Q(f,Sn) ≤ 0. We pick f̂(Sn) ∈ F so that if E holds, then we

choose an arbitrary Q(f̂(Sn),Sn) ≤ 0, and if E does not hold, we choose f̂(Sn) so

that Q(f̂(Sn),Sn) > 0. We consider sample (Sn,S ′n) ∼ D2n. For simplicity, in the

following, we let f̂ = f̂(Sn). The uniform convergence condition of the theorem
implies that with probability at least 1− δ1, the following event holds:

E1 : ψval(f̂ ,S ′n) ≤ ψtrn(f̂ ,Sn) + ε1n(δ1).

Note that the validation data S ′n is independent of the training data Sn. Therefore

S ′n is also independent of f̂ . Therefore the condition of the theorem implies that
with probability at least 1− δ2, the following event holds:

E2 : ψtst(f̂ ,D) ≤ ψval(f̂ ,S ′n) + ε2n(δ2).

If both events E1 and E2 hold, then

ψtst(f̂ ,D) ≤ψval(f̂ ,S ′n) + ε2n(δ2)

≤ψtrn(f̂ ,Sn) + ε1n(δ1) + ε2n(δ2).

The definition of f̂ implies that E holds. Therefore Pr(E) ≥ Pr(E1&E2) ≥ 1 −
δ1 − δ2. This implies the desired bound.
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In the literature, one can also obtain a different bound by considering the Inde-
pendence relationship between f̂ and E2. We leave the derivation as an exercise.

4.3 Uniform Convergence with Uniform L1 Covering Number

Using the same notations of Chapter 3, we consider a function class

G = {φ(w, z) : w ∈ Ω},

with φ(w,Sn) and φ(w,D) defined in (3.5) and (3.6). We can obtain the following
uniform convergence bounds, which are analogous to the results of Theorem 3.14.
Here we simply replace L1(D) lower bracketing number by the L1 uniform cov-
ering number. It is also possible to relax the requirement of uniform covering
number by assuming the bound holds with large probability. We do not consider
such analysis for simplicity.

Theorem 4.12. Assume that φ(w, z) ∈ [0, 1] for all w and z. Then given δ ∈
(0, 1), with probability at least 1− δ, the following inequality holds:

∀w ∈ Ω : φ(w,D) ≤ φ(w,Sn) + εn(δ),

where

εn(δ) = inf
ε>0

[
2ε+ 3

√
ln(3N1(ε,G, 2n)/δ)

2n

]
.

Moreover, for any γ ∈ (0, 1), with probability at least 1−δ, the following inequality
holds:

∀w ∈ Ω : (1− γ)2φ(w,D) ≤ φ(w,Sn) + εn(δ),

where

εn(δ) = inf
ε>0

[
2ε+

(5− 4γ) ln(3N1(ε,G, n)/δ)

2γn

]
.

Proof Let F = {f(z) = φ(w, z) − 0.5 : w ∈ Ω}. Given Sn, we consider an ε-
L1(Sn) cover Fε(Sn) of F , of size no more N = N1(ε,G, n). We may assume that
f(Zi) ∈ [−0.5, 0.5] for f ∈ Fε(Sn). From Corollary 2.27 (with ai = 0.5) and the
union bound, we obtain the following uniform convergence result over Fε(Sn).
With probability 1− δ:

∀f ∈ Fε(Sn) : f(σ,Sn) ≤
√

ln(N/δ)

2n
.

Since for all f ∈ F , we can find f ′ ∈ Fε(Sn) so that n−1
∑

Z∈Sn |f(Z)−f ′(Z)| ≤ ε
for all Z ∈ Sn. It follows that

f(σ,Sn) ≤ f ′(σ,Sn) + ε ≤ ε+

√
ln(N/δ)

2n
.

Using Lemma 4.8 with ψ = 0, this uniform convergence result for the symmetrized
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empirical process implies the following uniform convergence result. With proba-
bility at least 1− δ1 over (Sn,S ′n) ∼ D2n:

∀w ∈ Ω : φ(w,S ′n)︸ ︷︷ ︸
ψval

≤ φ(w,Sn)︸ ︷︷ ︸
ψtrn

+ 2ε+

√
2 ln(2N/δ1)

n︸ ︷︷ ︸
ε1n(δ1)

.

The standard additive Chernoff bound implies that for all w ∈ Ω, with probability
at least 1− δ2:

φ(w,D)︸ ︷︷ ︸
ψtst

≤ φ(w,S ′n)︸ ︷︷ ︸
ψval

+

√
ln(1/δ2)

2n︸ ︷︷ ︸
ε2n(δ2)

.

Therefore in Lemma 4.11, we can take symbols as defined above, together with
δ1 = 2δ/3 and δ2 = δ/3 to obtain the desired bound.

Similarly, we consider F = {f(z) = φ(w, z) : w ∈ Ω}. Given Sn, we consider
an ε-L1(Sn) cover Fε(Sn) of F , of size no more N = N1(ε,G, n). We assume that
f(Zi) ∈ [0, 1] for all f ∈ Fε(Sn). From Corollary 2.27 and the union bound, we
obtain the following uniform convergence result over Fε(Sn). With probability at
least 1− δ:

∀f ∈ Fε(Sn) : f(σ,Sn) ≤

√
2
∑

Z∈Sn f(Z)2 ln(N/δ)

n2

≤γ′ 1
n

∑
Z∈Sn

f(Z) +
ln(N/δ)

2γ′n
.

The first inequality used Corollary 2.27. The second inequality used
√

2ab ≤
γ′a+ b/(2γ′) and f(Z)2 ≤ f(Z). Since for all f ∈ F , we can find f ′ ∈ Fε(Sn) so
that 1

n

∑
Z∈Sn |f(Z)− f ′(Z)| ≤ ε. It follows that

f(σ,Sn) ≤f ′(σ,Sn) + ε

≤γ′ 1
n

∑
Z∈Sn

f ′(Z) +
ln(N/δ)

2γ′n
+ ε

≤γ′ 1
n

∑
Z∈Sn

f(Z) +
ln(N/δ)

2γ′n
+ (1 + γ′)ε.

Now, with ψ(f,Sn) = ψ̃(f,Sn) = γ′ 1
n

∑
Z∈Sn f(Z), we obtain from Lemma 4.8

the following uniform convergence result. With probability at least 1 − δ1 over
(Sn,S ′n) ∼ D2n:

∀w ∈ Ω : (1− γ′)φ(w,S ′n) ≤ (1 + γ′)φ(w,Sn) + 2(1 + γ′)ε+
ln(2N/δ1)

γ′n
.

Let γ′ = γ/(2−γ), then it is easy to check algebraically that (1−γ′)/(1+γ′) = 1−γ
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and 1/(γ′(1 + γ′)) = (2− γ)2/(2γ). We thus obtain:

∀w ∈ Ω : (1− γ)φ(w,S ′n)︸ ︷︷ ︸
ψval

≤ φ(w,Sn)︸ ︷︷ ︸
ψtrn

+ 2ε+
(2− γ)2 ln(2N/δ1)

2γn︸ ︷︷ ︸
ε1n(δ1)

. (4.1)

The standard multiplicative Chernoff bound in (2.11) implies that with proba-
bility 1− δ2:

(1− γ)(1− γ)φ(w,D)︸ ︷︷ ︸
ψtst

≤ (1− γ)φ(w,S ′n)︸ ︷︷ ︸
ψval

+ (1− γ)
ln(1/δ2)

2γn︸ ︷︷ ︸
ε2n(δ2)

.

Therefore in Lemma 4.11, we can use symbols as displayed above, together with
δ1 = 2δ/3 and δ2 = δ/3 to obtain the desired bound.

Using Lemma 3.11, the following oracle inequalities can be obtained from The-
orem 4.12. The result is analogous to Corollary 3.15, with a similar proof. We
will thus leave the proof as an exercise.

Corollary 4.13. If φ(w, z) ∈ [0, 1]. Let G = {φ(w, z) : w ∈ Ω}. With probability
at least 1 − δ, the approximate ERM method (3.3) satisfies the (additive) oracle
inequality:

EZ∼Dφ(ŵ, Z) ≤ inf
w∈Ω

EZ∼Dφ(w,Z) + ε′

+ inf
ε>0

[
2ε+

√
8 ln(4N1(ε,G, n)/δ)

n

]
.

Moreover, we have the following (multiplicative) oracle inequality for all γ ∈
(0, 1): with probability at least 1− δ,

(1− γ)2E(X,Y )∼Dφ(ŵ, Z) ≤ inf
w∈Ω

(1 + γ)E(X,Y )∼Dφ(w,Z) + ε′

+ inf
ε>0

[
2ε+

(6− 3γ) ln(4N1(ε,G, n)/δ)

2γn

]
.

Example 4.14. Consider the linear classifier example in Example 4.6. Since
lnN∞(ε,G, n) ≤ d ln(2n), it follows that for the ERM method, we have the fol-
lowing oracle inequalities. With probability at least 1− δ:

ED1(f(ŵ,X) 6= Y ) ≤ inf
w∈Rd

ED1(f(w,X) 6= Y ) +

√
8(ln(4/δ) + d ln(2n))

n
.

Moreover, by optimizing the multiplicative bound over γ from the set γ ∈ {i/n :
i ∈ [n]}, and take a union bound, we can obtain the following inequality. With
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probability at least 1− δ:
ED1(f(ŵ,X) 6= Y ) ≤ err∗

+ C

[√
err∗

ln(δ−1) + d ln(n)

n
+

ln(δ−1) + d ln(n)

n

]
,

where C is an absolute constant and

err∗ = inf
w∈Ω

ED1(f(w,X) 6= Y ).

4.4 Vapnik-Chervonenkis Dimension

Let G = {φ(w, z) : w ∈ Ω} be a {0, 1} valued binary function class of z ∈ Z
indexed by w ∈ Ω. Given an arbitrary set of n samples Sn = {Z1, . . . , Zn} ∈ Zn,
we are interested in the number of functions (uniform L∞ cover of the function
class at ε = 0) that G(Sn) = {[φ(w,Z1), . . . , φ(w,Zn)] : w ∈ Ω} can achieve. We
introduce the following definition of Vapnik and Chervonenkis (1971).

Definition 4.15 (VC-dimension). We say that G shatters Sn if the number of
elements |G(Sn)| is 2n. That is, we can always find w ∈ Ω so that φ(w, z) matches
any arbitrary possible choice of {0, 1}n values at the n points. The maximum n
such that G shatters at least one instance of Sn ∈ Zn, denoted by vc(G), is called
the VC-dimension of G.

Note that the maximum number of functions in G(Sn) is 2n. If n > d, then
for any n samples Sn, G(Sn) contains fewer than 2n elements. Surprisingly, if a
binary-valued function class G has VC dimension d, then when n > d, the size of
set G(Sn) can grow only polynomially in n. This gives an O(d lnn) upper bound
on the uniform entropy of the function class G with a finite VC-dimension (see
Vapnik and Chervonenkis, 1968, 1971; Sauer, 1972).

Lemma 4.16 (Sauer’s Lemma). If vc(G) = d, then we have for all n > 0 and
empirical samples Sn = {Z1, . . . , Zn} ∈ Zn:

|G(Sn)| ≤
d∑
`=0

(
n

`

)
≤ max(2, en/d)d.

Proof First, we prove the statement under the assumption that |G(Sn)| is upper
bounded by the number of subsets of Sn (including the empty set) that are
shattered by G. Under this assumption, since any subset shattered by G cannot
be larger than d by the definition of VC-dimension, and the number of subsets of
size ` is

(
n
`

)
, we know that the number of subsets shattered by G cannot be more

than
∑d

`=1

(
n
`

)
. When n ≥ d, we have (see Exercise 4.1)

d∑
`=0

(
n

`

)
≤ (en/d)d. (4.2)
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When n ≤ d, we have
∑d

`=0

(
n
`

)
≤ 2d. This implies the desired result.

In the following, we only need to prove the statement that |G(Sn)| is upper
bounded by the number of subsets of Sn that are shattered by G. This can be
proved by induction on n. When n = 1, one can check that the claim holds
trivially.

Now assume that the claim holds for all empirical samples of size no more than
n− 1. Consider n samples {Z1, . . . , Zn}. We define

φ(w,Sk) =[φ(w,Z1), . . . , φ(w,Zk)],

Gn−1(Sn) = {[φ(w,Sn−1), 1] : [φ(w, Sn−1), 0], [φ(w,Sn−1, 1] ∈ G(Sn)} .

Using the induction hypothesis, we know that |Gn−1(Sn)| is bounded by the num-
ber of shattered subset S ⊂ Sn−1; for each shattered S ⊂ Sn−1, S ∪ {Zn} is
shattered by G(Sn) because both [φ(w,Sn−1), 1] and [φ(w, Sn−1), 0] belong to
G(Sn). Therefore |Gn−1(Sn)| is no more than the number of shattered subsets of
Sn that contains Zn.

Moreover, since for φ(w, ·) ∈ G(Sn)−Gn−1(Sn), φ(w,Zn) is uniquely determined
by its values at Sn−1 (if not, then both [φ(w,Sn−1), 0] and [φ(w,Sn−1), 1] can be
achieved in G(Sn)−Gn−1(Sn), which is impossible because by definition, we should
have put [φ(w,Sn−1), 1] in Gn−1(Sn)), it follows that |G(Sn)−Gn−1(Sn)| is no more
than |G(Sn−1)|. By induction hypothesis, |G(Sn−1)| is no more than the number
of shattered subsets of Sn that does not contain Zn. By combining the above two
facts, |G(Sn)| is no more than the number of shattered subsets of Sn.

Sauer’s lemma implies the following oracle inequalities for problems with finite
VC dimensions. It is a direct consequence of Corollary 4.13.

Theorem 4.17. Assume L(·, ·) ∈ {0, 1} is a binary valued loss function. Let
G = {L(f(w, x), y) : w ∈ Ω}, with a finite VC-dimension vc(G) = d. Given
n ≥ d, and consider the approximate ERM method (3.3), with probability at least
1− δ:

EDL(f(ŵ,X), Y ) ≤ inf
w∈Ω

EDL(f(w,X), Y )

+ ε′ +

√
8d ln(en/d) + 8 ln(4/δ)

n
.

Moreover, for all γ ∈ (0, 1), with probability at least 1−δ, the following inequality
holds

(1− γ)2EDL(f(ŵ,X), Y ) ≤ inf
w∈Ω

(1 + γ)EDL(f(w,X), Y )+

+ ε′ +
(6− 3γ)(d ln(en/d) + ln(4/δ))

2γn
.

Proposition 4.18. Consider d-dimensional {0, 1} valued linear classifiers of the
form F = {fw(x) = 1(w>x ≥ 0), w ∈ Rd}, we have vc(F) = d. This implies that
d-dimensional linear classifier G = {1(fw(X) 6= Y ), w ∈ Rd} has VC dimension
vc(G) = d.
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Proof Since it is easy to find n = d points shattered by F , we only need to show
that any n = d+ 1 points cannot be shattered by linear functions.

Let the d + 1 points be x1, . . . , xd+1. Then we know that they are linearly
dependent. Therefore there exists d + 1 real valued coefficients a1, . . . , ad+1 that
are not all zeros, such that a1x1 + · · · + ad+1xd+1 = 0 and we can assume that
there exists at least one aj such that aj > 0.

In order to show that x1, . . . , xd+1 cannot be shattered by n points, we only
need to show that there is no w ∈ Rd such that

1(w>xi ≥ 0) = 0 (ai > 0); 1(w>xi ≥ 0) = 1 (ai ≤ 0),

which implies that a particular set of function value on these points cannot be
achieved. We prove this by contradiction. Assume the above function values can
be achieved, then aiw

>xi ≤ 0 for all i. Since there is at least one aj > 0, we know
that for this j, ajw

>xj < 0. Therefore

d+1∑
i=1

aiw
>xi < 0.

However, this is a contradiction to the fact that a1x1 + · · ·+ ad+1xd+1 = 0.

Note that results of Theorem 4.17 holds uniformly for all distributions D.
Therefore concept classes with finite VC dimensions are PAC learnable by ERM
if we assume that it is computationally efficient to solve ERM. On the other hand,
if the VC dimension of a concept class is infinity, then for any sample size n, there
exists a distribution D with n samples, so that the concept class can achieve all
possible binary values of 2n on D. Therefore on such a distribution, the learning
of this concept class cannot be better than random guessing on some training
distributions. The following is an example of infinite VC dimension.

Example 4.19. The binary-valued function class G = {1(cos(wz) ≥ 0) : w, z ∈
R} has infinite VC-dimension.

Given any d, we consider {zj = 16−jπ : j = 1, . . . , d}. Let w =
∑d

j=1(1−bj)16j,
with bj ∈ {0, 1}. It is easy to verify that 1(cos(w zj) ≥ 0) = bj. It follows that
the set can be shattered by G.

4.5 Uniform Convergence with Uniform L2 Covering Number

In order to apply Lemma 4.8, we need to estimate the uniform convergence of a
symmetrized empirical process. We have shown in Section 4.3 such a bound can
be obtained using the empirical L1 covering number. In the following, we show
that with empirical L2 covering number, one can obtain a more refined result
by using an important technique called chaining. The improvement is obtained
by considering multiple approximation scales instead of a single scale used in
Section 4.3 (also in Chapter 3). The resulting formula is often expressed in the
so-called entropy integral form, due to Dudley (1984).

While it is possible to work with empirical L2 covering numbers directly, it

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang
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is more convenient to apply Rademacher complexity and concentration inequal-
ities, as in Chapter 6. We will thus leave the analysis to Chapter 6, but list its
consequence here for comparison with the L1 covering number analysis presented
earlier.

The following result is a direct consequence of the uniform convergence result of
Corollary 6.19, oracle inequality of Corollary 6.21, with Rademacher complexity
estimated from the L2 empirical covering number in Theorem 6.25.

Proposition 4.20. Given a function class G ∈ [0, 1] . Let

R̃(G,Sn) = inf
ε0≥0

[
4ε0 + 12

∫ ∞
ε0

√
lnN(ε′,G, L2(Sn))

n
dε′
]
,

then with probability at least 1− δ: for all w ∈ Ω,

φ(w,D) ≤φ(w,Sn) + 2ESn [R̃(G,Sn)] +

√
ln(1/δ)

2n
.

This implies that for the approximate ERM method (3.3), we have with proba-
bility at least 1− δ:

φ(ŵ,D) ≤ inf
w∈Ω

φ(w,D) + ε′ + 2ESn [R̃(G,Sn)] + 2

√
ln(2/δ)

2n
.

In Proposition 4.20, the average integral of L2 entropy replaces the worst case
L1 entropy of Theorem 4.12. If the uniform L2 entropy of G is of the form

lnN2(ε,G, n) = O(d ln(1/ε))

as in the case of VC dimension (see Theorem 5.6), then the complexity term

ESn [R̃(G,Sn)] = O(1/
√
n),

which removes an lnn factor from the uniform L1 entropy analysis in Section 4.3.
Moreover, if uniform L2 entropy of G is of the form

lnN2(ε,G, n) = O(ε−q) (4.3)

for some q < 2, then the complexity term

ESn [R̃(G,Sn)] = O(1/
√
n).

Function classes with uniform L2 entropy that satisfies (4.3) are Donsker classes
for which the central limit theorem holds.

In comparison, if we consider the uniform L1-covering number analysis of The-
orem 4.12, and assume that

lnN1(ε,G, n) = O(ε−q),

then the complexity term in the additive Chernoff bound is

εn(δ) = inf
ε>0

O

(
ε+

√
ε−q/n

)
= n−1/(q+2),
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which implies a convergence rate slower than 1/
√
n.

It is also possible to obtain fast convergence rate under the variance condition.
We will leave such derivation to Section 6.5.

4.6 Uniform Convergence with Uniform L∞ Covering Number

The L∞ covering number analysis has been used to study large margin methods
where the training loss and the test loss differ. Consider a function class F =
{f(w, x) : w ∈ Ω}, and a test loss L(f(x), y). However, instead of minimizing the
test loss directly, we try to minimize a surrogate training loss

1

n

n∑
i=1

L̃(f(ŵ,Xi), Yi) ≤ inf
w∈Ω

[
1

n

n∑
i=1

L̃(f(w,Xi), Yi)

]
+ ε′, (4.4)

where we assume that the surrogate is an upper bound of training loss under
small L∞ perturbation of size γ > 0:

L̃(f, y) ≥ sup
|f ′−f |≤γ

L(f ′, y). (4.5)

In this case, one would like to bound the test loss using surrogate training loss.
An example for binary classification problem (y ∈ {±}) is to take the test loss
as the binary classification error L(f(x), y) ≤ 1(f(x)y ≤ 0), and L̃(f(x), y) =
1(f(x)y ≤ γ) as the margin error with margin γ > 0.

The L∞-covering number can be used to obtain a result similar to Theo-
rem 4.12, with a similar proof.

Theorem 4.21. Assume that L̃(f(w, x), y), L(f(w, x), y) ∈ [0, 1] for all w and
(x, y), and both (4.4) and (4.5) hold. Then given δ ∈ (0, 1), with probability at
least 1− δ, the following inequality holds for all w ∈ Ω:

E(X,Y )∼DL(f(w,X), Y ) ≤ 1

n

n∑
i=1

L̃(f(w,Xi), Yi)

+ 3

√
ln(3N∞(γ/2,F , 2n)/δ)

2n
.

Moreover, with probability at least 1 − δ, the following inequality holds for all
w ∈ Ω:

(1− γ)2E(X,Y )∼DL(f(w,X), Y ) ≤ 1

n

n∑
i=1

L̃(f(w,Xi), Yi)

+
(5− 4γ) ln(3N∞(γ/2,F , 2n)/δ)

2γn
.

Proof Given Sn = {(X1, Y1), . . . , (Xn, Yn)} and S ′n = {(X1, Y1), . . . , (Xn, Yn)},
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we consider a γ/2-L∞(Sn) cover Fγ/2(Sn ∪ S ′n) of F , of size no more N =
N∞(γ/2,F , 2n). Let

L′(f, y) = sup
|f ′−f |≤γ/2

L(f ′, y),

then for any f, f ′ such that |f − f ′| ≤ γ/2, we have

L̃(f, y) ≥ L′(f ′, y) ≥ L(f, y). (4.6)

We obtain from Corollary 2.27 (with ai = 0.5) the following uniform convergence
result over Fγ/2(Sn ∪ S ′n). With probability 1− δ:

∀f ∈ Fγ/2(Sn ∪ S ′n) :
1

n

n∑
i=1

σi[L
′(f(Xi), Yi)− 0.5] ≤

√
ln(N/δ)

2n
.

Lemma 4.8 (which is valid even when F in the lemma depends on Sn ∪ S ′n) with
ψ = 0 implies that with probability at least 1− δ1:

∀f ∈ Fγ/2(Sn ∪ S ′n) :
1

n

n∑
i=1

L′(f(X ′i), Y
′
i ) ≤ 1

n

n∑
i=1

L′(f(Xi), Yi) +

√
2 ln(2N/δ1)

n
.

Since for all f ∈ F , we can find f ′ ∈ Fγ/2(Sn ∪ S ′n) so that |f(x)− f ′(x)| ≤ γ/2,
it follows that

1

n

n∑
i=1

L(f(X ′i), Y
′
i )︸ ︷︷ ︸

ψval

≤ 1

n

n∑
i=1

L′(f ′(X ′i), Y
′
i )

≤ 1

n

n∑
i=1

L′(f ′(Xi), Yi) +

√
2 ln(2N/δ)

n

≤ 1

n

n∑
i=1

L̃(f(Xi), Yi)︸ ︷︷ ︸
ψtrn

+

√
2 ln(2N/δ1)

n︸ ︷︷ ︸
ε1n(δ1)

.

Note that the first and the last inequalities used (4.6). The standard additive
Chernoff bound implies that for all w ∈ Ω, with probability at least 1− δ2:

E(X,Y )∼DL(f(X), Y )︸ ︷︷ ︸
ψtst

≤ 1

n

n∑
i=1

L(f(X ′i), Y
′
i )︸ ︷︷ ︸

ψval

+

√
ln(1/δ2)

2n︸ ︷︷ ︸
ε2n(δ2)

.

Therefore in Lemma 4.11, we can take symbols as defined above, together with
δ1 = 2δ/3 and δ2 = δ/3 to obtain the desired bound.

Similarly, we obtain from Corollary 2.27 the following uniform convergence
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result over Fγ/2(Sn ∪ S ′n). With probability 1− δ, ∀f ∈ Fγ/2(Sn ∪ S ′n):

1

n

n∑
i=1

σiL
′(f(Xi), Yi) ≤

√
2
∑n

i=1 L
′(f(Xi), Yi)2 ln(N/δ)

n2

≤γ′ 1

n

n∑
i=1

L′(f(Xi), Yi)︸ ︷︷ ︸
ψ(f,Sn)

+
ln(N/δ)

2γ′n
.

Then Lemma 4.8 (which is valid even when F in the lemma depends on Sn ∪S ′n)
implies the following uniform convergence result. With probability at least 1− δ1

over (Sn,S ′n) ∼ D2n:

∀f ∈ Fγ/2(Sn ∪ S ′n) :
1− γ′

n

n∑
i=1

L′(f(X ′i), Y
′
i )

≤1 + γ′

n

n∑
i=1

L′(f(Xi), Yi) +
ln(2N/δ1)

γ′n
.

Since for all f ∈ F , we can find f ′ ∈ Fε(Sn) so that |f(x) − f ′(x)| ≤ γ/2, it
follows that

1− γ′

n

n∑
i=1

L(f(X ′i), Y
′
i ) ≤1− γ′

n

n∑
i=1

L′(f ′(X ′i), Y
′
i )

≤1 + γ′

n

n∑
i=1

L′(f ′(Xi), Yi) +
ln(2N/δ1)

γ′n

≤1 + γ′

n

n∑
i=1

L̃(f(Xi), Yi) +
ln(2N/δ1)

γ′n
.

Note that the first and the last inequalities used (4.6). Let γ′ = γ/(2−γ), then it
is easy to check algebraically that (1− γ′)/(1 + γ′) = 1− γ and 1/(γ′(1 + γ′)) =
(2− γ)2/(2γ). We thus obtain:

∀f ∈ F :
1− γ
n

n∑
i=1

L(f(X ′i), Y
′
i )︸ ︷︷ ︸

ψval

≤ 1

n

n∑
i=1

L̃(f(Xi), Yi)︸ ︷︷ ︸
ψtrn

+
(2− γ)2 ln(2N/δ1)

2γn︸ ︷︷ ︸
ε1n(δ1)

.

The standard multiplicative Chernoff bound in (2.11) implies that with proba-
bility 1− δ2:

(1− γ)(1− γ)E(X,Y )∼DL(f(X), Y )︸ ︷︷ ︸
ψtst

≤ 1− γ
n

n∑
i=1

L(f(X ′i), Y
′
i )︸ ︷︷ ︸

ψval

+ (1− γ)
ln(1/δ2)

2γn︸ ︷︷ ︸
ε2n(δ2)

.
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Therefore in Lemma 4.11, we can use symbols as displayed above, together with
δ1 = 2δ/3 and δ2 = δ/3 to obtain the desired bound.

Similar to Corollary 4.13, one may also obtain an oracle inequality from The-
orem 4.21, which we will not state here.

Example 4.22. Consider binary classification with classifier f(w,X) ∈ R and
Y ∈ {±1}. The classification loss is

L(f(X), Y ) = 1(f(X)Y ≤ 0),

and the margin loss for γ > 0 is

L̃(f(X), Y ) = 1(f(X)Y ≤ γ).

Theorem 4.21 implies that

1(f(X)Y ≤ 0) ≤ 1

n

n∑
i=1

1(f(w,Xi)Yi ≤ γ) + 3

√
ln(3N∞(γ/2,F , 2n)/δ)

2n
.

Therefore if the function class has a finite L∞ norm at scale γ/2, then minimizing
the margin loss leads to approximate minimization of training loss. Unlike VC-
dimension, the L∞ cover can be small even for infinite-dimensional systems with
proper regularization. For example, if we consider regularized linear function class
with {

f(w, x) = w>ψ(x) : ‖w‖2 ≤ A
}
,

and assume that ‖ψ(x)‖2 ≤ B, then Theorem 5.20 implies that

lnN∞(γ/2,F , 2n) = O

(
A2B2 ln(n+AB/γ)

γ2

)
,

which is independent of the dimension of w. In comparison, the VC dimension
depends on the dimensionality of w even with regularization. This implies that
for high dimensional problems, maximizing margin leads to more stable general-
ization performance.

4.7 Historical and Bibliographical Remarks

In (Vapnik and Chervonenkis, 1968, 1971), Vapnik and Chervonenkis developed
a theory to use the uniform entropy to analyze empirical processes and the gen-
eralization performance of empirical risk minimization. This style of analysis is
covered in Section 4.3, and often referred to as the VC theory. The original anal-
ysis of Vapnik and Chervonenkis (1968) used a random permutation argument
instead of the symmetrization argument employed here. We leave it as an exer-
cise in Exercise 4.7. The symmetrization argument for the additive version of
the Chernoff bound was used by Pollard (1984). However, the treatment here is
modified so that it can handle more general situations such as the multiplicative
Chernoff bound and Bernstein’s inequality. The multiplicative form of Chernoff
bound can also be found in (Blumer et al., 1989) using the permutation argument.
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Note that we do not try to optimize constants here. It is possible to obtain better
constants using more complex techniques, for example, concentration inequalities
in Chapter 6.

Lemma 4.16 was obtained by Vapnik and Chervonenkis (1968, 1971), and in-
dependently discovered by Sauer (1972). It is often referred to as the Sauer’s
lemma in the computer science literature. The idea of chaining was invented
by Kolmogorov in the 1930’s, according to Chentsov (1956), and further de-
veloped by Dudley in Dudley (1967, 1978, 1984). The entropy integral form in
Proposition 4.20 is often credited to Dudley.

The L∞-cover analysis follows the analysis of large margin methods by Bartlett
et al. (1998), with a slight generalization. Similar analysis has been employed
to analyze support vector machines (see Cristianini and Shawe-Taylor, 2000).
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Exercises

4.1 Prove that (4.2) holds for n ≥ d. Hint: consider the upper bound
∑d
`=0(d/n)`−d

(
n
`

)
.

4.2 Prove that for any non-decreasing convex function Φ : R+ → R+, the following sym-

metrization inequality holds.

E Φ

(
sup
f∈F

[f(Sn)− f(D)]

)
≤ E Φ

(
2 sup
f∈F

f(σ,Sn)

)
.

4.3 In the proof of Lemma 4.11. Show that Pr(Ec&E2) ≤ Pr(Ec1). Use this relationship to

show that Pr(E) ≥ 1− δ1/(1− δ2).

4.4 Prove the result of Example 4.6 using convex optimization.

• Consider {X1, . . . , Xn}. Consider any w, and let w̃(J) be defined as the unique solution

to the following optimization problem for all J ⊂ Jn = {1, . . . , n}:

w̃(w, J) = arg min
u
‖u‖22

subject to

{
u>Xi ≥ 0 if w>Xi ≥ 0

u>Xi ≤ −1 if w>Xi < 0
for i ∈ J.

Show this is a convex optimization problem, with a unique solution determined by J .

Write the KKT conditions of the solution.

• Let J̃ be the smallest cardinality of subsets J of Jn such that w̃(w, J) = w̃(w, Jn). Show

that for all i ∈ J̃ : w̃>Xi = 0 if w>X ≥ 0 and w̃>Xi = −1 if w>X < 0. Moreover,

|J̃ | ≤ d.

• Show that there are at most (2n)d possible choices of J̃ , and this implies that the

achievable values of {1(w>Xi ≥ 0) : 1 ≤ i ≤ n} can be no more than (2n)d.

4.5 Prove Corollary 4.13.

4.6 Consider z ∈ Rd, let w = [w1, . . . , wd, wd+1, . . . , w2d]. Find the VC dimension of the

function class

fw(z) = 1(z ∈ C(w)),

where C(w) = {z = [z1, . . . , zd] : zj ∈ [wj , wd+j ]}.
4.7 In addition to symmetrization, uniform convergence can be obtained using random per-

mutations, as in Vapnik and Chervonenkis (1971). Consider F = {f : Z → [0, 1]}. Given

a dataset S2n, we consider random partitions of S2n into disjoint training and validation

subsets Sn ∪ S′n via random permutation of the data, with the first half in Sn, and the

second half in S′n.

• Show that conditioned on S2n, for random permutation, the following inequality holds

for all f ∈ F :

lnESn,S′n exp(λnf(Sn)) ≤ n lnESn exp(λf(X1)).

(Hint: this inequality was proved in Hoeffding (1963).

• Use this inequality to derive a result similar to Theorem 2.5, and then use this result

to derive an additive Chernoff bound of the form for all f ∈ F :

Pr
(
f(S′n) ≤ f(S2n) + ε(δ)

)
≥ 1− δ.

• Derive a uniform convergence result of the form

Pr
(
∀f ∈ F : f(S′n) ≤ f(S2n) + ε(δ)

)
≥ 1− δ

using the empirical covering number N(ε,F , L∞(S2n)) of S2n.
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• Derive a uniform convergence result of the form

Pr (∀f ∈ F : f(D) ≤ f(Sn) + ε(δ)) ≥ 1− δ

using Lemma 4.11.

• Derive an oracle inequality for the empirical risk minimization method, and compare

to that of Corollary 4.13.
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5

Covering Number Estimates

This chapter derives covering number estimates of certain function classes, in-
cluding some parametric and nonparametric function classes.

5.1 Packing Number

In many applications, it is more convenient to estimate the packing number of
a set, which is a concept closely related to covering number. Given a set G in
a pseudometric space, one can naturally define its metric covering number as in
Definition 4.1. Similarly, one can define its packing number below.

Definition 5.1 (Packing Number). Let (V, d) be a pseudometric space with
metric d(·, ·). A finite subset G(ε) ⊂ G is an ε-packing of G if d(φ, φ′) > ε for all
φ, φ′ ∈ G(ε). The ε-packing number of G, denoted by M(ε,G, d), is the largest
cardinality of ε-packing of G.

The following results illustrate the equivalence between covering number and
packing number. One advantage of using an ε packing of G instead of an ε cover
of G is that all members in the ε packing also belong to G. There if members in
G satisfy certain assumptions such as the variance condition, then members of
its ε packing also satisfy such assumptions. For this reason, we will use packing
numbers instead of covering numbers in some of the theoretical analysis in later
chapters.

Theorem 5.2. For all ε > 0, we have

N(ε,G, d) ≤M(ε,G, d) ≤ N(ε/2,G, d).

Proof Let G(ε) = {φ1, . . . , φM} ⊂ G be a maximal ε-packing of G. Given any
φ ∈ G, by the definition of maximality, we know that there exists φj ∈ G(ε)
so that d(φj, φ) ≤ ε. This means that G(ε) is also an ε cover of G. Therefore
N(ε,G, d) ≤M . This proves the first inequality.

On the other hand, let G′(ε/2) be an ε/2 cover of G. By definition, for any
φj ∈ G(ε), there exists g̃(φj) ∈ G′(ε/2) such that d(g̃(φj), φj) ≤ ε/2. For j 6= i, we
know that d(φi, φj) > ε, and thus triangle inequality implies that

d(g̃(φj), φi) ≥ d(φi, φj)− d(g̃(φj), φj) > ε/2 ≥ d(g̃(φi), φi).
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Therefore g̃(φi) 6= g̃(φj). This implies the map φj ∈ G(ε) → g̃(φj) ∈ G′(ε/2) is
one to one. Therefore |G(ε)| ≤ |G′(ε/2)|. This proves the second inequality.

We have the following well-known estimate of the covering and packing numbers
on a finite dimensional compact set.

Theorem 5.3. Let ‖ · ‖ be a seminorm on Rk. Let B(r) = {z ∈ Rk : ‖z‖ ≤ r} be
the ‖ · ‖-ball with radius r. Then

M(ε, B(r), ‖ · ‖) ≤ (1 + 2r/ε)k.

Moreover,

N(ε, B(r), ‖ · ‖) ≥ (r/ε)k.

Proof Let {z1, . . . , zM} ⊂ B(r) be a maximal ε packing of B(r). Let Bj = {z ∈
Rk : ‖z − zj‖ ≤ ε/2}, then Bj ∩ Bk = ∅ for j 6= k and Bj ⊂ B(r + ε/2) for all j.
It follows that

M∑
j=1

volume(Bj) = volume(∪Mj=1Bj) ≤ volume(B(r + ε/2)).

Let v = volume(B(1)). Since volume(Bj) = (ε/2)kv and volume(B(r + ε/2)) =
(r + ε/2)kv, we have

M(ε/2)kv ≤ (r + ε/2)kv.

This implies the first bound.
Let {z1, . . . , zN} ⊂ Rk be a cover of B(r). If we define Bj = {z ∈ Rk : ‖z−zj‖ ≤

ε}, then B(r) ⊂ ∪jBj. Therefore

volume(B(r)) ≤ volume(∪Nj=1Bj) ≤
N∑
j=1

volume(Bj).

Let v = volume(B(1)). Since volume(Bj) = (ε)kv and volume(B(r)) = rkv, we
have

rkv ≤ Nεkv.

This implies the second bound.

5.2 Lipschitz Function in Finite Dimension

We now consider the following function class

{φ(w,Z) : w ∈ Ω} , (5.1)

where Ω ⊂ Rk is a compact set. The situation that the model parameter w is
finite dimensional is often called a parametric model. The following result shows
that the bracketing number of parametric model is polynomial in ε.
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Theorem 5.4. Consider (5.1). Assume that Ω ⊂ Rk is a compact set so that
Ω ∈ B(r) with respect to a norm ‖ · ‖. Assume for all z, φ(w, z) is γ(z) Lipschitz
with respect to w:

|φ(w, z)− φ(w′, z)| ≤ γ(z)‖w − w′‖.

Given p ≥ 1, let γp = (EZ∼D|γ(Z)|p)1/p. Then

N[](2ε,G, Lp(D)) ≤ (1 + 2γpr/ε)
k.

Proof Let {w1, . . . , wM} be an ε/γp packing of Ω. Then it is also an ε/γp cover
of Ω. Let φLj (z) = φ(wj, z) − γ(z)ε/γp and φUj (z) = φ(wj, z) + γ(z)ε/γp. Then
{[φLj , φUj ] : j = 1, . . . ,M} is an 2ε Lp(D)-bracketing cover. We can now apply
Theorem 5.3 to obtain the desired result.

Note that if we take p =∞, the we obtain the following result on the uniform
covering number.

N∞(ε,G, n) ≤ (1 + 2γ∞r/ε)
k.

One may also obtain bracketing numbers for certain smooth nonparametric
function classes, with entropy of the form

lnN[](ε,G, Lp(D)) = O(ε−β).

We refer the readers to (van der Vaart and Wellner, 1996, chapter 2.7) and (Nickl
and Pötscher, 2007) for such examples.

5.3 Empirical Lp Covering Numbers of VC-class

We have obtained empirical L∞ covering number bounds for VC classes in Sec-
tion 4.4, and the covering number depends logarithmically on the sample size n.
It is also possible to obtain the empirical Lp covering number for VC classes for
p <∞ which is independent of n. The estimate of L2 empirical covering number
can be directly used with chaining.

Recall that given empirical distribution Sn, the empirical Lp cover is the num-
ber of functions needed to cover φw based on the empirical Lp metric:

dp(φ, φ
′) =

[
1

n

n∑
i=1

|φ(Zi)− φ′(Zi)|p
]1/p

.

We have the following estimate.

Theorem 5.5. If a binary valued function class G = {φ(w,Z) : w ∈ Ω} is a VC
class, then for ε ≤ 1:

lnM(ε,G, L1(Sn)) ≤ 3d+ d ln(ln(4/ε)/ε).
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Proof Given Sn = {Z1, . . . , Zn}. Let Q = {φ1, . . . , φm} be a maximal ε L1(Sn)
packing of G. Q is also an L1 ε-cover of G. Consider the empirical distribution,
denoted by Sn, which puts a probability of 1/n on each Zi. We have for j 6= k:

Pr
Z∼Sn

[φj(Z) = φk(Z)] = 1− EZ∼Sn |φj(Z)− φk(Z)| < 1− ε.

Now consider random sample with replacement from Sn for T times to obtain
samples {Zi1 , . . . , ZiT }. We have

Pr({∀` : φj(Zi`) = φk(Zi`)}) < (1− ε)T ≤ e−Tε.

That is, with probability larger than 1− e−Tε,

∃` : φj(Zi`) 6= φk(Zi`).

Taking the union bound for all j 6= k, we have with probability larger than
1−

(
m
2

)
· e−Tε, for all j 6= k:

∃` : φj(Zi`) 6= φk(Zi`).

If we take T = dln(m2)/εe, then e−Tε
(
m
2

)
≤ 1. Then there exists T samples

{Zi` : ` = 1, . . . , T} such that φj 6= φk for all j 6= k when restricted to these
samples. Since vc(G) = d, we obtain from Sauer’s lemma:

m ≤ max[2, eT/d]d ≤ max[2, e(1 + ln(m2)/ε)/d]d.

The theorem holds automatically when m ≤ 2d. Otherwise,

lnm ≤ d ln(1/ε) + d ln((eε/d) + (2e/d) ln(m)).

Let u = d−1 lnm− ln(1/ε)− ln ln(4/ε) and let ε ≤ 1, we can obtain the following
bound by using the upper bound of lnm:

u ≤− ln ln(4/ε) + ln((eε/d) + 2e(u+ ln(1/ε) + ln ln(4/ε)))

≤ ln
2e(u+ 0.5 + ln(1/ε) + ln ln(4/ε))

ln(4/ε)

≤ ln(4u+ 7),

where the last inequality is obtained by taking sup over ε ∈ (0, 1]. By solving this
inequality we obtain a bound u ≤ 3. This implies the desired result.

It is possible to prove a slightly stronger result using a refined argument in the
proof of Theorem 5.5.

Theorem 5.6 (Haussler, 1995). Let G be a binary valued function class with
vc(G) = d. Then

lnM(ε,G, L1(Sn)) ≤ 1 + ln(d+ 1) + d ln(2e/ε).
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From Exercise 5.3, we have

lnN(ε,G, Lp(Sn)) ≤ 1 + ln(d+ 1) + d ln(2e/εp).

If we replace Sn by any distribution D over Z, then we still have

lnN(ε,G, Lp(D)) ≤ 1 + ln(d+ 1) + d ln(2e/εp),

because any D can be approximated by empirical distribution drawn from D with
sufficiently large n. We thus have the following result.

Corollary 5.7. If vc(G) = d, then for all distributions D over Z, we have

lnN(ε,G, Lp(D)) ≤ 1 + ln(d+ 1) + d ln(2e/εp)

for ε ∈ (0, 1] and p ∈ [1,∞).

We note that the result of Corollary 5.7 is independent of the underlying distri-
bution. For empirical distribution Sn, the bound is independent of n. Of partic-
ular interest is the case of p = 2, for which we may apply the chaining technique
with the L2(Sn) covering number bound of Corollary 5.7. The result (see Exam-
ple 6.26) removes a lnn factor, when compared to the result in Theorem 4.17,
which employs the original L∞(Sn) VC covering number bound.

5.4 VC-subgraph Class

One may extend the concept of VC dimension to real valued functions by intro-
ducing the definition of VC subgraph class.

Definition 5.8. A real valued function class of z ∈ Z

G = {φ(w,Z) : w ∈ Ω}

is a VC-subgraph class, if the binary function class

Gsubgraph = {1(t < φ(w, z)) : w ∈ Ω}

defined on (z, t) ∈ Z×R is a VC class. The VC dimension (some times also called
pseudo-dimension) of G is vc(G) = vc(Gsub−graph).

Example 5.9. The d dimensional linear functions of the form fw(x) = w>x is
VC subgraph class of VC dimension d + 1. This is because w>x − t is linear
function in d+ 1 dimension, and we have shown that it has VC dimension d+ 1.

Example 5.10. If F = {f(w, x) : w ∈ Ω} is a VC subgraph class and h is
monotone function, then h ◦ F = {h(f(w, x)) : w ∈ Ω} is a VC subgraph class
with vc(h ◦ F) ≤ vc(F).

Theorem 5.11. Assume that G is a VC subgraph class, with VC dimension d,
and all φ ∈ G are bounded: φ(Z) ∈ [0, 1]. Then for any distribution D over Z,
ε ∈ (0, 1] and p ∈ [1,∞), we have

lnN(ε,G, Lp(D)) ≤ 1 + ln(d+ 1) + d ln(2e/εp).
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Moreover,

lnN∞(ε,G, n) ≤ d ln max[2, en/(dε)].

Proof Let U be a random variable distributed uniformly over [0, 1]. Then for all
a ∈ (0, 1): EU1(U ≤ a) = a. Thus for all φ, φ′ ∈ G:

ED|φ(Z)− φ′(Z)|p

=ED|EU [1(U ≤ φ(Z))− 1(U ≤ φ′(Z))]|p

≤EDEU |1(U ≤ φ(Z))− 1(U ≤ φ′(Z))|p.

The last inequality used the Jensen’s inequality. Therefore

lnN(ε,G, Lp(D)) ≤ lnN(ε,Gsubgraph, Lp(D × U(0, 1))).

This leads to the first desired bound.
The second bound can be proved by discretizing U into intervals with thresholds

min(1, ε(2k + 1)) for k = 0, 1, . . . with no more than d(2ε)−1e ≤ 1/ε thresholds.
This gives an ε-cover of U in Euclidean distance. We can then approximate EU
by average over the thresholds to get ε L∞ cover with the discretization. Let the
set of thresholds be U ′. If D contain n data points, then D×U ′ contains at most
n|U ′| ≤ n/ε points, and one may apply Sauer’s lemma to obtain a cover on these
points. This implies the second bound.

5.5 Convex Hull Class

Convex hull of a function class is frequently encountered in applications, and is
related to L1 regularization. We can define the convex hull of a function class as
follows.

Definition 5.12. The convex hull of a function class F = {f(θ, x) : θ ∈ Θ} is
defined as

conv(F) =

{
m∑
j=1

wjf(θj, x) : m > 0, ‖w‖1 = 1, wj ≥ 0, θj ∈ Θ

}
.

We also include the closure of the finite sum functions above with respect to an
appropriate topology in the convex hull.

If F is finite, then we have the following covering number estimates.

Theorem 5.13. Consider a finite function class F = {f1, . . . , fd}, and assume
that for a distribution D and p ∈ [1, p], supf∈F ‖f‖Lp(D) ≤ A. Then for ε ≤ A:

lnM(ε,conv(F), Lp(D)) ≤ d ln(3A/ε).
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Proof Let B1 ∈ Rd be the L1 ball

B1 = {q ∈ Rd : ‖q‖1 ≤ 1}.

Let Q = {q1, . . . , qM} be a maximal ε L1 packing of B1. Theorem 5.3 implies that
M ≤ (3/ε)d.

Note that for any q = [q1, . . . , qd] ∈ B1, let qk ∈ Q so that ‖q − qk‖1 ≤ ε, then[
EZ∼D

∣∣∣∣ d∑
j=1

qkj fj(Z)−
d∑
j=1

qjfj(Z)

∣∣∣∣p
]1/p

≤ εA.

Therefore
{∑d

j=1 q
k
j fj : k = 1, . . . , N

}
is an εA Lp-cover of conv(F ). The result

follows.

The above result is linear in the dimension d. However, for high dimensional
problems, one would like to obtain a bound that is logarithmic in the dimen-
sionality d. The following result gives such a bound for L2 cover, but with a
polynomial dependency on 1/ε instead of logarithmic dependency on 1/ε.

Theorem 5.14. Consider any class F = {f1, . . . , fd}, and assume that for a
distribution D, supf∈F ‖f‖L2(D) ≤ A. Then

lnN(ε,conv(F), L2(D)) ≤ dA2/ε2e ln[e+ edε2/A2].

Proof For simplicity, we assume that A = 1. Given any f =
∑

j αjfj ∈ conv(F),
with

∑
j αj = 1 and αj ≥ 0, we can regard pα as a probability measure on

{1, . . . , d} with pα(j) = αj (j = 1, . . . , d). Now, let j1, . . . , jk be k iid samples
from pα, then f =

∑
j αjfj = Ejsfjs .

Ej1,...,jk

∥∥∥∥∥1

k

k∑
s=1

fjs − f
∥∥∥∥∥

2

L2(D)

= Varj1,...,jk

∥∥∥∥∥1

k

k∑
s=1

fjs

∥∥∥∥∥
L2(D)


=k−2

k∑
s=1

Varjs(‖fjs‖L2(D))

≤k−2
k∑
s=1

Ejs(‖fjs‖2L2(D)) ≤ 1/k.

It means that there exists j1, . . . , js such that∥∥∥∥∥1

k

k∑
s=1

fjs − f
∥∥∥∥∥
L2(D)

≤ 1/
√
k.

Now, consider

Qk =

{
1

k

d∑
j=1

njfj :
d∑
j=1

nj = k;nj ≥ 0

}
.
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Since k−1
∑k

s=1 fjs ∈ Qk, we know that Qk is an 1/
√
k cover of conv(F). Take

k = d1/ε2e, we know that Qk is an ε cover. Moreover, since

|Qk| ≤
(
d+ k − 1

k

)
≤ ek(1 + d/k)k,

we obtain the bound in the theorem.

We can also estimate the L2 covering number for the convex hull of a parametric
function class, such as VC-subgraph class. Specifically, in a parametric function
class, the covering number is given by

lnN(ε,F , L2(D)) ≤ V ln(c/ε), (5.2)

where c is a constant, and V is the dimensionality (such as VC-dimension) of the
function class F .

The convex hull of (5.2) is referred to as the VC-hull class. Its covering number
estimate can be obtained as follows.

Theorem 5.15. Consider a function class F with covering number given by (5.2)
for some c > 0 and V > 0. Let A = supf∈F ‖f‖L2(D), then we have

lnN(ε,conv(F), L2(D)) ≤ 10(2c/ε)2V/(V+2) ln max[12A/ε, 3 + 3(2c/ε)V ]

for all ε ≤ 2c.

Proof We let Fε be an ε/2 cover of F in L2(D). Then any ε/2 cover of conv(Fε)
gives an ε cover of conv(F).

Moreover, we consider Fε′ as an ε′/2 cover of Fε for some ε′ ≥ ε, and decompose
each fj ∈ Fε as

f = f ′ + ∆f,

where f ′ ∈ Fε′ and ‖∆f‖L2(D) ≤ ε′/2.
Let ∆Fε = {∆f : f ∈ Fε}, then using this decomposition, we know that

conv(Fε) ⊂ conv(∆Fε) + conv(Fε′).

It follows that

lnN(ε,conv(F), L2(D)) ≤ lnN(ε/2,conv(Fε), L2(D))

≤ lnN(ε/4,conv(Fε′), L2(D)) + lnN(ε/4,conv(∆Fε), L2(D)).

Since

|Fε′ | ≤ (2c/ε′)V ,

we have from Theorem 5.13

lnN(ε/4,conv(Fε′), L2(D)) ≤ (2c/ε′)V ln(12A/ε).

Moreover, since

|∆Fε| ≤ |Fε| ≤ (2c/ε)V ,
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we have from Theorem 5.14 that

lnN(ε/4,conv(∆Fε), L2(D)) ≤ (3ε′/ε)2 ln[e+ e(2c/ε)V (ε/ε′)].

Now let ε′/2c = (ε/2c)2/(V+2), we have

lnN(ε/4,conv(Fε′), L2(D)) + lnN(ε/4,conv(∆Fε), L2(D))

≤(2c/ε′)V ln(12A/ε) + (3ε′/ε)2 ln[e+ e(2c/ε)V (ε/ε′)]

≤(2c/ε)2V/(V+2) ln(12A/ε) + 9(2c/ε)2V/(V+2) ln[e+ e(2c/ε)V ].

This proves the theorem.

Note that for a finite dimensional class d = |F| < ∞, its VC dimension is no
more than log2 d because any blog2 |F|c+ 1 points cannot be shattered. It means
that we can take V = log2 d, and obtain a result

lnN(ε,conv(F), L2(D)) = O
(
ε−2 log2 d/ log2(4d) log2 d ln(1/ε)

)
,

which is slightly better in its dependency of ε than that of Theorem 5.14, which
has an entropy growth rate of O(ε−2).

Using a similar proof technique, but with a more careful analysis, it is possible
to get rid of ln(1/ε) in Theorem 5.15, and obtain the following result. The details
can be found in (van der Vaart and Wellner, 1996).

Theorem 5.16. Let A = supf∈F ‖f‖L2(D). If lnN(F , ε, L2(D)) ≤ V ln(cA/ε) for
some c ≥ 1 and V > 0, then when ε ≤ 1, we have

lnN(conv(F), ε, L2(D)) ≤ K(c, V )(A/ε)2V/(V+2)

for some K(c, V ) that depends on c and V .

The convex hull of a parametric function class has entropy growth rate with a
polynomial (1/ε)r dependency on 1/ε. Since r < 2, the entropy integral∫ ∞

0

√
N(ε,conv(F), L2(D))dε <∞.

Therefore the convex hull of a parametric function class is a Donsker class, for
which the central limit theorem holds for the corresponding empirical process.

Example 5.17. Consider neural networks with x ∈ Rd. Let h(z) = 1/(1 +
exp(−z)) be the sigmoid activation function. Let

F = {h(θ>x) : θ ∈ Rd} ∪ {−h(θ>x) : θ ∈ Rd}

be the function class of one-layer neurons, then F is a VC sub-graph class with
vc(F) = d+ 1. Thus it has parametric covering number

N(ε,F , L2(D)) ≤ (c/ε)d+1
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5.6. REGULARIZED LINEAR FUNCTION CLASSES 81

uniformly for all distributions D. The L1 regularized two-layer neural network of
the form

G =

{
m∑
j=1

wjh(θ>j x) ‖w‖1 ≤ A
}

has entropy number of

lnN(ε,G, L2(D)) = O(ε−2(d+1)/(d+3)).

5.6 Regularized Linear Function Classes

In machine learning, one often encounters a linear function class of the form:

F = {f(w, x) = w>ψ(x) : w ∈ Ω, x ∈ X} (5.3)

where ψ(x) is a known feature vector, and we assume both w and ψ(x) can be
infinite dimensional. This includes kernel methods, which are studied in Chap-
ter 9. We have the following theorem, which can be used to estimate the covering
numbers for kernel methods. The result is independent of the dimensionality of
the problem.

Theorem 5.18. Let w = [w1, w2, . . .] ∈ R∞ and ψ(x) = [ψ1(x), ψ2(x), . . .] ∈ R∞.
Let Ω = {w : ‖w‖2 ≤ A}. Given a distribution D on X . Assume there exists
B1 ≥ B2 ≥ · · · such that

Ex∼D
∑
i≥j

ψi(x)2 ≤ B2
j .

Define

d̃(ε) = min{j ≥ 0 : ABj+1 ≤ ε}.

Then the function class F of (5.3) satisfies:

lnN(ε,F , L2(D)) ≤ d̃(ε/2) ln

(
1 +

4AB1

ε

)
.

Proof Given ε > 0. Consider j = d̃(ε/2) such that ABj+1 ≤ ε/2. Let F1 =

{
∑j

i=1wiψi(x) : w ∈ Ω} and F2 = {
∑

i>j wiψi(x) : w ∈ Ω}. Since ‖f‖L2(D) ≤ ε/2
for all f ∈ F2, we have N(ε/2,F , L2(D)) = 1. Moreover, Theorem 5.3 implies
that

lnN(ε/2,F1, L2(D)) ≤ d̃(ε/2) ln

(
1 +

4AB0

ε

)
.

Note that F ⊂ F1 + F2, we have lnN(ε,F , L2(D)) ≤ lnN(ε/2,F1, L2(D)) +
lnN(ε/2,F2, L2(D)). This implies the result.

One may regard d(ε) as the effective dimension of the regularized linear system
(5.3) at a scale ε. The following example gives a consequence of Theorem 5.18.
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CHAPTER 5. COVERING NUMBER ESTIMATES 82

Example 5.19. Assume that Bj = j−q, then

lnN(ε,F , L2(D)) = O
(
ε−q ln(1/ε)

)
.

If Bj = O(cj) for some c ∈ (0, 1), then

lnN(ε,F , L2(D)) = O
(
(ln(1/ε))2

)
.

For a general linear function class (5.3) with L2 regularization: ‖w‖2 ≤ A
and ‖ψ(x)‖2 ≤ B, we can obtain a bound on lnN(ε,F , L2(D)) using Gaussian
complexity estimate and Sudakov minoration (see Theorem 12.4).

Moreover, it is known that the uniform L∞ covering number of L2-regularized
linear function class can be bounded as follows. The proof can be found in (Zhang,
2002).

Theorem 5.20. Assume that Ω = {w : ‖w‖2 ≤ A} and ‖ψ(x)‖2 ≤ B, then the
function class (5.3) has the following covering number bound:

lnN(F , ε, L∞(Sn)) ≤ 36A2B2

ε2
ln[2d(4AB/ε) + 2en+ 1].

It is also possible to obtain uniform L∞ covering number results under other
regularization conditions. Of particular interest is the covering number for L1-
regularization, which we present below. The proof can also be found in (Zhang,
2002).

Theorem 5.21. Assume that Ω = {w ∈ Rd : ‖w‖1 ≤ A} and ‖ψ(x)‖∞ ≤ B,
then the function class (5.3) has the following covering number bound:

lnN(F , ε, L∞(Sn)) ≤ 288A2B2(2 + ln d)

ε2
ln[2d(8AB/ε) + 2en+ 1].

The uniform L∞ cover results in Theorem 5.20 and Theorem 5.21 can be com-
bined with the analysis of Section 4.6 to study large margin methods. They can
also be used to study vector valued prediction problems which were considered
in Section 9.4.

5.7 Historical and Bibliographical Remarks

The concepts of covering number and entropy were introduced by Kolmogorov
and Tikhomirov (1959). A number of results for smooth function classes were
established there. Since then, the tool of covering numbers has been widely used in
the theoretical analysis of empirical processes. The volume comparison argument
used in the proof of Theorem 5.2 is well-known, and can be found in (Lorentz,
1966). See (Pisier, 1999) and (Edmunds and Triebel, 1996) for entropy estimates
on Banach and general function spaces. Some estimates of bracketing numbers
for smooth function classes can be found in (van der Vaart and Wellner, 1996,
Chapter 2.7), (van der Vaart, 1994), and (Nickl and Pötscher, 2007). Such
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estimates can be used as estimates of lower bracketing numbers, which can be used
to analyze ERM as in Chapter 3. Additional applications of bracketing numbers
in statistical analysis such as the analysis of maximum likelihood estimate can
be found in (Birgé and Massart, 1993; van de Geer, 1993; Wong and Shen, 1995;
van de Geer, 2000).

In the machine learning literature, the use of uniform covering numbers has be-
come prevalent, largely influenced by the original VC analysis (Vapnik and Cher-
vonenkis, 1971). Note that uniform covering number results similar to bracketing
results can be obtained for smooth function classes (Nickl and Pötscher, 2007).
Therefore this is not a severe limitation. For VC-classes, the n-independent em-
pirical L1 covering number bounds have been considered by Dudley (1978) and
Haussler (1992). The extension of VC dimension to real-valued VC-subgraph class
was investigated in (Pollard, 1984; Haussler, 1992). Additional generalization to
fat-shattering dimension was proposed in (Kearns and Schapire, 1994; Bartlett
et al., 1996), which can also be used to obtain bounds of covering numbers.
However, due to the complexity of fat-shattering dimension, it is often easier to
directly estimate covering numbers using other techniques. Therefore we do not
discuss fat-shattering dimension in this chapter. The result in Theorem 5.6 is
due to Haussler (1995), where a matching lower bound was also obtained. The
covering number estimates of VC-hull class can be found in (van der Vaart and
Wellner, 1996, Chapter 2.6) and (Carl, 1997). Covering number bounds for ker-
nel function classes were studied in (Guo et al., 1999; Cucker and Smale, 2002;
Zhou, 2002, 2003; Kühn, 2011). We have only considered a simplified version in
Theorem 5.18. Uniform L∞ covering number bounds for general regularized
linear function classes were obtained in (Zhang, 2002). These bounds are useful
in large margin analysis, and in vector valued prediction problems.
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Exercises

5.1 Consider the function class F of monotone functions from R → [0, 1]. Show that for any

distribution D on R:

lnN[](ε,F , L1(D)) ≤
⌈

2

ε

⌉
ln
⌈

2

ε

⌉
.

Hint: discretize both R and [0, 1] into regular grids and use piecewise constant approxi-

mations.

5.2 For Exercise 5.1, a more involved argument can be used to show that

lnN[](ε,F , Lp(D)) ≤ Kp
ε
,

where Kp is a constant that depends on p (see van der Vaart and Wellner, 1996, Theorem

2.7.5). Use this result to bound the bracketing numbers of real-valued function class with

bounded total variation:

F = {f : V (f) ≤ B}, V (f) = sup
x0≤x1≤···≤xm

m∑
i=1

|f(xi)− f(xi−1)|.

5.3 Assume that φ(z) ∈ [0, 1] for all g ∈ G. Show that for p ≥ 1:

lnN(ε,G, Lp(D)) ≤ lnN(εp,G, L1(D)).

5.4 Consider the following set in Rd:

Ω = {x : ‖x‖p ≤ 1} ,

where 1 ≤ p < 2. Show that there are constants Cp and rp such that

lnN(ε,Ω, ‖ · ‖2) ≤ Cpε−rp ln d.

5.5 Consider the set

Ω =

{
x = [x1, x2, . . .] ∈ R∞ :

∞∑
i=1

i · x2
i ≤ 1

}
,

with metric induced by the L2-norm ‖x‖2 =
√∑∞

i=1 x
2
i . Derive an upper bound and a

lower bound for lnN(ε,Ω, ‖ · ‖2).
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6

Rademacher Complexity and Concentration
Inequalities

In Chapter 3 and Chapter 4, we obtained uniform convergence results using cov-
ering numbers and exponential probability inequalities. This chapter considers a
different, although highly related method. In this approach, we first bound the ex-
pectation of the supremum of an underlying empirical process using the so-called
Rademacher complexity, and then use concentration inequalities to obtain high
probability bounds. This approach simplifies various derivations in generalization
analysis.

6.1 Rademacher Complexity

Using the notations from Section 3.3, we are given a function class G = {φ(w, z) :
w ∈ Ω}, and are interested in the uniform convergence of training error

φ(w,Sn) =
1

n

n∑
i=1

φ(w,Zi)

on a training data Sn = {Z1, . . . , Zn} ∼ Dn, to the test error

φ(w,D) = EZ∼Dφ(w,Z)

on the test data D. In particular, in the general analysis of learning algorithms,
we want to estimate the supremum of the associated empirical process:

sup
w∈Ω

[φ(w,D)− φ(w,Sn)] .

We introduce the following definition, which will be useful in the analysis of this
chapter.

Definition 6.1. Given an empirical process {φ(w,Sn) : w ∈ Ω}, with Sn ∼ Dn.
Define the expected supremum of this empirical process as

εn(G,D) = ESn sup
w∈Ω

[φ(w,D)− φ(w,Sn)] ,

which will be referred to as the uniform convergence complexity of the function
class G.

The smaller this quantity is, the closer the gap between the training error and
the test error is, which implies that we have less overfitting. In Chapter 3, we
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obtained large probability uniform convergence results for empirical processes,
and then derived oracle inequalities in large probabilities. In the following, we
show that if average convergence can be obtained, then we can derive oracle
inequalities in expectation directly.

Theorem 6.2. Consider φ(w,Z) with Z ∼ D. Let Sn ∼ Dn be n iid samples
from D. Then the approximate ERM method of (3.7) satisfies

ESnφ(ŵ,D) ≤ inf
w∈Ω

φ(w,D) + ε′ + εn(G,D).

Proof Given any w ∈ Ω, we have for each instance of training data Sn

φ(ŵ,D) ≤φ(ŵ,Sn) + sup
w∈Ω

[φ(w,D)− φ(w,Sn)]

≤φ(w,Sn) + ε′ + sup
w∈Ω

[φ(w,D)− φ(w,Sn)].

Taking expectation with respect to Sn, and note that w does not depend on Sn,
we obtain

ESn φ(ŵ,D) ≤ φ(w,D) + ε′ + ESn sup
w∈Ω

[φ(w,D)− φ(w,Sn)].

This implies the desired bound.

We are now ready to define Rademacher complexity. While the standard def-
inition is two-sided where the supremum is over the absolute value of the sum,
we consider one-sided bound which is more convenient for our purpose.

Definition 6.3. Given Sn = {Z1, . . . , Zn}, the (one-sided) empirical Rademacher
complexity of G is defined as

R(G,Sn) = Eσ sup
w∈Ω

1

n

n∑
i=1

σiφ(w,Zi),

where σ1, . . . , σn are independent uniform {±1}-valued Bernoulli random vari-
ables. Moreover, the expected Rademacher complexity is

Rn(G,D) = ESn∼DnR(G,Sn).

The following result shows that the quantity εn(G,D) can be upper bounded by
Rademacher complexity. It follows that an average oracle inequality can be ob-
tained using Rademacher complexity. The proof employs the symmetrization tech-
nique, which was also used in Chapter 4 to obtain uniform convergence bounds
from empirical covering numbers.

Theorem 6.4. We have

εn(G,D) ≤ 2Rn(G,D).
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6.2. OFFSET RADEMACHER COMPLEXITY 87

Consequently, the approximate ERM method of (3.7) satisfies

ESnφ(ŵ,D) ≤ inf
w∈Ω

φ(w,D) + ε′ + 2Rn(G,D).

Proof Let S ′n = {Z ′1, . . . , Z ′n} ∼ Dn be n iid samples fromD that are independent
of Sn. We have

εn(G,D) =ESn∼Dn sup
w∈Ω

[φ(w,D)− φ(w,Sn)]

=ESn∼Dn sup
w∈Ω

[ES′n∼Dn φ(w,S ′n)− φ(w,Sn)]

≤E(Sn,S′n)∼D2n sup
w∈Ω

[φ(w,S ′n)− φ(w,Sn)]

=E(Sn,S′n)∼D2nEσ sup
w∈Ω

1

n

n∑
i=1

[σiφ(w,Z ′i)− σiφ(w,Zi)]

≤E(Sn,S′n)∼D2n [R(G,Sn) +R(G,S ′n)] = 2Rn(G,D).

This proves the desired bound.

One reason to introduce Rademacher complexity is that it can be estimated
on the training data. Moreover, for many problems it is often not difficult to
estimate this quantity theoretically. The following example demonstrates this.

Example 6.5. Consider a (binary-valued) VC class G such that vc(G) = d. Con-
sider n ≥ d. Then Sauer’s lemma implies that for any Sn, the number of functions
of φ ∈ G on Sn is no more than (en/d)d. We thus obtain (see Theorem 6.23)

R(G,Sn) ≤
√

2d ln(en/d)

n
.

This implies that the approximate ERM method of (3.7) satisfies

ESnφ(ŵ,D) ≤ inf
w∈Ω

φ(w,D) + ε′ + 2

√
2d ln(en/d)

n
.

A better bound can be obtained using Theorem 5.6 and Theorem 6.25, which
removes the lnn factor. Also see Example 6.26.

6.2 Offset Rademacher Complexity

While the standard Rademacher complexity is suitable for many problems, for
regularized empirical risk minimization problems which frequently occur in prac-
tice, it can be more convenient to use offset Rademacher complexity. In this
section, we consider a generalization of the empirical risk minimization method,
where we allow the training error to be different from the test error, which fre-
quently occurs in practical applications. A typical example is to include a regular-
izer in the training loss to stablize the training process, such as L2 regularization
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0.5λ‖w‖22. In such case, we consider the following regularized training loss, with
a general training set dependent regularizer h(w,Sn):

φ(w,Sn) + h(w,Sn), where φ(w,Sn) =
1

n

n∑
i=1

φ(w,Zi).

Here we assume that h(w,Sn) is a general function that can depend on the train-
ing data Sn. By following the notations from Section 3.3, we use φ(w, z) to denote
the loss function at a data point z, and use Sn = {Z1, . . . , Zn} to denote the train-
ing data. The test loss is

φ(w,D) = EZ∼Dφ(w,Z)

with respect to the unknown test distribution D. Training data Sn are iid samples
from D.

We consider a function class G = {φ(w, z) : w ∈ Ω}, and the following approx-
imate regularized ERM method to find ŵ:

[φ(ŵ,Sn) + h(ŵ,Sn)] ≤ min
w∈Ω

[φ(w,Sn) + h(w,Sn)] + ε′, (6.1)

which is a more general formulation than (3.7). This formulation will become
convenient in some of the future analysis. In order to analyze the behavior of this
method, we need to analyze the uniform convergence of the regularized training
loss to the test loss.

For this purpose, we consider a modified empirical process (to compensate the
difference of training error and test error), which we refer to as offset empirical
process, and study the supremum of this offset empirical process:

sup
w∈Ω

[φ(w,D)− φ(w,Sn)− h(w,Sn)] .

It characterizes the degree of (one-sided) uniform convergence of function class
G, with a offset function h(w,Sn). Here we incorporate a known offset function
h(w,Sn) into the training loss, which may depend on the model parameter and
training data. In the usual setting of empirical process in Chapter 3 and Chap-
ter 4, one may simply take h(w,Sn) = 0.

Definition 6.6. Consider any known data-dependent offset function h(w,Sn).
Define the uniform convergence complexity of a function class G with offset h as

εhn(G,D) = ESn∼Dn sup
w∈Ω

[φ(w,D)− φ(w,Sn)− h(w,Sn)] . (6.2)

This quantity measures the one-sided expected uniform convergence of function
class G with offset function h(w,Sn).

We note that

εn(G,D) = εhn(G,D), with h = 0.

We have the following generalization of Theorem 6.2, with a similar proof.
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Theorem 6.7. Let Sn be n iid samples from D. Then the approximate ERM
method of (6.1) satisfies

ESnφ(ŵ,D) ≤ inf
w∈Ω

[φ(w,D) + ESnh(w,Sn)] + ε′ + εhn(G,D).

Proof Given any w ∈ Ω, we have for each training data Sn

φ(ŵ,D)

=[φ(ŵ,Sn) + h(ŵ,Sn)] + [φ(ŵ,D)− φ(ŵ,Sn)− h(ŵ,Sn)]

≤[φ(ŵ,Sn) + h(ŵ,Sn)] + sup
w∈Ω

[φ(w,D)− φ(w,Sn)− h(w,Sn)]

≤[φ(w,Sn) + h(w,Sn)] + ε′ + sup
w∈Ω

[φ(w,D)− φ(w,Sn)− h(w,Sn)].

In the derivation of the last inequality, we used (6.1). Taking expectation with
respect to Sn, and note that w does not depend on Sn, we obtain

ESn φ(ŵ,D) ≤φ(w,D) + ESn h(w,Sn) + ε′

+ ESn sup
w∈Ω

[φ(w,D)− φ(w,Sn)− h(w,Sn)].

This implies the desired bound.

The following example shows that with an appropriately defined offset function,
we can obtain generalization result for regularized empirical risk minimization.

Example 6.8. Take h(w,Sn) = g(w) in (6.1), and let φ(w, z) = L(f(w, x), y),
then Theorem 6.7 implies the following generalization bound for the approximate
regularized ERM method in (6.1):

ESnE(X,Y )∼DL(f(ŵ,X), Y ) ≤ inf
w∈Ω

E(X,Y )∼D [L(f(ŵ,X), Y ) + g(w)]

+ ε′ + εhn(G,D).

From Theorem 6.7, we may also obtain a slightly more general formulation,
which is some times useful.

Corollary 6.9. Consider (6.1), and define

h̃(w,Sn) = h(w,Sn) + h′(w),

where h′(w) is an arbitrary function of w. Then

ESn [φ(ŵ,D)− h′(ŵ)] ≤ inf
w∈Ω

[φ(w,D) + ESnh(w,Sn)] + ε′ + εh̃n(G,D).

Proof Let

φ̃(w, z) = φ(w, z)− h′(w),
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then (6.1) remains the same with φ(w, z) replaced by φ̃(w, z), and h(w,Sn) re-
placed by h̃(w,Sn). We can now apply Theorem 6.7 with εhn(G,D) replaced by

εh̃n(G,D) = ESn sup
w∈Ω

[φ(w,D)− φ(w,Sn)− h(w,Sn)− h′(w)]

to obtain

ESn φ̃(ŵ,D) ≤ inf
w∈Ω

[
φ̃(w,D) + ESn h̃(w,Sn)

]
+ ε′ + εh̃n(G,D).

This implies the desired bound.

Example 6.10. One advantage of Corollary 6.9 is that it allows us to intro-
duce an unknown distribution dependent offset term h′(w) into the definition of
uniform convergence complexity because the learning algorithm in (6.1) does not
depend on h′(w). As a simple example, we may take h′(w) = γφ(w,D) and obtain

(1− γ)ESnφ(ŵ,D) ≤ inf
w∈Ω

[φ(w,D) + ESnh(w,Sn)] + ε′ + εh̃n(G,D).

We are now ready to define (one-sided) offset Rademacher complexity. Note
that the offset function in Rademacher complexity is more restrictive than the
more general offset function considered in the uniform convergence complexity
(6.2). This is because we would like to use symmetrization argument, which works
only for this special form of offset function.

Definition 6.11. Consider a function class G = {φ(w,Z) : w ∈ Ω}, and let h be
an offset function of the following form

h(w,Sn) =
1

n

n∑
i=1

h(w,Zi), h(w, z) = h0(w) + h1(w, z). (6.3)

Given Sn = {Z1, . . . , Zn}, the (one-sided) empirical Rademacher complexity of G
with offset h decomposition (6.3) is defined as

Rh(G,Sn) = Eσ sup
w∈Ω

[
1

n

n∑
i=1

σi[φ(w,Zi) + 0.5h1(w,Zi)]− 0.5h(w,Sn)

]
,

where σ1, . . . , σn are independent uniform {±1}-valued Bernoulli random vari-
ables. Moreover, the expected Rademacher complexity is

Rh
n(G,D) = ESn∼DnR

h(G,Sn).

We note that the standard Rademacher complexity can be regarded as a special
case of the offset Rademacher complexity with h(·) = h0(·) = h1(·) = 0:

R(G,Sn) = R0(G,Sn), Rn(G,D) = R0
n(G,D).

It should be pointed out that the decomposition of h in (6.3) may not be unique,
and the offset Rademacher complexity relies on the specific decomposition used.
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As shown in Example 6.10, we allow distribution dependent offset in the definition
of uniform convergence complexity. We also allow distribution dependent offset
in the definition of offset Rademacher complexity.

The following result shows that for some cases, offset Rademacher complexity
can be obtained easily for some function classes.

Example 6.12. Consider a function class F = {f(w, x) = w>ψ(x) : w ∈ Rd},
consisting of linear functions. Let h(w) = h0(w) = 0.5λ‖w‖22. Then for any Sn,
we have

Rh(F ,Sn) =Eσ sup
w∈Rd

[
1

n

n∑
i=1

σiw
>ψ(Xi)−

λ

4
‖w‖22

]

=
1

λ
Eσ

∥∥∥∥∥ 1

n

n∑
i=1

σiψ(Xi)

∥∥∥∥∥
2

2

=
1

λn2

n∑
i=1

‖ψ(Xi)‖22.

Let FA,B = {{f(w, x) = w>ψ(x) : ‖w‖2 ≤ A, ‖ψ(x)‖2 ≤ B}, then for any λ:

R(FA,B,Sn) ≤ Rh(F ,Sn) +
λ

4
A2 ≤ B2

λn
+
λ

4
A2.

By optimizing over λ, we obtain

R(FA,B,Sn) ≤ AB/
√
n.

The following example illustrates that offset Rademacher complexity can lead
to a result analogous to the multiplicative form of the Chernoff bound.

Example 6.13. Consider a (binary-valued) VC class G such that vc(G) = d.
Consider n ≥ d, and let h(f,Sn) = h1(f,Sn) = (γ/n)

∑n
i=1 f(Zi). Then Sauer’s

lemma implies that for any Sn, the number of functions of φ ∈ G on Sn is no
more than (en/d)d. We thus obtain (see Theorem 6.23)

Rh(G,Sn) ≤ (1 + 0.5γ)2d ln(en/d)

γn
.

This result can be compared to the standard Rademacher complexity result in
Example 6.5, which leads to an additive expected generalization bound.

The following result is a generalization of Theorem 6.4.

Theorem 6.14. Consider offset function of (6.3). We have

εhn(G,D) ≤ 2Rh
n(G,D).

Consequently, the approximate regularized ERM method of (6.1) satisfies

ESnφ(ŵ,D) ≤ inf
w∈Ω

[φ(w,D) + ESnh(w,Sn)] + ε′ + 2Rh
n(G,D).
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Proof Let S ′n = {Z ′1, . . . , Z ′n} ∼ Dn be n iid samples fromD that are independent
of Sn. We have

εn(G,D) =ESn∼Dn sup
w∈Ω

[φ(w,D)− φ(w,Sn)− h(w,Sn)]

=ESn∼Dn sup
w∈Ω

[ES′n∼Dnφ(w,S ′n)− φ(w,Sn)− h(w,Sn)]

≤E(Sn,S′n)∼D2n sup
w∈Ω

[φ(w,S ′n)− φ(w,Sn)− h(w,Sn)]

=E(Sn,S′n)∼D2n sup
w∈Ω

[[φ(w,S ′n) + 0.5h1(w,S ′n)]− 0.5h(w,S ′n)

−[φ(w,Sn) + 0.5h1(w,Sn)]− 0.5h(w,Sn)]

(a)
=E(Sn,S′n)∼D2nEσ sup

w∈Ω

1

n

n∑
i=1

[σi(φ(w,Z ′i) + 0.5h1(w,Z ′i))− 0.5h(w,S ′n)

−σi(φ(w,Zi) + 0.5h1(w,Zi))− 0.5h(w,Sn)]

≤E(Sn,S′n)∼D2nEσ sup
w∈Ω

1

n

n∑
i=1

[σi(φ(w,Z ′i) + 0.5h1(w,Z ′i))− 0.5h(w,S ′n)]

+ E(Sn,S′n)∼D2nEσ sup
w∈Ω

1

n

n∑
i=1

[−σi(φ(w,Zi) + 0.5h1(w,Zi)− 0.5h(w,Sn)]

=E(Sn,S′n)∼D2n [Rh(G,Sn) +Rh(G,S ′n)] = 2Rh
n(G,D).

In the above derivation, (a) used the fact that σi(φ(w,Z ′i) + 0.5h1(w,Z ′i)) −
σi(φ(w,Zi)+0.5h1(w,Zi)) and (φ(w,Z ′i)+0.5h1(w,Z ′i))−(φ(w,Zi)+0.5h1(w,Zi))
have the same distributions.

Example 6.15. Using the offset Rademacher complexity estimate for VC-class
in Example 6.13, we can obtain the following multiplicative form of expected
oracle inequality from Theorem 6.14:

ESnφ(ŵ,D) ≤ (1 + γ) inf
w∈Ω

φ(w,D) + ε′ +
2(1 + 0.5γ)2d ln(en/d)

γn
.

This implies an expected generalization of O(d lnn/n) when infw∈Ω φ(w,D) = 0.
In comparison, the standard Rademacher complexity leads to a convergence of
O(
√
d lnn/n) in Example 6.5.

6.3 Concentration Inequality

We showed that using Rademacher complexity, we may obtain an oracle inequal-
ity in expectation. By using concentration inequality, we can also obtain high
probability uniform convergence and oracle inequality statements.

The simplest concentration inequality is a generalization of the additive Cher-
noff bound, due to McDiarmid (1989).
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Theorem 6.16 (McDiarmid’s Inequality). Consider n independent random vari-
ables X1, . . . , Xn, and a real-valued function f(X1, . . . , Xn) that satisfies the fol-
lowing inequality

sup
x1,...,xn,x′i

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci

for all 1 ≤ i ≤ n. Then for all ε > 0:

Pr [f(X1, . . . , Xn) ≥ Ef(X1, . . . , Xn) + ε] ≤ exp

(
−2ε2∑n
i=1 c

2
i

)
.

Similarly:

Pr [f(X1, . . . , Xn) ≤ Ef(X1, . . . , Xn)− ε] ≤ exp

(
−2ε2∑n
i=1 c

2
i

)
.

Proof Let X l
k = {Xk, . . . , Xl}. Consider Xn

1 , and for some 1 ≤ k ≤ n, we use
the simplified notation X̃n

1 = {X1, . . . , Xk−1, X̃k, Xk+1, Xn}. Then we have

|EXnk+1
f(Xn

1 )− EXnk+1
f(X̃n

1 )| ≤ ck.

We now consider EXnk+1
f(Xn

1 ) as a random variable depending on Xk, condi-

tioned on Xk−1
1 . It follows from derivation of the Chernoff bound that we have the

following logarithmic moment generating function estimate (see Example 2.14):

lnEXk exp[λEXnk+1
f(Xn

1 )] ≤ λEXnk f(Xn
1 ) + λ2c2

k/8.

Now we may exponentiate the above inequality, and take expectation with respect
to Xk−1

1 to obtain

EXk1 exp[λEXnk+1
f(Xn

1 )] ≤ EXk−1
1

exp[λEXnk f(Xn
1 ) + λ2c2

k/8].

By taking logarithm, we obtain

lnEXk1 exp[λEXnk+1
f(Xn

1 )] ≤ lnEXk−1
1

exp[λEXnk f(Xn
1 )] + λ2c2

k/8.

By summing from k = 1 to k = n, and canceling redundant terms, we obtain

lnEXn1 exp[λf(Xn
1 )] ≤ λEXn1 f(Xn

1 ) + λ2
n∑
k=1

c2
k/8. (6.4)

Let

δ = Pr
[
f(Xn

1 ) ≥ EXn1 f(Xn
1 ) + ε

]
.

Using Markov’s inequality, we have for all positive λ

δ ≤ e−λ(EXn1 f(Xn1 )+ε)EXn1 e
λf(Xn1 ) ≤ exp

[
−λε+

λ2

8

n∑
k=1

c2
k

]
.

Since λ > 0 is arbitrary, we conclude that

ln δ ≤ inf
λ≥0

[
λ2

8

n∑
k=1

c2
k − λε

]
= − 2ε2∑n

k=1 c
2
k

.
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CHAPTER 6. RADEMACHER COMPLEXITY 94

This implies the theorem.

McDiarmid’s inequality is referred to as concentration inequality because it
states that the sample dependent quantity f(X1, . . . , Xn) does not deviate sig-
nificantly from its expectation Ef(X1, . . . , Xn).

Note that if we take

f(x1, . . . , xn) =
1

n

n∑
i=1

xi,

and assume that xi ∈ [0, 1], then we can take ci = 1/n, which implies the ad-
ditive Chernoff bound in Theorem 2.16. Therefore McDiarmid’s inequality is a
generalization of the additive Chernoff bound.

We can apply Theorem 6.16 to empirical processes and obtain a uniform con-
vergence result. In order to handle offset Rademacher complexity, we introduce
the sensitivity of h(w,Sn) as follows, which measures the maximum change when
the data Sn is modified by no more than one element. Note that the sensitivity
is needed in order to apply McDiarmid’s inequality.

Definition 6.17. Given a function h(w,Sn), we define

∆nh(w) = sup{n · |h(w,Sn)− h(w,S ′n)| : |Sn ∩ S ′n| = n− 1}.

Example 6.18. If the offset function h(w,Sn) has the decomposition (6.3), then

∆nh(w) ≤ sup
z,z′

[h1(w, z)− h1(w, z′)].

In particular, if h(w,Sn) = h0(w), then

∆nh(w) = 0.

We have the following uniform convergence result using Rademacher complex-
ity.

Corollary 6.19. Assume that for some M ≥ 0:

sup
w∈Ω

[
sup
z,z′

[φ(w, z)− φ(w, z′)] + ∆nh(w)

]
≤M.

Then with probability at least 1− δ: for all w ∈ Ω,

φ(w,D) ≤φ(w,Sn) + h(w,Sn) + εhn(G,D) +M

√
ln(1/δ)

2n
.

Moreover, assume that the decomposition (6.3) holds, then with probability at least
1− δ: for all w ∈ Ω,

φ(w,D) ≤φ(w,Sn) + h(w,Sn) + 2Rh
n(G,D) +M

√
ln(1/δ)

2n
.
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6.3. CONCENTRATION INEQUALITY 95

Proof Consider Sn = {Z1, . . . , Zn} and S ′n = {Z1, . . . , Zi−1, Z
′
i, Zi+1, . . . , Zn}.

Let f(Sn) = supw∈Ω[φ(w,D) − φ(w,Sn) − h(w,Sn)]. For simplicity, we assume
that the sup can be achieved at ŵ as

ŵ = arg max
w∈Ω

[φ(w,D)− φ(w,Sn)− h(w,Sn)].

Then

f(Sn)− f(S ′n)

=[φ(ŵ,D)− φ(ŵ,Sn)− h(ŵ,Sn)]− sup
w∈Ω

[φ(w,D)− φ(w,S ′n)− h(w,S ′n)]

≤[φ(ŵ,D)− φ(ŵ,Sn)− h(ŵ,Sn)]− [φ(ŵ,D)− φ(ŵ,S ′n)− h(ŵ,S ′n)]

≤ 1

n
[φ(ŵ, Z ′i)− φ(ŵ, Zi) + ∆nh(ŵ)] ≤M/n.

Similarly, f(S ′n) − f(Sn) ≤ M/n. Therefore we may take ci = M/n in Theorem
6.16, which implies the first desired result. The second bound follows from the
estimate εhn(G,D) ≤ 2Rh

n(G,D) of Theorem 6.14.

Example 6.20. If we use the standard Rademacher complexity, then ∆nh(w) =
0. Corollary 6.19 implies that

φ(w,D) ≤φ(w,Sn) + εn(G,D) +M

√
ln(1/δ)

2n

≤φ(w,Sn) + 2Rn(G,D) +M

√
ln(1/δ)

2n
,

where M = supw∈Ω supz,z′ [φ(w, z)− φ(w, z′)].

Corollary 6.19 implies the following result.

Corollary 6.21. Assume that for some M ≥ 0:

sup
w∈Ω

[
sup
z,z′

[φ(w, z)− φ(w, z′)] + ∆nh(w)

]
≤M.

Then the approximate ERM method (6.1) satisfies the following oracle inequality.
With probability at least 1− δ − δ′:

φ(ŵ,D) ≤ inf
w∈Ω

[
φ(w,D) + ESnh(w,Sn) + ∆nh(w)

√
ln(1/δ′)

2n

]

+ ε′ + εhn(G,D) + 2M

√
ln(2/δ)

2n
.

If h(·) has the decomposition (6.3), then

φ(ŵ,D) ≤ inf
w∈Ω

[
φ(w,D) + ESnh(w,Sn) + ∆nh(w)

√
ln(1/δ′)

2n

]

+ ε′ + 2Rh
n(G,D) + 2M

√
ln(2/δ)

2n
.
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Proof Given any w ∈ Ω, from the Chernoff bound, we know that with probability
1− δ/2,

φ(w,Sn) ≤ φ(w,D) +M

√
ln(2/δ)

2n
. (6.5)

Moreover, from McDiarmid’s inequality, we know that with probability 1− δ′,

h(w,Sn) ≤ ESnh(w,Sn) + ∆nh(w)

√
ln(1/δ′)

2n
. (6.6)

Taking the union bound with the inequality of Corollary 6.19 at δ/2, we obtain
at probability 1− δ − δ′,

φ(ŵ,D) ≤φ(ŵ,Sn) + h(ŵ,Sn) + εhn(G,D) +M

√
ln(2/δ)

2n

≤φ(w,Sn) + h(w,Sn) + ε′ + εhn(G,D) +M

√
ln(2/δ)

2n

≤φ(w,D) + h(w,Sn) + ε′ + εhn(G,D) + 2M

√
ln(2/δ)

2n

≤φ(w,D) + ESnh(w,Sn) + ∆nh(w)

√
ln(1/δ′)

2n

+ ε′ + εhn(G,D) + 2M

√
ln(2/δ)

2n
.

In the above derivation, the first inequality used Corollary 6.19. The second
inequality used (6.1). The third inequality used (6.5). The last inequality used
(6.6). This proves the first desired bound. The second desired bound employs
Theorem 6.14.

Example 6.22. If we use standard Rademacher complexity, then ∆nh(w) =
0. Corollary 6.21 implies that the approximate ERM method (6.1) satisfies the
following oracle inequality. With probability at least 1− δ:

φ(ŵ,D) ≤ inf
w∈Ω

φ(w,D) + ε′ + εn(G,D) + 2M

√
ln(2/δ)

2n

≤ inf
w∈Ω

φ(w,D) + ε′ + 2Rn(G,D) + 2M

√
ln(2/δ)

2n
,

where M = supw∈Ω supz,z′ [φ(w, z)− φ(w, z′)].

The Rademacher complexity analysis (together with McDiarmid’s inequality)
is convenient to apply. Therefore we will focus on this analysis in later chapters.

However, one drawback of the Rademacher complexity analysis is that it only
leads to convergence rates of no better than O(1/

√
n). In order to prove faster

convergence rate, we will have to reply on more sophisticated analysis, referred
to as local Rademacher complexity analysis, which we will discuss in Section 6.5.
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6.4 Estimating Rademacher Complexity

This section provides some useful results to estimate Rademacher complexity. We
mainly focus on the standard Rademacher complexity. For a finite function class,
we have the following simple estimate.

Theorem 6.23. If G is a finite function class with |G| = N , then

R(G,Sn) ≤ sup
g∈G
‖g‖L2(Sn) ·

√
2 lnN

n
.

If moreover, for all g ∈ G, g(z) ∈ [0, 1]. Consider the offset decomposition (6.3),
and let h0(g) = 0, and h1(g,Sn) = (γ/n)

∑n
i=1 g(Zi). Then we have

Rh(G,Sn) ≤ (1 + 0.5γ)2 lnN

γn
.

Proof Let B = supg∈G ‖g‖L2(Sn). Then we have for all λ > 0:

R(G,Sn) =Eσ sup
g∈G

1

n

n∑
i=1

σig(Zi)

(a)

≤Eσ
1

λn
ln
∑
g∈G

exp

[
λ

n∑
i=1

σig(Zi)

]
(b)

≤ 1

λn
lnEσ

∑
g∈G

exp

[
λ

n∑
i=1

σig(Zi)

]

=
1

λn
ln
∑
g∈G

n∏
i=1

Eσi exp [λσig(Zi)]

(c)

≤ 1

λn
ln
∑
g∈G

n∏
i=1

exp[λ2g(Zi)
2/2] ≤ 1

λn
lnN exp[λ2nB2/2].

In (a), we used soft-max to bound the max operator. In (b), we used Jensen’s
inequality and the concavity of logarithm. In (c), we used the moment generating
function for bounded random variables (see Example 2.14). Now we can obtain
the first desired bound by optimizing over λ > 0.

For the second desired bound, we can obtain by duplicating the previous steps
up to step (c) to obtain

Rh(G,Sn) =Eσ sup
g∈G

1

n

n∑
i=1

[σi(1 + 0.5γ)g(Zi)− 0.5γg(Zi)]

≤ 1

λn
ln
∑
g∈G

exp

[
n∑
i=1

[λ2(1 + 0.5γ)2g(Zi)
2/2− 0.5λγg(Zi)]

]
.

Now set λ = γ/(1 + 0.5γ)2, we obtain Rh(G,Sn) ≤ 1
λn

ln
∑

g∈G 1, which implies
the second bound.
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Example 6.24. Consider φ(w,Z) ∈ [0, 1] and |G| = N . With probability 1 − δ.
We have the following uniform convergence results for all w. If we use the union
of Chernoff bound (covering number) method, then

φ(w,D) ≤ φ(w,Sn) +

√
ln(N/δ)

2n
,

which implies that

φ(w,D) ≤ φ(w,Sn) +

√
ln(N)

2n
+

√
ln(1/δ)

2n
.

If we use the Rademacher complexity bound, then we can obtain from Corol-
lary 6.19 (with Rademacher complexity estimate from Theorem 6.23)

φ(w,D) ≤ φ(w,Sn) + 4

√
ln(N)

2n
+

√
ln(1/δ)

2n
,

which leads to similar result. We may also obtain multiplicative bound using offset
Rademacher complexity from Corollary 6.19 (with offset Rademacher complexity
estimate from Theorem 6.23 with h(w,Sn) = γφ(w,Sn)) as follows

φ(w,D) ≤ (1 + γ)φ(w,Sn) +
2(1 + 0.5γ)2 lnN

γn
+ (1 + γ)

√
ln(1/δ)

2n
.

While the expected uniform convergence has O(1/n) rate, the concentration term
has a slower rate of O(1/

√
n) due to the use of McDiarmid’s concentration. This

can be addressed using localized analysis in Section 6.5.

The following result shows that Rademacher complexity can be estimated from
the empirical L2 covering number using the chaining technique. The result is ex-
pressed in Dudley’s entropy integral. The constant can be improved using packing
number (see Exercise 6.4).

Theorem 6.25. We have

R(G,Sn) ≤ inf
ε≥0

[
4ε+ 12

∫ ∞
ε

√
lnN(ε′,G, L2(Sn))

n
dε′
]
.

Proof Let B = supg∈G ‖g‖L2(Sn), and let ε` = 2−`B for ` = 0, 1, . . .. Let G` be an
ε`-cover of G with metric L2(Sn), and N` = |G`| = N(ε`,G, L2(Sn)). We may let
G0 = {0} at scale ε0 = B.

For each g ∈ G, we consider g`(g) ∈ G` so that ‖g − g`(g)‖L2(Sn) ≤ ε`. The key
idea in chaining is to rewrite g ∈ G using the following multi-scale decomposition:

g = (g − gL(g)) +
L∑
`=1

(g`(g)− g`−1(g)).

We also have

‖g`(g)− g`−1(g)‖L2(Sn) ≤ ‖g`(g)− g‖L2(Sn) + ‖g`−1(g)− g‖L2(Sn) ≤ 3ε`. (6.7)
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The number of distinct g`(g)− g`−1(g) is no more than N`N`−1. It implies that

R(G,Sn) = Eσ sup
g∈G

1

n

n∑
i=1

σi

[
(g − gL(g))(Zi) +

L∑
`=1

(g`(g)− g`−1(g))(Zi)

]

≤Eσ sup
g∈G

1

n

n∑
i=1

σi(g − gL(g))(Zi) +
L∑
`=1

Eσ sup
g∈G

1

n

n∑
i=1

σi(g`(g)− g`−1(g))(Zi)

(a)

≤εL +
L∑
`=1

sup
g∈G
‖g`(g)− g`−1(g)‖L2(Sn)

√
2 ln[N`N`−1]

n

(b)

≤εL + 3
L∑
`=1

ε`

√
2 ln[N`N`−1]

n

≤εL + 12
L∑
`=1

(ε` − ε`+1)

√
ln[N`]

n

≤εL + 12

∫ ∞
εL/2

√
lnN(ε′,G, L2(Sn))

n
dε′.

The derivation of (a) used Theorem 6.23, and the derivation of (b) used (6.7).
The next two inequality used N(ε,G, L2(Sn) is a non-increasing function of ε.
Now given any ε > 0, we can choose εL so that ε ∈ [εL/4, εL/2]. This leads to the
desired result.

Example 6.26. From Corollary 5.7, we know that if a binary-valued function
class G (or a VC-subgraph class with values in [0, 1]) has VC-dimension d, then

lnN2(ε,G, n) ≤ 1 + ln(d+ 1) + d ln(2e/ε2).

Since N2(0.5,G, n) = 1, we have

12

∫ ∞
0

√
lnN2(ε,G, n)dε ≤ 12

∫ 0.5

0

√
1 + ln(d+ 1) + d ln(2e/ε2)dε ≤ 16

√
d.

It follows that

R(G,Sn) ≤ 16
√
d√
n
.

The constant isn’t optimal, and in fact a better constant can be obtained us-
ing packing number (see Example 6.4). The result implies the following uniform
convergence result: with probability at least 1− δ, for all w ∈ Ω,

φ(w,D) ≤ φ(w,Sn) +
32
√
d√
n

+

√
ln(1/δ)

2n
.

This bound removes a lnn factor from the additive uniform convergence bound
in Theorem 4.17.

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



CHAPTER 6. RADEMACHER COMPLEXITY 100

Example 6.27. If lnN2(ε,G, n) ≤ 1/εq for q ∈ (0, 2), then∫ ∞
0

√
lnN2(ε,G, n)dε <∞.

Therefore there exists C > 0 such that

R(G,Sn) ≤ C√
n
.

If lnN2(ε,G, n) ≤ 1/εq for q > 2, then

R(G,Sn) ≤ O
(

inf
ε>0

(
ε+

ε1−q/2√
n

))
= O(n−1/q).

This implies a convergence slower than 1/
√
n.

One convenient fact about Rademacher average is the following result. Let {φi}
be a set of functions, each characterized by a Lipschitz constant γi. Then the result
implies a bound on the Rademacher complexity of the function composition φ◦f .

Theorem 6.28. Let {φi}ni=1 be functions with Lipschitz constants {γi}ni=1 respec-
tively. That is, ∀i ∈ [n]:

|φi(θ)− φi(θ′)| ≤ γi|θ − θ′|.

Then for any real valued function h : F ×Zn → R, and Sn = {Z1, . . . , Zn} ⊂ Zn,
we have

Eσ sup
f∈F

[
n∑
i=1

σiφi(f(Zi))− h(f,Sn)

]
≤ Eσ sup

f∈F

[
n∑
i=1

σiγif(Zi)− h(f,Sn)

]
.

Proof The result is a direct consequence of the Lemma 6.29, where we simply
set c(w) = −h(w,Sn), gi(w) = φi(f(Zi)), and g̃i(w) = γif(Zi).

Lemma 6.29 (Rademacher comparison lemma). Let {gi(w)} and {g̃i(w)} be sets
of functions defined for all w in some domain Ω. If for all i, w, w′,

|gi(w)− gi(w′)| ≤ |g̃i(w)− g̃i(w′)|,

then for any function c(w),

Eσ sup
w∈Ω

[
c(w) +

n∑
i=1

σigi(w)

]
≤ Eσ sup

w∈Ω

[
c(w) +

n∑
i=1

σig̃i(w)

]
.

Proof We prove this result by induction. The result holds for n = 0. Assume
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that the result holds for n = k, then when n = k + 1, we have:

Eσ1,...,σk+1
sup
w

[
c(w) +

k+1∑
i=1

σigi(w)

]

= Eσ1,...,σk sup
w1,w2

[
c(w1) + c(w2)

2
+

k∑
i=1

σi
gi(w1) + gi(w2)

2

+
gk+1(w1)− gk+1(w2)

2

]
= Eσ1,...,σk sup

w1,w2

[
c(w1) + c(w2)

2
+

k∑
i=1

σi
gi(w1) + gi(w2)

2

+
|gk+1(w1)− gk+1(w2)|

2

]
≤ Eσ1,...,σk sup

w1,w2

[
c(w1) + c(w2)

2
+

k∑
i=1

σi
gi(w1) + gi(w2)

2

+
|g̃k+1(w1)− g̃k+1(w2)|

2

]
= Eσ1,...,σk sup

w1,w2

[
c(w1) + c(w2)

2
+

k∑
i=1

σi
gi(w1) + gi(w2)

2

+
g̃k+1(w1)− g̃k+1(w2)

2

]
= Eσ1,...,σkEσk+1

sup
w

[
c(w) + σk+1g̃k+1(w) +

k∑
i=1

σigi(w)

]

≤ Eσ1,...,σkEσk+1
sup
w

[
c(w) + σk+1g̃k+1(w) +

k∑
i=1

σig̃i(w)

]
.

The last inequality follows from the induction hypothesis.

The following example shows an application of Theorem 6.28.

Example 6.30. Consider binary classification with y ∈ {±1}, and let F =
{f(w, x) = w>ψ(x)} be the class of linear classifiers. Consider the smoothed
classification loss function L(f(x), y) = min(1,max(0, 1−γf(x)y)) for some γ > 0,
as in Figure 6.1. Let G = {L(f(w, x), y)}. Then L(f, y) is γ Lipschitz in f .
Consider the regularizer in Example 6.12 with h(w) = h0(w) = 0.5λ‖w‖22 in
(6.3). We obtain from Theorem 6.28:

Rh(G,Sn) ≤ γR(h/γ)(F ,Sn),

which implies that

Rh(G,Sn) ≤ γ2

λn2

n∑
i=1

‖ψ(Xi)‖22.
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L(f(x), y)

f(x)y
0 1/γ 1

1

Figure 6.1 Smoothed Classification Loss

It follows that

Rh
n(G,D) ≤ γ2

λn
EX∼D‖ψ(X)‖22.

The following result is a direct consequence of Theorem 6.28 and Corollary 6.21.

Theorem 6.31. Consider real-valued function class F = {f(w, ·) : w ∈ Ω}, and
G = {φ(w, z) = L(f(w, x), y) : w ∈ Ω, z = (x, y)}. Assume that we have the
decomposition in (6.3) with h1(w,Sn) = 0. Assume that

sup
(x,y),(x′,y′)

|L(f(w, x), y)− L(f(w, x′), y′)| ≤M,

and L(f, y) is γ-Lipschitz in f :

|L(f, y)− L(f ′, y)| ≤ γ|f − f ′|.

Let Sn be n iid samples from D. With probability at least 1− δ, for all w ∈ Ω:

EDL(f(w,X), Y ) ≤ 1

n

n∑
i=1

L(f(w,Xi), Yi) + h0(w)

+ 2γRh/γn (F ,D) +M

√
ln(1/δ)

2n
.

Moreover, for the approximate regularized ERM method (6.1) with φ(w, z) =
L(f(w, x), y), we have with probability at least 1− δ:

EDL(f(ŵ,X), Y ) ≤ inf
w∈Ω

[EDL(f(w,X), Y ) + h0(w)]

+ ε′ + 2γRh/γn (F ,D) +M

√
2 ln(2/δ)

n
.

We have the following example for the smoothed classification loss.

Example 6.32. Consider the smoothed classification loss in Example 6.30 with

h(w,Sn) = g(w) =
λ

2
‖w‖22.
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For the approximate regularized ERM method in (6.1), we have with probability
at least 1− δ:

EDL(f(ŵ,X), Y ) ≤ inf
w∈Ω

[
EDL(f(w,X), Y ) +

λ

2
‖w‖22

]
+ ε′

+
2γ2

λn
EX∼D‖ψ(X)‖22 +M

√
2 ln(2/δ)

n
.

6.5 Local Rademacher Complexity Analysis

The technique to prove McDiarmid’s inequality is called the Martingale method,
and it can derive concentration inequalities with convergence rates of O(1/

√
n).

As shown in Example 6.24, it is possible to obtain O(1/n) expected convergence
result using offset Rademacher complexity. However, the rate with respect to
concentration is still 1/

√
n. In order to improve the analysis, we need to establish

concentration inequalities with faster convergence rate. It is possible to prove
faster convergence rates with the Martingale method by deriving Bernstein style
concentration inequalities. However, more refined forms of Bernstein style concen-
tration inequalities are needed to analyze empirical processes, and those refined
forms are referred to as Talagrand’s concentration inequality (Talagrand, 1995,
1996b). We state the following version of Talagrand’s inequality by Bousquet
(2002).

Theorem 6.33 (Bousquet, 2002). Consider iid random variables (Z1, . . . , Zn) ∼
Dn. Let ζ be a real-valued function of (Z1, . . . , Zn). Moreover, for each k ∈ [n],
let ζk be a real-valued function of (Z1, . . . , Zk−1, Zk+1, . . . , Zn) so that

n∑
k=1

[ζ − ζk] ≤ ζ.

Assume that for each k, there exists a function ζ ′k of (Z1, . . . , Zn) such that

ζ ′k ≤ ζ − ζk ≤M, EZkζ
′
k ≥ 0, ζ ′k ≤ uM.

We have for all t ≥ 0:

Pr

[
ζ ≥ Eζ +

√
2((1 + u)M Eζ + nσ2)t+

tM

3

]
≤ e−t,

where σ2 ≥ n−1
∑n

k=1 EZk(ζ ′k)2.

Theorem 6.33 is a Bernstein style concentration inequality, which can be com-
pared to the additive Chernoff style concentration inequality of Theorem 6.16. We
can apply Theorem 6.33 to empirical processes, and obtain the following coun-
terpart of Corollary 6.19. A similar (two-sided) uniform convergence result can
be found in (Bousquet, 2002).

Corollary 6.34. Consider a real valued function class F = {f(z) : Z → R}. Let
D be a distribution on Z. Assume that there exists M,σ > 0 so that ∀f ∈ F ,
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CHAPTER 6. RADEMACHER COMPLEXITY 104

σ2 ≥ VarZ∼D[f(Z)], and supz′∈Z [EZ∼Df(Z)− f(z′)] ≤M . Let Sn = {Z1, . . . , Zn}
be n independent random variables from D. Then with probability at least 1 − δ
over Sn, for all f ∈ F ,

EZ∼Df(Z)− 1

n

n∑
i=1

f(Zi)

≤εn(F ,D) +

√
(4Mεn(F ,D) + 2σ2) ln(1/δ)

n
+
M ln(1/δ)

3n

≤2εn(F ,D) +

√
2σ2 ln(1/δ)

n
+

4M ln(1/δ)

3n
,

where εn(F ,D) is Definition 6.1.

Proof Let

ζ = sup
f∈F

[
nEZ∼Df(Z)−

n∑
i=1

f(Zn)

]
,

and

ζk = sup
f∈F

[
(n− 1)EZ∼Df(Z)−

∑
i 6=k

f(Zi)

]
.

Assume that ζk is achieved at fk, and ζ achieved at f0. Then
n∑
k=1

[ζ − ζk] ≤
n∑
k=1

[EZ∼Df0(Z)− f0(Zk)] = ζ.

Let

ζ ′k =

[
nEZ∼Dfk(Z)−

n∑
i=1

fk(Zi)

]
− ζk,

then

ζ ′k ≤ ζ − ζk ≤ [EZf0(Z)− f0(Zk)] ≤M.

Moreover, since Zk is independent of fk, we have

EZkζ
′
k =EZk [EZfk(Z)− fk(Zk)] = 0

EZk(ζ
′
k)

2 =EZk [EZfk(Z)− fk(Zk)]2 ≤ σ2.

By taking u = 1 in Theorem 6.33, we obtain the first desired bound. The second
bound is a consequence of√

(4Mεn(F ,D) + 2σ2) ln(1/δ)/n

≤
√

4Mεn(F ,D) ln(1/δ)/n+
√

2σ2 ln(1/δ)/n

≤εn(F ,D) +M ln(1/δ)/n+
√

2σ2 ln(1/δ)/n.

The first inequality used
√
a+ b ≤

√
a +
√
b, and the second inequality used√

4ab ≤ a+ b.

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



6.5. LOCAL RADEMACHER COMPLEXITY ANALYSIS 105

r

r′

εn(Fh(r′/α)),D)

r̄hn(α,F ,D)

r = r′

Figure 6.2 Rate function

To illustrate its consequences, we introduce the following definition of rate func-
tion. In general, we expect the uniform convergence complexity εn(Fh(r′/α),D)
to grow sublinearly in r′ (see examples later), which implies that the rate function
r̄ is well-defined (see Figure 6.2).

Definition 6.35. Given D and F , and consider a localization function h : F → R
such that b0 = inff∈F h(f) > −∞. Define localized function class Fh(b) = {f ∈
F : h(f) ≤ b} for all b > b0. For any α > 0, the rate function with respect to
localization h is defined as

r̄hn(α,F ,D) = sup

{
r : r ≤ inf

r′>max(r,αb0)
εn
(
Fh
(
r′/α

)
,D
)}

.

We note that the requirement of r′ > αb0 in Definition 6.35 is only to make
sure that Fh

(
r′/α

)
is always non-empty, and thus εn(Fh(r′/α),D) is well-defined.

Example 6.36. In (Bartlett et al., 2005), the definition of the localization func-
tion is h(f) = EZ∼D[f(Z)2]. The localized function class F(b,D) is {f ∈ F :
E[f(Z)2] ≤ b}, with b0 ≥ 0.

In the analysis of ERM, it is natural to employ the same local function class
as in (Bartlett et al., 2005), the more general definition given in Definition 6.35
simplifies some calculations of r̄n(α,F ,D) using the offset uniform convergence
complexity, as shown in Proposition 6.40. This leads to a result similar to Ex-
ample 6.10 which employs offset uniform convergence.

Next we state the following simple property of rate function.

Proposition 6.37. The rate function in Definition 6.35 is always non-negative.

Proof Note that Fh(r′/α) 6= ∅ when r′ > max(0, αb0). Since εn(Fh(r′/α),D)
is always non-negative, with r = 0, we have r ≤ εn(Fh(r′/α),D) when r′ >
max(r, αb0).
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The usefulness of rate function r̄ in Definition 6.35 is based on the following
result, which shows that εn can be upper bounded by this quantity.

Proposition 6.38. For all α > 0 and b > inff∈F h(f), we have

εn
(
Fh
(
b
)
,D
)
≤ max

(
r̄hn(α,F ,D), αb

)
.

Proof Note that Fh(b) is non-empty. Let r̂ = r̄hn(α,F ,D). The definition implies
that

r̂ ≥ εn
(
Fh(r̂/α),D

)
.

If b ≤ r̂/α, then

εn(Fh(b),D) ≤ εn
(
Fh(r̂/α),D

)
≤ r̂ = r̄hn(α,F ,D).

Otherwise, let r′ = αb > r̂ = r̄hn(α,F ,D). By the definition of r̄hn(α,F ,D), we
have

εn(Fh(b),D) = εn
(
Fh(r′/α),D

)
≤ r′ = αb.

By combining the two situations, we obtain the desired bound.

Example 6.39. Let h(f) = ED[f(Z)2] and assume that b0 = inff∈F h(f) = 0. If

εn
(
Fh(b),D

)
≤ c̃1√

n
bq/2

for some 0 < q < 1, then we obtain

r̄hn(α,F ,D) ≤
(
α−q c̃2

1

n

)1/(2−q)

.

As we will see, the convergence rate of ERM under variance condition is deter-
mined by r̄hn(α,F ,D), and this leads to a rate of convergence faster thanO(1/

√
n).

The following result shows that under the variance condition, the rate func-
tion can be estimated from the uniform convergence complexity with a properly
defined offset function.

Proposition 6.40. Let F = {φ(w,Z) : w ∈ Ω}. Consider a localization function
h(w) and the corresponding offset function h′(w,Sn) = 0.5αh(w). Then

r̄hn (α,F ,D) ≤ max

(
2εh

′

n (F ,D), α inf
w∈Ω

h(w)

)
.

Proof Let b0 = infw∈Ω h(w). Consider any r ≥ 0 such that

r ≤ inf
r′>max(r,αb0)

εn(Fh(r′/α),D).
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For any φ(w, ·) ∈ Fh(r′/α,D), we know by the definition of localized function
class that

h′(w,Sn) = 0.5αh(w) ≤ 0.5r′.

It follows that

εn(Fh(r′/α),D) ≤ εh
′

n (Fh(r′/α),D) + 0.5r′ ≤ εh
′

n (F ,D) + 0.5r′.

This means that for all r′ > max(r, αb0), the condition

r ≤ εn(Fh(r′/α),D)

implies that

r ≤ εh
′

n (F ,D) + 0.5r′.

Let r′ → max(r, αb0), we obtain either r ≤ αb0, or

r ≤ εh
′

n (F ,D) + 0.5r.

Therefore

r ≤ max
(

2εh
′

n (F ,D), αb0

)
.

This implies the desired bound.

By using the concept of rate function, we can obtain the following uniform
convergence result from Corollary 6.34, where we assume that the localization
function satisfies a variance condition similar to (3.13).

Theorem 6.41. Consider F , D, and iid samples Sn = {Z1, . . . , Zn} ∼ D. Let
f(D) = EZ∼D[f(Z)], and f(Sn) = n−1

∑n
i=1 f(Zi). Assume that for all f ∈ F ,

VarD[f(Z)] ≤ c2
0 + c1h(f)

for some c0, c1, h(·) ≥ 0. Assume also that F is bounded: supz′ [f(D)−f(z′)] ≤M
for all f ∈ F . Then with probability at least 1− δ over Sn, ∀f ∈ F and ∀α > 0:

f(D) ≤f(Sn) + 5αh(f) + 5r0 +

√
2c2

0 ln(1/δ)

n
+

(3c1 + 4αM) ln(1/δ)

3αn
,

where

r0 =r̄hn(α,F ,D) + α inf
f∈F

h(f) +

√
2c2

0

n
+

(3c1 + 4αM)

3αn

≤2εh
′

n (α,F ,D) + 2α inf
f∈F

h(f) +

√
2c2

0

n
+

(3c1 + 4αM)

3αn
,

with h′(f,Sn) = 0.5αh(f).
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Proof The inequality for r0 is a direct consequence of Proposition 6.40.
We will now use a peeling argument. For ` = 1, 2, . . ., let r` = α−1(1.5)`−1r0.

Define F` = {f ∈ F : h(f) ≤ r`}. It follows that

sup
f∈F`

VarD[f(Z)] ≤ c2
0 + c1h(f) ≤ c2

0 + c1r`.

For each ` ≥ 1, let δ` = 4δ/((` + 3)(` + 4)). We have with probability 1 − δ`:
∀f ∈ F`,

f(D)− f(Sn)

≤2εn(F`,D) +

√
2(c2

0 + c1r`) ln(1/δ`)

n
+

4M ln(1/δ`)

3n

≤2r̄hn(α,F ,D) + 2αr` +

√
2(c2

0 + c1r`) ln(1/δ`)

n
+

4M ln(1/δ`)

3n

≤2r̄hn(α,F ,D) + 2αr` +

√
2c2

0 ln(1/δ`)

n
+

√
2c1r` ln(1/δ`)

n
+

4M ln(1/δ`)

3n

≤2r̄hn(α,F ,D) + 2.5αr` +

√
2c2

0 ln(1/δ`)

n
+

(3c1 + 4αM) ln(1/δ`)

3αn

≤2.5αr` +

√
2c2

0 ln(1/δ)

n
+

(3c1 + 4αM) ln(1/δ)

3αn

+ 2r̄n(α,F ,D) +

√
2c2

0 ln( (`+3)(`+4)

4
)

n
+

(3c1 + 4αM) ln( (`+3)(`+4)

4
)

3αn

(a)

≤2.5αr` +

√
2c2

0 ln(1/δ)

n
+

(3c1 + 4αM) ln(1/δ)

3αn
+ 2r0 × (αr`/r0)1/2

≤3αr` +

√
2c2

0 ln(1/δ)

n
+

(3c1 + 4αM) ln(1/δ)

3αn
+ 2r0.

The first inequality used Corollary 6.34. The second inequality used Proposi-
tion 6.38 with r` ≥ α−1r0 > inff∈F h(f) ≥ 0. The third inequality used

√
a+ b ≤√

a +
√
b. The fourth inequality used

√
2ab ≤ 0.5αa + b/α. The fifth inequality

used
√
a+ b ≤

√
a +
√
b. The last inequality used 2b(αa/b)1/2 ≤ 0.5αa + 2b.

Inequality (a) used the definition of r0, and the fact that

max

(
2,

√
ln

(`+ 3)(`+ 4)

4
, ln

(`+ 3)(`+ 4)

4

)
≤ 2(1.2)`−1 ≤ 2(αr`/r0)1/2.

Note that
∑

`≥1 δ` = δ. Taking union bound, we know that the above inequality
holds with probability at least 1−δ for all ` ≥ 1 and f ∈ F`. Given any f ∈ F , let
`(f) be the smallest ` so that f ∈ F`. It follows that for this choice of ` = `(f):

r` ≤ max(1.5h(f), α−1r0) ≤ 1.5h(f) + α−1r0.
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We thus obtain the desired bound.

Example 6.42. In Theorem 6.41, we can take h(f) = 0, and we can take c1, α→
0 with c1/α→ 0. Since r̄0

n(0,F ,D) = εn(F ,D), we obtain

f(D) ≤ f(Sn) +O

εn(F ,D) +

√
2c2

0 ln(1/δ)

n
+
M ln(1/δ)

n

 .

If c0 is small, then this result improves Corollary 6.19 with h = 0 since M is
replaced by a potentially smaller quantity c0 in the O(1/

√
n) term.

Example 6.43. In Theorem 6.41, assume that f(Z) ∈ [0, 1]. Then we can take
h(f) = f(D) so that the variance condition holds with c0 = 0 and c1 = 1. In such
case, we may take α as a constant. This implies the following bound:

(1− 5α)f(D) ≤ f(Sn) + 5r̄hn(α,F ,D) +O

(
(1 + α) ln(1/δ)

αn

)
.

This leads to a O(1/n) concentration term. This result can be used to improve
the concentration of the multiplicative bound in Example 6.24. We leave it as an
exercise.

While the Chernoff style bound of Corollary 6.19 only implies an oracle in-
equality for ERM with convergence rate no better than O(1/

√
n), the Bennett

style bound in Theorem 6.41 can lead to faster convergence rate. We state the
following result, which is a direct consequence of Theorem 6.41.

Corollary 6.44. Let φ(w, z) = L(f(w, x), y)− L∗(x, y) for an appropriately de-
fined L∗(x, y) so that φ(w,D) ≥ 0. Assume supw supz,z′ [φ(w, z)− φ(w, z′)] ≤M ,
and the variance condition (3.13) holds. Consider h0(w) ≥ 0, and let h(w,Sn) =
5αh0(w). Then for δ such that ln(2/δ) ≥ 1, with probability at least 1− δ, for all
α > 0, the approximate ERM method (6.1) satisfies

(1− 5α)φ(ŵ,D) ≤ inf
w∈Ω

[(1 + 6α)φ(w,D) + 10αh0(w)] + ε′ + 5r̄h
′

n (α,G,D)

+ 7

√
2c2

0 ln(2/δ)

n
+

(7c1 + 10αM) ln(2/δ)

αn
,

where h′(w) = h0(w) + φ(w,D) and G = {φ(w, z) : w ∈ Ω}. Moreover, with
probability at least 1− δ, we have

(1− 5α)φ(ŵ,D) ≤ inf
w∈Ω

[(1 + 11α)φ(w,D) + 15αh0(w)] + ε′ + 10ε0.5αh
′

n (G,D)

+ 7

√
2c2

0 ln(2/δ)

n
+

(7c1 + 10αM) ln(2/δ)

αn
.

Proof For any w ∈ Ω, we know from Bennett’s inequality that with probability
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1− δ/2,

φ(w,Sn) ≤φ(w,D) +

√
2VarZ∼D[φ(w,Z)] ln(2/δ)

n
+
M ln(2/δ)

3n

≤φ(w,D) +

√
2(c2

0 + c1φ(w,D)) ln(2/δ)

n
+
M ln(2/δ)

3n

≤φ(w,D) +

√
2c2

0 ln(2/δ)

n
+

√
2c1φ(w,D) ln(2/δ)

n
+
M ln(2/δ)

3n

≤(1 + 0.5α)φ(w,D) +

√
2c2

0 ln(2/δ)

n
+

(3c1 + αM) ln(2/δ)

3αn
.

The first inequality used the Bennett’s inequality for sum of independent random
variables. The second inequality used the variance condition. The third inequality
used

√
a+ b ≤

√
a+
√
b. The last inequality used

√
2ab ≤ 0.5αa+ b/α.

Moreover, from Theorem 6.41 with h(φ(w, ·)) = h′(w), we obtain with proba-
bility 1− δ/2:

(1− 5α)φ(ŵ,D) ≤φ(ŵ,Sn)− 5αφ(ŵ,D) + 5αh′(ŵ) + 5r0

+

√
2c2

0 ln(2/δ)

n
+

(3c1 + 4αM) ln(2/δ)

3αn

=φ(ŵ,Sn) + 5αh0(ŵ) + 5r0 +

√
2c2

0 ln(2/δ)

n

+
(3c1 + 4αM) ln(2/δ)

3αn
≤φ(w,Sn) + 5αh0(w) + ε′ + 5r0

+

√
2c2

0 ln(2/δ)

n
+

(3c1 + 4αM) ln(2/δ)

3αn
.

The first inequality used Theorem 6.41. The second inequality used (6.1). By
taking the union bound of the two inequalities, we obtain with the probability at
least 1− δ:

(1− 5α)φ(ŵ,D) ≤ [(1 + 0.5α)φ(w,D) + 5αh0(w)] + ε′ + 5r̄h
′

n (α,G,D)

+ 5α[φ(w,D) + h0(w)] + 7

√
2c2

0 ln(2/δ)

n
+

(7c1 + 10αM) ln(2/δ)

αn
,

where we used ln(2/δ) ≥ 1 to simplify the result. By taking the inf over w ∈ Ω
on the right hand side, we obtain the first bound. By using Proposition 6.40, we
obtain

5r̄h
′

n (α,G,D) ≤ 10ε0.5αh
′

n (G,D) + 5α[φ(w,D) + h0(w)].

Substitute into the previous inequality, and take the inf over w ∈ Ω on the right
hand side, we obtain the second bound.
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We have the following interpretation of Corollary 6.44.

Example 6.45. In Corollary 6.44, we take L∗(x, y) = L(f(w∗, x), y) for some
w∗ ∈ Ω, and assume that the variance condition holds with c0 = 0. The rate of
convergence is determined by r̄hn(α,G,D), where h(w) = φ(w,D) (i.e., h0(w) = 0
in Corollary 6.44) and a constant α = 0.1.

EZ∼DL(f(ŵ,X), Y ) ≤EZ∼DL(f(w∗, X), Y )

+O

(
ε′ + r̄hn

(
0.1,G,D

)
+

(c1 +M) ln(1/δ)

n

)
.

Since Example 3.18 implies that least squares regression satisfies the variance
condition, this bound holds for least squares regression.

The following result shows that the rate function can be obtained from a uni-
form upper bound of the Rademacher complexity.

Proposition 6.46. Consider function class G = {φ(w, z) : w ∈ Ω} with h(w) =
φ(w,D) and infw∈Ω h(w) = 0. Assume that |φ(·)| ≤M and the variance condition
(3.14) holds with c0 = 0. Assume that for any b > 0, we have

sup
Sn

R

({
φ(w, ·) :

1

n

n∑
i=1

φ(w,Zi)
2 ≤ b

}
,Sn

)
≤ rn(b),

where rn(b) is a continuous concave function of b. Let α ≤ 0.5c1/M and

b0 = sup{b > 0 : b ≤ (4c1/α)rn(b)},

then r̄hn
(
α,G,D

)
≤ 0.5αb0/c1.

Proof Consider any b′0 > b0 and let

G0 = {φ(w, ·) : φ(w,D) ≤ 0.5b′0/c1} ,

and define

b̂(Sn) = sup
g∈G0

1

n

n∑
i=1

g(Zi)
2.

We have

R(G0,Sn) ≤ rn(b̂(Sn)), R(−G2
0 ,Sn) ≤ 2Mrn(b̂(Sn)). (6.8)

The first inequality used the definition of rn and the definition of b̂. The second in-
equality used Theorem 6.28 and |φ(w1, z)

2−φ(w2, z)
2| ≤ 2M |φ(w1, z)−φ(w2, z)|.

Let b̃ = ESn b̂(Sn), then we have

b̃ =ESn b̂(Sn) ≤ εn(−G2
0 ,D) + 0.5b′0

≤2Rn(−G2
0 ,D) + 0.5b′0

≤4MESn rn(b̂(Sn)) + 0.5b′0 ≤ (2c1/α)rn(b̃) + 0.5b′0.

The first inequality used supg∈G0 EZ∼Dg(Z)2 ≤ 0.5b′0, which follows from the
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variance condition. The second inequality used Theorem 6.4. The third inequality
used (6.8). The last inequality used the concavity of rn(·) and 4M ≤ 2c1/α.

From the above inequality, we have either b̃ < b′0, or b̃ ≤ (2c1/α)rn(b̃) + 0.5b̃.
The latter also implies that b̃ ≤ b0 < b′0 by using the definition of b0. We thus
obtain

εn(G0) ≤ 2ESn R(G0,Sn) ≤ 2ESn rn(b̂(Sn)) ≤ 2rn(b̃) < (0.5α/c1)b′0.

The first inequality used Theorem 6.4. The second inequality (6.8). The third
inequality used the concavity of rn(·). The last inequality used b̃ < b′0, b′0 > b0,
and the definition of b0.

Therefore if we let r = 0.5(α/c1)b′0, then εn(Gh(r/α)) = εn(G0) ≤ 2rn(b̃) <
r, where b̃0 < 2(c1/α)r. The condition that rn(·) is continuous implies that
lim∆r→0+ εn(Gh((r + ∆r)/α)) < r. The desired result follows from the definition
of r̄hn

(
α,G,D

)
.

In the following, we apply Proposition 6.46 to obtain the rate function estimate.
In general, from Figure 6.2, we know that b0 can be obtain by solving

b0 = (4c1/α)rn(b0).

For parametric models, we have the following result (see Section 5.2).

Example 6.47. In Example 6.45, assume that

lnN2(ε,G, n) ≤ d ln(n/ε).

Then Theorem 6.25 implies that rn(b) = O(
√
bd lnn/n), and

r̄hn(α,G,D) = O

(
d ln(n)

n

)
.

For nonparametric models, we have the following result from Proposition 6.46.

Example 6.48. In Example 6.45, assume that

lnN2(ε,G, n) ≤ c/εp

for some p < 2. Then it can be shown from Theorem 6.25 that (we leave it to
Exercise 6.9) rn(b) = O((

√
b)1−0.5p/

√
n). This implies that

r̄hn(α,G,D) = O(n−1/(1+p/2)).

In comparison, we may apply the uniform L1 entropy analysis with

lnN1(ε,G, n) ≤ c/εp.

The multiplicative Chernoff bound in Corollary 4.13 has a suboptimal complexity
of

inf
ε>0

[
ε+

c

εpn

]
= O(n−1/(1+p)).
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Example 6.49. Consider a function class F and the ERM method for least
squares regression:

f̂ = arg min
f∈F

1

n

n∑
i=1

(f(Xi)− Yi)2,

where Zi = (Xi, Yi) are iid samples from D. Assume that |f(X)− Y | ∈ [0, 1] for
all X and Y . Example 3.18 implies that the loss function φ(f, Z) = [(f(X) −
Y )2− (f∗(X)−Y )2] satisfies the variance condition if the true regression function
f∗ ∈ F . Assume also that the empirical covering number of F satisfies:

lnN2(ε,F , n) ≤ c

εp
(6.9)

for some constant c > 0 and p > 0. We consider the following two situations:
p ∈ (0, 2) and p ≥ 2. Let h(f) = φ(f,D) with h0(f) = 0.

• p ∈ (0, 2). The conditions of Corollary 6.44 hold with c0 = 0. This implies the
following bound (see Exercises 6.9) on the rate function with constant α:

r̄h(α,F ,D) = O
(
n−2/(2+p)

)
.

We thus have with probability at least 1− δ:

EDL(f̂(X), Y ) ≤ EDL(f∗(X), Y ) +O

(
n−2/(2+p) +

ln(1/δ)

n

)
.

• p > 2. The entropy integral of Theorem 6.25 implies that

Rn(Fh(b),D) ≤ c̃1

n1/p

for some constant c̃1. We thus obtain a rate of convergence of

r̄h(α,F ,D) = O
(
n−1/p

)
for local Rademacher complexity. It can be shown that this is the same rate as
what we can obtain from the standard non-localized Rademacher complexity
(see Exercise 6.7).

6.6 Historical and Bibliographical Remarks

The introduction of Rademacher complexity in machine learning was due to
Koltchinskii (2001); Koltchinskii and Panchenko (2002); Bartlett and Mendelson
(2002). The treatment presented here mainly follows that of Bartlett and Mendel-
son (2002), and the proof of Lemma 6.29 was presented in Meir and Zhang (2003),
which generalizes a result of Ledoux and Talagrand (2013) to handle offset func-
tions. We also employs a generalized version of Rademacher complexity which
we refer to as offset Rademacher complexity. The notation of offset Rademacher
complexity was considered by Liang et al. (2015).
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The concept of local Rademacher complexity was proposed in Bartlett et al.
(2005). Our treatment follows their approach, which leads to the uniform conver-
gence result presented in Corollary 6.34, and oracle inequality in Corollary 6.44.
Similar results can be found in Bartlett et al. (2005), which also employed the
notation of rate function, although the precise definition is different.

The idea of concentration inequality can be dated back to the Efron-Stein
inequality in (Efron and Stein, 1981; Steele, 1986), which can be stated as follows.

Proposition 6.50. Let f(X1, . . . , Xn) be a function of n variables, and {Xi, X
′
i}

(1 ≤ i ≤ n) be 2n iid random variables, then

Var[f(X)] ≤ 1

2
E

n∑
i=1

(f(X)− f(X(i))2, (6.10)

where X = [X1, . . . , Xn], and X(i) = [X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn].

This inequality may be regarded as a generalization of Chebyshev’s inequality
for the sum of iid random variables. Similarly, the McDiarmid’s inequality (Mc-
Diarmid, 1989) can be regarded as a generalization of the Chernoff bound. The
generalization of Bernstein style inequality for empirical processes, needed for
establishing convergence rate faster than O(1/

√
n) and for the local Rademacher

complexity analysis, is more complicated. Such an inequality was obtained first
by Talagrand (1995, 1996b), and thus has been referred to as Talagrand’s inequal-
ity. Its variations and improvements have been obtained by various researchers
(Ledoux, 1997; Massart, 2000; Boucheron et al., 2000, 2003; Bousquet, 2002;
Boucheron et al., 2013). Talagrand’s inequality can also be used with matrix con-
centration techniques to obtain sharper tail bounds for the spectral norm of the
sum of independent matrices (Tropp, 2015).
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Exercises

6.1 Consider G = {φ(w, z) : w ∈ Ω} with φ(w, z) ∈ [0, 1]. Given a dataset Sn+m, we consider

random partitions of Sn+m into disjoint subsets Sn ∪ S′m. Define

R(G,Sn,S′m) = sup
w∈Ω

[φ(w,Sn+m)− φ(w,Sn)].

If Sn+m ∼ Dn+m, then find constant cn,m so that εn(G,D) ≤ cn,mESn∪S′mR(G,Sn,S′m).

6.2 Given a dataset Sn+m, we consider random partitions of Sn+m into disjoint subsets Sn ∪
S′m. Consider any function f(Z) ∈ [a, b]. Define

f(Sn) =
1

n

∑
Z∈Sn

f(Z), f(Sn+m) =
1

n+m

∑
Z∈Sn+m

f(Z).

• Show that the sub-Gaussian inequality holds:

1

λ
lnESn∪S′m exp (λf(Sn)) ≤ f(Sn+m) +

λ(b− a)2

8n
,

where the expectation is over random partitions. Hint: see (Hoeffding, 1963).

• Derive a Chernoff bound

Pr(f(Sn)− f(Sn+m) ≥ ε),

where ε > 0. Here the probability is with respect to all random partitions of Sn+m.

• If |G| = N is finite, derive an upper bound of

ESn∪S′mR(G,Sn,S′m)

by using the proof technique of Theorem 6.23, where the expectation is with respect to

the random partition.

6.3 For general G, with covering number N(ε,G, L∞(Sn+m)), estimate

ESn∪S′mR(G,Sn, S′m)

defined in the previous problem by using the chaining technique of Theorem 6.25. Here

the expectation is with respect to the random partition.

6.4 In Theorem 6.25, assume that 0 ∈ G. If we replace covering number by packing number,

then show that (6.7) can be improved to obtain

R(G,Sn) ≤ inf
ε≥0

[
4ε+ 4

∫ ∞
ε

√
lnM(ε′,G, L2(Sn))

n
dε′
]
.

6.5 Let F = {f(w, x) : w ∈ Ω}, where x ∈ X , and and each function f(w, x) takes binary

values in {±1}. Consider Sn = {(X1, Y1), . . . , (Xn, Yn)}, where Xi ∈ X and Yi ∈ {±1}.
Let φ(w,X, Y ) = 1(f(w,X) 6= Y ), and G = {φ(w,X, Y ) : w ∈ Ω} Let R(F ,Sn) be the

Rademacher complexity of F on Sn, find R(G,Sn).

6.6 Consider the least squares problem in Example 6.49. If p = 2, derive an oracle inequality

using local Rademacher complexity.

6.7 Assume the empirical covering number of a function class F satisfies (6.9) with p ≥ 2.

Estimate the Rademacher complexity R(F ,Sn).

6.8 Assume that we have a VC-subgraph class with finite VC-dimension d. The variance

condition (3.13) holds. Use Theorem 6.41 and Theorem 6.23 to derive a multiplicative

style uniform convergence result. Compare with Example 6.24.
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6.9 In Example 6.48, prove the bound for r̄hn(α,G,D) when p < 2. Moreover assume that

p > 2; find a bound for r̄hn(α,G,D).

6.10 Consider the variance condition (3.16) for some β ∈ (0, 1). Use the result of Example 3.19

to write this condition in the form of (3.14) with β-dependent tuning parameters c0
and c1. Write an oracle inequality using Corollary 6.44. Consider the entropy number in

Example 6.48, and compute the convergence rate in terms of β by optimizing the tuning

parameters c0 and c1.
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7

Algorithmic Stability Analysis

The theory of empirical processes has become an important tool to analyze the
generalization ability of learning algorithms based on empirical risk minimiza-
tion. However, in practical applications, we typically solve the empirical risk
minimization problem using optimization methods such as stochastic gradient de-
scent (SGD). Such an algorithm searches a model parameter along a path, which
does not cover the entire model space. Therefore the empirical process analysis
may not be optimal to analyze the performance of specific computational proce-
dures. In recent years, another theoretical tool, which we may refer to as stability
analysis, has been proposed to analyze such computational procedures.

7.1 Algorithmic Stability

We consider an arbitrary randomized learning algorithm A that maps a training
data Sn of n samples to a (random) weight vector w ∈ Ω. An example of such
randomized algorithm is SGD, which produces a random weight vector due to
the randomness in selecting training examples during the training of SGD.

Similar to previous chapters, our goal is still to minimize the expected test loss

φ(w,D) = EZ∼Dφ(w,Z),

and we assume that Sn contains n iid samples, drawn from D. Here the test loss
φ(w, z) can be different from training loss as in regularized ERM method (6.1).
But we consider a more general setting where the training algorithm may not
necessarily correspond to an ERM method.

We are still interested in bounding the difference of training error and general-
ization of such an algorithm. We introduce the notation of algorithmic stability
as follows.

Definition 7.1. An algorithm A is ε-uniformly stable if for all Sn and S ′n that
differ by only one element:

sup
z∈Z

[EAφ(A(S ′n), z)− EAφ(A(Sn), z)] ≤ ε,

where EA denotes the expectation over the internal randomization of the algo-
rithm.

Stability can be used to derive an expected generalization bound for a learning
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algorithm. We have the following result, which shows that the expected gener-
alization loss of a stable learning algorithm is bounded by the expected training
loss.

Theorem 7.2. If an algorithm A is ε-uniformly stable, then for Sn ∼ Dn:

ESnEAφ(A(Sn),D) ≤ ESnEAφ(A(Sn),Sn) + ε.

Proof Consider two independent samples of size n: Sn = {Z1, . . . , Zn} and

S ′n = {Z ′1, . . . , Z ′n}. Let S(i)
n = {Z1, . . . , Zi−1, Z

′
i, Zi+1, . . . , Zn}. Let p

(i)
t be the

distribution obtained by A with S(i)
n . We have

ESnEAφ(A(Sn),D)− ESnEAφ(A(Sn),Sn)

=
1

n

n∑
i=1

ES′nESnEAφ(A(S(i)
n ), Zi)−

1

n

n∑
i=1

ESnEAφ(A(Sn), Zi)

=
1

n

n∑
i=1

ES′nESn [EAφ(A(S(i)
n ), Zi)− EAφ(A(Sn), Zi)] ≤ ε.

The first equation used the fact that Zi is independent of S(i)
n , and thus the

distribution of φ(A(S(i)
n ), Zi) is the same as that of φ(A(Sn), Z) with Z ∼ D. The

inequality used the definition of uniform stability.

It is also possible to obtain a large probability statement for any uniformly
stable algorithm. The proof relies on a concentration inequality for leave-one-out
estimate, which we leave to Section 7.6 (see Theorem 7.24). Using this result, we
can obtain the following high probability result that bounds the generalization
loss in terms of training loss for uniformly stable algorithms.

Theorem 7.3. Assume that A is ε uniformly stable. Let Sn = {Z1, . . . , Zn} ∼ Dn
and S ′n = {Z ′1, . . . , Z ′n} ∼ Dn be independent training and validation sets of iid
data from D. Assume that there exists α ∈ (0, 1] such that for some δ ∈ (0, 1), we
have the following inequality between the expected validation loss and the expected
test loss. With probability at least 1− δ,

αESn EA φ(A(Sn),D) ≤ 1

n

n∑
i=1

ESn EA φ(A(Sn), Z ′i) + εn(δ). (7.1)

Then with probability at least 1− δ:

EAφ(A(Sn),D) ≤EAφ(A(Sn),Sn) + (1− α)ESnEAφ(A(Sn),Sn)

+ εn(δ/2) + (2 + 5dlog2 ne)ε ln(2/δ) + (3− α)ε.

Proof We define

g(Sn; z) = EAφ(A(Sn),D)− EAφ(A(Sn), z).
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Then EZg(Sn;Z) = 0 and g(Sn; z) is 2ε uniformly stable. Theorem 7.24 implies
that with probability at least 1− δ/2:

ḡ(Sn+1) ≤ 2dlog2 neε(1 + 2.5 ln(2/δ)), (7.2)

where

ḡ(Sn+1) =
1

n

n∑
i=1

[(
EAφ(A(S(i)

n+1),D)− EAφ(A(S(i)
n+1), Zi)

)

−
(
ES(i)

n+1
EAφ(A(S(i)

n+1),D)− ES(i)
n+1

EAφ(A(S(i)
n+1), Zi)

)
︸ ︷︷ ︸

∆n

 .
Here Sn+1 = Sn ∪ {Zn+1} with Zn+1 ∼ D independent of Sn. Moreover, as in

Theorem 7.24, we use the notation S(i)
n+1 = {Z1, . . . , Zi−1, Zn+1, Zi+1, . . . , Zn}.

In (7.1), we observe that ESn EA φ(A(Sn),D) is a number that depends on D,

and ESn EA φ(A(Sn), Z ′i) depends only on Z ′i. Therefore by changing Sn to S(i)
n+1

and Z ′i to Zi, we obtain the following equivalent form of (7.1). With probability
at least 1− δ/2:

∆n =
1

n

n∑
i=1

[
ES(i)

n+1
EA φ(A(S(i)

n+1),D)− ES(i)
n+1

EA φ(A(S(i)
n+1), Zi)

]
≤(1− α)ESn EAφ(A(Sn),D) + εn(δ/2)

≤(1− α)ESn EAφ(A(Sn),Sn) + εn(δ/2) + (1− α)ε. (7.3)

The first inequality is equivalent to (7.1). The second inequality used Theorem 7.2.
It follows from the union bound that with probability 1− δ, both (7.2) and (7.3)
hold. This implies that

EAφ(A(Sn),D)

≤ 1

n

n∑
i=1

[EAφ(A(S(i)
n+1);D)] + ε

=
1

n

n∑
i=1

[EAφ(A(S(i)
n+1);Zi)] + ḡ(Sn+1) + ∆n + ε

≤ 1

n

n∑
i=1

[EAφ(A(S(i)
n+1);Zi)] + 2dlog2 neε(1 + 2.5 ln(2/δ))

+ (1− α)ESn EAφ(A(Sn),Sn) + εn(δ/2) + (2− α)ε

≤ 1

n

n∑
i=1

[EAφ(A(Sn);Zi)] + 2dlog2 neε(1 + 2.5 ln(2/δ))

+ (1− α)ESn EAφ(A(Sn),Sn) + εn(δ/2) + (3− α)ε.

In the proof, the first inequality used uniform stability ofA. The second inequality
used (7.2) and (7.3). The third inequality used the uniform stability of A.
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Example 7.4. For bounded loss φ(·, ·) ∈ [0, 1], we can apply the additive Cher-
noff bound and let α = 1 and

εn(δ) =

√
ln(1/δ)

2n

in (7.1). This leads to the following inequality. With probability at least 1− δ:

EAφ(A(Sn),D) ≤EAφ(A(Sn),Sn) + (2 + 5dlog2 ne)ε ln(2/δ) + 2ε+

√
ln(2/δ)

2n
.

We note that in Example 7.4, if we employ a uniformly stable algorithm A(Sn)
that achieves approximate empirical risk minimization, then the same argument
in the standard analysis of ERM method (such as those in Chapter 3) can be used
to derive an oracle inequality for A that holds in high probability. An important
advantage of deriving such results using stability analysis instead of empirical
process in Chapter 3 is that stability analysis does not have to rely on covering
numbers (or related concept such as Rademacher complexity). As we will see
later, stability analysis can be used with computational procedures such as SGD
for which the concept of covering numbers can be difficult to apply.

Example 7.5. For bounded loss φ(·, ·) ∈ [0, 1], we can apply the multiplicative
Chernoff bound (2.11) with α = 1− γ for γ ∈ (0, 1), and

εn(δ) =
ln(1/δ)

2γn

in (7.1). This leads to the following inequality. With probability at least 1− δ:

EAφ(A(Sn),D) ≤EAφ(A(Sn),Sn) + γESnEAφ(A(Sn),Sn)

+ (2 + 5dlog2 ne)ε ln(2/δ) + 3ε+
ln(2/δ)

2γn
.

The result implies that if one can design a stable learning algorithm that achieves
near zero training loss, then the test loss is also near zero with large probability.
One may also use Bernstein’s inequality together with the variance condition to
obtain a similar result. We leave it as an exercise.

In addition to uniform stability, we will also consider the following closely
related concept of leave-one-out stability. It is easier to define training data de-
pendent stability using leave-one-out stability, and to allow different training loss
and test loss, as in (6.1).

Definition 7.6. Given datasets Sn = {Z1, . . . , Zn} ⊂ Sn+1 = {Z1, . . . , Zn, Zn+1}.
Let ε(·, ·) be a function Z×Zn+1 → R. The algorithm A(Sn) is ε(·, ·) leave-one-out
stable if there exists Ā(Sn+1) such that for all (Zn+1,Sn+1):

EAφ(A(Sn), Zn+1)− EĀφ(Ā(Sn+1), Zn+1) ≤ ε(Zn+1,Sn+1),

where EA denotes the expectation over the internal randomization of the algo-
rithm.
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7.2. REGULARIZED EMPIRICAL RISK MINIMIZATION 121

The following result shows that the expected generalization loss of A on Sn
can be bounded by the expected training loss of A on Sn+1. The proof is left as
an exercises.

Theorem 7.7. If an algorithm A is ε(·, ·)-leave-one-out stable, then

ESnEAφ(A(Sn),D) ≤ESn+1
EĀφ(Ā(Sn+1),Sn+1)

+ ESn+1

1

n+ 1

∑
Z∈Sn+1

ε(Z,Sn+1).

For certain problems, one can obtain more refined results using the data-
dependent leave-one-out stability analysis of Theorem 7.7. We will mostly con-
sider this approach in this chapter.

7.2 Regularized Empirical Risk Minimization

In this section, we consider empirical risk minimization with convex functions,
and analyze its generalization using stability. Properties of convex functions that
are useful for our purpose can be found in Appendix A. Additional background
on convex analysis and convex optimization can be found in Rockafellar (2015);
Boyd and Vandenberghe (2004).

We can now analyze the empirical risk minimization method for convex objec-
tives.

Theorem 7.8. Assume that φ(w, z) is G(z)-Lipschitz in w on a closed convex
set Ω. The training loss φ̄(w,Sn) = φ(w,Sn) + h(w) is λ strongly convex. Then
the regularized empirical risk minimization method

A(Sn) = arg min
w∈Ω

φ̄(w,Sn)

is ε(Zn+1,Sn+1) = G(Zn+1)2/(λ(n+1)) leave-one-out stable. If moreover we have
supz G(z) ≤ G, then it is ε = 2G2/(λn) uniformly stable.

Assume h(w) ≥ 0, then the following expected oracle inequality holds:

ESnφ(A(Sn),D) ≤ inf
w∈Ω

[φ(w,D) + h(w)] +
EZG(Z)2

λ(n+ 1)
.

Proof Consider Sn and Sn+1 = Sn ∪ {Zn+1}. We define

φ̄(w,Sn+1) = φ(w,Sn+1) +
n

n+ 1
h(w),

and let Ā(Sn+1) be its minimizer on Ω. Using the optimality of A(Sn) and Propo-
sition A.8, we obtain

∇φ̄(A(Sn),Sn)>(Ā(Sn+1)−A(Sn)) ≥ 0, (7.4)
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CHAPTER 7. STABILITY ANALYSIS 122

where ∇φ̄(w, ·) is the gradient with respect to w. Since

φ̄(A(Sn),Sn+1) =
n

n+ 1
φ̄(A(Sn),Sn) +

1

n+ 1
φ(A(Sn), Zn+1).

It follows that

∇φ̄(A(Sn),Sn+1)>(Ā(Sn+1)−A(Sn))

=

(
n

n+ 1
∇φ̄(A(Sn),Sn) +

1

n+ 1
∇φ(A(Sn), Zn+1)

)>
(Ā(Sn+1)−A(Sn))

≥ 1

n+ 1
∇φ(A(Sn), Zn+1)>(Ā(Sn+1)−A(Sn))

≥− G(Zn+1)

n+ 1
‖Ā(Sn+1)−A(Sn))‖2.

The first inequality used (7.4). The second inequality used the Lipschitz property
of φ. Since Ā(Sn+1) is the minimizer of φ̄(w,Sn+1) over w ∈ Ω, we obtain from
Proposition A.8 that

‖A(Sn)− Ā(Sn+1)‖2 ≤
G(Zn+1)

λ(n+ 1)
.

It follows that

φ(A(Sn), Zn+1)− φ(Ā(Sn+1), Zn+1)

≤G(Zn+1)‖A(Sn)− Ā(Sn+1)‖2 ≤
G(Zn+1)2

λ(n+ 1)
.

This proves the leave-one-out stability result. Similarly we can prove the uniform
stability result, which we leave as an exercise.

Now Theorem 7.7 implies that

ESnφ(A(Sn),D) ≤ESn+1
φ(Ā(Sn+1),Sn+1) + ESn+1

1

n+ 1

∑
Z∈Sn+1

G(Z)2

λ(n+ 1)

≤ inf
w

[
ESn+1

φ(w,Sn+1) + h(w)
]

+ ESn+1

1

n+ 1

∑
Z∈Sn+1

G(Z)2

λ(n+ 1)

= inf
w

[φ(w,D) + h(w)] +
EZG(Z)2

λ(n+ 1)
.

In the derivation, the inequality used the fact that Ā(Sn+1) is the minimizer of
the regularized empirical risk, and h(w) ≥ 0.

Example 7.9. We consider the binary linear support vector machine (SVM)
formulation with y ∈ {±1}, which employs the hinge loss

L(f(w, x), y) = max(1− f(w, x)y, 0), g(w) =
λ

2
‖w‖22,

with linear function class {f(w, x) = w>ψ(x) : w ∈ Rd}, where ψ(x) ∈ Rd is a
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known feature vector. The loss φ(w, z) = L(f(w, x), y) + g(w) with h(w) = 0 is
λ strongly convex. Moreover, the empirical minimizer A(Sn) satisfies

φ(A(Sn),Sn) ≤ φ(0,Sn) = 1.

Therefore ‖A(Sn)‖2 ≤
√

2/λ. This implies that we may consider the restriction
of SVM to

Ω =

{
w : ‖w‖2 ≤

√
2/λ

}
without changing the solution. It is clear that on Ω, φ(w,Z) with Z = (X,Y ) is
G(Z) = ‖ψ(X)‖2 +

√
2λ Lipschitz. From Theorem 7.8, we obtain the following

expected generalization bound for SVM:

ESnφ(A(Sn),D) ≤ inf
w∈Rd

φ(w,D) +
EX(‖ψ(X)‖2 +

√
2λ)2

λ(n+ 1)
.

Using Theorem 7.3, one can obtain an oracle inequality that holds with high
probability. We leave it as an exercise.

Similarly to the case of Lipschitz convex objective function, we have the fol-
lowing result for smooth convex functions.

Theorem 7.10. Assume that φ(w, z) is λ-strongly convex and L-smooth in w on
Rd. Then the empirical risk minimization method

A(Sn) = arg min
w∈Rd

φ(w,Sn)

is ε(Zn+1,Sn+1) = (1+L/(2λn))‖∇φ(A(Sn+1), Zn+1)‖22/(λn) leave-one-out stable
with respect to Ā(Sn+1) = A(Sn+1).

Moreover, if L ≤ 0.2λn, then the following expected oracle inequality holds:

ESnφ(A(Sn),D) ≤ inf
w∈Rd

[
φ(w,D) +

2.2

λn
EZ∼D‖∇φ(w,Z)‖22

]
.

Proof Consider Sn and Sn+1 = Sn ∪ {Zn+1}. Let

A(Sn+1) = arg min
w∈Rd

φ(w,Sn+1).

Using the optimality of A(Sn+1) and Proposition A.8, we obtain

∇φ(A(Sn+1),Sn+1)>(A(Sn)−A(Sn+1)) ≥ 0. (7.5)

Since

φ(A(Sn+1),Sn) =
n+ 1

n
φ(A(Sn+1),Sn+1)− 1

n
φ(A(Sn+1), Zn+1),
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it follows that

∇φ(A(Sn+1),Sn)>(A(Sn)−A(Sn+1))

=

(
n+ 1

n
∇φ(A(Sn+1),Sn+1)− 1

n
∇φ(A(Sn+1), Zn+1)

)>
(A(Sn)−A(Sn+1))

≥− 1

n
∇φ(A(Sn+1), Zn+1)>(A(Sn)−A(Sn+1))

≥− ‖∇φ(A(Sn+1), Zn+1)‖2
n

‖A(Sn+1)−A(Sn))‖2.

The first inequality used (7.5). Using the fact that A(Sn) is the minimizer of
φ(·,Sn), we obtain from Proposition A.8 that

‖A(Sn)−A(Sn+1)‖2 ≤
‖∇φ(A(Sn+1), Zn+1)‖2

λn
. (7.6)

We thus obtain

φ(A(Sn), Zn+1)− φ(A(Sn+1), Zn+1)

≤∇φ(A(Sn+1), Zn+1)>(A(Sn)−A(Sn+1)) +
L

2
‖A(Sn)−A(Sn+1)‖22

≤‖∇φ(A(Sn+1), Zn+1)‖2‖A(Sn)−A(Sn+1)‖2 +
L

2
‖A(Sn)−A(Sn+1)‖22

≤
(

1

λn
+

L

2λ2n2

)
‖∇φ(A(Sn+1), Zn+1)‖22.

The first inequality used the smoothness of φ. The second inequality used Cauchy-
Schwartz. The third inequality used (7.6). This implies the stability result.

Next we want to apply Theorem 7.7, and need to bound the right hand side.
For this purpose, we consider an arbitrary w ∈ Rd:

1

n+ 1

∑
Z∈Sn+1

‖∇φ(A(Sn+1), Z)‖22

≤ 2

n+ 1

∑
Z∈Sn+1

[
‖∇φ(w,Z)−∇φ(A(Sn+1), Z)‖22 + ‖∇φ(w,Z)‖22

]
≤ 4L

n+ 1

∑
Z∈Sn+1

[
φ(w,Z)− φ(A(Sn+1), Z)−∇φ(A(Sn+1), Z)>(w −A(Sn+1))

]
+

2

n+ 1

∑
Z∈Sn+1

‖∇φ(w,Z)‖22

=4L[φ(w,Sn+1)− φ(A(Sn+1),Sn+1)−∇φ(A(Sn+1),Sn+1)>(w −A(Sn+1))]

+
2

n+ 1

∑
Z∈Sn+1

‖∇φ(w,Z)‖22

=4L[φ(w,Sn+1)− φ(A(Sn+1),Sn+1)] +
2

n+ 1

∑
Z∈Sn+1

‖∇φ(w,Z)‖22. (7.7)
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In the above derivation, the first inequality used the algebraic calculation ‖a‖22 ≤
2‖b − a‖22 + 2‖b‖22. The second inequality is due to Proposition A.7. The last
equation used the fact that ∇φ(A(Sn+1),Sn+1) = 0.

Now we obtain

ESnφ(A(Sn),D) ≤ESn+1
φ(A(Sn+1),Sn+1)

+
(1 + L/(2λn))

λn
ESn+1

1

n+ 1

∑
Z∈Sn+1

‖∇φ(A(Sn+1), Z)‖22

≤
(

1− 4L(1 + L/(2λn))

λn

)
ESn+1

φ(A(Sn+1),Sn+1)

+
4L(1 + L/(2λn))

λn
ESn+1

φ(w,Sn+1)

+
2(1 + L/(2λn))

λn(n+ 1)
ESn+1

∑
Z∈Sn+1

‖∇φ(w,Z)‖22

≤ESn+1
φ(w,Sn+1) +

(2 + L/(λn))

λn(n+ 1)
ESn+1

∑
Z∈Sn+1

‖∇φ(w,Z)‖22

=φ(w,D) +
2(1 + L/(2λn))

λn
EZ∼D‖∇φ(w,Z)‖22.

In the above derivation, the first inequality is an application of Theorem 7.7,
with the leave-one-out stability result in the first part of the theorem. The second
inequality used (7.7). The third inequality used the fact that φ(A(Sn+1),Sn+1) ≤
φ(w,Sn+1), and 1− (4L(1 + L/(2λn)))/(λn) ≥ 0. We can now use L/(λn) ≤ 0.2
to obtain the desired bound.

Example 7.11. We consider the linear ridge regression formulation with y ∈ R,
which employs the least squares loss

L(f(w, x), y) = (f(w, x)− y)2, g(w) =
λ

2
‖w‖22,

with linear function class {f(w, x) = w>ψ(x) : w ∈ Rd}, where ψ(x) ∈ Rd is
a known feature vector. The loss φ(w, z) = L(f(w, x), y) + g(w) is λ strongly
convex. Moreover, φ(w, z) is

L = 2 sup
X
‖ψ(x)‖22 + λ

smooth for all z = (x, y). If L ≤ 0.2λn, we obtain from Theorem 7.10

ESnφ(A(Sn),D) ≤ inf
w∈Rd

[
φ(w,D) +

8.8

λn
EX‖ψ(X)‖22EY |X(f(w,X)− Y )2

]
.

In particular, if there exists w∗ such that noise is uniformly bounded:

EY |X(f(w∗, X)− Y )2 ≤ σ2
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for all X, then

ESnφ(A(Sn),D) ≤ inf
w∈Rd

[
σ2 +

λ

2
‖w∗‖22 +

8.8σ2

λn
EX‖ψ(X)‖22

]
.

The result is superior to what can be obtained from Theorem 7.8 when σ2 is
small.

7.3 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) has been widely used in practical machine
learning applications. Since it approximately implements the ERM method, one
may use empirical process and uniform convergence to study its generalization
behavior. However, one challenge is the lack of covering number bounds for gen-
eral convex objective functions, although covering number results for special cases
such as linear function classes exist. Another consideration is that in many ap-
plications, one may need to run SGD for finite iterations without achieving con-
vergence to the minimum solution of ERM. In such case, it is often much easier
to obtain generalization analysis for SGD using the stability analysis, as demon-
strated in (Hardt et al., 2016).

Algorithm 7.1: Stochastic Gradient Descent Algorithm

Input: Sn, φ̄(w, z), w0, learning rates {ηt}
Output: wT

1 for t = 1, 2, . . . , T do
2 Randomly pick Z ∼ Sn
3 Let wt = projΩ(wt−1 − ηt∇φ̄(wt−1, Z))
4 where projΩ(v) = arg minu∈Ω ‖u− v‖22

Return: wT

A key lemma in (Hardt et al., 2016) to analyze SGD for smooth convex function
is the contraction property of SGD as follows.

Lemma 7.12 (SGD contraction). Assume φ̄(w) is an L-smooth and λ-strongly
convex function of w on Rd. Given any w,w′ ∈ Rd, we have for all η ∈ [0, 1/L]:

‖projΩ(w − η∇φ̄(w))− projΩ(w′ − η∇φ̄(w′))‖2 ≤ (1− λη)‖w − w′‖2.

Proof Let

∆1 =φ̄(w)− φ̄(w′)−∇φ̄(w′)>(w − w′),
∆2 =φ̄(w′)− φ̄(w)−∇φ̄(w)>(w′ − w).
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We have

‖(w − η∇φ̄(w))− (w′ − η∇φ̄(w′))‖22
=‖w − w′‖22 − 2η(∇φ̄(w)−∇φ̄(w′))>(w − w′) + η2‖∇φ̄(w)−∇φ̄(w′)‖22
=‖w − w′‖22 − 2η(∆1 + ∆2) + η2‖∇φ̄(w)−∇φ̄(w′)‖22
≤‖w − w′‖22 − 2η(∆1 + ∆2) + η2L(∆1 + ∆2)

≤‖w − w′‖22 − η(∆1 + ∆2) ≤ (1− ηλ)‖w − w′‖22.

In the derivation, the first inequality used Proposition A.7. The second inequality
used ηL ≤ 1. The third inequality used the strong convexity. We can now obtain
the desired result by noticing that ‖projΩ(u)− projΩ(v)‖2 ≤ ‖u− v‖2.

We have the following uniform stability result for the SGD procedure. The
proof is similar to that of Theorem 7.14, and we leave it as an exercise.

Theorem 7.13. Assume that φ̄(w, z) = φ(w, z) + h(w) is λ-strongly convex and
L-smooth in w on Rd. Moreover, assume φ(w, z) is G Lipschitz on Ω. Define
b0 = 0, and for t ≥ 1:

bt = (1− ηtλ)bt−1 +
2ηt
n
G2,

where ηt ∈ [0, 1/L]. Then after T steps, Algorithm 7.1 is ε = bT uniformly stable
with respect to φ(w, z). The result also holds for an arbitrary convex combination

of the form
∑T

t=0 αtwt as the output of Algorithm 7.1, as long as the convex coef-

ficient αt (where αt ≥ 0 and
∑T

t=0 αt = 1) are drawn from a known distribution.

We also have the following more refined result for SGD using the leave-one-out
stability analysis.

Theorem 7.14. Assume that φ̄(w, z) = φ(w, z) + h(w) is λ-strongly convex and
L-smooth in w on Rd. Moreover, assume φ(w, z) is G(z) Lipschitz on Ω. Define
b0 = 0, and for t ≥ 1:

bt = (1− ηtλ)bt−1 +
2ηt
n+ 1

EDG(Z)2,

where ηt ∈ [0, 1/L]. We have the following result for Algorithm 7.1

ESnEAφ(A(Sn),D) ≤ ESn+1
EAφ(A(Sn+1),Sn+1) + bT ,

where we use EA to denote the randomization in SGD. The result also holds for
an arbitrary convex combination of the form

∑T
t=0 αtwt as the output of Algo-

rithm 7.1, as long as the convex coefficient αt (where αt ≥ 0 and
∑T

t=0 αt = 1)
are drawn from a known distribution.

Proof Let wt be the intermediate steps of SGD on Sn, and w′t be the intermediate
steps of SGD on Sn+1 = Sn ∪ {Zn+1}. We consider a coupling of wt and w′t, with
the same randomization for wt and w′t, except when we choose Z = Zn+1 for
update of w′t, we choose Z = Zi for updating of wt with i drawn uniformly from
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[n]. It follows from Lemma 7.12 that with this coupling, at each time t, with
probability n/(n+ 1), we choose the same Zi to update both wt and w′t:

‖wt − w′t‖2 ≤ (1− ληt)‖wt−1 − w′t−1‖2.

With probability 1/(n+ 1), we have

‖wt − w′t‖2
≤‖[wt−1 − ηt∇φ̄(wt−1, Zi)]− [w′t−1 − ηt∇φ̄(w′t−1, Zi)]‖2

+ ηt‖∇φ̄(w′t−1, Zi)−∇φ̄(w′t−1, Zn+1)‖2
≤(1− ληt)‖wt−1 − w′t−1‖2 + ηt(‖∇φ(w′t−1, Zn+1)‖2 + ‖∇φ(w′t−1, Zi)‖2),

where i is uniformly from [n]. Note that the second inequality used Lemma 7.12
again. Therefore

EA‖wt − w′t‖2 ≤(1− ηtλ)EA‖wt−1 − w′t−1‖2

+
ηt

n(n+ 1)

n∑
i=1

(G(Zi) +G(Zn+1)).

We now define

st = ESn+1
EA ‖wt − w′t‖2G(Zn+1),

then we have

st ≤(1− ηtλ)st−1 + ESn+1

ηt
n(n+ 1)

n∑
i=1

(G(Zi) +G(Zn+1))G(Zn+1)

=(1− ηtλ)st−1 +
ηt

n+ 1
[EDG(Z)2 + (EDG(Z))2]

≤(1− ηtλ)st−1 +
2ηt
n+ 1

EDG(Z)2.

It follows from the definition of bt that st ≤ bt. Therefore

ESn+1
EA ‖wt − w′t‖2G(Zn+1) ≤ bt ≤ bT . (7.8)

Assume that A(Sn) returns an arbitrary convex combination
∑T

t=0 αtwt, and

A(Sn+1) returns
∑T

t=0 αtw
′
t with the same random coefficients αt from the same

known distribution. Let ε(Zn+1,Sn+1) = EAφ(A(Sn), Zn+1)−EAφ(A(Sn+1), Zn+1),
then from the Lipschitz condition of φ(w,Zn+1) and (7.8), we obtain

ESn+1
EAε(Zn+1,Sn+1) ≤ ESn+1

EA‖A(Sn)−A(Sn+1)‖2G(Zn+1) ≤ bT .

We obtain from Theorem 7.7 that

ESnEAφ(A(Sn),D) ≤ ESn+1
EAφ(A(Sn+1),Sn+1) + bT .

This proves the desired result.
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Example 7.15. We can obtain an oracle inequality from Theorem 7.14 by as-
suming further that after T SGD steps, Algorithm 7.1 approximately solves the
empirical risk minimization problem as

EAφ(A(Sn+1),Sn+1) ≤ inf
w∈Ω

φ̄(w,Sn+1) + εT (Sn+1)

for some εT (·) ≥ 0. Here A may return a convex combination of wt for t ≤ T (see
Section 14.4 for examples of such convergence results). Using such a result, we
obtain from Theorem 7.14 the following oracle inequality:

ESnEAφ(A(Sn),D) ≤ inf
w∈Ω

φ̄(w,D) + ESn+1
εT (Sn+1) + bT .

In particular, we consider h(w) = 0, a constant learning rate η for T steps, and
a final estimator wt from the algorithm with t drawn uniformly from 0 to T − 1.
Then Theorem 14.5 implies that

εT (Sn+1) =
‖w0 − w‖22

2Tη
+
η

2
G2,

where we assume that ‖∇φ(w, z)‖2 ≤ G. In this case, bt = 2ηtG2/(n + 1). This
implies a bound

ESnEAφ(A(Sn),D) ≤ inf
w∈Ω

[
φ(w,D) +

‖w0 − w‖22
2Tη

]
+
η

2
G2 +

2ηTG2

n+ 1
.

Note that this result allows T > n, which means we can run SGD repeatedly over
the dataset Sn. For example, we may take T = n2, and η = O(n−1.5) to obtain a
convergence rate of O(1/

√
n).

In comparison, the online to batch conversion technique in Chapter 14 requires
each data point Z in the algorithm to be drawn independently from D. This
means that the online to batch technique applies only when we run SGD over
the dataset Sn once via sampling without replacement. It does not handle the
situation that SGD is applied to the dataset repeatedly (as commonly done in
practice).

Similar to Theorem 7.10, it is possible to remove the Lipschitz condition in
Theorem 7.14, and obtain bounds in terms of smoothness only. However, the
resulting bound will become more complex, and we will leave it as an exercise.

7.4 Gibbs Algorithm for Non-convex Problems

Although it is possible to derive stability results for SGD for nonconvex problems
under restrictive conditions, as shown in Hardt et al. (2016), the resulting bounds
are rather weak. It is also difficult to establish stability results for the ERM
solution of nonconvex optimization. However, in the following, we show that
appropriate randomization can be used to achieve stability even in the nonconvex
case. In particular, we consider a learning algorithm that randomly draws w from
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the following “posterior distribution”, also referred to as the Gibbs distribution:

p(w|Sn) ∝ p0(w) exp

(
−β

∑
Z∈Sn

φ(w,Z)

)
, (7.9)

where β > 0 is a tuning parameter, p0(w) is a prior on Ω. This randomized learn-
ing algorithm is often referred to as the Gibbs Algorithm, and its test performance
is measured by the expectation:

EAφ(A(Sn),D) = Ew∼p(w|Sn)φ(w,D).

If β → ∞, the method converges to ERM. We have the following charac-
terization of Gibbs distribution, which means that it can be regarded as the
entropy-regularized ERM over the probability distributions ∆(Ω). Here KL(·||·)
is the KL-divergence defined in Appendix B, which is always non-negative.

Proposition 7.16. Given any function U(w), we have

min
p∈∆(Ω)

[Ew∼pU(w) + KL(p||p0)] = − lnEw∼p0 exp(−U(w)),

and the solution is achieved by the Gibbs distribution q(w) ∝ p0(w) exp(−U(w)).
Here ∆(Ω) denotes the set of probability distributions on Ω.

Proof Let C = Ew∼p0 exp (−U(w)). Then we have

Ew∼pU(w) + KL(p||p0) =Ew∼p ln
p(w)

p0(w) exp (−U(w))

=Ew∼p ln
p(w)

Cq(w)
≥ − lnC.

The inequality used the fact that KL(p||q) ≥ 0, and the equality holds when
p(w) = q(w).

Proposition 7.16 implies that (7.9) satisfies

p(w|Sn) = arg min
p∈∆(Ω)

[
Ew∼pφ(w,Sn) +

1

βn
KL(p||p0)

]
. (7.10)

We can now state the uniform stability result for the Gibbs distribution.

Theorem 7.17. Consider the Gibbs algorithm A described in (7.9). If for all z:
supw∈Ω φ(w, z) − infw∈Ω φ(w, z) ≤ M , then A is ε = 0.5(e2βM − 1)M uniformly
stable.

Proof Consider Sn and S ′n that differ by one element. It follows that for any w:

exp(−βM) ≤ exp(−βφ(w,S ′n))

exp(−βφ(w,Sn))
≤ exp(βM).
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This implies that

exp(−βM) ≤ Ew∼p0 exp(−βφ(w,S ′n))

Ew∼p0 exp(−βφ(w,Sn))
≤ exp(βM).

Therefore

p(w|S ′n)

p(w|Sn)
=

exp(−βφ(w,S ′n))

exp(−βφ(w,Sn))

Ew∼p0 exp(−βφ(w,Sn))

Ew∼p0 exp(−βφ(w,S ′n))
≤ e2βM .

This implies that∣∣∣∣p(w|S ′n)

p(w|Sn)
− 1

∣∣∣∣ ≤ max
(
1− e−2βM , e2βM − 1

)
≤ e2βM − 1.

Now let φ̄(z) = infw φ(w, z) + 0.5M . We know that |φ(w, z) − φ̄(z)| ≤ 0.5M .
Therefore

EAφ(A(S ′n), z)− EAφ(A(Sn), z)

=Ew∼p(·|Sn)

(
p(w|S ′n)

p(w|Sn)
− 1

)
[φ(w, z)− φ̄(z)]

≤Ew∼p(·|Sn)

∣∣∣∣p(w|S ′n)

p(w|Sn)
− 1

∣∣∣∣ |φ(w, z)− φ̄(z)|

≤(e2βM − 1) · 0.5M.

This proves the desired result.

Example 7.18. Consider the Gibbs algorithm A described in (7.9) with bounded
loss as in Theorem 7.17. We have the following expected oracle inequality.

ESnEAφ(A(Sn),D)

≤ESnEAφ(A(Sn),Sn) + 0.5(e2βM − 1)M

≤ESn
[
Ew∼p(·|Sn)φ(w,Sn) +

1

βn
KL(p(·|Sn)||p0)

]
+ 0.5(e2βM − 1)M

≤ inf
p∈∆(Ω)

[
Ew∼pφ(w,D) +

1

βn
KL(p||p0)

]
+ 0.5(e2βM − 1)M.

The first inequality followed from Theorem 7.2 and Theorem 7.17. The second
inequality used non-negativity of KL-divergence. The last inequality used the fact
that the Gibbs distribution minimizes (7.10).

We can also prove a more refined result using leave-one-out stability as follows.

Theorem 7.19. Consider the Gibbs algorithm A described in (7.9). If for all z:
supw∈Ω φ(w, z)− infw∈Ω φ(w, z) ≤M , then A is

ε(Zn+1,Sn+1) = βeβMVarA[φ(A(Sn), Zn+1)]

leave-one-out stable. If the loss function φ satisfies the variance condition (3.13)
which we restate as follows:

VarZ∼D[φ(w,Z)] ≤ c2
0 + c1[φ(w,D)],
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then for β > 0 such that c2 = 1− c1βe
βM > 0, we have

c2ESnEAφ(A(Sn),D) ≤ inf
p∈∆(Ω)

[
Ew∼pφ(w,D) +

1

β(n+ 1)
KL(p||p0)

]
+ βeβMc2

0

≤ inf
w∈Ω

φ(w,D) + inf
ε>0

[
ε− ln p0(Ω(ε))

β(n+ 1)

]
+ βeβMc2

0,

where Ω(ε) = {w ∈ Ω : φ(w,D) ≤ infw φ(w,D) + ε}.
Proof Let Ā(Sn+1, Zn+1) be the Gibbs algorithm with posterior p(·|Sn+1). Let
φ̃(w,Zn+1) = φ(w,Zn+1)− Ew′∼p(·|Sn)φ(w′, Zn+1). Then |φ̃(w,Zn+1)| ≤M . Note

Ew∼p(·|Sn+1)φ̃(w,Zn+1) =Ew∼p(·|Sn)

exp(−βφ̃(w,Zn+1))φ̃(w,Zn+1)

Ew′∼p(·|Sn) exp(−βφ̃(w′, Zn+1))
, (7.11)

Ew∼p(·|Sn)φ̃(w,Zn+1) =0. (7.12)

It follows that

Ew∼p(·|Sn)φ(w,Zn+1)− Ew∼p(·|Sn+1)φ(w,Zn+1)

=Ew∼p(·|Sn)φ̃(w,Zn+1)− Ew∼p(·|Sn+1)φ̃(w,Zn+1)

=Ew∼p(·|Sn)

[
1− exp(−βφ̃(w,Zn+1))

Ew′∼p(·|Sn) exp(−βφ̃(w′, Zn+1))

]
φ̃(w,Zn+1)

=
Ew∼p(·|Sn)

[
1− exp(−βφ̃(w,Zn+1))

]
φ̃(w,Zn+1)

Ew′∼p(·|Sn) exp(−βφ̃(w′, Zn+1))

≤
Ew∼p(·|Sn)

∣∣∣exp(−βφ̃(w,Zn+1))− 1
∣∣∣ |φ̃(w,Zn+1)|

exp(−Ew′∼p(·|Sn)βφ̃(w′, Zn+1))

≤
βeβMEw∼p(·|Sn)|φ̃(w,Zn+1)|2

exp(−Ew′∼p(·|Sn)βφ̃(w′, Zn+1))
= βeβMVarw∼p(·|Sn)[φ(w,Zn+1)].

In the above derivations, the second equality used (7.11), and the third equality
used (7.12). The first inequality used the Jensen’s inequality and the convexity of
exp(·); the second inequality used |ea−1| ≤ e|a||a|. The last equation used (7.12).
This proves the desired leave-one-out stability result. It follows that

ESnEAφ(A(Sn),D)

≤ESn+1
EAφ(A(Sn+1),Sn+1) + βeβMESnEZ∼DVarAφ(A(Sn), Z)

≤ESn+1

[
Ew∼p(·|Sn+1)φ(w,Sn+1) +

1

β(n+ 1)
KL(p(·|Sn+1)||p0)

]
+ βeβMESnEZ∼DVarAφ(A(Sn), Z)

≤ inf
p

[
Ew∼pφ(w,D) +

1

β(n+ 1)
KL(p||p0)

]
+ βeβMESnEZ∼DVarAφ(A(Sn), Z)

≤ inf
p

[
Ew∼pφ(w,D) +

1

β(n+ 1)
KL(p||p0)

]
+ βeβM [c2

0 + c1ESnEAφ(A(Sn),D)].
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7.5. STOCHASTIC GRADIENT LANGEVIN DYNAMICS 133

The first inequality follows from Theorem 7.7. The second inequality used the
fact that KL-divergence is non-negative. The third inequality used (7.10), and
ESn+1

φ(w,Sn+1) = φ(w,D). The last inequality used the variance condition. We
can obtain the desired oracle inequality of the theorem by rearranging the terms.

The second part of the oracle inequality is achieved by taking

p(w) =
p0(w)1(w ∈ Ω(ε))

p0(Ω(ε))
,

so that KL(p||p0) = − ln p0(Ω(ε)).

Example 7.20. Consider a parametric model, where Ω ⊂ Rd is a compact set,
and w∗ ∈ arg minw∈Ω φ(w,D). Assume that φ(w, z) − φ(w∗, z) ≤ cm‖w − w∗‖2,
and − ln p0({w ∈ Ω : ‖w−w∗‖2 ≤ ε}) ≥ c′1 + c′2d ln(1/ε). Then there exists c′3 > 0
such that for βn ≥ 1:

inf
ε>0

[
ε− ln p0(Ω(ε))

β(n+ 1)

]
=
c2c
′
3d ln(βn)

βn
.

The oracle inequality in Theorem 7.19 becomes

c2ESnEAφ(A(Sn),D) ≤ φ(w∗,D) +
c′3d ln(βn)

βn
+ βeβMc2

0.

Example 7.21. Consider the least squares problem of Example 3.18:

φ(w, z) = (f(w, x)− y)2 − (f(w∗, x)− y)2, (f(w, x)− y)2 ∈ [0, 1],

and we assume that f(w∗, x) = E[y|x] with w∗ ∈ Ω. Then the variance condition
is satisfied with c0 = 0 and c1 = 2. We can take β so that 4βeβ < 1. In the
parametric model case of Example 7.20, this leads to a fast rate

ESnEw∼AE(X,Y )(f(w,X)− Y )2 ≤ E(X,Y )(f(w∗, X)− Y )2 +O

(
d lnn

n

)
.

7.5 Stochastic Gradient Langevin Dynamics

Similar to SGD, which solves ERM, the stochastic gradient Langevin dynam-
ics (SGLD) algorithm can be used to sample from the Gibbs distribution. The
resulting algorithm, described in Algorithm 7.2, is a slight modification of Algo-
rithm 7.1 with the addition of Gaussian noise εt at each step.

Since the addition of Gaussian noise is independent of the data, the stability
analysis of SGD still holds. For strongly convex functions, we can thus obtain the
following result. The proof is left as an exercise.

Theorem 7.22. Assume that φ̄(w, z) = φ(w, z) + h(w) is λ-strongly convex and
L-smooth in w on Rd. Moreover, assume φ(w, z) is G Lipschitz on Ω. Define
b0 = 0, and for t ≥ 1:

bt = (1− ηtλ)bt−1 +
2ηt
n
G2,
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Algorithm 7.2: Stochastic Gradient Langevin Dynamics Algorithm

Input: Sn, φ̄(w, z), p0, learning rates {ηt}
Output: wT

1 Draw w0 ∼ p0

2 for t = 1, 2, . . . , T do
3 Randomly pick Z ∼ Sn uniformly at random
4 Randomly generate εt ∼ N(0, I)

5 Let w̃t = wt−1 − ηt∇φ̄(wt−1, Z) +
√

2ηt/βεt
6 Let wt = projΩ(w̃t), where projΩ(v) = arg minu∈Ω ‖u− v‖22

Return: wT

where ηt ∈ [0, 1/L]. Then after T steps, Algorithm 7.2 is ε = bT uniformly stable.
The result also holds for any random convex combinations of {wt : t ≤ T} with
combination coefficients from a known distribution.

It is also possible to derive stability result with nonconvex functions for SGLD.
However, it is simpler to analyze the non-stochastic version (often referred to
as unadjusted Langevin algorithm, or ULA), where line 5 of Algorithm 7.2 is
replaced by the full gradient

w̃t = wt−1 − ηt∇φ̄(wt−1,Sn) +
√

2ηt/βεt. (7.13)

Theorem 7.23. Assume that for all z, z′, φ̄(w, z) − φ̄(w, z′) is a G-Lipschitz
function of w on Ω ⊂ Rd (but φ̄ is not necessarily convex):

‖∇φ̄(w, z)−∇φ̄(w, z′)‖2 ≤ G.

Assume also that supw,w′∈Ω[φ(w, z)−φ(w′, z)] ≤M for all z. Then after T steps,
ULA (with line 5 of Algorithm 7.2 replaced by (7.13)) is εT uniformly stable with

εT = MG
4n

√
2β
∑T

t=1 ηt.

Proof Consider Sn ∼ Dn and S ′n = (Sn \ {Zn}) ∪ {Z ′n}, where Z ′n ∼ D is a
sample independent of Sn. Let wt and w′t be the outputs of ULA with Sn and
S ′n respectively. Moreover, let pt be the distribution of wt; let pt,t−1(wt, wt−1) be
the joint distribution of (wt, wt−1); let p̃t,t−1(w̃t, wt−1) be the joint distribution of
(w̃t, wt−1). Similarly we define p′t, p

′
t,t−1 and p̃′t,t−1.

We now let w̄t(w) = w − ηt∇φ̄(w,Sn) and w̄′t(w) = w − ηt∇φ̄(w,S ′n). Then

p̃t,t−1(·|wt−1 = w) =N(w̄t(w), (2ηt/β)I),

p̃′t,t−1(·|w′t−1 = w) =N(w̄′t(w), (2ηt/β)I).
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We have

KL(p̃t,t−1(·|wt−1 = w)||p̃′t,t−1(·|w′t−1 = w))

=KL (N(w̄t(w), (2ηt/β)I)|| N(w̄′t(w), (2ηt/β)I))

=
β‖w̄t(w)− w̄′t(w)‖22

4ηt
≤ βηtG

2

4n2
. (7.14)

The second equality used the formula for the KL divergence of two Gaussian
distributions. The last inequality used the Lipschitz condition of φ̄. We have

KL(pt||p′t)−KL(pt−1||p′t−1)

=KL(pt,t−1||p′t,t−1)− Ew∼ptKL(pt,t−1(·|wt = w)||p′t,t−1(·|w′t = w))

−KL(pt−1||p′t−1)

≤KL(pt,t−1||p′t,t−1)−KL(pt−1||p′t−1)

=Ew∼pt−1
KL(pt,t−1(·|wt−1 = w)||p′t,t−1(·|w′t−1 = w))

≤Ew∼pt−1
KL(p̃t,t−1(·|wt−1 = w)||p̃′t,t−1(·|w′t−1 = w))

≤βηtG
2

4n2
.

The first inequality used the fact that KL-divergence is always non-negative.
The second inequality used the data processing inequality for KL-divergence (see
Theorem B.4). The last inequality used (7.14).

By summing over t = 1 to t = T and note that p0 = p′0, we obtain

KL(pT ||p′T ) ≤ βG2
∑T

t=1 ηt
4n2

. (7.15)

Therefore for any z, we have

EAφ(A(S ′n), z)− EAφ(A(Sn), z)

≤M‖pT − p′T‖TV ≤M
√

0.5KL(pT ||p′T ) ≤ MG

4n

√√√√2β
T∑
t=1

ηt.

The first inequality used the definition of TV-norm in Proposition B.7. The second
inequality used Pinsker’s inequality of Theorem B.9. The last inequality used
(7.15). This implies the desired result.

The stability result in Theorem 7.23 can be applied to nonconvex functions.
Moreover, the final bound depends on β. When β → 0, we obtain a more and more
stable algorithm. This is consistent with the analysis of the Gibbs algorithm. In
comparison, the result of Theorem 7.22, which only applies to convex functions,
does not depend on β.

7.6 Concentration of Uniformly Stable Leave-One-Out Estimate

This section proves a concentration inequality for an appropriately defined leave-
one-out estimate of a uniformly stable algorithm, which is analogous to McDi-
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armid’s inequality and Talagrand’s inequality for empirical processes (see Chap-
ter 6). Theorem 7.3 shows that this result can be used to obtain high probability
generalization bounds for uniformly stable algorithms.

Theorem 7.24. Assume that g(Sn; z) is zero-mean with respect to z for all Sn:

EZ∼Dg(Sn;Z) = 0.

Assume also that g(Sn; z) is an ε uniformly stable function. That is, for all z ∈ Z,
and S ′n that differs from Sn by one element, we have

|g(Sn; z)− g(S ′n; z)| ≤ ε.

Assume that Sn+1 ∼ Dn+1 contains n+ 1 iid samples from D. Let

ḡ(Sn+1) =
1

n

n∑
i=1

[
g(S(i)

n+1;Zi)− ES(i)
n+1
g(S(i)

n+1;Zi)
]
,

where S(i)
n+1 = {Z1, . . . , Zi−1, Zn+1, Zi+1, . . . , Zn}. Then for all λ ≤ 0.4/ε:

lnESn+1
exp ((λ/L)ḡ(Sn+1)) ≤ 1.5λ2ε2,

where L = dlog2 ne. This implies that with probability at least 1− δ:

ḡ(Sn+1) ≤ Lε+ 2.5Lε ln(1/δ).

The proof requires the following result from Boucheron et al. (2003).

Proposition 7.25. Consider a functional g̃(S), where S = [Z1, . . . , Zm] ∼ Dm
contains m iid samples from D. Let S(i) = [Z1, . . . , Zi−1, Z

′
i, Zi+1, . . . , Zm], where

S ′ = {Z ′i} ∼ Dm are m iid samples from D that are independent of S. Define

V+(S) = ES′

[
m∑
i=1

(g̃(S)− g̃(S(i))2
1(g̃(S) > g̃(S(i))

∣∣∣S] .
Assume that there exist positive constants a and b such that

V+(S) ≤ ag̃(S) + b,

then for λ ∈ (0, 1/a):

lnES exp(λg̃(S)) ≤ λES g̃(S) +
λ2

1− aλ
(aES g̃(S) + b).

Note that for notation simplicity, in the following proof our notation assumes
that g(Sn, z) is invariant to the order of elements in Sn. The analysis itself holds
without this assumption, but directly working with the general version requires
a more complex notation, which creates unnecessary difficulty for understanding
the main argument. We will thus write the proof with this assumption so that the
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key idea of the proof is easier to follow. Consider a fixed Sn+1 = {Z1, . . . , Zn+1},
we define for i ≤ m ≤ n,

S(i)
m = {Z1, . . . , Zi−1, Zn+1, Zi+1, . . . , Zm},

and with this notation, we have S(i)
n+1 = S(i)

n .
Now for all 1 ≤ m′ ≤ m ≤ n, we define

ḡm′,m(Sn+1) =
1

m′

m′∑
i=1

[
g(S(i)

n+1;Zi)− ES(i)
m
g(S(i)

n+1;Zi)
]
.

It follows that ḡ(Sn+1) = ḡn,n(Sn+1).

Given m′ ≤ m ≤ n, we denote by S̃m′ a uniformly selected subset of Sm of size
m′. It is easy to see by symmetry that

ḡm,m(Sn+1) =
1

m

m∑
i=1

[
g(S(i)

n+1;Zi)− ES(i)
m
g(S(i)

n+1;Zi)
]

=ES̃m′
1

m′

∑
Zi∈S̃m′

[
g(S(i)

n+1;Zi)− ES(i)
m
g(S(i)

n+1;Zi)
]
.

Therefore Jensen’s inequality implies that

lnESn+1
exp(λ′ḡm,m(Sn+1))

≤ lnESn+1
ES̃m′ exp

 λ′

m′

∑
Zi∈S̃m′

[
g(S(i)

n+1;Zi)− ES(i)
m
g(S(i)

n+1;Zi)
]

= lnESn+1
exp(λ′ḡm′,m(Sn+1)). (7.16)

The second inequality used the fact that all S̃m′ have identical distributions.
It is also easy to check the following equality by definition:

ḡm′,m(Sn+1) = ḡm′,m′(Sn+1) +
1

m′

m′∑
i=1

[
ES(i)

m′
g(S(i)

n+1;Zi)− ES(i)
m
g(S(i)

n+1;Zi)
]
.

Now using this decomposition, and by applying Jensen’s inequality to the convex
function lnESn+1

exp(g′(Sn+1)) with respect to g′(·), we obtain for all λ′ and ` > 1:

lnESn+1
exp (λ′ḡm′,m(Sn+1)) (7.17)

≤`− 1

`
lnESn+1

exp

(
`λ′

`− 1
ḡm′,m′(Sn+1)

)
+

1

`
lnESn+1

exp

(
`λ′

m′

m′∑
i=1

[
ES(i)

m′
g(S(i)

n+1;Zi)− ES(i)
m
g(S(i)

n+1;Zi)
])

.

Now by fixing {Zm+1, . . . , Zn}, we may consider a function of Sm′+1,...,m =
{Zm′+1, . . . , Zm} defined as follows (we note that the function does not depend
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on Zn+1 due to the expectation with respect to Zn+1 over S(i)
m′ and S(i)

m ):

g′(Sm′+1,m) = lnESm′ exp

(
λ

m′

m′∑
i=1

[ES(i)

m′
g(S(i)

n+1;Zi)− ES(i)
m
g(S(i)

n+1;Zi)]

)
.

We note that for i ≤ m′, [ES(i)

m′
g(S(i)

n+1;Zi)−ES(i)
m
g(S(i)

n+1;Zi)] as a function of Zi ∼
D has the same distribution as that of [ESm′g(Sn;Z)− ESmg(Sn;Z)] (considered
as a function of Z ∼ D). Since {Zi} are independent for i ≤ m′, conditioned on
Sm′+1,m, it follows that

g′(Sm′+1,m) =m′ lnEZ exp

(
λ

m′
[ESm′g(Sn;Z)− ESmg(Sn;Z)]

)
. (7.18)

We also have the following result, which is a direct consequence of uniform sta-
bility.

[ESm′g(Sn;Z)− ESmg(Sn;Z)] ≤ (m−m′)ε. (7.19)

In the following derivations, we further assume that m ≤ 2m′. It implies that

(m−m′)/m′ ≤ 1.

It follows that

g′(Sm′+1,m) =m′ lnEZ exp

(
λ

m′
[ESm′g(Sn;Z)− ESmg(Sn;Z)]

)
≤m′

[
EZ exp

(
λ

m′
[ESm′g(Sn;Z)− ESmg(Sn;Z)]

)
− 1

− λ

m′
EZ [ESm′g(Sn;Z)− ESmg(Sn;Z)]

]
≤(λ)2

m′
φ(0.4)EZ(ESm′g(Sn;Z)− ESmg(Sn;Z))2︸ ︷︷ ︸

g′′(Sm′+1,m)

.

In the above derivation, the first equality used (7.18). The first inequality used
log(z) ≤ z − 1, and EZg(·;Z) = 0 (which is an assumption of the theorem). The
second inequality used the fact that φ(z) = (ez− z−1)/z2 is increasing in z (this
is the same derivation as that of the Bennett’s inequality), and λ

m′
[ESm′g(Sn;Z)−

ESmg(Sn;Z)]] ≤ 0.4 (which follows from (7.19) , and λ(m−m′)ε/m′ ≤ λε ≤ 0.4).
Using the Efron-Stein inequality (6.10) and the ε uniform stability of g(·, ·), we

have

ESm′+1,m
g′′(Sm′+1,m) ≤ 0.5(m−m′)ε2. (7.20)

Note also that for Sm′+1,m and S ′m′+1,m that differ by one element, we have

(g′′(Sm′+1,m)− g′′(S ′m′+1,m))2

≤(2εEZ |[ESm′g(Sn;Z)− ESmg(Sn;Z)]|+ ε2)2

≤5ε2g′′(Sm′+1,m) + 5ε4.
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Therefore by summing over S ′m′+1,m which differs from Sm′+1,m at j = m′ +
1, . . . ,m, we know that with g′′, the condition of Proposition 7.25 holds with
a = 5(m−m′)ε2 and b = 5(m−m′)ε4. Therefore

lnESm′+1,m
exp(g′(Sm′+1,m))

≤ lnESm′+1,m
exp

(
(λ)2

m′
φ(0.4)g′′(Sm′+1,m)

)
≤(λ)2

m′
φ(0.4)ESm′+1,m

g′′(Sm′+1,m)

+ 2
(λ)4

(m′)2
φ(0.4)2

(
5(m−m′)ε2ESm′+1,m

g′′(Sm′+1,m) + 5(m−m′)ε4
)
.

The second inequality used Proposition 7.25 for g′′, with a = 5(m−m′)ε2 and b =
5(m−m′)ε4, and observe that (1−(λ2/m′)φ(0.4)a)−1 ≤ (1−5(0.4)2φ(0.4))−1 ≤ 2.

By combining the above inequality with (7.20), and using φ(0.4) ≤ 0.58 and
(m−m′)/m′ ≤ 1, we obtain

lnESn+1
exp

(
λ

m′

m′∑
i=1

[ES(i)

m′
g(S(i)

n+1;Zi)− ES(i)
m
g(S(i)

n+1;Zi)]

)
≤0.3λ2ε2 + 6λ4ε4 ≤ 1.5λ2ε2. (7.21)

The second inequality used λε ≤ 0.4.
Now consider an increasing sequence 1 = m0 < m1 < m2 < · · · < mL = n,

where m` = min(2`, n). Let λ` = λ/` for ` > 0 and λ0 = λ. We have

` lnESn+1
exp (λ`ḡm`,m`(Sn+1))

≤` lnESn+1
exp

(
λ`ḡm`−1,m`(Sn+1)

)
≤(`− 1) lnESn+1

exp
(
λ`−1ḡm`−1,m`−1

(Sn+1)
)

+ lnESn+1
exp

(
λ

m`−1

m`−1∑
i=1

[ES(i)
m`−1

g(S(i)
n+1;Zi)− ES(i)

m`

g(S(i)
n+1;Zi)]

)
≤(`− 1) lnESn+1

exp(λ`−1ḡm`−1,m`−1
(Sn+1)) + 1.5λ2ε2.

The first inequality used (7.16). The second inequality used (7.17) for ` > 1, and
it becomes equality for ` = 1. The third inequality used (7.21).

By summing ` from 1 to L, we obtain

L · lnESn+1
exp (λLḡ(Sn+1)) = L · lnESn+1

exp (λLḡmL,mL(Sn+1)) ≤ 1.5λ2ε2L.

This implies the first desired bound.
The second inequality follows from the Markov’s inequality as follows. Consider

ε′ = 2.5 ln(1/δ) > 0 and take λ = 0.4/ε. We have

ln Pr[ḡ(Sn+1) ≥ L(1 + ε′)ε] ≤ lnESn+1
exp (λLḡ(Sn+1))− λLL(1 + ε′)ε

≤
[
1.5λ2ε2 − (λ/L)L(1 + ε′)ε

]
≤ −0.4ε′ = ln δ.

This implies the second bound.

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



CHAPTER 7. STABILITY ANALYSIS 140

7.7 Historical and Bibliographical Remarks

The idea of uniform stability for non-randomized algorithms was introduced by
Bousquet and Elisseeff (2002), where the authors also considered deriving con-
centration bounds using McDiarmid’s inequality. However, concentration results
obtained there were suboptimal. Better concentration bounds were obtained re-
cently by Feldman and Vondrak (2019) and Bousquet et al. (2020). Theorem 7.24
is motivated by their analysis, and the result is comparable to that of Bousquet
et al. (2020), but with a different proof. However, the concentration result holds
only for uniform stability. The idea of using leave-one-out analysis to obtain ex-
pected oracle inequality was considered by Zhang (2003a). The leave-one-out
stability analysis presented here generalizes the analysis of (Zhang, 2003a).

The randomized stability, discussed in this chapter, was introduced by Hardt
et al. (2016) to analyze the generalization of stochastic gradient descent. It has
become a popular theoretical tool for analyzing SGD-like procedures when it is
necessary to run such algorithms multiple times over the data. For example, it is
an essential technique in the generalization analysis of differentially private SGD
(Bassily et al., 2020).

Gibbs distribution has its origin in physics (Gibbs, 1902). It has been studied
in machine learning by McAllester (1999) in the supervised learning setting, and
by Freund and Schapire (1997) in the online learning setting.

The SGLD algorithm was proposed by Welling and Teh (2011) for sampling
from Bayesian posterior distributions (or Gibbs distributions). Its analysis has
drawn significant interests, both for convergence and for generalization. The gen-
eralization analysis of SGLD for nonconvex functions in Theorem 7.23 is related
to the information theoretical approach studied in some recent work (see Russo
and Zou, 2016, 2019; Xu and Raginsky, 2017; Mou et al., 2018), which we will
study further in Section 10.3.

The SGLD algorithm has also appeared in differential privacy, and in that
setting it is referred to as the differentially private SGD (DP-SGD) algorithm
(Abadi et al., 2016). Theorem 7.23 employs techniques simplified from the DP-
SGD analysis (see Abadi et al., 2016). A more complex analysis that handles
SGLD can be found in Li et al. (2020).
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Exercises

7.1 Assume that the variance condition (3.13) holds. Use Bernstein inequality to derive a

bound for (7.1). Derive an oracle inequality using Theorem 7.3.

7.2 Prove Theorem 7.7.

7.3 In Example 7.9, assume that ‖ψ(X)‖2 ≤ B for all X. Derive an oracle inequality for SVM

that holds in high probability using Theorem 7.3.

7.4 Prove the uniform stability result in Theorem 7.8, under the assumption that supZ G(Z) ≤
G.

7.5 Assume a learning algorithm A is deterministic and ε uniformly stable on training data of

size n. Use McDiarmid’s inequality to obtain a concentration bound. Apply it to the case

of Exercise 7.4. Compare the result to that of Theorem 7.3.

7.6 Give an example to show that under the conditions of Theorem 7.10, ERM may not be

uniformly stable.

7.7 Use Theorem 7.8 to derive an expected generalization bound for the ridge regression

problem in Example 7.11.

7.8 Consider regularized binary linear logistic regression for y ∈ {±1}:

L(f(w, x), y) = ln(1 + exp(−f(w, x)y)), g(w) =
λ

2
‖w‖22,

where f(w, x) = w>ψ(x) for some known feature vector ψ(x). Assume that there exists

B > 0 such that supX ‖ψ(X)‖2 ≤ B. Show that φ(w, z) = L(f(w, x), y) + g(w) is both

Lipschitz (in a finite region) and smooth. Derive an expected oracle inequality using both

Theorem 7.8 and Theorem 7.10. When does Theorem 7.10 give a better bound?

7.9 Prove Theorem 7.13.

7.10 Under the condition of previous problem with supX ‖ψ(X)‖2 ≤ B. Assume we solve the

regularized logistic regression problem using SGD. Assume that we choose a learning rate

ηt = 1/(L+ λt). Derive bT and an oracle inequality using Theorem 7.14.

7.11 Assume that we remove the Lipschitz condition in Theorem 7.14. Derive a stability result

and oracle inequality for SGD, similar in spirit to Theorem 7.10.

7.12 Consider binary linear classification with L(f(w, x), y) = 1(f(w, x)y ≤ 0), where y ∈
{±1}, f(w, x) = w>ψ(x), with ψ(x) ∈ Rd and ‖ψ(x)‖2 ≤ 1. Let p0(w) = N(0, I), and

assume that there exists w∗ ∈ Rd so that 1(f(w, x)y ≤ 0) = 0 when w ∈ {w : ‖w−w∗‖2 ≤
γ}, where γ > 0. Use Theorem 7.19 to obtain an oracle inequality for the Gibbs algorithm.

7.13 Prove Theorem 7.22.
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8

Model Selection

In previous chapters, we studied the generalization of supervised learning algo-
rithms, when the model is given. That is, we assume that the loss function is
L(f(w, x), y), where the model class {f(w, x) : w ∈ Ω} is known. In practical
applications, we often encounter the situation that many different model classes
(such as SVM, neural networks, decision trees) are tried, and we want to select
the best model to achieve the smallest test loss. A typical approach by practi-
tioner is to select models via a validation set. One disadvantage is that model
training and selection needs to be done separately. An alternative method allows
one to do model selection directly on the training data, using a data-dependent
generalization bound as regularization term. In this approach, we do not have to
rely on a separate validation data, but employ a specially designed regularization
term. We will discuss both approaches.

8.1 Model Selection Problem

Mathematically, we may regard a model, indexed by a hyperparameter θ ∈ Θ,
as a learning algorithm A(θ,Sn) that maps the training data Sn to a prediction
function f ∈ F . In general, these algorithms may be completely different and
the underlying model function classes are not related to each other (for exam-
ple, one model may be decision tree, and another model may be support vector
machine). However, in applications, one may also encounter the situation that
the algorithms are related, and θ is a tuning parameter of the algorithm. For
example, if we consider using stochastic gradient descent to train a classifier,
the tuning parameter θ may be the learning rate schedule. If we consider us-
ing regularization methods, then θ may be the regularization parameter. If we
consider training neural networks with different width, then the tuning param-
eter θ may be the width of the hidden layers. For such problems, each model
A(θ,Sn) ∈ F(θ) = {f(w, x) : w ∈ Ω(θ)}. The model functions F = ∪F(θ) have
the same functional form. The goal of model selection is to find the best model
hyperparameter θ so that the corresponding learning algorithm A(θ, ·) achieves
a small test error.

Definition 8.1. Consider a loss function φ(f, z) : F × Z → R, and a model
family {A(θ,Sn) : Θ × Zn → F , n ≥ 0}. Consider N ≥ n ≥ 0, and iid dataset

Sn ⊂ SN ∼ DN . A model selection algorithm Ā maps SN to θ̂ = θ̂(SN) ∈ Θ,
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and then train a model f̂ = A(θ̂(SN),Sn) = Ā(SN). It satisfies an εn,N(·, ·) oracle
inequality if there exists εn,N(θ, δ), such that for all δ ∈ (0, 1), with probability
at least 1− δ over SN :

φ(A(θ̂(SN),Sn),D) ≤ inf
θ∈Θ

[ESnφ(A(θ,Sn),D) + εn,N(θ, δ)] .

More generally, a learning algorithm Ā : SN → F is εn,N(·, ·) adaptive to the
model family {A(θ, ·) : θ ∈ Θ} if there exists εn,N(θ, δ), such that for all δ ∈ (0, 1),
with probability at least 1− δ over SN :

φ(Ā(SN),D) ≤ inf
θ∈Θ

[ESnφ(A(θ,Sn),D) + εn,N(θ, δ)] .

Note that we have used a slightly different notation φ(f, Z), instead of φ(w,Z)
as in earlier chapters, to emphasize that in model selection, the prediction func-
tion f(w, ·) from different models can be compared, but the parameter w of
the functions may not be comparable when different models have different func-
tional forms such as decision trees versus neural networks. Without causing
confusion, one may consider f to be the function represented by w, so that
φ(f, Z) = L(f(X), Y ) and φ(w,Z) = L(f(w,X), Y ). Similar to Definition 3.8,
we use the simplified notation

φ(f,D) = EZ∼D φ(f, Z), φ(f,Sn) =
1

n

∑
Z∈Sn

φ(f, Z).

The concept adaptivity is more general than model selection, as the algorithm
does not need to choose a specific model A(θ, ·) indexed by θ. For example, a
commonly used method to achieve adaptivity is model averaging, where we take
the average of several different model outputs f̂θj = A(θj,Sn) as

f̂avg(x) =
1

k

k∑
j=1

f̂θj (x).

If different models have the same functional form, with a vector model parameter
w ∈ Rd: f̂θj (x) = f(ŵj, x). Then one may also average the model parameters as
follows:

ŵavg =
1

k

k∑
j=1

ŵj.

In general, the training data Sn is a subset of SN , and we allow n < N in order to
analyze validation methods which are commonly used in practice. In addition to
the large probability bounds in Definition 8.1, one may also derive bounds that
holds for expectation over SN .
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8.2 Model Selection on Validation Data

A frequently employed method for model hyperparameter tuning is to split a
labeled data SN into a training data Sn and a validation data S̄m with N = m+n.
We can then train the models on the training data Sn, and then evaluate on
validation data S̄m. We select the model according to their performance on the
validation set.

In this section, we consider a countable sequence of models {A(θ, ·) : θ =

1, 2, . . .} that can produce f̂θ = A(θ,Sn) ∈ F from the training data Sn. Let
{q(θ) ≥ 0} be a sequence of non-negative numbers that satisfies the inequality

∞∑
θ=1

q(θ) ≤ 1. (8.1)

Consider the following model selection algorithm, which trains a prediction func-
tion A(θ,Sn) on training data for any given a model θ, and then selects a model

θ̂ to approximately minimize the following generic model selection criterion on
the validation data:

Q(θ̂,A(θ̂,Sn), S̄m) ≤ inf
θ
Q(θ,A(θ,Sn), S̄m) + ε̃, (8.2)

where

Q(θ, f, S̄m) =φ(f, S̄m) + rm(q(θ)).

We have the following generic model selection result using the union bound
of additive Chernoff bound. Similar results can be obtained for multiplicative
Chernoff bounds, and Bernstein’s inequalities.

Theorem 8.2 (Model Selction on Validation Data). Assume supZ,Z′ [φ(f, Z) −
φ(f, Z ′)] ≤M for all f , and the validation data S̄m contains m iid samples from
D. Given training data Sn, consider (8.2) with

rm(q) = M

√
ln(1/q)

2m
.

Then with probability at least 1− δ over the random selection of Sm:

φ(A(θ̂,Sn),D) ≤ inf
θ
Q(θ,A(θ,Sn), S̄m) + ε̃+M

√
ln(1/δ)

2m
.

This implies the following oracle inequality. With probability at least 1 − δ over
the random sampling of S̄m:

φ(A(θ̂,Sn),D) ≤ inf
θ

[φ(A(θ,Sn),D) + rm(q(θ))] + ε̃+M

√
2 ln(2/δ)

m
,

where q(θ) satisfies (8.1).
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Proof For each model θ, let f̂θ = A(θ,Sn). We obtain from the additive Chernoff
bound that with probability at least 1− q(θ)δ:

EZ∼Dφ(f̂θ, Z) ≤ 1

m

∑
Z∈S̄m

φ(f̂θ, Z) +M

√
ln(1/(q(θ)δ))

2m

≤ 1

m

∑
Z∈S̄m

φ(f̂θ, Z) +M

√
ln(1/q(θ))

2m
+M

√
ln(1/δ)

2m
.

Taking the union bound over θ, we know that the above claim holds for all θ ≥ 1
with probability at least 1 − δ. This result, combined with the definition of θ̂ in
(8.2), leads to the first desired bound.

Now by applying the Chernoff bound for an arbitrary θ that does not depend
on S̄m, we obtain with probability at least 1− δ/2:

Q(θ, f̂θ, S̄m) ≤ EZ∼Dφ(f̂θ, Z) + rm(q(θ)) +M

√
ln(2/δ)

2m
.

By combining this inequality with the first bound of the theorem, we obtain the
second desired inequality.

A frequent choice of q(θ) is q(θ) = 1/(θ(θ + 1)). In this case, rm depends only
logarithmically on θ, and the penalty rm(θ) grows very slowly as θ increases.
It means that for model selection with bounded loss functions, we can compare
exponentially (in m) many models without paying a significant penalty.

Theorem 8.2 can be combined with uniform convergence results such as Corol-
lary 6.21 to obtain a more precise statement for the ERM method, showing that
a near optimal generalization bound can be obtained using the method of (8.2).
This leads to an oracle inequality for model selection with ERM learners.

Corollary 8.3. Consider a countable family of approximate ERM algorithms
{A(θ, ·) : θ = 1, 2, . . .}, each characterized by its model space F(θ), and returns a

function f̂θ ∈ F(θ) such that

φ(f̂ ,Sn) ≤ inf
f∈F(θ)

φ(f,Sn) + ε′,

where we use the notation of Definition 8.1.
Assume further that supZ,Z′ [φ(f, Z)−φ(f, Z ′)] ≤M for all f , and we use (8.2)

to select the best model θ̂ on the validation data S̄m, with the choice

rm(q) = M

√
ln(1/q)

2m
.

Then the following result holds with probability at least 1−δ over random selection
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of Sn and S̄m:

φ(A(θ̂,Sn),D) ≤ inf
θ

[
inf

f∈F(θ)
φ(f,D) + 2Rn(G(θ),D) + rm(q(θ))

]
+ ε̃+ ε′ +M

√
2 ln(4/δ)

n
+M

√
2 ln(4/δ)

m
,

where Rn(G(θ),D) is the Rademacher complexity of G(θ) = {φ(f, ·) : f ∈ F(θ)}
and q(θ) satisfies (8.1).

Proof Consider any model θ. We have from Theorem 8.2 that with probability
1− δ/2,

φ(A(θ̂,Sn),D) ≤ [φ(A(θ,Sn),D) + rm(q(θ))] + ε̃+M

√
2 ln(4/δ)

m
.

Moreover, from Corollary 6.21 with h(·) = 0, we know that with probability at
least 1− δ/2:

φ(A(θ,Sn),D) ≤ inf
f∈F(θ)

φ(f,D) + ε′ + 2Rn(G(θ),D) + 2M

√
ln(4/δ)

2n
.

Taking the union bound, both inequalities hold with probability at least 1 − δ,
which leads to the desired bound.

In the application of Corollary 8.3, we often choose a nested function class
F(θ) ⊂ F(θ′) when θ ≤ θ′. This means we consider a sequence of model families
that become more complex. A larger function class F(θ) can achieve a smaller test
loss inff∈F(θ φ(f,D), but it also has a larger Rademacher complexity Rn(G(θ),D).
With the choice of q(θ) = 1/(θ + 1)2, rm depends only logarithmically on θ,
and hence Rn(G(θ),D) is the dominant penalty for the overall generalization
performance. It also implies that we should usually choose n to be larger than m
in the training/validation split, as the dominant penalty Rn(G(θ),D) decreases
as n increases.

Example 8.4. Consider a {0, 1} valued binary classification problem, with bi-
nary classifiers F(θ) = {fθ(w, x) ∈ {0, 1} : w ∈ Ω(θ)} of VC-dimension d(θ).
The Rademacher complexity of G(θ) is no larger than (16

√
d(θ))/

√
n (See Ex-

ample 6.26). Take q(θ) = 1/(θ + 1)2. Then we have from Corollary 8.3 that

ED1(fθ̂(ŵ,X) 6= Y ) ≤ inf
θ,w∈Ω(θ)

[
ED1(fθ(w,X) 6= Y ) +

32
√
d(θ)√
n

+

√
ln(θ + 1)

m

]

+ ε̃+ ε′ +

√
2 ln(4/δ)

n
+

√
2 ln(4/δ)

m
.

This result shows that the model selection algorithm of (8.2) can automatically
balance the model accuracy ED1(fθ(w,X) 6= Y ) and model dimension d(θ). it
can adaptively choose the optimal model θ, up to a penalty of O(

√
ln(θ + 1)/n).
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While we only considered the selection of discrete models with training data
and validation data split, it is also possible to consider continuous models, if the
learning algorithm is stable with respect to model hyperparameter θ. In such
case, we may introduce a notion similar to covering numbers and then discrete
the continuous model space accordingly.

8.3 Model Selection on Training Data using Data Dependent Bounds

In the typical application of model selection, we can split a large labeled data
into training and validation partitions, and employ the technique of Section 8.2 to
do model selection on the validation data. However, the split effectively reduces
training data size, and it is difficult to nest model selection procedures (that is, to
select model selection algorithms). To address this issue, an alternative approach
is to do model selection directly on the training data (SN = Sn) without any
training and validation partition. This is possible if we have a sample dependent
generalization bound, as we will demonstrate in this section.

In the following, we still consider a countable sequence of models, parameterized
by function families {F(θ) : θ = 1, 2, . . .}. Consider the following model selection

algorithm, which simultaneously finds the model hyperparameter θ̂ and model
function f̂ ∈ F(θ̂) on the training data Sn:

Q(θ̂, f̂ ,Sn) ≤ inf
θ,f∈F(θ)

Q(θ, f,Sn) + ε̃, (8.3)

where for f ∈ F(θ),

Q(θ, f,Sn) =φ(f,Sn) + R̃(θ, f,Sn),

where R̃ is an appropriately chosen sample dependent upper bound of the com-
plexity for family F(θ).

Sample dependent uniform convergence bounds can be used to design R̃ in
the model selection algorithm (8.3) on training data only, without splitting the
training data into training versus validation partitions. The idea is similar to the
model selection on validation data presented in Section 8.2, with data dependent
uniform convergence bound replacing the Chernoff bound. The following generic
result shows that for this model selection method, we can obtain an oracle in-
equality from any sample-dependent uniform convergence bound.

Theorem 8.5. Let {q(θ) ≥ 0} be a sequence of numbers that satisfy (8.1). As-
sume that for each model θ, we have uniform convergence result as follows. With
probability at least 1− δ, for all f ∈ F(θ),

αφ(f,D) ≤ φ(f,Sn) + ε̂(θ, f,Sn) +

(
ln(c0/δ)

λn

)β
,

for some constants α, λ, β > 0 and c0 ≥ 1. If we choose

R̃(θ, f,Sn) ≥ ε̂(θ, f,Sn) + 2max(0,β−1)

(
ln(c0/q(θ))

λn

)β
,
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then the following uniform convergence result holds. With probability at least 1−δ,
for all θ and f ∈ F(θ):

αφ(f,D) ≤ φ(f,Sn) + R̃(θ, f,Sn) + 2max(0,β−1)

(
ln(1/δ)

λn

)β
.

If moreover, we have for all θ and f ∈ F(θ), the following concentration bound
hold, with probability 1− δ:

φ(f,Sn) + R̃(θ, f,Sn) ≤ESn
[
α′φ(f,Sn) + α′′R̃(θ, f,Sn)

]
+ ε′(θ, f, δ).

Then we have the following oracle inequality for (8.3). With probability at least
1− δ:

αφ(f̂ ,D) ≤ inf
θ,f∈F(θ)

[
α′φ(f,D) + α′′ESnR̃(θ, f,Sn) + ε′(θ, f, δ/2)

]
+ ε̃+ 2max(0,β−1)

(
ln(2/δ)

λn

)β
.

Proof Taking union bound over θ, each with probability 1− 0.5q(θ)δ, we obtain
that with probability at least 1− δ/2, for all θ and f ∈ F(θ),

αφ(f,D) ≤φ(f,Sn) + ε̂(θ, f,Sn) +

(
ln(c0/q(θ))

λn
+

ln(2/δ)

λn

)β
≤φ(f,Sn) + ε̂(θ, f,Sn) + 2max(0,β−1)

(
ln(c0/q(θ))

λn

)β
+ 2max(0,β−1)

(
ln(2/δ)

λn

)β
≤φ(f,Sn) + R̃(θ, f,Sn) + 2max(0,β−1)

(
ln(2/δ)

λn

)β
.

The first inequality used the union bound over all F(θ). The second inequality
used Jensen’s inequality. The third inequality used the assumption of R̃. This
proves the desired uniform convergence result.

Now since f̂ is the solution of (8.3), it follows that for all θ and f ∈ F(θ), with
probability at least 1− δ/2:

αφ(f̂ ,D) ≤φ(f̂ ,Sn) + R̃(θ̂, f̂ ,Sn) + 2max(0,β−1)

(
ln(2/δ)

λn

)β
≤φ(f,Sn) + R̃(θ, f,Sn) + 2max(0,β−1)

(
ln(2/δ)

λn

)β
+ ε̃.

In addition, with probability at least 1− δ/2:

φ(f,Sn) + R̃(θ, f,Sn) ≤ ESn
[
α′φ(f,Sn) + α′′R̃(θ, f,Sn)

]
+ ε′(θ, f, δ/2).
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Taking the union bound, and sum of the two inequalities, we obtain the desired
oracle inequality.

The result demonstrates that one can turn any sample dependent uniform con-
vergence bound into a model selection method. The algorithm itself does not
depend on the concentration result involving ε′. In fact, an expected oracle in-
equality can be obtained even if we do not know ε′, as shown in Exercises 8.2.
The following example illustrates the roles of α, α′, α′′, β and λ.

Example 8.6. In Theorem 8.5, we consider the following absolute deviation loss

φ(f, z) = |f(x)− y|,

and assume that y ∈ [−1, 1]. Assume also we have function families {F(θ)}, each
with N(θ) elements, and |f(x)| ≤ θ for all f(x) ∈ F(θ) (θ = 1, 2, . . .). We thus
have φ(f, z) ∈ [0, θ+ 1]. The multiplicative Chernoff bound in (2.11) implies that
for any θ, with probability at least 1− δ, for all f ∈ F(θ):

(1− γ)φ(f,D) ≤ φ(f,Sn) +
(θ + 1) ln(N(θ)/δ)

2γn
.

It implies the following result for γ ∈ (0, 1):

(1− γ)φ(f,D) ≤ φ(f,Sn) +
(θ + 1) ln(N(θ))

2γn
+
λ2(θ + 1)2

16γ2
+

(
ln(1/δ)

λn

)2

.

In the above derivation, we tried to decouple θ and δ so that the penalty term
R̃ in the model selection method (8.3) does not depend on δ. Now we can take
β = 2. It follows that we can take

ε̂(θ, f,Sn) =
(θ + 1) ln(N(θ))

2γn
+
λ2(θ + 1)2

16γ2
,

R̃(θ, f,Sn) =
(θ + 1) ln(N(θ))

2γn
+
λ2(θ + 1)2

16γ2
+ 2

(
ln(1/q(θ))

λn

)2

.

Both ε̂ and R̃ depend on the model index θ but not on the training data Sn.
Now for all θ and f ∈ F(θ), the multiplicative Chernoff bound (2.12) implies

that for all θ and f ∈ F(θ), with probability 1− δ:

φ(f,Sn) ≤ (1 + γ)φ(f,D) +
(1 + θ)(3 + 2γ) ln(1/δ)

6γn
.

Theorem 8.5 implies that the following oracle inequality holds:

(1− γ)φ(f̂ ,D) ≤ inf
θ,f∈F(θ)

[(1 + γ)φ(f,D) + εn(θ, δ/2)] + ε̃+

(
ln(2/δ)

λn

)2

,

where

εn(θ, δ) =
(θ + 1) lnN(θ)

2γn
+
λ2(θ + 1)2

16γ2
+ 2

(
ln q(θ)

λn

)2

+
(1 + θ)(3 + 2γ) ln 1

δ

6γn
.

If we take λ = 1/
√
n, then we have a complexity term of εn(θ, δ) = O(1/n).
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Next we focus on bounded loss functions with Rademacher complexity analysis.
In such case, we can simplify apply Theorem 8.5 with α = α′ = α′′ = 1 and
β = 0.5.

Theorem 8.7. Consider the model selection algorithm in (8.3), with

R̃(θ, f,Sn) = R̃(θ) ≥ 2Rn(F(θ),D) +M(θ)

√
ln(1/q(θ))

2n
,

where M(θ) = supf,z,z′
∣∣φ(f, z) − φ(f, z′)

∣∣, and q(θ) satisfies (8.1). Then with
probability at least 1− δ, for all θ and f ∈ F(θ):

φ(f,D) ≤ φ(f,Sn) + R̃(θ) +M(θ)

√
ln(1/δ)

2n
.

Moreover, we have the following oracle inequality. With probability of at least
1− δ:

φ(f̂ ,D) ≤ inf
θ,f∈F(θ)

[
φ(f,D) + R̃(θ) + 2M(θ)

√
ln(2/δ)

2n

]
+ ε̃.

Proof Note that from Corollary 6.19, we obtain for any θ with h = 0, with
probability 1− δ, the following uniform convergence result holds for all f ∈ F(θ):

φ(f,D) ≤φ(f,Sn) + 2Rn(F(θ),D) +M(θ)

√
ln(1/δ)

2n
.

The choice of R̃ satisfies the condition of Theorem 8.5 with c0 = 1 and β = 0.5.
It implies the desired uniform convergence result.

Given fixed θ and f ∈ F(θ), we know that∣∣[φ(f,Sn) + R̃(θ)]− [φ(f,S ′n) + R̃(θ)]
∣∣ ≤M(θ)

when Sn and S ′n differ by one element. From McDiarmid’s inequality, we know
that with probability at least 1− δ,

φ(f,Sn) + R̃(θ) ≤ φ(f,D) + R̃(θ) +M(θ)

√
ln(1/δ)

2n
.

It follows that we can take

ε′(θ, f, δ) = M(θ)

√
ln(1/δ)

2n

in Theorem 8.5, and obtain the desired oracle inequality.

Compared to Corollary 8.3, Theorem 8.7 achieves similar results using sample
depend uniform convergence bounds. The resulting model selection algorithm
(8.3) avoids partitioning data into training and validation parts, and can be
used to design integrated algorithms that simultaneously estimate the model
parameter and hyperparameter on the training data. However, the algorithm in
(8.3) requires knowing the specific generalization bound for each model class,
which may not be practical in some real applications.
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Example 8.8. Consider the same problem considered in Example 8.4. We can
take M(θ) = 1 and h = 0 in Theorem 8.7. It implies that the model selection
method (8.3) with

R̃(θ, f,Sn) =
32
√
d(θ)√
n

+

√
ln(θ + 1)

n

satisfies the following oracle inequality. With probability 1− δ:

ED1(fθ̂(θ̂, X) 6= Y ) ≤ inf
θ,w∈Ωθ

[
ED1(fθ(w,X) 6= Y ) +

32
√
d(θ)√
n

+

√
ln(θ + 1)

n

]

+

√
2 ln(2/δ)

n
.

The result is comparable to that of Example 8.4.

It is also possible to develop a sample dependent bound using the empirical
Rademacher complexity. We note that an important property of Rademacher
complexity is that for any function class F , R(F ,Sn) is concentrated around
Rn(F ,D). This result follows directly from McDiarmid’s inequality.

Theorem 8.9 (Concentration of Empirical Rademacher Complexity). Consider
h with decomposition 6.3 as h(f, z) = h0(f) + h1(f, z). Assume that for some
M ≥ 0:

sup
f∈F

sup
z,z′

[|φ(f, z)− φ(f, z′)|+ |h1(f, z)− h1(f, z′)|] ≤M.

We have with probability at least 1− δ,

Rh
n(F ,D) ≤ Rh(F ,Sn) +M

√
ln(1/δ)

2n
.

Similarly, with probability at least 1− δ, we have

Rh
n(F ,D) ≥ Rh(F ,Sn)−M

√
ln(1/δ)

2n
.

Proof Let Sn = {Z1, . . . , Zn} and S ′n = {Z ′1, . . . , Z ′n}, where Zi = Z ′i except at a
single index k. For any σ, we assume the sup of the following can be achieved at

f̂(σ,Sn) = arg max
f∈F

[
1

n

n∑
i=1

σi[φ(f, Zi) + 0.5h1(f, Zi)]− 0.5h(f,Sn)

]
.

Let

φ′(f, Z) = φ(f, Z) + 0.5h1(f, Z).

It follows that

1

n

n∑
i=1

σiφ
′(f̂ , Z ′i)− 0.5h(f̂ ,S ′n) ≤ 1

n

n∑
i=1

σiφ(f̂ ′, Z ′i)− 0.5h(f̂ ′,S ′n), (8.4)
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where f̂ is the short for f̂(σ,Sn), and f̂ ′ is the short for f̂(σ,S ′n). Therefore

Rh(F ,Sn)−Rh(F ,S ′n)

=Eσ

[
1

n

n∑
i=1

σiφ
′(f̂ , Zi)−

1

2
h(f̂ ,Sn)− 1

n

n∑
i=1

σiφ
′(f̂ ′, Z ′i) +

1

2
h(f̂ ′,S ′n)

]

≤Eσ

[
1

n

n∑
i=1

σiφ
′(f̂ , Zi)−

1

2
h(f̂ ,Sn)− 1

n

n∑
i=1

σiφ
′(f̂ , Z ′i) +

1

2
h(f̂ ,S ′n)

]

=Eσ
[

1

n
σkφ

′(f̂ , Zk)−
1

n
σkφ

′(f̂ , Z ′k) +
1

2n
h1(f̂ , Z ′k)−

1

2n
h1(f̂ , Zk)

]
≤M/n.

The first inequality used (8.4). Similarly, we have Rh(F ,S ′n)−Rh(F ,Sn) ≤M/n.
This implies that |Rh(F ,Sn)−Rh(F ,S ′n)| ≤M/n. The desired bound is a direct
consequence of McDiarmid’s inequality.

This result, combined with Corollary 6.19, can be used to obtain the following
sample-dependent uniform convergence result.

Corollary 8.10. Consider h with decomposition (6.3) as h(f, z) = h0(f) +
h1(f, z). Assume that for some M ≥ 0:

sup
f∈F

sup
z,z′

[|φ(f, z)− φ(f, z′)|+ |h1(f, z)− h1(f, z′)|] ≤M.

Then with probability at least 1− δ, for all f ∈ F :

φ(f,D) ≤ φ(f,Sn) + h(f,Sn) + 2Rh(F ,Sn) + 3M

√
ln(2/δ)

2n
.

Proof With probability at least 1− δ/2, Corollary 6.19 holds. With probability
at least 1− δ/2, Theorem 8.9 holds. The desired inequality follows by taking the
union bound of the two events.

In order to apply the sample-dependent bound of Corollary 8.10, the right
hand side can be estimated using training data only. Although computationally
the estimation of Rh(F ,Sn) can be quite challenging, it is statistically possible
to do. One may also replace it by a sample dependent upper bound, which are
some time possible to derive. The following theorem is a direct consequence of
Theorem 8.5. The proof is similar to that of Theorem 8.7.

Theorem 8.11. Consider h(θ, f, ·) with decomposition (6.3) as h(f, z) = h0(f)+
h1(f, z). Assume that for some M ≥ 0:

sup
f∈F(θ)

sup
z,z′

[|φ(f, z)− φ(f, z′)|+ |h1(θ, f, z)− h1(θ, f, z′)|] ≤M.

Let R̄(θ,Sn) be any upper bound of Rh(θ,f,·)(F(θ),Sn). Assume that

R̃(θ, f,Sn) ≥ h(θ, f,Sn) + 2R̄(θ,Sn) + 3M(θ)

√
ln(2/q(θ))

2n
,
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then the following uniform convergence result holds. With probability 1 − δ, for
all θ and f ∈ F(θ):

φ(f,D) ≤ φ(f,Sn) + R̃(θ, f,Sn) + 3M(θ)

√
ln(1/δ)

2n
.

Consider the model selection algorithm in (8.3). We have the following oracle
inequality. With probability of at least 1− δ:

φ(f̂ ,D) ≤ inf
θ,f∈F(θ)

[
φ(f,D) + ESnR̃(θ, f,Sn)

+(4M(θ) + 2∆n(R̄(θ, ·)))
√

ln(2/δ)

2n

]
+ ε̃,

where ∆n(·) is defined in Definition 6.17.

8.4 Bayesian Model Selection and Averaging

We have studied the Gibb’s algorithm in Section 7.4. We showed that the al-
gorithm is algorithmically stable, which can be used to show that it has good
generalization performance in expectation. In this section, we further show that
the Gibbs algorithm can be used for model selection.

We consider a family of Gibbs algorithms A(θ,Sn), and for each θ, the algo-
rithm chooses a random f ∈ F(θ) according to the probability

p(f |θ,Sn) =
p0(f |θ) exp

(
−β

∑
Z∈Sn φ(f, Z)

)
exp(Γ(θ|Sn))

, (8.5)

where p0(f |θ) is a known prior on the model class F(θ), and

Γ(θ|Sn) = lnEf∼p0(·|θ) exp

(
−β

∑
Z∈Sn

φ(f, Z)

)
.

Now, assume that we are further given a prior p0(θ) on θ ∈ Θ, then the following
algorithm is the Bayesian formula for Gibbs model selection, which randomly
selects a model θ ∈ Θ according to the posterior formula:

p(θ|Sn) ∝ p0(θ) exp (Γ(θ|Sn)) . (8.6)

After selecting θ, we then randomly select f ∈ F(θ) according to (8.5).
Using the Bayesian formula, we obtain the joint posterior for both θ and f as:

p(θ, f |Sn) =p(θ|Sn)p(f |θ,Sn)

∝p0(θ)p0(f |θ) exp

(
−β

∑
Z∈Sn

φ(f, Z)

)
. (8.7)

We simply randomly select a model from this distribution. This is still a Gibb’s
algorithm which defines a posterior distribution jointly on the hyperparameter θ
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and the model function f . Theorem 7.19 can still be applied to obtain a general-
ization bound for this method.

Instead of selecting a model θ, and then obtaining the corresponding model
parameter f using A(θ,Sn), it is observed in practice that model averaging, which
simply average different models, often leads to superior performance. To illustrate
the idea, we consider the same setting as that of the Gibbs algorithm, which
randomly picks a model from the posterior distribution (8.7). In model averaging,
we simply use the averaged model output

f̂(x) = E(θ,f)∼p(θ,f |Sn)f(x). (8.8)

Since this particular model averaging method employs the posterior distribution,
it is also referred to as Bayesian model averaging. The analysis of this method can
be found in Chapter 15. If the loss function satisfies the α-exponential-concavity
property defined in Definition 15.12, then one can obtain better results from
model averaging, especially when the underlying model is misspecified. Such
loss functions include log-loss, used in maximum-likelihood methods for condi-
tional density estimation (e.g. logistic regression), and least squares regression
with bounded target. For log-loss, model averaging is also the optimal estima-
tion method under the Bayesian setting, where the underlying distribution is
drawn according to a known prior (see Exercise 8.5). One may also come up with
examples in which model averaging is superior to model selection, when model
selection is unstable, as stated below. The construction is left to Exercise 8.6.

Proposition 8.12. Consider the least squares regression problem

φ(f, z) = (f(x)− y)2,

where y ∼ N(f∗(x), 1). We consider a model selection problem that contains only
two models θ = 1, 2, and each model contains only one (possibly misspecified)
function F(θ) = {fθ(x)}, where |fθ(x) − f∗(x)| ≤ 1 for all θ. Then there exists
such a problem and an absolute constant c0 > 0 so that given training data of
size n, all model selection algorithms Asel can only achieve an expected oracle
inequality no better than

ESnφ(Asel(Sn),D) ≥ inf
θ∈{1,2}

φ(fθ,D) +
c0√
n
.

However, the Bayesian model averaging method Aavg achieves an expected oracle
inequality

ESnφ(Aavg(Sn),D) ≤ inf
θ∈{1,2}

φ(fθ,D) +
1

c0n
.

8.5 Historical and Bibliographical Remarks

Model selection is an important topic in statistics. There are two classical asymp-
totic criteria for model selection, including the Akaike information criterion by
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Akaike (1974) (also referred to as AIC), and the Bayesian Information Crite-
rion by Schwarz (1978) (also referred to as BIC). Both considered the para-
metric density estimation problem (negative-log likelihood loss) with φ(w, z) =
− ln p(y|w, x) in the asymptotic statistical setting, where n → ∞. If the mod-
els are well specified, one can employ well-known classical asymptotic statistical
techniques to derive these methods.

For AIC, one considers the ERM method (maximum-likelihood method) f̂θ. If
the model class F(θ) is parametric, then one can show the following expected
generalization bound

φ(f̂ ,D) =

[
φ(f̂θ,Sn) +

d(θ)

n
+ op

(
1

n

)]
.

The leading excess risk term d(θ)

n
on the right hand side is AIC.

For BIC, one considers Bayesian model selection, and it can be shown using
Laplace approximation that

−Γ(θ|Sn) = φ(f̂θ,Sn) +
d(θ) lnn

2n
+Op

(
1

n

)
,

where f̂θ is the maximum likelihood estimate over F(θ). The leading excess term
d(θ) lnn

2n
on the right hand side is BIC.

While simple, both AIC and BIC can only be applied in the asymptotic setting,
and only for parametric models because both criteria depend linearly on the
model parameter dimension d(θ). For nonparametric density estimation, one can
employ a different criterion from information theory which may be regarded as
a generalization of BIC, referred to as minimum description length (MDL) (see
Rissanen, 1978; Barron et al., 1998; Grünwald, 2007). The MDL method, while
not as easy to apply as BIC, is more consistent with the learning theory analysis
which we investigated in this chapter. In fact, with our choice of q(θ) so that∑

θ q(θ) ≤ 1, the penalty − ln q(θ) (which appears as model selection penalty)
can be regarded as a coding length. Therefore the method considered in this
chapter may be regarded as a generalized version of MDL.

Model selection has also been considered by Vapnik in his statistical learning
approach, and was referred to as structural risk minimization (see Vapnik, 2013,
1999). The technique employs sample dependent generalization bounds similar
to what we considered in Section 8.3, with nested function classes.

Both Bayesian model selection and Bayesian model averaging have been used
in practice (Raftery, 1995; Raftery et al., 1997; Wasserman, 2000; Robert, 2007).

The asymptotic analysis of Bayesian model selection for parametric models
leads to BIC. For nonparametric models, as we have shown, the theoretical anal-
ysis of Bayesian model selection can be done either via the Gibbs algorithm or
via MDL, and Bayesian model averaging can be analyzed using aggregation tech-
niques studied in Chapter 15.

The concept of model selection is related to adaptive estimation in statistics
(see Bickel, 1982; Birgé and Massart, 1997), which aims at optimal estimation
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across a family of models. This requires oracle inequalities similar to those of
Section 8.3. Typically, the design of adaptive estimation methods also relies on
data dependent generalization analysis, similar to results developed in Section 8.3.
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Exercises

8.1 In Theorem 8.2, we may consider model selection with

rm(q) =
ln(1/q)

2γn

for a fixed γ > 0. Use multiplicative Chernoff bound to obtain oracle inequalities similar

to those of Theorem 8.2 and Corollary 8.3.

8.2 We can derive an expected oracle inequality under conditions of Theorem 8.5. Find a β

dependent constant C(β) such that the following expected oracle inequality holds:

αESnφ(f̂ ,D) ≤ φ(f,D) + ESnR̃(θ, f,Sn) + C(β)
(

1

λn

)β
.

Note that the inequality does not depend on ε′.

8.3 Consider a function family F , and for each f ∈ F , we have a complexity measure c(f) ≥ 0.

Let F(θ) = {f ∈ F , c(f) ≤ θ} for θ > 0. Assume that we have a bound

R̄(θ) ≥ Rn(F(θ),D)

for any θ > 0. Assume that φ(f, z) ∈ [0, 1]. Use Theorem 8.7 to obtain an oracle inequality

for the following regularized ERM method:

f̂ = arg min
f∈F

[
1

n

n∑
i=1

φ(f, Zi) + 2R̄(2c(f))) +
√

ln(2 + log2(2c(f) + 1))/n

]
.

Hint: consider a sequence of function classes F(1), F(2) \ F(1),F(4) \ F(2), · · · .
8.4 Prove Theorem 8.11.

8.5 Consider the conditional density estimation problem

φ(f, z) = − ln p(y|f(x)).

Let p0(f) be a prior on F , and assume that the true model is p(y|f(x)) is drawn ac-

cording to the prior p0(f), and the corresponding data distribution D = Df∗ has density

pf∗(x, y) = p∗(x)p(y|f∗(x)) for some unknown function f∗(x). Show that for a given set

of training data Sn, the optimal Bayes estimator f̂Sn in terms of minimizing the expected

loss

Ef∗∼p0ESn∼Dnf∗EZ∼Df∗φ(f̂(Z))

is given by Bayesian model averaging over p(y|f(x)). Moreover, the Bayesian optimal

model selection method is given by arg maxθ Γ(θ|Sn).

8.6 Show that the following example satisfies Proposition 8.12. Consider a one dimensional

problem with x ∼ Uniform(−1, 1). Assume that we choose f∗(x) randomly from a two-

function family {fk∗ (x) : k = 1, 2}, each with probability 0.5, where f1
∗ (x) = 1/

√
n,

and f2
∗ (x) = −1/

√
n. Define two misspecified single-function model families {fθ(x)} for

θ = 1, 2 as fθ(x) = 0.5 for θ = 1 and fθ(x) = −0.5 for θ = 2.
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9

Analysis of Kernel Methods

A number of different kernel methods have appeared in the statistics literature.
One of such methods, which employs the so-called reproducing kernel Hilbert
space (RKHS), was popularized in machine learning through support vector ma-
chines (SVMs) in the 1990s (Cortes and Vapnik, 1995). This chapter presents an
overview of RKHS kernel methods and their theoretical analysis. A more detailed
treatment of RKHS kernel methods can be found in (Schölkopf et al., 2018).

9.1 Introduction to Kernel Learning

In order to motivate kernel methods, we first consider the classical linear models,
with the following real-valued function class X → R indexed by w:

F = {f(w, x) : f(w, x) = 〈w,ψ(x)〉}, (9.1)

where ψ(x) is a pre-defined (possibly infinite dimensional) feature vector for the
input variable x ∈ X , and 〈·, ·〉 denotes an inner product in the feature vector
space. In classical machine learning, the process of constructing the feature vector
(or feature map) ψ(x) is referred to as feature engineering, which is problem
dependent. The feature vector is usually constructed by hand-crafted rules.

Given such a feature vector, we consider the following regularized ERM prob-
lem, with L2 regularization:

ŵ = arg min
w

[
1

n

n∑
i=1

L(〈w,ψ(Xi)〉, Yi) +
λ

2
‖w‖2

]
, (9.2)

which employs the linear function class of (9.1).
If ψ(x) is infinite dimensional (or its dimension is very large), then computa-

tionally it may not be feasible to work with ψ(x) directly. The learning of the
linear model class F can be achieved via an equivalent kernel formulation. We
can define a kernel function k(x, x′) (also called reproducing kernel) as the inner
product of their feature vectors.

k(x, x′) = 〈ψ(x), ψ(x′)〉. (9.3)

One important observation, referred to as kernel trick, can be described by the
following result.
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Proposition 9.1. Assume that (9.3) holds. Consider a linear function f(x) =
〈w,ψ(x)〉 ∈ F of (9.1). If w has a representation

w =
n∑
i=1

αiψ(xi), (9.4)

then

f(x) =
n∑
i=1

αik(xi, x) (9.5)

and

〈w,w〉 =
n∑
i=1

n∑
j=1

αiαjk(xi, xj). (9.6)

The reverse is also true. That is, if f(x) satisfies (9.5), then with w defined by
(9.4), f(x) can be equivalently expressed as f(x) = 〈w,ψ(x)〉, and (9.6) holds.

Proof Consider f(x) = 〈w,ψ(x)〉. If (9.4) holds, then

f(x) = 〈w,ψ(x)〉 =
n∑
i=1

αi〈ψ(xi), ψ(x)〉 =
n∑
i=1

αik(xi, x).

Moreover,

〈w,w〉 =
n∑
i=1

n∑
j=1

αiαj〈ψ(xi), ψ(xj)〉.

This implies (9.6). Similarly the reverse direction holds.

Proposition 9.1 implies if a linear machine learning algorithm produces a linear
solution f(x) = 〈w,ψ(x)〉 with a weight vector w that satisfies (9.4), then the
algorithm can be kernelized in that we can also use the kernel formulation (9.5)
to represent the learned function.

In particular it can be shown that the solution f(ŵ, x) of (9.2) satisfies (9.4),
and thus can be kernelized. This result is often referred to as the representer
theorem (Schölkopf et al., 2001).

Theorem 9.2. For real valued functions f(x), the solution of (9.2) has the fol-
lowing kernel representation:

〈ŵ, ψ(x)〉 = f̄(α̂, x), f̄(α̂, x) =
n∑
i=1

α̂ik(Xi, x).

Therefore the solution of (9.2) is equivalent to the solution of the following finite
dimensional kernel optimization problem:

α̂ = arg min
α∈Rn

[
1

n

n∑
i=1

L
(
f̄(α,Xi), Yi

)
+
λ

2
α>Kn×nα

]
, (9.7)
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with kernel Gram matrix

Kn×n =

k(X1, X1) · · · k(X1, Xn)
· · · · · · · · ·

k(Xn, X1) · · · k(Xn, Xn)

 . (9.8)

Proof Let

Q1(w) =
1

n

n∑
i=1

L(〈w,ψ(Xi)〉, Yi) +
λ

2
‖w‖2

be the objective function of (9.2), and let

Q2(α) =
1

n

n∑
i=1

L
(
f̄(α,Xi), Yi

)
+
λ

2
α>Kn×nα

be the objective function of (9.7).
The solution of (9.2) satisfies the following first order optimality condition:

1

n

n∑
i=1

L′1(〈ŵ, ψ(Xi)〉, Yi)ψ(Xi) + λŵ = 0.

Here L′1(p, y) is the derivative of L(p, y) with respect to p. We thus obtain the
following representation as its solution:

ŵ =
n∑
i=1

α̃iψ(Xi),

where

α̃i = − 1

λn
L′1(〈ŵ, ψ(Xi)〉, Yi) (i = 1, . . . , n).

Using this notation, we obtain from Proposition 9.1 that

〈ŵ, ψ(x)〉 = f̄(α̃, x), 〈ŵ, ŵ〉 = α̃>Kn×nα̃.

This implies that

Q1(ŵ) = Q2(α̃) ≥ Q2(α̂) = Q1(w̃),

where the last equality follows by setting w̃ =
∑n

i=1 α̂iψ(Xi). Proposition 9.1
implies that Q2(α̂) = Q1(w̃). It follows that w̃ is a solution of (9.2), which proves
the desired result.

We note that the kernel formulation does not depend on the feature ψ(x), and
thus can be computed even for an infinite dimensional feature ψ(x) as long as
k(x, x′) is easy to compute.

Mathematically, the function space spanned by kernel functions of (9.5) with
norm defined by (9.6) is referred to as a RKHS, which we can define formally
below.
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Definition 9.3. A symmetric function k(x, x′) is called a positive-definite kernel
on X × X if for all α1, . . . , αm ∈ R and x1, . . . , xm ∈ X , we have

m∑
i=1

m∑
j=1

αiαjk(xi, xj) ≥ 0.

Definition 9.4. Given a symmetric positive-definite kernel, we define a function
space H0 of the form

H0 =

{
f(x) : f(x) =

m∑
i=1

αik(xi, x)

}
,

with inner product defined as

‖f(x)‖2H =
m∑
i=1

m∑
j=1

αiαjk(xi, xj).

The completion of H0 with respect to this inner product, defined as H, is called
the reproducing kernel Hilbert space (RKHS) of kernel k.

We note that RKHS norm of f(x) in Definition 9.4 is well defined. That is,
different representations lead to the same norm definition, as stated below. The
proof is left as an exercise.

Proposition 9.5. Assume that for all x ∈ X :

m∑
i=1

αik(xi, x) =
m′∑
i=1

α′ik(x′i, x),

then
m∑
i=1

m∑
j=1

αiαjk(xi, xj) =
m′∑
i=1

m′∑
j=1

α′iα
′
jk(x′i, x

′
j).

We have derived kernel methods from linear models using the kernel trick.
The following result shows that the reverse is also true. That is, there exists
a feature representation of any RKHS. The result is a consequence of Mercer’s
theorem (Mercer, 1909).

Theorem 9.6. A symmetric kernel function k(x, x′) is positive-definite if and
only if there exists a feature map ψ(x) so that it can be written in the form of
(9.3). Moreover, let H be the RKHS of k(·, ·), then any function f(x) ∈ H can be
written uniquely in the form of (9.1), with ‖f(x)‖2H = 〈w,w〉.

It is worth noting that although a decomposition (9.3) exists for a positive-
definite kernel function, such decomposition may not be unique. Therefore it is
possible to have different feature representations of an RKHS.
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While the existence of decomposition stated in Theorem 9.6 is general, in prac-
tice, to construct a feature representation, one may use simple techniques such
as Taylor expansion, as shown by the following example.

Example 9.7. If x ∈ Rd, then a standard choice of kernel is the RBF (radial
basis function) kernel:

k(x, x′) = exp

[
−‖x− x′‖22

2σ2

]
.

It is easy to check that it can be written in the form of (9.3) using Taylor expan-
sion as:

k(x, x′) = exp

[
−‖x‖

2
2

2σ2

]
exp

[
−‖x

′‖22
2σ2

] ∞∑
k=0

σ−2k

k!
(x>x′)k.

Given an RKHS H, one may consider a norm constrained ERM problem in H
as follows:

f̂(·) = arg min
f(·)∈H

1

n

n∑
i=1

L(f(Xi), Yi) subject to ‖f(·)‖H ≤ A. (9.9)

The corresponding soft-regularized formulation with appropriate λ > 0 is

f̂(·) = arg min
f(·)∈H

[
1

n

n∑
i=1

L(f(Xi), Yi) +
λ

2
‖f(·)‖2H

]
. (9.10)

The following result shows that if(9.3) holds, then f(x) ∈ H can be represented
by a feature formulation (9.1). In this feature representation, we can write (9.10)
equivalently as (9.2). The proof is left as an exercise.

Theorem 9.8. Consider any kernel function k(x, x′) and feature map ψ(x) that
satisfies (9.3). Let H be the RKHS of k(·, ·). Then any f(x) ∈ H can be written
in the form

f(x) = 〈w,ψ(x)〉,

and

‖f(x)‖2H = inf{〈w,w〉 : f(x) = 〈w,ψ(x)〉}.

Consequently, the solution of (9.10) is equivalent to the solution of (9.2).

Note that Theorem 9.6 implies that there exists a feature representation of any
RKHS, so that the RKHS norm is the same as the 2-norm of the linear weight.
In this case, it is easy to see that (9.2) is equivalent to (9.10). Theorem 9.8 shows
that the same conclusion holds for any decomposition (9.3) of the kernel function
k(x, x′).
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Example 9.9. In kernel ridge regression, we consider the least squares regression
problem, which can be written as follows in the feature space representation:

ŵ = arg min
w

[
1

n

n∑
i=1

(〈w,ψ(Xi)〉 − Yi)2 +
λ

2
〈w,w〉

]
.

The primal kernel formulation is:

α̂ = arg min
α∈Rn

 1

n

n∑
i=1

(
n∑
j=1

k(Xi, Xj)αj − Yi

)2

+
λ

2
α>Kn×nα

 .
There is also a dual formulation which has the same solution:

α̂ = arg max
α∈Rn

[
−λ

2
α>Kn×nα+ λα>Y − λ2

4
α>α

]
,

where Y is the n dimensional vector with Yi as its component.

Example 9.10. Consider support vector machines for binary classification, where
label Yi ∈ {±1}. Consider the following method in feature space:

ŵ = arg min
w

[
1

n

n∑
i=1

max(0, 1− 〈w,ψ(Xi)〉Yi) +
λ

2
〈w,w〉

]
.

The primal kernel formulation is:

ŵ = arg min
α

[
1

n

n∑
i=1

max

(
0, 1−

n∑
j=1

αjk(Xi, Xj)Yi

)
+
λ

2
α>Kn×nα

]
.

The equivalent dual kernel formulation is:

α̂ = arg max
α∈Rn

[
−λ

2
α>Kn×nα+ λα>Y

]
, subject to αiYi ∈ [0, 1/(λn)].

A variation of the representer theorem can be obtained on functions defined
on a finite set as follows.

Proposition 9.11. Let H be the RKHS of a kernel k(x, x′) defined on a discrete
set of n points X1, . . . , Xn. Let Kn×n be the Gram matrix defined on these points
in (9.8), and K+ be its pseudo-inverse. Then for any function f ∈ H, we have

‖f‖2H = f>K+
n×nf , where f =

f(X1)
...

f(Xn)

 .
Proof We can express f(x) =

∑n
i=1 αik(xi, x). Let α = [α1, . . . , αn]>, we have

f = Kn×nα. It follows that

‖f‖2H = α>Kn×nα = α>Kn×nK
+
n×nKn×nα = f>K+

n×nf .

This proves the desired result.
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Proposition 9.11 establishes a link of kernel methods and Gaussian processes. In
the Gaussian process view of kernel methods, the function values defined on a dis-
crete set of n points {X1, . . . , Xn} is a Gaussian f ∼ N(m,Kn×n), where m ∈ Rn
is the mean, and the kernel Gram matrix Kn×n is the covariance matrix. If the
mean function is zero, then the density of the Gaussian is ∝ exp(−0.5f>K+

n×nf),
which is closely related to Proposition 9.11. One can also extend Gaussian pro-
cesses to infinitely many data points, with covariance of any two points given by
the kernel function k(x, x′). For least squares regression, it can be shown that the
posterior mean of the Gaussian process is equivalent to kernel ridge regression.
For other loss functions, the inference may be different. Although Gaussian pro-
cesses and kernel methods are closely related, one interesting fact is that samples
from the Gaussian process corresponding to a kernel function k(x, x′) does not in
general belong to the RKHS of the kernel function. Exercise 9.4 illustrates why
this happens, and more discussions can be found in (Neal, 1998).

The RHKS representation in Proposition 9.11 can be directly used to obtain
a semi-supervised formulation of kernel method, defined on both labeled and
unlabeled data as follows.

Corollary 9.12. Assume that we have labeled data X1, . . . , Xn, and unlabeled
data Xn+1, . . . , Xn+m. Let K = K(n+m)×(n+m) be the kernel Gram matrix of a
kernel k on these m + n points, and let H be the corresponding RKHS. Then
(9.10) defined on these data points is equivalent to

f̂(·) = arg min
f∈Rn+m

[
1

n

n∑
i=1

L(f(Xi), Yi) +
λ

2
f>K+f

]
, f =

 f(X1)
...

f(Xn+m)

 .
A drawback of kernel methods is that the computation requires the full kernel

matrix Kn×n, and thus it is at least quadratic in n. Moreover, the inference time
is linear in n. Both are rather expensive if n is large.

9.2 Universal Approximation

An important question for learning methods is whether the underlying function
class (model family) can approximate all measurable functions. A function class
that can represent all functions is called a universal approximator. Since the
set of continuous functions is dense in the set of measurable functions, we only
require that all continuous functions can be approximated by the RKHS of a
kernel function. The approximation can be measured using different metrics. For
simplicity, we consider uniform approximation here.

Definition 9.13. A kernel k(x, x′) is called a universal kernel on X ⊂ Rd (under
the uniform convergence topology) if for any continuous function f(x) on X , and
any ε > 0, there exists g(x) ∈ H such that

∀x ∈ X : |f(x)− g(x)| ≤ ε,

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



9.2. UNIVERSAL APPROXIMATION 165

where H is the RKHS of kernel k(·, ·).

For kernel methods, the universal approximation result was established in Park
and Sandberg (1991). Following their approach, we present a more refined ap-
proximation bound for Lipschitz functions using translation invariant kernels on
Rd which include the RBF kernel as a special case. Since Lipschitz functions are
dense in the set of continuous functions, this result implies universal approxima-
tion on any compact set X ⊂ Rd.

Theorem 9.14. Consider a positive definite translation invariant kernel

k(x, x′) = h(‖x− x′‖/σ),

where ‖ · ‖ is a norm on Rd. Assume that h(·) ∈ [0, 1], and

c0 =

∫
h(‖x‖)dx ∈ (0,∞), c1 =

∫
‖x‖h(‖x‖)dx <∞.

Assume that f is Lipschitz with respect to the norm ‖ · ‖: ∃γ > 0 such that
|f(x)− f(x′)| ≤ γ‖x− x′‖ for all x, x′ ∈ Rd. If

‖f‖1 =

∫
|f(x)|dx <∞,

then for any ε > 0 and σ = εc0/(γc1), there exists ψσ(x) ∈ H, where H is the
RKHS of k(·), so that ‖ψσ(x)‖H ≤ (c0σ

d)−1‖f‖1 and

∀x : |f(x)− ψσ(x)| ≤ ε.

Proof We approximate f by the following function:

ψσ(x) =

∫
α(z)h(‖x− z‖/σ)dz,

where α(z) = f(z)/(c0σ
d). Let

A =

∫
|α(z)α(x)|h(‖x− z‖/σ)dxdz,

then

A ≤

√∫
|α(z)α(x)|dxdz

√∫
|α(z)α(x)|h(‖x− z‖/σ)2dxdz

≤

√∫
|α(z)|dz

∫
|α(x)|dx ·

√
A.

The first inequality used the Cauchy-Schwarz inequality. The second inequality
used the fact that h(·) ∈ [0, 1]. Therefore

√
A ≤

∫
|α(x)|dx = (c0σ

d)−1‖f‖1.
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The RKHS norm of ψσ(x) is given by

‖ψσ(x)‖H =

√∫
α(z)α(x)h(‖x− z‖/σ)dxdz ≤

√
A ≤ (c0σ

d)−1‖f‖1.

In the following, we only need to show that |f(x) − ψσ(x)| ≤ ε for all x ∈ Rd.
Using a change of variable for convolution, we also obtain the expression

ψσ(x) = c−1
0

∫
f(x− σz)h(‖z‖)dz.

Note that

f(x) = c−1
0

∫
f(x)h(‖z‖)dz.

Since f is Lipschitz, we have

|f(x)− ψσ(x)| ≤ c−1
0

∫
|f(x)− f(x− σz)|h(‖z‖)dz ≤ σγc−1

0 c1.

By setting ε = σγc−1
0 c1, we obtain the desired result.

The parameter σ is often referred to as the bandwidth in the literature. Theo-
rem 9.14 shows that it is useful to adjust the bandwidth in the kernel approxima-
tion because there is a trade-off between approximation error and RKHS norm.
As we will see later, the RKHS norm affects generalization. While this result
provides a specific approximation bound for Lipschitz functions, in the general
situation, one can obtain a more qualitative universal approximate result without
such a bound. One approach is to use the Stone-Weierstrass theorem, which states
that a continuous function on a compact set in Rd can be uniformly approximated
by polynomials. It implies the following result.

Theorem 9.15. Consider a compact set X in Rd. Assume that a kernel function
k(x, x′) on X × X has a feature representation k(x, x′) =

∑∞
i=1 ciψi(x)ψi(x

′),
where each ψi(x) is a real valued function, and ci > 0. Assume the feature maps

{ψi(x) : i = 1, . . .} contain all monomials of the form {g(x) =
∏d
j=1 x

αj
j : x =

[x1, . . . , xd], αj ≥ 0}. Then k(x, x′) is universal on X .

Proof Let H be the RKHS of k(·, ·). Note that according to Theorem 9.8, a
function of the form g(x) =

∑∞
j=1wiψi(x) has RKHS norm as ‖g‖2H ≤

∑∞
i=1w

2
i /ci.

It follows from the assumption of the theorem that all monomials p(x) has RKHS
norm ‖p‖2H <∞. Therefore H contains all polynomials. The result of the theorem
is now a direct consequence of the Stone-Weierstrass theorem.

Example 9.16. Let α > 0 be an arbitrary constant. Consider the kernel function

k(x, x′) = exp(αx>x′)

on a compact set of Rd. Since

k(x, x′) = exp(−α)
∞∑
i=0

αi

i!
(x>x′ + 1)i,
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it is clear that the expansion of (x>x′ + 1)i contains all monomials of order i.
Therefore Theorem 9.15 implies that k(x, x′) is universal.

The following result is also useful when we consider compositions of kernels.

Theorem 9.17. If k(x, x′) is a universal kernel on X , and let k′(x, x′) be any
other kernel function on X ×X . Then k(x, x′) + k′(x, x′) is a universal kernel on
X . Moreover, let u(x) be a real-valued continuous function on X so that

sup
x∈X

u(x) <∞, inf
x∈X

u(x) > 0.

Then k′(x, x′) = k(x, x′)u(x)u(x′) is a universal kernel on X .

Proof Let k(x, x′) = 〈ψ(x), ψ(x′)〉H with the corresponding RKHS denoted by
H, and let k′(x, x′) = 〈ψ′(x), ψ′(x′)〉H′ with RKHS H′.

k(x, x′) + k′(x, x′) = 〈ψ(x), ψ(x′)〉H + 〈ψ′(x), ψ′(x′)〉H′ .

Using feature representation, we can represent functions in the RKHS of k(x, x′)+
k′(x, x′) by 〈w,ψ(x)〉H + 〈w′, ψ′(x)〉H′ , and thus it contains H⊕H′. This implies
the first result.

For the second result, we know that k′(x, x′) = 〈ψ(x)u(x), ψ(x′)u(x′)〉H, and
thus its RHKS can be represented by 〈w,ψ(x)u(x)〉H. Since the universality of
k(x, x′) implies that for any continuous f(x), f(x)/u(x) can be uniformly approx-
imated by 〈w,ψ(x)〉H, we obtain the desired result.

Example 9.18. Consider the RBF kernel function

k(x, x′) = exp(−α‖x− x′‖22).

Since

k(x, x′) = exp(2αx>x′)u(x)u(x′),

where u(x) = exp(−α‖x‖22), Theorem 9.17 and Example 9.16 imply that k(x, x′)
is universal on any compact set X ⊂ Rd.

One can also establish a relationship of universal kernel and the Gram matrix
Kn×n in Theorem 9.2 as follows. It will be useful when we discuss Neural Tangent
kernel in Chapter 11.

Theorem 9.19. Let k(x, x′) be a universal kernel on X . Consider n different data
points X1, . . . , Xn ∈ X , and let Kn×n be the Gram matrix defined in Theorem 9.2.
Then Kn×n is full-rank.

Proof Consider a vector Y = [Y1, . . . , Yn] ∈ Rn. Given ε > 0, there exists a
continuous function f(x) so that |f(Xi) − Yi| ≤ ε/

√
n for all i. Since k(x, x′)

is universal, there exists g(x) ∈ H such that |g(Xi) − f(Xi)| ≤ ε/
√
n for all i.

Therefore |g(Xi)− Yi| ≤ 2ε/
√
n for all i.

Consider λ = ε2/‖g‖2H, and let

ĝ = arg min
g′∈H

[
n∑
i=1

(g′(Xi)− Yi)2 + λ‖g′‖2H

]
.
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Then
n∑
i=1

(ĝ(Xi)− Yi)2 ≤
n∑
i=1

(g(x)− Yi)2 + λ‖g‖2H ≤ 5ε2.

Using Theorem 9.2, this implies that there exists α ∈ Rn so that

‖Kn×nα− Y ‖22 ≤ 5ε2.

Since ε is arbitrary, Kn×n has to be full-rank.

9.3 Generalization Analysis

In this section, we study the generalization behavior of kernel methods using the
Rademacher complexity analysis. In particular, we want to bound the Rademacher
complexities of (9.9) and (9.10).

We will consider the feature representation (9.1), with the induced kernel (9.3).
We know from Theorem 9.8 that if we define the function class

F(A) = {f(x) ∈ H : ‖f‖2H ≤ A2},

then for any feature map that satisfies (9.3), F(A) can be equivalently written in
the linear feature representation form as:

F(A) = {f(x) = 〈w,ψ(x)〉 : 〈w,w〉 ≤ A2}. (9.11)

That is, kernel methods with RKHS regularization are equivalent to linear
model with L2 regularization. In the following, we will use the two representation
interchangeably.

Theorem 9.20. Consider F(A) defined in (9.11). We have the following bound
for its Rademacher complexity:

R(F(A),Sn) ≤ A

√√√√ 1

n2

n∑
i=1

k(Xi, Xi).

Moreover let F = F(+∞), then

Rh(F ,Sn) ≤ 1

λn2

n∑
i=1

k(Xi, Xi),

where in (6.3), we set

h(w,Sn) = h0(w) =
λ

2
〈w,w〉. (9.12)
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Proof For convenience, let ‖w‖ =
√
〈w,w〉. We have

Rh(F ,Sn) =Eσ sup
w

[
1

n

n∑
i=1

σi〈w,ψ(Xi)〉 −
λ

4
〈w,w〉

]

=Eσ sup
w

[
〈w, 1

n

n∑
i=1

σiψ(Xi)〉 −
λ

4
〈w,w〉

]

=Eσ
1

λ

∥∥∥∥∥ 1

n

n∑
i=1

σiψ(Xi)

∥∥∥∥∥
2

=
1

λn2

n∑
i=1

‖ψ(Xi)‖2 =
1

λn2

n∑
i=1

k(Xi, Xi).

This proves the second bound. For the first bound, we note that

R(F(A),Sn) ≤ Rh(F ,Sn) +
λA2

4
≤ 1

λn2

n∑
i=1

k(Xi, Xi) +
λA2

4
.

Optimize over λ > 0, we obtain the desired result.

Corollary 9.21. Let G(A) = {L(f(x), y) : f(x) ∈ F(A)}, where F(A) is defined
in (9.11). If L(p, y) is γ Lipschitz in p, then

R(G(A),Sn) ≤Aγ

√√√√ 1

n2

n∑
i=1

k(Xi, Xi),

Rn(G(A),D) ≤Aγ
√

EX∼Dk(X,X)

n
.

Moreover, let G = G(+∞), then

Rh(G,Sn) ≤ γ2

λn2

n∑
i=1

k(Xi, Xi),

Rh
n(G,D) ≤γ

2EX∼Dk(X,X)

λn
,

where h is defined in (9.12).

Proof The first and the third inequalities follow from Theorem 9.20 and the
Rademacher comparison theorem in Theorem 6.28. The second inequality follows
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from the following derivation:

Rn(G(A),D) =ESnR(G,Sn) ≤ AγESn

√√√√ 1

n2

n∑
i=1

k(Xi, Xi)

(a)

≤Aγ

√√√√ 1

n2
ESn

n∑
i=1

k(Xi, Xi)

=Aγ

√
1

n
EDk(X,X).

The derivation of (a) used Jensen’s inequality and the concavity of
√
·.

The fourth inequality of the corollary can be similarly derived.

Now using Theorem 6.31, we obtain the following result.

Corollary 9.22. Assume that supp,y L(p, y)− infp,y L(p, y) ≤ M , and L(p, y) is
γ Lipschitz with respect to p. Then with probability at least 1 − δ: for all f ∈ H
with ‖f‖H ≤ A:

EDL(f(X), Y ) ≤ 1

n

n∑
i=1

L(f(Xi), Yi) + 2γA

√
EDk(X,X)

n
+M

√
ln(1/δ)

2n
.

Moreover, for (9.9), if we solve it approximately up to sub-optimality of ε′, then
we have with probability at least 1− δ:

EDL(f̂(X), Y ) ≤ inf
‖f‖H≤A

EDL(f(X), Y ) + ε′ + 2γA

√
EDk(X,X)

n

+M

√
2 ln(2/δ)

n
.

Note that as A→∞, we have

inf
‖f‖H≤A

EDL(f(X), Y )→ inf
‖f‖H<∞

EDL(f(X), Y ).

If k(·, ·) is a universal kernel, then

lim
A→∞

inf
‖f‖H≤A

EDL(f(X), Y )→ inf
measurable f

EDL(f(X), Y ).

Combine this with the generalization result of kernel method in Corollary 9.22,
we know that as n → ∞, and let A → ∞, the following result is valid. With
probability 1,

EDL(f̂(X), Y )→ inf
measurable f

EDL(f(X), Y ).

Such a result is referred to as consistency.
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Example 9.23. For binary classification problem with y ∈ {±1}, we may con-
sider a classifier induced by a real valued function f(x) such that we predict y = 1
if f(x) ≥ 0 and y = −1 otherwise. If f(x) is taken from an RKHS, then we have
the following margin bound. With probability 1−δ, for all f ∈ H with ‖f‖H ≤ A:

ED1(f(X)Y ≤ 0) ≤ 1

n

n∑
i=1

1(f(Xi)Yi ≤ γ) +
2A

γ

√
EDk(X,X)

n
+

√
ln(1/δ)

2n
.

It says that if we can find a classifier with a small margin error, then we can
achieve a good test classification error. Unlike the VC analysis in Chapter 4, the
bound does not depend on the dimensionality of the feature vector ψ(x), but
rather the classifier’s RKHS norm A, and margin condition.

The bound can be obtained as a direct consequence of Corollary 9.22, using a
loss function L(p, y) = min(1,max(0, 1 − py/γ)), which is γ−1 Lipschitz. In this
case, 1(f(x)y ≤ 0) ≤ L(f(x), y) ≤ 1(f(x)y ≤ γ).

We note that the Rademacher complexity analysis only leads to a convergence
rate of O(1/

√
n). However, similar to the VC-analysis, it is possible to obtain a

margin bound of O(lnn/n) when the margin error is zero. This requires a different
analysis stated in Theorem 4.21, together with the empirical L∞ covering number
of Theorem 5.20. We leave it to Exercise 9.5.

Example 9.24. For SVM loss, γ = 1. With hard regularization, we can take
M = (1 +AB), where we assume that k(x, x) ≤ B2. Consider f̂ that solves (9.9)
up to an accuracy of ε′ > 0. From Corollary 9.22, we obtain with probability at
least 1− δ,

EDL(f̂(X), Y ) ≤ inf
‖f‖H≤A

EDL(f(X), Y ) + ε′ +
2AB√
n

+ (1 +AB)

√
2 ln(2/δ)

n
.

Given an arbitrary competitor f ∈ H, the optimal value of A would be A =
‖f‖H. However, this requires us to know the value of ‖f‖H, which is not feasible.
In practice, it is more convenient to use the soft-regularized version (9.10), where
the choice of λ is less sensitive than A, and it can be set independently of ‖f‖H.
The following result is a direct consequence of Corollary 9.21 and Theorem 6.14.

Corollary 9.25. If L(p, y) is γ-Lipschitz with respect to p, then we have the
following expected oracle inequality for (9.10).

ESnL(f̂ ,D) ≤ inf
f∈H

[
L(f,D) +

λ

2
‖f‖2H

]
+

2γ2EDk(X,X)

λn
.

Observe that in Corollary 9.25, the expected oracle inequality does not rely on
the boundedness of L(·, ·). One may also obtain high probability inequalities by
employing the technique of Chapter 8 and a union bound over a properly defined
sequence of nested function classes.
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Corollary 9.26. Assume that L(p, y) ≥ 0 is γ Lipschitz in p, and supy L(0, y) ≤
M0. Let B2 = supx k(x, x), then with probability at least 1− δ: for all f ∈ H,∣∣∣∣∣EDL(f(X), Y )− 1

n

n∑
i=1

L(f(Xi), Yi)

∣∣∣∣∣ ≤ 1√
n

(4M0 + 4γB‖f‖H)

+ (3M0 + 2γB‖f‖H)

√
ln(2(2 + log2(1 + γB‖f‖H/M0))2/δ)

2n
.

Proof Let Aθ = 2θA0 for A0 > 0 to be determined later, with q(θ) = 1/(θ + 1)2

for θ = 1, 2, . . .. Consider Ωθ = {f ∈ H : ‖f‖H ≤ Aθ}. We know that L(p, y) ≤
L(0, y) + γ|p| ≤M0 + γAθB. Let Mθ = M0 + γAθB. Then Corollary 9.22 implies
that with probability at least 1− q(θ)δ: for all f ∈ H with ‖f‖H ≤ Aθ:∣∣∣∣∣EDL(f(X), Y )− 1

n

n∑
i=1

L(f(Xi), Yi)

∣∣∣∣∣ ≤ 2γAθB√
n

+Mθ

√
ln(2/(q(θ)δ))

2n
.

Taking the union bound, we have with probability 1 − δ: for all f ∈ H and all
θ ≥ 1 such that ‖f‖H ≤ Aθ:∣∣∣∣∣EDL(f(X), Y )− 1

n

n∑
i=1

L(f(Xi), Yi)

∣∣∣∣∣ ≤ 2γAθB√
n

+Mθ

√
ln(2/(q(θ)δ))

2n
.

We let θ(f) ≥ 1 be the smallest index such that ‖f‖H ≤ Aθ. Then Aθ(f) ≤
2(A0 + ‖f‖H), and thus θ(f) ≤ log2(2 + 2‖f‖H/A0). We can take A0 = M0/(γB).
This implies the desired bound.

We can also obtain an oracle inequality as follows.

Corollary 9.27. Assume that L(p, y) ≥ 0 is γ-Lipschitz in p, supy L(0, y) ∈
[0,M0], and supX k(X,X) ≤ B2. Then with probability 1−δ, we have the following
oracle inequality for (9.10):

L(f̂ ,D) ≤ inf
f∈H

[
L(f,D) +

λ

2
‖f‖2H + εB‖f‖H

]
+ 2εM +

ε2B
2λ
,

where θ0 = 1 + log2(1 + γB
√

2/(λM0)), and

εM =
4M0√
n

+ 3M0

√
ln(2(1 + θ0)2/δ)

2n

εB =
4γB√
n

+ 2γB

√
ln(2(1 + θ0)2/δ)

2n
.

Proof We note that ‖f̂‖2H ≤ 2M0/λ. Therefore Corollary 9.26 implies that with
probability at least 1− δ, for all f ∈ H:∣∣∣∣∣EDL(f(X), Y )− 1

n

n∑
i=1

L(f(Xi), Yi)

∣∣∣∣∣ ≤ εM + εB‖f‖H. (9.13)
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This implies that

L(f̂ ,D) ≤ 1

n

n∑
i=1

L(f̂(Xi), Yi) +
λ

2
‖f̂‖2H−

λ

2
‖f̂‖2H + εM + εB‖f̂‖H︸ ︷︷ ︸

V

≤ 1

n

n∑
i=1

L(f̂(Xi), Yi) +
λ

2
‖f̂‖2H + εM +

ε2B
2λ

≤ 1

n

n∑
i=1

L(f(Xi), Yi) +
λ

2
‖f‖2H + εM +

ε2B
2λ

≤L(f,D) +
λ

2
‖f‖2H + εB‖f‖H + 2εM +

ε2B
2λ
.

The first inequality used (9.13). The second inequality can be obtained by maxi-

mizing V over ‖f̂‖H. The third inequality used the fact that f̂ is the solution of
(9.10). The last inequality used (9.13) again.

Example 9.28. Consider the soft-regularized SVM in (9.10). We can let γ = 1
and M0 = 1/B. It follows that if we take λ = O(1/

√
n), then we get an oracle

inequality from Corollary 9.27 with a convergence rate of O(
√

ln lnn/n).

9.4 Vector Valued Functions

We now consider vector valued functions using kernels. In this case, we have
f(x) : X → Rq for some q > 1. Let f(x) = [f1(x), . . . , fq(x)]. If we consider the
feature space representation, then there are two possibilities. One is to treat these
functions as sharing the same feature vector, but with different w:

f`(x) = 〈w`, ψ(x)〉 (` = 1, . . . , q).

Another view is to consider the same w, but with different features for different
dimension:

f`(x) = 〈w,ψ(x, `)〉. (9.14)

The second view is more general because we may write the first view as fol-
lows. We concatenate the feature representation by letting w = [w1, . . . , wq] and
ψ(x, `) = [0, . . . , 0, ψ(x), 0, . . . , 0] with only `-the concatenating component to be
ψ(x), and the other components as zeros. With this representation, 〈w,ψ(x, `)〉 =
〈w`, ψ(x)〉. In the following discussions, we focus on (9.14).

Similar to (9.2), we have the following formulation in feature representation:

ŵ = arg min
w∈H

[
1

n

n∑
i=1

L(〈w,ψ(Xi, ·)〉, Yi) +
λ

2
‖w‖2

]
, (9.15)

where 〈w,ψ(Xi, ·)〉 denotes the q-dimensional vector with 〈w,ψ(Xi, `)〉 as its `-th
component. Its solution has a kernel representation as follows. It may be regarded
as a generalization of the representer theorem for scalar functions in Theorem 9.2.
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Theorem 9.29. Consider q-dimensional vector valued function f(x). Let f̂(x) =
〈ŵ, ψ(x, ·)〉 with ŵ being the solution of (9.15). Then

f̂(x) =
n∑
i=1

k(x,Xi)α̂i,

with

〈ŵ, ŵ〉 =
n∑
i=1

n∑
j=1

α̂>i k(Xi, Xj)α̂j,

where each α̂i ∈ Rq, and

k(x, x′) =

k1,1(x, x′) · · · k1,q(x, x
′)

...
...

kq,1(x, x′) · · · kq,q(x, x
′)

 ,
and

ki,j(x, x
′) = 〈ψ(x, i), ψ(x′, j)〉 (i, j = 1, . . . , q).

Therefore the solution of (9.15) is equivalent to

α̂ = arg min
α∈Rq×n

[
1

n

n∑
i=1

L

(
n∑
j=1

k(Xi, Xj)αj, Yi

)

+
λ

2

n∑
i=1

n∑
j=1

α>i k(Xi, Xj)αj

]
. (9.16)

Proof The proof is similar to that of Theorem 9.2, and we define objective in
(9.15) as Q1(w). The objective in (9.16) is denoted by Q2(α). The solution of
(9.15) satisfies the following first order optimality condition:

1

n

n∑
i=1

[ψ(Xi, 1), . . . , ψ(Xi, q)]∇L1(f̂(Xi), Yi) + λŵ = 0,

where ∇L1(p, y) is the gradient of L(p, y) with respect to p as a q-dimensional
column vector. We thus obtain the following representation as its solution:

ŵ =
n∑
i=1

[ψ(Xi, 1), . . . , ψ(Xi, q)]α̃i,

where

α̃i = − 1

λn
∇L1(〈ŵ, ψ(Xi, ·)〉, Yi) (i = 1, . . . , n).
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Using this representation, we have

f̂(x) =

〈ŵ, ψ(x, 1)〉
...

〈ŵ, ψ(x, q)〉

 =
n∑
i=1

〈[ψ(Xi, 1), . . . , ψ(Xi, q)]α̃i, ψ(x, 1)〉
...

〈[ψ(Xi, 1), . . . , ψ(Xi, q)]α̃i, ψ(x, q)〉


=

n∑
i=1

k(x,Xi)α̃i,

and

〈ŵ, ŵ〉 =
n∑
i=1

〈
[ψ(Xi, 1), · · · , ψ(Xi, q)]α̃i,

n∑
j=1

[ψ(Xj, 1), ψ(Xj, q)]α̃j

〉

=
n∑
i=1

n∑
j=1

α̃>i k(Xi, Xj)α̃j.

This implies that Q1(ŵ) = Q2(α̃). Similarly, there exists w̃ such that Q1(w̃) =
Q2(α̂). Therefore Q1(ŵ) = Q2(α̃) ≥ Q2(α̂) = Q1(w̃). This implies that w̃ is a
solution of (9.15), which proves the result.

In order to obtain generalization analysis using Rademacher complexity for
vector valued functions, we can employ following generalization of Theorem 6.28.
The proof is similar to that of Lemma 6.29.

Theorem 9.30. Consider L(p, y) that is γ1-Lipschitz in p with respect to the
L1-norm:

|L(p, y)− L(p′, y)| ≤ γ1‖p− p′‖1.

Consider

G ⊂ {L([f1(x), · · · , fq(x)], y) : fj(x) ∈ Fj (j = 1, . . . , q)},

then

R(G,Sn) ≤ γ1

q∑
j=1

R(Fj,Sn).

For vector kernel method, we may consider the hard-constrained version using
feature representation:

ŵ = arg min
w∈H

1

n

n∑
i=1

L(〈w,ψ(Xi, ·)〉, Yi) subject to 〈w,w〉 ≤ A2. (9.17)

We have the following estimate of Rademacher complexity

Lemma 9.31. Let

G = {L(〈w,ψ(x, ·)〉, y) : 〈w,w〉 ≤ A2},
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then with γ1 defined in Theorem 9.30,

R(G,Sn) ≤ γ1A

n

q∑
j=1

√√√√ n∑
i=1

kj,j(Xi, Xi)

and

Rn(G,D) ≤ γ1A
q∑
j=1

√
1

n
EDkj,j(X,X).

Proof We can set and let Fj = {〈w,ψ(x, j)〉 : 〈w,w〉 ≤ A2}. From Theorem 9.20,
we obtain

R(Fj,Sn) ≤ A

n

√√√√ n∑
i=1

kj,j(Xi, Xi),

and

Rn(Fj,D) ≤ A
√

1

n
EDkj,j(X,X).

We can now apply Theorem 9.30 to obtain the desired bound.

If kj,j(x, x) ≤ B2 for all j and x, then Corollary 9.31 implies a bound

R(G, Sn) ≤ γ1qAB√
n

.

One drawback of this bound is that the Rademacher complexity becomes linear
in q, which is usually suboptimal when q is large. For such problems, one needs
a more sophisticated estimation of Rademacher complexity.

Example 9.32. Consider the structured SVM loss function (Tsochantaridis
et al., 2005) for q-class classification problem, with y ∈ {1, . . . , q}, and for f ∈ Rq:

L(f, y) = max
`

[γ(y, `)− (fy − f`)],

where γ(y, y) = 0 and γ(y, `) ≥ 0. This loss tries to separate the true class y from
alternative ` 6= y with margin γ(y, `). It is Lipschitz with respect to ‖f‖1 with
γ1 = 1. Therefore for problems with k`,`(x, x) ≤ B2 for all x and `, we have from
Corollary 9.31 that

R(G,Sn) ≤ qAB√
n
.

For the structured SVM loss, a better bound on Rademacher complexity, stated
in Proposition 9.33, can be obtained from the covering number estimate of The-
orem 5.20. The bound depends on q only logarithmically, and we leave its proof
as an exercise.
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Proposition 9.33. Consider a loss function L(f, y) that is γ∞-Lipschitz in p
with respect to the L∞-norm:

|L(p, y)− L(p′, y)| ≤ γ∞‖p− p′‖∞.

Let F = {f(x) = [f1(x), . . . , fq(x)] : f`(x) = 〈w,ψ(x, `)〉, 〈w,w〉 ≤ A2}. Assume
that supx,`〈ψ(x, `), ψ(x, `)〉 ≤ B2. Let G = {L(f, y) : f ∈ F}. Then there exists a
constant c0 > 0 such that

R(G,Sn) ≤ c0γ∞AB lnn
√

ln(nq)√
n

.

One may also consider the soft regularized version of structured SVM

ŵ = arg min
w

[
1

n

n∑
i=1

L(〈w,ψ(Xi, ·)〉, Yi) +
λ

2
〈w,w〉

]
,

and analyze it using the stability analysis of Chapter 7. In fact, it can be easily
checked that L(〈w,ψ(x, ·)〉, y) is B-Lipschitz in w when supx,` ‖ψ(x, `)‖2 ≤ B.
Theorem 7.8 implies that for the structured SVM problem, we have an expected
generalization bound of

ESnEDL(〈ŵ, ψ(X)〉, Y ) ≤ inf
w

[
EDL(〈w,ψ(X)〉, Y ) +

λ

2
〈w,w〉

]
+
B2

λn
.

The structured SVM example shows that for some vector valued estimation
problems, stability analysis can be used to obtain results that may be more
difficult to obtain using the theory of empirical processes.

9.5 Refined Analysis: Ridge Regression

Although the Rademacher complexity analysis leads to useful generalization re-
sults, they are not always tight. Moreover, to obtain faster rate, we need to employ
local Rademacher complexity analysis, as discussed in Section 6.5.

For the ridge regression problem,

ŵ = arg min
w

[
1

n

n∑
i=1

(w>ψ(Xi)− Yi)2 + λw>w

]
, (9.18)

we show that it is possible to obtain faster rate more directly. Here we use the
vector notation u>v = 〈u, v〉 for convenience.

For simplicity, we will consider the realizable case in that there exists w∗ such
that

Y = w>∗ ψ(X) + ε, (9.19)

where ε is a zero-mean stochastic noise that may depend on X.
The following basic result is useful in the theoretical analysis of ridge regression.
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Lemma 9.34. Let {Yi}n1 be independent samples conditioned on {Xi}n1 according
to (9.19). Given any vector X that is independent of {Yi}n1 . If E[εi|Xi] ≤ σ2 for
all i, then we have

E{Yi}n1 |{Xi}n1
[
(ŵ>ψ(X)− w>∗ ψ(X))2

]
≤ ((σ2/n) + λ‖w∗‖22) ‖ψ(X)‖2Σ̂−1

λ
,

where

Σ̂λ =
1

n

n∑
i=1

ψ(Xi)ψ(Xi)
> + λI.

Moreover if ε is sub-Gaussian:

∀i : lnE exp[µεi|Xi] ≤
µ2σ2

2
,

then the following inequalities hold for conditional probability of {Yi}n1 |{Xi}n1 :

Pr

[
ŵ>ψ(X)− w>∗ ψ(X) ≤

(
√
λ‖w∗‖2 + σ

√
2 ln(1/δ)

n

)
‖ψ(X)‖Σ̂−1

λ

]
≤ δ,

Pr

[
w>∗ ψ(X)− ŵ>ψ(X) ≤

(
√
λ‖w∗‖2 + σ

√
2 ln(1/δ)

n

)
‖ψ(X)‖Σ̂−1

λ

]
≤ δ.

Proof We have

(ŵ − w∗) =Σ̂−1
λ

1

n

n∑
i=1

ψ(Xi)Yi − w∗ = Σ̂−1
λ

1

n

n∑
i=1

ψ(Xi)εi − λΣ̂−1
λ w∗.

Therefore

(ŵ − w∗)>ψ(X) =
1

n

n∑
i=1

ψ(X)>Σ̂−1
λ ψ(Xi)︸ ︷︷ ︸
ai

εi − λψ(X)>Σ̂−1
λ w∗. (9.20)

We have

1

n

n∑
i=1

a2
i =

1

n

n∑
i=1

ψ(X)>Σ̂−1
λ ψ(Xi)ψ(Xi)

>Σ̂−1
λ ψ(X)

=ψ(X)>Σ̂−1
λ Σ̂0Σ̂−1

λ ψ(X)

≤‖ψ(X)‖2Σ̂−1
λ
. (9.21)

The inequality follows from the fact that Σ̂0 ≤ Σ̂λ.
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It follows that if Var[εi|Xi] ≤ σ2, then

E
[
(ŵ>ψ(X)− w>∗ ψ(X))2|{Xi}n1

]
=

1

n2

n∑
i=1

E [(aiεi)
2|Xi] + λ2[ψ(X)>Σ̂−1

λ w∗]
2

≤ 1

n2

n∑
i=1

a2
iσ

2 + λ2[ψ(X)>Σ̂−1
λ w∗]

2

≤σ
2

n
‖ψ(X)‖2Σ̂−1

λ
+ λ2‖ψ(X)‖2

Σ̂−1
λ
‖w∗‖2Σ̂−1

λ

≤((σ2/n) + λ‖w∗‖22) ‖ψ(X)‖2Σ̂−1
λ
.

The first equality used (9.20), and the fact that εi are independent and zero-mean
random variables. The first inequality used E[ε2i ] ≤ σ2. The second inequality used
(9.21) and the Cauchy-Schwartz inequality. The last inequality used ‖w∗‖2Σ̂−1

λ

≤
‖w∗‖22/λ.

Moreover, if each εi is sub-Gaussian, then

lnE
[
eµ(ŵ>ψ(X)−w>∗ ψ(X))|{Xi}n1

]
=− µλψ(X)>Σ̂−1

λ w∗ + lnE
[
e(µ/n)

∑n
i=1 aiεi |{Xi}n1

]
≤− µλψ(X)>Σ̂−1

λ w∗ +
µ2σ2

2n2

n∑
i=1

a2
i

≤µλ‖ψ(X)‖Σ̂−1
λ
‖w∗‖Σ̂−1

λ
+
µ2σ2

2n
‖ψ(X)‖2

Σ̂λ

≤µ
√
λ‖ψ(X)‖Σ̂−1

λ
‖w∗‖2 +

µ2σ2

2n
‖ψ(X)‖2

Σ̂λ
.

The first equality used (9.20). The first inequality used the sub-Gaussian noise
assumption. The second inequality used (9.21) and the Cauchy-Schwartz inequal-
ity. The last inequality used ‖w∗‖Σ̂−1

λ
≤ ‖w∗‖2/

√
λ. This implies that ŵ>ψ(X)−

w>∗ ψ(X) is sub-Gaussian. The desired probability bounds follow from the stan-
dard sub-Gaussian tail inequalities in Theorem 2.12.

Lemma 9.34 implies that the model confidence at an arbitrary test data point
X is proportional to ‖ψ(X)‖Σ̂−1

λ
. This means that for ridge regression, one can

obtain a confidence interval at any data point X. In particular, if we are interested
in estimating w>∗ ψ(Xi) for all Xi in the training data, then by taking the union
bound over {X1, . . . , Xn}, we obtain with probability 1− δ:

1

n

n∑
i=1

(ŵ>ψ(Xi)− w>∗ ψ(Xi))
2 = O

((
λ‖w∗‖22 +

σ2 ln(n/δ)

n

)
trace

(
Σ̂−1
λ Σ̂0

))
.

One can also use a generalization of the χ2 tail probability bound to obtain a
bound on the training prediction error more directly without paying a lnn penalty
due to the union bound.
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For the generalization performance of ridge regression on the test data, deriv-
ing large probability bounds require concentration of Σ̂−1

λ to (E Σ̂λ)−1. We will
not consider such matrix concentration inequalities in this book. Nevertheless,
one may also obtain an expected generalization bound without such a matrix
concentration result when λ is at least Ω(1/n).

Theorem 9.35. Assume that Sn = {(Xi, Yi)}n1 ∼ Dn, and Var[εi|Xi] ≤ σ2 for
all Xi. If we choose λ such that λn > B2 ≥ supx ψ(x)>ψ(x), then (9.18) satisfies

ESn∼DnEX∼D(ŵ>ψ(X)− w>∗ ψ(X))2 ≤ d1,λ′

n
(σ2 + λn‖w∗‖22),

where

d1,λ′ = trace
(

(ΣD + λ′I)
−1

ΣD
)
, ΣD = EDψ(X)ψ(X)>,

and λ′ = (λn−B2)/(n+ 1).

Proof Consider Sn+1 = {(X1, Y1), . . . , (Xn+1, Yn+1)}. Let ŵ be the solution with
training data Sn. Let

Σ̂n+1 =
n+1∑
i=1

ψ(Xi)ψ(Xi)
>,

Σ̂n =
n∑
i=1

ψ(Xi)ψ(Xi)
> + λnI,

then Σ̂n ≥ Σ̂n+1 + (λn−B2)I. It follows that

E [(ŵ − w∗)>ψ(Xn+1)]2

≤(σ2 + λn‖w∗‖22)E ‖ψ(Xn+1)‖2
(Σ̂n+1+(λn−B2)I)−1

=
σ2 + λn‖w∗‖22

n+ 1
E trace

(
(Σ̂n+1 + (λn−B2)I)−1Σ̂n+1

)
≤σ

2 + λn‖w∗‖22
n+ 1

trace
(

(E[Σ̂n+1] + (λn−B2)I)−1[EΣ̂n+1]
)

=
σ2 + λn‖w∗‖22

n+ 1
d1,λ′ .

In the above derivation, the first inequality used Lemma 9.34 and Σ̂−1
n ≤ (Σ̂n+1 +

(λn−B2)I)−1. The first equality used the symmetry of X1, . . . , Xn+1 conditioned
on Sn+1. The second inequality used Jensen’s inequality and the concavity of the
matrix function trace((A + µI)−1A) for µ > 0, where A is a symmetric positive
semi-definite matrix (see Theorem A.18).

The quantity d1,λ′ in Theorem 9.35 measures the effective dimension of ridge
regression (see Hsu et al., 2012a). The following result gives an upper bound for
d1,λ′ . The proof is left as an exercise.
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Proposition 9.36. Consider ψ : X → H, and λ > 0. Let

dim(λ, ψ(X )) = sup
D

trace
(

(ΣD + λI)
−1

ΣD
)
,

where ΣD = EX∼Dψ(X)ψ(X)>. If dim(H) <∞, then

dim(λ, ψ(X )) ≤ dim(H).

More generally, assume that H has a representation ψ(x) = [ψj(x)]∞j=1 in 2-norm.
Given any ε > 0, define the ε-scale sensitive dimension as

d(ε) = min

|S| : sup
x

∑
j /∈S

(ψj(x))2 ≤ ε

 ,

then

dim(λ, ψ(X )) ≤ inf
ε>0

[
d(ε) +

ε

λ

]
.

For finite dimensional problems, where ψ(x) ∈ Rd, the results of Theorem 9.35
and Proposition 9.36 imply that with λ = B2/n, we have

ESn∼DnEX∼D(ŵ>ψ(X)− w>∗ ψ(X))2 ≤ d

n
(σ2 +B2‖w∗‖22).

This result is superior to the result from standard Rademacher complexity. Note
that in Corollary 9.27, with λ = Ω(1/

√
n), we can obtain a convergence of

O(1/(λn)). By choosing λ of order 1/
√
n, we can obtain a rate of O(1/

√
n).

In comparison, we can choose λ of order O(1/n) in Theorem 9.35, and obtain a
convergence rate of O(d/n).

While the rate of O(d/n) is optimal for the finite dimensional case, the constant
of B2‖w∗‖22 is sub-optimal. To further improve this dependency, one needs to
employ a more refined matrix concentration result, as in Hsu et al. (2012a).

For finite dimensional problems, the result in Hsu et al. (2012a), in a simplified
form, can be written as

ESn∼DnEX∼D(ŵ>ψ(X)− w>∗ ψ(X))2 = O

(
σ2d

n

)
+ high order terms.

This implies O(1/n) rate without the extra dependency on B2 in the leading term.
Additional results in the infinite dimensional case, with non-zero approximation
error term can also be found in Hsu et al. (2012a).

Example 9.37. Consider kernel regression with a kernel that has a scale sensitive
dimension d(ε) in Proposition 9.36. We obtain from Theorem 9.35

ESn∼DnEX∼D(ŵ>ψ(X)− w>∗ ψ(X))2 ≤
(
d(ε)

n
+
ε(1 + 1/n)

λn−B2

)
(σ2 + λn‖w∗‖22).
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9.6 G-Optimal Design in RKHS

Lemma 9.34 shows that one can estimate the uncertainty (confidence interval) of
the ridge regression prediction on an arbitrary data point X that is independent
of the observed Y , and the uncertainty is measured by

‖ψ(X)‖Σ̂−1
λ
. (9.22)

Assume that we are given a set of unlabeled data {ψ(X) : X ∈ X} ⊂ H, where
H is an RKHS. Our goal is to select data Sn = {X1, . . . , Xn} from X to label, so
that the ridge regression solution (9.18) has the smallest maximum uncertainty
over X . Using the uncertainty measure (9.22), we can find Sn by solving the
following optimization problem:

min
Sn

sup
X∈X

ψ(X)>Σλ(Sn)−1ψ(X), (9.23)

Σλ(Sn) =
1

n

∑
X∈Sn

ψ(X)ψ(X)> + λI.

Note that in Sn, we may select some X ∈ X multiple times.
This motivates the following closely related problem, which seeks the limiting

distribution when n→∞.

Theorem 9.38. Given a compact set ψ(X ) ⊂ H where H is an inner product
space. Let λ > 0, the λ-regularized G-optimal design is a probability distribution
π over X that solves the problem

πG = arg min
π∈∆(X )

sup
X∈X

ψ(X)>Σλ(π)−1ψ(X), (9.24)

where ∆(X ) denotes the probability distributions on X , and

Σλ(π) = EX∼πψ(X)ψ(X)> + λI.

Define the regularized D-optimal design as

πD = arg min
π∈∆(X )

− ln
∣∣Σλ(π)

∣∣,
then the following inequality for πD gives an upper bound for the G-optimal design:

sup
X∈X

ψ(X)>Σλ(πD)−1ψ(X) ≤ dim(λ, ψ(X )),

where dim(λ, ψ(X )) is defined in Proposition 9.36.

Proof Without loss of generality, we may assume that X is finite (we can take
the limit of finite subset when X is infinite). We note that

min
π
− ln

∣∣Σλ(π)
∣∣

is a convex optimization problem in π because ln |Z| is a concave function of Z
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(see Theorem A.18). The KKT condition of the optimal solution implies that
there exists ρ > 0 such that for all X ∈ X :{

ψ(X)>Σλ(πD)−1ψ(X) = ρ if πD(X) > 0

ψ(X)>Σλ(πD)−1ψ(X) ≤ ρ if πD(X) = 0.

Taking expectation over πD, we obtain

ρ = EX∼πDψ(X)>Σλ(πD)−1ψ(X) = trace(Σλ(πD)−1Σ(πD)).

This implies the desired result.

We note that neither πG nor πD is necessarily unique. Since πD is the solution
of a convex problem in π, one may use convex optimization techniques to find
an approximation of πD, which gives an approximate solution of the G-optimal
design problem (9.24). In particular, the D-optimal design problem can be solved
using a greedy algorithm which we state in Algorithm 9.1 (also see Algorithm 10.3
for a similar algorithm). The following convergence result shows that with η → 0
and n→∞, we can achieve a bound of γm ≤ dim(λ, ψ(X ))+o(1), which matches
that of Theorem 9.38.

Theorem 9.39. For Algorithm 9.1, we have

γm
1 + η(1− η)γm

≤ dim(λ, ψ(X ))

(1− η)2
+

ln |Σλ(πn)/Σλ(π0)|
η(1− η)n

,

where γm = maxX∈X ψ(X)>Σλ(πm−1)−1ψ(X).

Proof Let

Σ̃
(i−1)
λ = Σλ(πi)− ηψ(Xi)ψ(Xi)

>. (9.25)

We have for each i ∈ [n]:

ln |Σλ(πi)| − ln |Σλ(πi−1)|
≥trace((Σλ(πi))

−1(Σλ(πi)− Σλ(πi−1)))

=ηtrace((Σλ(πi))
−1ψ(Xi)ψ(Xi)

>)− ηtrace((Σλ(πi))
−1Σ0(πi−1))

=
ηψ(Xi)

>(Σ̃
(i−1)
λ )−1ψ(Xi)

1 + ηψ(Xi)>(Σ̃
(i−1)
λ )−1ψ(Xi)

− ηtrace((Σλ(πi))
−1Σ0(πi−1))

(a)

≥ ηψ(Xi)
>Σλ(πi−1)−1ψ(Xi)

1 + ηψ(Xi)>Σλ(πi−1)−1ψ(Xi)
− η

1− η
trace((Σλ(πi−1))−1Σ0(πi−1))

≥ ηgm(Xm)

1 + ηgm(Xm)
− η

1− η
dim(λ, ψ(·)).

The first inequality used Theorem A.18 with the matrix trace function − ln |Σ| =
trace(− ln Σ) which is convex in Σ. The first equality used the definition of πi in
terms of πi−1. The second inequality used (9.25) and the Sherman–Morrison for-

mula. Inequality (a) used (Σ̃
(i−1)
λ )−1 ≥ Σλ(πi−1)−1 and ηz/(1+ηz) is an increasing
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function of z > 0 to bound the first term, and used Σλ(πi) ≥ (1− η)Σλ(πi−1) to
bound the second term. The last inequality used the definition of m and dim(·).

By summing over i = 1 to i = n, we obtain

n
ηgm(Xm)

1 + ηgm(Xm)
≤ n η

1− η
dim(λ, ψ(·)) + ln |Σλ(πn)/Σλ(π0)|.

The algorithm implies that gm(Xm) ≥ (1 − η)γm. We can replace gm(Xm) by
(1− η)γm to obtain the desired result.

Algorithm 9.1: Greedy G-optimal Design

Input: X , ψ(·), π0, λ > 0, n, η ∈ (0, 1)
Output: Sn

1 for i = 1, 2, . . . , n do
2 Define gi(x) = ψ(x)>Σλ(πi−1)−1ψ(x)
3 Find Xi so that gi(Xi) ≥ (1− η) maxX∈X gi(X)
4 Let πi = (1− η)πi−1 + η1(X = Xi)

5 Let m = arg mini gi(Xi)
6 return πm−1

Example 9.40. If H is a (finite) d-dimensional space and ‖ψ(X)‖H ≤ B, then

ln |Σλ(πn)/Σλ(π0)| ≤ d ln trace(Σλ(πn)/(dΣλ(π0))) ≤ d ln(1 +B2/(λd)).

The first inequality used the inequality of arithmetic and geometric means (AM-
GM). Since dim(λ, ψ(·) ≤ d, we have

γm
1 + η(1− η)γm

≤ d

(1− η)2
+
d ln(1 +B2/(λd))

η(1− η)n
.

By taking η = 0.25/d and n = O(d ln(1 + B2/(λd)) in Theorem 9.39, we obtain
obtain a bound of γm = O(d), which matches Theorem 9.38 up to a constant.

Example 9.41. In general, we can define quantity entro(λ, ψ(X )) according to
Proposition 15.8 so that

ln |Σλ(πn)/Σλ(π0)| ≤ entro(λ, ψ(X )).

If we take η = min(0.1, 0.1/dim(λ, ψ(X ))) with an arbitrary π0 = 1(X = X0) in
Algorithm 9.1, then after n = d8entro(λ, ψ(X ))e iterations, we have for m ≤ n in
Theorem 9.39, we obtain

γm
1 + 0.9 · 0.1

dim(λ,ψ(X ))
γm
≤ dim(λ, ψ(X ))

0.92
+

entro(λ, ψ(X ))
0.1

dim(λ,ψ(X ))
0.9n

.

This implies that we can find m ≤ n so that

γm ≤ 4 dim(λ, ψ(X )).
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More generally, for any nonlinear function class F : X → R, we may define the
corresponding nonlinear G-optimal design problem as follows.

Definition 9.42. Given any ε > 0, the coverage coefficient of a distribution π
on X with respect to a function class F : X → R is defined as

CC(ε, π,F) = sup
x∈X

sup
f,f ′∈F

|f(x)− f ′(x)|2

ε+ Ex̃∼π(f(x̃)− f ′(x̃))2
.

Given any ε > 0, a G-optimal design πG with respect to a function class F : X →
R is defined as the solution to

πG(ε,F ,X ) = arg min
π∈∆(X )

CC(ε, π,F),

where ∆(X ) is the set of probability measures on X .

The following result shows that nonlinear G-optimal design is a convex opti-
mization problem.

Proposition 9.43. The G-optimal design objective function CC(ε, π,F) is con-
vex in π.

Proof Note that with fixed f, f ′, x, the following function of π

|f(x)− f ′(x)|2

ε+ Ex̃∼π(f(x̃)− f ′(x̃))2

is convex in π. Because sup of convex functions is still convex, we obtain the
result.

The following result is a straight-forward consequence of Theorem 9.38. Note
that in the result, we do not assume that the feature representation ψ(·) is known.

Theorem 9.44. Assume that F ⊂ H, where H is an RKHS. Assume that f(x)
has the feature representation f(x) = 〈w(f), ψ(x)〉. Let B = supf,f ′∈F ‖w(f) −
w(f ′)‖H be the diameter of F . Then we have

CC(ε, πG(ε,F ,X ),F) ≤ dim(ε/B2, ψ(X )),

where dim(·) is defined in Proposition 9.36.

Proof Let Σ = λI + Ex∼πψ(x)ψ(x)>, with λ = ε/B2. Then we have

CC(ε, π,F) = sup
x∈X

sup
f,f ′∈F

|f(x)− f ′(x)|2

ε+ Ex̃∼π(f(x̃)− f ′(x̃))2

≤ sup
x∈X

sup
f,f ′∈F

|f(x)− f ′(x)|2

λ‖w(f)− w(f ′)‖2H + Ex̃∼π(f(x̃)− f ′(x̃))2

= sup
x∈X

sup
f,f ′∈F

〈w(f)− w(f ′), ψ(x)〉2

(w(f)− w(f ′))>Σ(w(f)− w(f ′))

≤ sup
x∈X

ψ(x)>Σ−1ψ(x). (9.26)
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The first inequality used the assumption of the theorem which implies that
λ‖w(f) − w(f ′)‖2H ≤ ε. The second inequality used the Cauchy-Schwartz in-
equality. The result is now a straight-forward application of Theorem 9.38.

Algorithm 9.2: Greedy Nonlinear G-optimal Design

Input: F , X , π0, λ > 0, n, η ∈ (0, 1)
Output: πn

1 for i = 1, 2, . . . , n do
2 Define ∆F = {f(x)− f ′(x) : f, f ′ ∈ F}, and ∀∆f ∈ ∆F , x ∈ X :

gi(∆f, x) =
|∆f(x)|2

ε+ Ex′∈πi−1
∆f(x′)2

.

Find Xi ∈ X ,∆fi ∈ ∆F :

gi(∆fi, Xi) ≥ (1− η) sup
x∈X

sup
∆f∈∆F

gi(∆f, x).

Let πi = (1− η)πi−1 + η1(X = Xi)

3 Let m = arg mini gi(∆fi, Xi)
4 return πm−1

Algorithm 9.2 is a direct generalization of Algorithm 9.1. It is easy to see from
(9.26) that the following result holds with a proof nearly identical to that of
Theorem 9.39. We leave the proof as an exercise.

Theorem 9.45. Under the assumptions of Theorem 9.44, Algorithm 9.2 finds a
solution that satisfies

γm
1 + η(1− η)γm

≤ dim(λ, ψ(X ))

(1− η)2
+

ln |Σλ(πn)/Σλ(π0)|
η(1− η)n

,

where λ = ε
B2 , γm = supx∈X ,∆f∈∆F gm(∆f, x), Σλ(π) = λI + Ex∼πψ(X)ψ(X)>.

9.7 Historical and Bibliographical Remarks

In mathematics, reproducing kernel Hilbert space was introduced in the early
1900s by Stanislaw Zaremba and Mercer Mercer (1909) in the studies of dif-
ferential equations and integral equations. It was further developed by various
researchers and most noticeably Aronszajn (1950); Bergman (1970). The idea
was brought to machine learning by Vapnik with collaborators, for his treatment
of support vector machines (Boser et al., 1992; Cortes and Vapnik, 1995; Vapnik,
2013).

In statistics, kernel methods have been studied in the context of Kriging and
Gaussian processes (Krige, 1951; Matheron, 1965). These methods are widely
used in spatial statistics and computer experiments. Gaussian processes have been
extensively used (see Rasmussen, 2004) both as kernel methods for prediction
problems and as a method for hyperparameter tuning (see Bergstra et al., 2011).
Kernel methods have also been studied in statistics in the context of smoothing
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splines (see Craven and Wahba, 1978; Wahba, 1990), and their convergence rates
have been investigated by Stone (1982, 1985).

As we have shown, kernel least squares regression is related to infinite dimen-
sional ridge regression. A more modern treatment of this subject can be found
in (Hsu et al., 2012a). The concept of kernel has also been frequently associated
with kernel smoothing in statistics (Wand and Jones, 1994), which is a different
way of using kernels than RKHS of this chapter.

The representer theorem (Schölkopf et al., 2001) was observed by Wahba and
Vapnik. Vapnik has also popularized the idea of “kernel trick”, which can be used
to kernelize machine learning algorithms that use linear features. This idea has
been investigated further by various researchers to kernelize different machine
learning algorithms. We refer the readers to Schölkopf et al. (2018) for a more
thorough treatment of this subject.

The universal approximation of kernel method has been shown by Park and
Sandberg (1991), and studied further in (Micchelli et al., 2006), which consid-
ered universal approximation from the view of kernel’s feature representations.
It has also been investigated by Steinwart (2001); Zhang (2004b) in the context
of statistical consistency.

Vector valued kernel functions have been studied by Micchelli and Pontil (2005);
Alvarez et al. (2012). Rademacher complexity for vector valued functions have
been investigated in Bartlett and Mendelson (2002), and the result is similar
to Theorem 9.30. However, as we have pointed out in Section 9.4, the result-
ing bound is often suboptimal in the dependency of the vector dimension q. In
comparison, stability analysis does not suffer from this problem.

The G-optimal design criterion has been widely used in experimental design
(Fedorov, 2013). Theorem 9.38 can handle some infinite dimensional problems,
and is related to the well-known result in (Kiefer and Wolfowitz, 1960), where
the equivalence of G-optimal design and D-optimal design (without regulariza-
tion) was established. It is also known that the G-optimal design solution can be
achieved with no more than d(d+ 1)/2 points. The convergence of Algorithm 9.1
and its variants can also be analyzed using techniques described in Section 10.4.
While asymptotic formulations of nonlinear G-optimal design have been studied
in statistics, the more general formulation presented in Definition 9.42 is new. Its
applications in sequential estimation problems can be found in Section 17.5 and
Section 18.4.
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Exercises

9.1 Prove Proposition 9.5

9.2 Prove Theorem 9.8.

9.3 In Example 9.9, assume that Kn×n is positive definite. Show that the primal and dual

solutions are identical. Show that the minimum value of the primal objective function is

the same as the maximum value of the dual objective function.

9.4 Assume that the Gram matrix Kn×n on {X1, . . . , Xn} is positive definite. Consider a

Gaussian process on these points with

f ∼ N(0,Kn×n).

Compute E‖f‖2H, and explain what happens when n→∞?

9.5 We consider linear models with L2 regularization:

FA = {f(w, x) = w>ψ(x) : ‖w‖22 ≤ A}.

Assume that k(x, x) = ψ(x)>ψ(x) ≤ B2 for all x. Using the covering number estimate of

Theorem 5.20 and Theorem 4.21 to derive a multiplicative form of margin bound similar

to the additive form margin bound of Example 9.23.

9.6 Show that the structured SVM problem in Example 9.32 satisfies Proposition 9.33.

• Use the empirical L∞ covering number bound of Theorem 5.20 to derive an L∞-covering

number bound for the structured SVM loss L(f, y) defined in the example, with a

logarithmic dependence on q.

• Use chaining to obtain an estimate of the Rademacher complexity R(G,Sn), and com-

pare the results to that of Example 9.32.

9.7 Assume we want to solve the soft-regularized SVM of Example 9.23, with λ chosen based

on the training data according to an appropriate learning bounds. Assume we obtain the

SVM solutions ŵ1, . . . , ŵN at different choices λ1, . . . , λN . Assume that k(X,X) ≤ B2.

• Which bound do you use to select the best λj? Corollary 9.22, Corollary 9.26, or

Corollary 9.27? And explain the procedure.

• Obtain an oracle inequality for your procedure.

9.8 Prove Proposition 9.33.

9.9 Prove Proposition 9.36.

9.10 In Proposition 9.36, consider ψ(x) = [ψj(x)]∞j=1 so that ψj(x)2 ≤ c0
jq for some q > 0.

• Find an upper bound for d(ε′).

• Use the bound for d(ε′) to find an upper bound for d1,λ.

• Find the rate of convergence for ridge regression using Theorem 9.35.

9.11 In Example 9.41, for n ≥ 2m, show how to generate n data with equal weighting so that

sup
x∈X

ψ(x)>
(
λnI +

n∑
i=1

ψ(Xi)ψ(Xi)
>
)−1

ψ(x) ≤ ν

n−m dim(λ, ψ(X ))

with ν = 4. More generally, show that for any ν > 1, there exists c0 > 0 and m ≤
dc0entro(λ, ψ(X ))e, such that when n ≥ 2m, the result holds with ν.

9.12 Prove Theorem 9.45 by using the technique of (9.26) to adapt the proof of Theorem 9.39.
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10

Additive and Sparse Models

In this chapter, we focus on additive models of the following form:

f([w, θ], x) =
m∑
j=1

wjψ(θj, x), (10.1)

where for simplicity, we consider real valued functions ψ(θ, ·) : X → R first. In
additive models, each ψ(θ, ·) may be regarded as a prediction function, which is
parametrized by θ ∈ Θ. The goal of additive model is to find a combination of
models ψ(θ, ·) so that the combined model f([w, θ], x) is more accurate than any
single model ψ(θ, x).

10.1 Sparse Model Combination

In order to motivate sparse regularization, we will first consider the case that Θ is
finite. Assume that Θ has m elements {θ1, . . . , θm}, then (10.1) can be regarded
as a linear model with respect to the model parameter w, and we can simply
denote it as:

f(w, x) =
m∑
j=1

wjψj(x) = w>ψ(x),

with features ψj(x) = ψ(θj, x), and ψ(x) = [ψ1(x), . . . , ψm(x)]. We further assume
that each feature ψj(x) is a prediction function so that

ψj(x) ∈ [0,M ].

If we do not consider regularization, then the model complexity is determined
by the model dimensionality m. For example, the VC dimension of the linear
decision function 1(f(w, x) ≥ 0) is m. If we consider regularization, such as
kernel method or L2 regularization, then we may consider the function class

F ′ = {f(w, x) = w>ψ(x) : ‖w‖2 ≤ A}. (10.2)

Using the Rademacher complexity analysis for kernel methods in Chapter 9, we
know

Rn(F ′,D) ≤ A
√
m

n
EDk(x, x),

189
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with

k(x, x) =
1

m

m∑
j=1

ψj(x)2.

The normalization factor of 1/m is to make sure that k(x, x) is bounded by M2.
This implies that

EX∼Dk(X,X) ≤ 1

m

m∑
j=1

EX∼Dψj(X)2 ≤M2.

This gives a bound on the Rademacher complexity of F ′ as

Rn(F ′,D) ≤
√
m

n
AM,

which depends linearly on
√
m. This upper bound matches the worst case lower

bound below with M = 1.

Proposition 10.1. Assume that the m feature functions {ψj(X)} are orthonor-
mal when X ∼ D. Then there exists an absolute constant c > 0 such that for
sufficiently large n,

Rn(F ′,D) ≥ c
√
m

n
A,

where F ′ is given by (10.2).

Proof When n is sufficiently large, the vectors {ψj} are near orthonormal on
the empirical distribution Sn. Therefore with constant probability, F ′ is nearly
an m-dimensional ball of radius A with respect to L2(Sn). Therefore Theorem 5.3
implies that M(ε,F , L2(Sn)) ≥ 2m at ε = c0A for some c0 > 0. The Rademacher
complexity lower bound is now a direct consequence of Sudakov minoration (see
Theorem 12.4) with such ε.

It follows from Proposition 10.1 that the factor
√
m in Rn(F ′,D) cannot be

removed in general with L2 regularization (kernel methods) for additive models.
To compensate the effect of m, a proper regularization term when m is large can
be reformulated as

F ′′ = {f(w, x) : ‖w‖22 ≤ A2/m}.

This leads to an Rademacher complexity of

Rn(F ′′,D) ≤
√

1

n
AM.

Alternatively, one may consider other regularization conditions for model com-
bination. One of such regularization conditions is sparse regularization or L0

regularization, which is given below.
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10.1. SPARSE MODEL COMBINATION 191

Definition 10.2. The sparsity pattern, or support of a weight vector w ∈ Rm is
defined as

supp(w) = {j : wj 6= 0},

and the L0 norm of w is defined as

‖w‖0 = |supp(w)|.

The following example compares different regularization conditions with the
RKHS functions.

Example 10.3. Consider RBFs of the form

ψ(θ, x) = exp(−β‖x− θ‖22)

for some β > 0. If we treat it as a kernel k(·, ·) = ψ(·, ·) as in Chapter 9, then the
corresponding RKHS is given by functions of the form

f̃(α, x) =
m∑
j=1

αj exp(−β‖x− θj‖22).

Let H be its RKHS, and the corresponding regularization is given by

‖f̃(α, x)‖2H =
m∑
i=1

m∑
j=1

αiαj exp(−β‖θi − θj‖22). (10.3)

If we use RBFs as basis functions in additive models, we have

f([w, θ], x) =
m∑
j=1

wj exp(−β‖x− θj‖22).

In this case, the kernel associated with the additive model can be defined as

k(x, x′) =
1

m

m∑
i=1

exp(−β‖x− θj‖22 − β‖x′ − θj‖22).

The corresponding RKHS norm for additive model is different from (10.3), and
can be defined instead as

‖f([w, θ], x)‖2 = m
∑
j=1

w2
j . (10.4)

However, even for simple 1-dimensional functions such as

m∑
j=1

exp(−‖x− j‖22)

with β = 1, the complexity measured by the RKHS norm in (10.4) can be rather
large. Alternatively, one can also measure the complexity of f([w, θ], x) by the
sparsity ‖w‖0.
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CHAPTER 10. ADDITIVE MODELS 192

For each sparsity pattern F ⊂ {1, . . . ,m}, we may define the |F |-dimensional
sparse function class

GF = {φ(w, z) : supp(w) ⊂ F} ,

where φ(w, z) = L(f(w, x), y) = L(w>ψ(x), y). We can now consider the following
sparse learning method:

ŵ = arg min
w∈Rd

[
1

n

n∑
i=1

φ(w,Zi) + r(F )

]
subject to supp(w) ⊂ F, (10.5)

with a properly defined regularizer r(F ) on the sparsity pattern F .
We note that the exact solution of (10.5) may be difficult to obtain because

the sparsity constraint is nonconvex and discontinuous. In practice one often
employs approximate solutions. Assume that we can find an approximate solution
of (10.5), then we can obtain a generalization error bound that depends only
logarithmically on m, and linear with respect to the sparsity |F |. The following
theorem is a direct consequence of Theorem 8.7 which employs an upper bound
of the expected Rademacher complexity. Note that similar to Theorem 8.11, one
may also replace the expected (sample independent) Rademacher complexity by
the sample dependent Rademacher complexity.

Theorem 10.4. Assume supw,z,z′ [φ(w, z)−φ(w, z′)] ≤M . Let Sn be n iid samples
from D. Then with probability at least 1 − δ, the following bound holds for all
w ∈ Rm and sparsity pattern F such that supp(w) ⊂ F :

φ(w,D) ≤ φ(w,Sn) + r(F ) +M

√
ln(1/δ)

2n
,

where

r(F ) ≥ 2R(GF ,D) +M

√
|F | ln(em/|F |) + ln(|F |+ 1)2

2n

for all F . Consider the sparse learning algorithm in (10.5). We have the following
oracle inequality. With probability of at least 1− δ:

φ(ŵ,D) ≤ inf
w∈Rm,supp(w)⊂F

[φ(w,D) + r(F )] + 2M

√
ln(2/δ)

2n
.

Proof We note that(
m

s

)
≤ ms

s!
≤ ms

ss
· s

s

s!
≤ ms

ss
· es = (me/s)s.

We can now consider each GF as a model, with

qF =
(|F |+ 1)−2

(me/|F |)|F |
≤ (|F |+ 1)−2(

m
|F |

) .
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10.2. L1 REGULARIZATION 193

Therefore we have∑
F :|F |≥1

qF ≤
∑
s≥1

1

(s+ 1)2

∑
F :|F |=s

1(
m
|F |

) =
∑
s≥1

1

(s+ 1)2
< 1.

For each index F , we may consider ŵ as the ERM solution under the constraint
supp(w) ⊂ F . We can thus apply Theorem 8.7 with models indexed by F ⊂
{1, . . . ,m} to obtain the desired bounds.

Example 10.5. Consider the linear binary classification problem, with the loss
function

L(f(w, x), y) = 1(w>ψ(x)y ≤ 0).

In this problem, we know from the Rademacher complexity of VC-class

R(GF ,Sn) ≤ c0

√
|F |
n

for some constant c0 > 0 (see Example 6.26). It follows that we may simply take

r(F ) = c′
√
|F | lnm

n

for a sufficiently large constant c′, which leads to the following sparsity con-
strained optimization:

ŵ = arg min
w∈Rm

[
1

n

n∑
i=1

L(w>ψ(Xi), Yi) + λ
√
‖w‖0

]

with λ = c′
√

lnm
n

. We obtain the following oracle inequality. With probability at

least 1− δ:

EDL(f(ŵ,X), Y ) ≤ inf
w∈Rm

[
EDL(f(w,X), Y ) + λ

√
‖w‖0

]
+ 2

√
ln(2/δ)

2n
.

The bound is linear in
√
‖w‖0, and logarithmic in m.

The Rademacher complexity bound for sparse learning has a convergence rate
ofO(

√
1/n). For some specialized problems such as least squares regression, where

the variance condition holds, we can obtain a better rate of O(1/n) using local
Rademacher complexity analysis. The resulting bound has a convergence rate of
O(‖w‖0 lnm/n), which is similar to the Bayesian information criterion (BIC) for
parametric models in classical statistics (Schwarz, 1978).

10.2 L1 Regularization

Sparse regularization can reduce the learning complexity. However, the optimiza-
tion problem of (10.5) is in general NP-hard because the sparse L0 regularization
in Example 10.5 is nonconvex (Natarajan, 1995). To alleviate this computational
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problem, practitioners often solve a convex relaxation of L0 regularization formu-
lations, where the L0 regularization ‖w‖0 is replaced by the L1 regularization
‖w‖1. The resulting method is also referred to as Lasso (Tibshirani, 1996) or as
basis pursuit (Chen et al., 2001).

In this section, we consider the general situation that Θ is infinite. For notation
simplicity, we can define the function class

Ψ = {ψ(θ, x) : θ ∈ Θ},

and its convex hull can be derived as (see Definition 5.12)

conv(Ψ) =

{
m∑
j=1

wjψ(θj, x) : m > 0, ‖w‖1 = 1, wj ≥ 0, θj ∈ Θ

}
.

The non-negative L1 regularized additive models are:

F+
A,L1

(Ψ) = {af(x) : a ∈ [0, A], f(x) ∈ conv(Ψ)}.

We may also consider the class of L1 regularized additive models as:

FA,L1
(Ψ) = F+

A,L1
(Ψ ∪ −Ψ) =

{
m∑
j=1

wjψ(θj, x) : ‖w‖1 ≤ A, θj ∈ Θ, m > 0

}
.

Note that in general, we have F+
A,L1

(Ψ) ⊂ FA,L1
(Ψ). However, if −f ∈ Ψ for all

f ∈ Ψ, then FA,L1
(Ψ) = F+

A,L1
(Ψ).

Definition 10.6. Let FL1
(Ψ) be the point-wise closure of ∪A>0FA,L1

(Ψ), then
for any f ∈ FL1

(Ψ),

‖f‖1 = lim
ε→0

inf

{
‖w‖1 : sup

x

∣∣∣∣∣f(x)−
m∑
j=1

wjψ(θj, x)

∣∣∣∣∣ ≤ ε
}
.

For notational convenience, we write functions in FL1
(Ψ) as

f(x) = w>ψ(x),

where ψ(x) is the infinite dimensional vector [ψ(θ, x)]θ∈Θ, and ‖f‖1 = ‖w‖1.

For smooth-loss functions (see Definition A.5), there is a strong relationship
between L1 regularization and L0 regularization, in that functions with small L1

norms can be sparsified. Such a sparsification result was first shown for the least
squares loss, and referred to as Maurey’s lemma in Pisier (1980-1981).

Theorem 10.7. Assume L(p, y) is a γ-smooth function in p. Consider f(x) =
w>ψ(x) ∈ FL1

(Ψ). Let D be an arbitrary distribution over (x, y). Then there
exists a sparse vector u so that ‖u‖0 ≤ N , and

EDL(u>ψ(X), Y ) ≤EDL(w>ψ(X), Y )

+
γ[‖w‖21 supθ∈Θ EDψ(θ,X)2 − EDf(X)2]

2N
.
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Proof For simplicity, we only consider f(x) such that for some m > 0:

f(x) =
m∑
j=1

wjψ(θj, x),

and let ψj(x) = ψ(θj, x). Consider N iid random variable jk (k = 1, . . . , N) that
takes values in {1, . . . ,m}, so that Pr(jk = j) = |wj|/‖w‖1. Let

fJ(x) =
1

N

N∑
k=1

ujk ψjk(x), uj = sign(wj)‖w‖1 (j = 1, . . . , N)

where J = {j1, . . . , jN}. It is easy to check that for all x:

EJ fJ(x) = f(x).

Note also from the smoothness assumption, we have

L(fJ(x), y) ≤L(f(x), y) + (fJ(x)− f(x))L′1((f(x), y)

+
γ

2
|fJ(x)− f(x)|2,

where L′1(p, y) is the derivative of L(p, y) with respect to p. Taking expectation
with respect to J , we have

EJL(fJ(x), y) ≤L(f(x), y) +
γ

2
EJ |fJ(x)− f(x)|2

=L(f(x), y) +
γ

2N
Varj1 [uj1ψj1(x)]

=L(f(x), y) +
γ

2N
Ej1 [‖w‖21ψj1(x)2 − f(x)2].

Therefore by taking expectation with respect to D, we obtain

EJEDL(fJ(X), Y ) ≤EDL(f(X), Y ) +
γ

2N
Ej1ED[‖w‖21ψj1(X)2 − f(X)]

≤EDL(f(X), Y ) +
γ supj[‖w‖21EDψj(X)2 − EDf(X)2]

2N
.

Since each fJ(X) can be expressed as a sparse combination of N functions, this
implies the existence of u.

Theorem 10.7 implies that L1 regularization can be regarded as an approxi-
mation method to the L0 regularized sparse learning problem. Conversely, if a
target function is a sparse additive model, then it is easier to approximate it
by L1 regularization than L2 regularization. In order to illustrate this, we will
consider the L1 regularization method for additive models, and investigate its
generalization performance. The following result on Rademacher complexity for
L1 regularization is straight forward.

Theorem 10.8. We have

R(conv(Ψ),Sn) = R(Ψ,Sn).
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If either Ψ = −Ψ or 0 ∈ Ψ, then the following equality holds:

R(F+
A,L1

(Ψ),Sn) = A ·R(Ψ,Sn).

If Ψ = −Ψ, then the following equality holds:

R(FA,L1
(Ψ),Sn) = A ·R(Ψ,Sn).

Proof We will prove the second equality. Since A ·Ψ ⊂ F+
A,L1

(Ψ, Sn), we have

A ·R(Ψ, Sn) ≤ R(F+
A,L1

(Ψ), Sn).

Moreover, consider any function

m∑
j=1

wjψ(θj, x) : ‖w‖1 ≤ A, wj ≥ 0, θj ∈ Θ

and σi ∈ {±1}, we know that under the conditions of the theorem,

n∑
i=1

σi

m∑
j=1

wjψ(θj, Xi) =
m∑
j=1

wj

n∑
i=1

σiψ(θj, Xi)

≤
m∑
j=1

wj sup
j′

n∑
i=1

σiψ(θj′ , Xi)

=‖w‖1 sup
j

n∑
i=1

σiψ(θj, Xi)

≤‖w‖1 sup
ψ∈Ψ

n∑
i=1

σiψ(Xi)

≤A sup
ψ∈Ψ

n∑
i=1

σiψ(Xi).

The first inequality used wj ≥ 0. The last inequality used the fact that ‖w‖1 ≤ A
and supψ∈Ψ

∑n
i=1 σiψ(Xi) ≥ 0. This implies that

R(F+
A,L1

(Ψ),Sn) ≤ A ·R(Ψ,Sn),

and thus we obtain the second desired equality of the theorem. The proof of the
first equality of the theorem is similar. The third equality of the theorem holds
because the condition implies that

R(FA,L1
(Ψ),Sn) = R(F+

A,L1
(Ψ),Sn).

This proves the desired result.

The following example shows that for a sparse target function, L1 regularization
is preferred over L2 regularization due to smaller Rademacher complexity.
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Example 10.9. Assume that |Ψ| = N , then |Ψ∪−Ψ| ≤ 2N . From Theorem 6.23,
we have

R(Ψ ∪ −Ψ,Sn) ≤ ‖ψ‖L2(Sn) ·
√

2 ln(2N)

n
.

Theorem 10.8 implies that

R(FA,L1
(Ψ),Sn) ≤ A sup

ψ∈Ψ
‖ψ‖L2(Sn) ·

√
2 ln(2N)

n
.

If |ψ(x)| ≤ B for all ψ ∈ Ψ, then

R(FA,L1
(Ψ),Sn) ≤ AB

√
2 ln(2N)

n
.

We now consider the following sparse function class

Fm,L0
(Ψ) =

{
f(x) =

m∑
j=1

wjψj(x) : |wj| ≤ 1, ψj(x) ∈ Ψ

}
.

To represent this function class using L1 regularization, we note that

Fm,L0
(Ψ) ⊂ R(Fm,L1

(Ψ)).

This implies a Rademacher complexity that depends logarithmically on N as

R(Fm,L1
(Ψ),Sn) ≤ mB

√
2 ln(2N)

n
. (10.6)

If instead, we consider L2 regularization, then we have to use the function class

Fm,L0
(Ψ) ⊂ R(F√m,L2

(Ψ)),

where

FA,L2
(Ψ) =

{
f(x) =

N∑
j=1

wjψj(x) :
N∑
j=1

w2
j ≤ A2, ψj(x) ∈ Ψ

}
.

Since
∑

j ‖ψj(x)‖22 ≤ NB2 , the corresponding Rademacher complexity is upper
bounded as

R(F√m,L2
(Ψ),Sn) ≤ B

√
mN

n
. (10.7)

If the vectors [ψ(X) : X ∈ Sn] are orthogonal for ψ(X) ∈ Ψ, then it is not
difficult to check that a matching lower bound holds for R(F√m,L2

(Ψ),Sn) (see
Exercise 10.1). Since in sparse learning applications, we usually have m� N , the
Rademacher complexity of L1 approximation of sparse target in (10.6) is much
smaller than the Rademacher complexity of L2 approximation of sparse target
in (10.7). The former depends logarithmically in N , while the latter depends
polynomially in N .

The following result shows that the Rademacher complexity of L1 combinations
of functions with finite VC dimension can also be easily obtain.

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



CHAPTER 10. ADDITIVE MODELS 198

Example 10.10. Assume that Ψ is a binary function class with VC dimension
d, then we know that from Example 6.26

R(Ψ,Sn) ≤ 16

√
d

n
.

It follows that

R(FA,L1
(Ψ),Sn) ≤ AR(Ψ, Sn) +AR(−Ψ,Sn) ≤ 32A

√
d

n
.

The following result shows that the Rademacher complexity of two-layer neural
networks can be obtained easily using L1 regularization.

Example 10.11. In two-layer neural networks, let Ψ be an L2-regularized ReLU
function class:

Ψ =
{
ψ(θ, x) = max(0, θ>x) : ‖θ‖2 ≤ α, ‖x‖2 ≤ β

}
,

and the corresponding L1 regularized two-layer NN can be expressed as a function

f(x) =
m∑
j=1

wjψ(θj, x) : ‖w‖1 ≤ A, ‖θ‖2 ≤ α, ‖x‖2 ≤ β.

This function class belongs to FA,L1
(Ψ). We thus obtain the following bound for

L1 regularized two-layer NN:

R(FA,L1
(Ψ),Sn) ≤2AR(Ψ,Sn) (Theorem 10.8)

≤2Aαβ/
√
n, (Corollary 9.21)

where we note that max(0, f) is 1-Lipschitz in f .

Next, we may consider the following hard-constrained L1 regularized learning
problem.

ŵ = arg min
w

1

n

n∑
i=1

L(w>ψ(Xi), Yi), ‖w‖1 ≤ A. (10.8)

Similarly, we may consider the soft-regularized version as:

ŵ = arg min
w

1

n

n∑
i=1

L(w>ψ(Xi), Yi) + λ‖w‖1. (10.9)

Now by using Theorem 6.31, we obtain the following result.

Corollary 10.12. Assume that supp,p′,y,y′ [L(p, y) − L(p′, y′)] ≤ M , and L(p, y)
is γ Lipschitz with respect to p. For fixed A > 0, with probability at least 1 − δ:
for all f(x) = w>ψ(x) such that ‖w‖1 ≤ A:

EDL(w>ψ(X), Y ) ≤ 1

n

n∑
i=1

L(w>ψ(Xi), Yi) + 2γARn(Ψ±,D) +M

√
ln(1/δ)

2n
,

where Ψ± = {ψ(x) : ψ(x) ∈ Ψ or − ψ(x) ∈ Ψ}. Moreover, for (10.8), if we solve
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it approximately up to sub-optimality of ε′, then we have with probability at least
1− δ:

EDL(ŵ>ψ(X), Y ) ≤ inf
‖w‖1≤A

EDL(w>ψ(X), Y ) + 2γARn(Ψ±,D) + ε′

+M

√
2 ln(2/δ)

n
.

Example 10.13. If Ψ contains m functions {ψ1(x), . . . , ψm(x)}, each |ψj(x)| ≤
B, then

Rn(Ψ±,D) ≤ B
√

2 ln(2m)

n
.

Therefore the bound of Corollary 10.12 implies the oracle inequality

EDL(ŵ>ψ(X), Y ) ≤ inf
‖w‖1≤A

EDL(w>ψ(X), Y ) + 2γAB

√
2 ln(2m)

n

+M

√
2 ln(2/δ)

n
.

This has a logarithmic dependency on m, similar to that of the sparsity constraint
in Example 10.5.

Similar to the analysis of kernel method, we may analyze the soft L1 regular-
ization method by considering the sample dependent bound below. The result is
an application of Theorem 8.7, and similar to Corollary 9.26 for kernel methods.

Corollary 10.14. Assume that L(p, y) ≥ 0 is γ Lipschitz, M0 = supy L(0, y),
and B = supx,ψ∈Ψ |ψ(x)|. Consider A0 > 0, then with probability at least 1 − δ:
the following inequality holds for all w:

EDL(w>ψ(X), Y ) ≤ 1

n

n∑
i=1

L(w>ψ(Xi), Yi) + 4γ(A0 + ‖w‖1)Rn(Ψ±,D)

+ (M0 + 2γB(A0 + ‖w‖1))

[√
ln(2 + log2(1 + ‖w‖1/A0))

n
+

√
ln(1/δ)

2n

]
.

Consider (10.9) with

λ ≥ 4γRn(Ψ±,D) + 2γB

√
ln(2 + log2(1 +M0/(λA0)))

n
.

We have the following oracle inequality. With probability at least 1− δ:

EDL(ŵ>ψ(X), Y ) ≤ inf
w

[
EDL(w>ψ(X), Y ) +

(
λ+ 4γB

√
ln(2/δ)

2n

)
‖w‖1

]
+ εn(δ),
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where

εn(δ) =4γA0Rn(Ψ±,D) + (M0 + 2γA0B)

√
ln((2 + log2(1 +M0/(λA0))))

n

+ (2M0 + 4γA0B)

√
ln(2/δ)

2n
.

Proof Let Aθ = 2θA0, with q(θ) = (1 + θ)−2 for θ = 1, 2, . . ., and let f(x) =
w>ψ(x). Consider F(1) = {w>ψ(x) : ‖w‖1 ≤ A1}, and F(θ) = {w>ψ(x) : Aθ−1 ≤
‖w‖1 ≤ Aθ} for θ > 1. We have

Rn(F(θ),D) ≤ γAθRn(Ψ±,D).

Given any w, let θ be the smallest number such that f(w, x) = w>Ψ(x) ∈ F(θ),
then Aθ ≤ 2(A0 + ‖w‖1). Therefore

L(f(x), y) ≤ L(0, y) + γ|f(x)| ≤M0 + γAθB ≤M0 + 2γ(A0 + ‖w‖1)B.

We can take h = 0 in Theorem 8.7, M(θ) ≤M0 + 2γ(A0 + ‖w‖1)B, and 1/q(θ) ≤
(2 + log2(1 + ‖w‖1/A0))2. Let

R̃(θ, f,Sn) =4γ(A0 + ‖w‖1)Rn(Ψ±,D)

+ (M0 + 2γB(A0 + ‖w‖1))

√
ln(2 + log2(1 + ‖w‖1/A0))

n
. (10.10)

This implies the desired uniform convergence result.
Now we would like to show the second desired oracle inequality. With the

condition of λ, we have ‖ŵ‖1 ≤M0/λ, and by considering ‖w‖1 ≤M0/λ, we can
redefine

R̃(θ) = R̃(θ, f,Sn) =λ‖w‖1 + 4γA0Rn(Ψ±,D)

+ (M0 + 2γA0B)

√
ln(2 + log2(1 +M0/(λA0)))

n
.

This definition of R̃(θ) is an upper bound of (10.10). We can thus apply Theo-
rem 8.7 again to obtain the desired oracle inequality, where we also use 2M0 +
4γA0B + 4γB‖w‖1 as an upper bound for 2M(θ).

Example 10.15. Consider (10.9) with a function class Ψ of finite VC-dimension
(or pseudo-dimension) vc(Ψ±) = d, which includes the two-layer neural network
as a special case. Under the assumptions of Corollary 10.14, we have Rn(Ψ±,D) =
O(B

√
d/n) (see Example 6.26). We can take A0 = M0/(γB) and set

λ = Õ

(
γB

√
d

n

)
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to obtain

EDL(ŵ>ψ(X), Y ) ≤ inf
w

[
EDL(w>ψ(X), Y ) + Õ

(
γB

√
d+ ln(1/δ)

n
‖w‖1

)]

+ Õ

(
M0

√
d+ ln(1/δ)

n

)
.

We use the notation Õ(·) to hide log-factors.

10.3 Information Theoretical Analysis with Entropy Regularization

We have analyzed the Gibbs algorithm in Section 7.4 using stability analysis. It
is a randomized algorithm using the Gibbs distribution (or posterior distribu-
tion). From (7.10), we know that the Gibbs distribution can be regarded as the
solution of an entropy regularized empirical risk minimization problem. We will
further investigate entropy regularization as well as the closely related topic of
information theoretical generalization analysis in this section.

Note that entropy regularization is closely related to L1 regularization. Here we
consider the case of convex hull, with weights w ≥ 0, and

∑
j wj = 1. For entropy

regularization, we will consider a probability interpretation of w, which may now
be regarded as a distribution over models, to be learned from the training data.
Since we work with distributions in this section, in the following we will adopt a
different notation, and replace the weight w by a general distribution q(θ) on Θ,
where Θ may be either continuous or discrete.

Our goal is to find a distribution q on Θ, such that the additive model (10.1)
is replaced by the average over ψ(θ, x) ∈ Ψ according to q:

f(q, x) =

∫
ψ(θ, x)q(θ)dθ = Eθ∼q(·)ψ(θ, x). (10.11)

Since q(θ) is learned from the training data Sn, we will call such a distribution
q(θ) posterior distribution, using the Bayesian statistics analogy. Consider a prior
distribution q0(θ) on Θ (we use the term prior distribution to indicate that it does
not depend on the training data Sn), we may consider the entropy regularization
to regularize the posterior distribution q:

KL(q||q0) =

∫
q(x) ln

q(θ)

q0(θ)
dθ.

We have the following Rademacher complexity estimate for this entropy regu-
larization.

Theorem 10.16. Consider h(q) = h0(q) = λKL(q||q0), and F = {f(q, x)} in
(10.11). The offset Rademacher complexity can be bounded as

Rh(F ,Sn) ≤λ
2

lnEθ∼q0 exp

[
2

λ2n2

n∑
i=1

ψ(θ,Xi)
2

]
≤ 1

λn2
sup
θ

n∑
i=1

ψ(θ,Xi)
2.
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Proof We have

Rh(F ,Sn) =Eσ sup
q

[
1

n

n∑
i=1

σiEθ∼qψ(θ,Xi)−
λ

2
KL(q||q0)

]

=
λ

2
Eσ lnEθ∼q0 exp

[
2

λn

n∑
i=1

σiψ(θ,Xi)

]

≤λ
2

lnEθ∼q0Eσ exp

[
2

λn

n∑
i=1

σiψ(θ,Xi)

]

≤λ
2

lnEθ∼q0 exp

[
2

λ2n2

n∑
i=1

ψ(θ,Xi)
2

]
.

The first equation is the definition of Rademacher complexity (with offset). The
second equation follows from Proposition 7.16. The first inequality used Jensen’s
inequality and the concavity of ln(·). The second inequality follows from the sub-
Gaussian exponential inequality. This implies the desired bound.

The above result for Rademacher complexity appeared in (Meir and Zhang,
2003), which immediately implies the following result.

Corollary 10.17. Let FA = {f(q, x) : KL(q||q0) ≤ A2} be entropy regularized
functions of (10.11). Then

R(FA,Sn) ≤
√

2

n
A sup

θ

√√√√ 1

n

n∑
i=1

ψ(θ,Xi)2 .

Proof From Theorem 10.16, we have

R(FA,Sn) ≤ λ

2
A2 +

1

λn2
sup
θ

n∑
i=1

ψ(θ,Xi)
2.

By optimizing over λ, we obtain the desired bound.

This bound holds for general function classes. In the case of finite family with
Θ = {θ1, . . . , θm}, and q0(θ) = 1/m for all θ, we have

KL(q||q0) ≤ lnm

for all q. Therefore entropy regularization implies a bound for L1 regularization
with nonnegative constraint

∑m
j=1wj = 1 and wj ≥ 0. Since this is exactly the

convex hull of Ψ = {ψ(θ, x)}, Corollary 10.17 implies that

R (conv(Ψ),Sn) ≤
√

2 lnm

n
sup
θ
‖ψ(θ, ·)‖L2(Sn),

which is identical to the Rademacher complexity of convex hull of finite function
class obtained in Theorem 10.8 (by using Theorem 6.23).

Similar to Corollary 10.12 and Corollary 10.14, one can use the Rademacher
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complexity of entropy regularization and Theorem 6.31 to obtain uniform con-
vergence and oracle inequalities for additive models with entropy regularization.
In addition, a particularly interesting application of entropy regularization is the
information theoretical approach to generalization analysis, which we describe
below.

We now consider the notations introduced in Section 3.3, where we are inter-
ested in minimizing a loss function φ(w, z) : Ω × Z → R. We consider a general
randomized algorithm A : Zn → ∆(Ω), where ∆(Ω) denotes probability measures
on Ω. That is, given training data Sn, A(Sn) returns a posterior distribution q̂
on Ω. It then randomly draws a model from q̂ to make prediction. The following
uniform convergence result can be interpreted as a generalization bound for an
arbitrary randomized learning algorithm.

Theorem 10.18. Consider a randomized algorithm A that returns a distribution
q̂(w|Sn) on the parameter space Ω for each training data Sn ∈ Zn. Let

Λ(λ,w) = − 1

λ
lnEZ∼D exp( −λφ(w,Z)).

Then for any data independent distribution q0 on Ω and λ > 0, we have

ESnEw∼q̂(·|Sn)Λ(1/(λn), w) ≤ESnEw∼q̂(·|Sn)

1

n

n∑
i=1

φ(w,Zi) + λESnKL(q̂||q0).

Moreover, for any λ > 0, with probability at least 1− δ over Sn:

Ew∼q̂(·|Sn)Λ(1/(λn), w) ≤Ew∼q̂(·|Sn)

1

n

n∑
i=1

φ(w,Zi) + [λKL(q̂||q0) + λ ln(1/δ)] .

Proof Let

∆(Sn) = sup
q̂

[
Ew∼q̂(·|Sn)

(
Λ(1/(λn), w)− 1

n

n∑
i=1

φ(w,Zi)

)
− λKL(q̂||q0)

]
.

We have

lnESn∼Dn exp(λ−1∆(Sn))

= lnESn∼Dn exp

[
lnEw∼q0 exp

(
λ−1Λ(1/(λn), w)− λ−1

n

n∑
i=1

φ(w,Zi)

)]

= lnEw∼q0

[
exp

(
λ−1Λ(1/(λn), w)

)
ESn∼Dn exp

(
−λ

−1

n

n∑
i=1

φ(w,Zi)

)]

= lnEw∼q0
[
exp

(
λ−1Λ(1/(λn), w)

)(
EZ∼D exp

(
−λ

−1

n
φ(w,Z)

))n]
= lnEw∼q0

[
exp

(
λ−1Λ(1/(λn), w)

)(
exp

(
− 1

λn
Λ(1/(λn), w)

))n]
=0.
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The first equation used Proposition 7.16. The second equation used algebraic ma-
nipulation. The third equation used the independence of Zi. The fourth equation
used the definition of Λ(λ,w). This implies that

λ−1ESn∼Dn∆(Sn) ≤ lnESn∼Dn exp(λ−1∆(Sn)) = 0.

This implies the first bound. For the second inequality, we know that

Pr
(
λ−1∆(Sn) ≥ ln(1/δ)

)
≤ ESn exp

(
λ−1∆(Sn)− ln(1/δ)

)
= δ.

This proves the second result.

The style of the generalization result stated in Theorem 10.18 is often referred
to as PAC-Bayes analysis (McAllester, 1999), which can be applied to an arbitrary
randomized learning algorithm A : Zn → ∆(Ω). In the literature, it is often
applied to bounded loss functions, for which we can estimate the logarithmic
moment generating function Λ(λ,w) easily. More generally, we may consider sub-
Gaussian loss functions as in the following example.

Example 10.19. Assume that φ(w,Z) is uniformly sub-Gaussian: there exists
σ > 0 so that

∀w ∈ Ω : −Λ(λ,w) ≤ −φ(w,D) +
λσ2

2
.

Then we obtain from Theorem 10.18 the following generalization bound. For any
λ > 0, with probability at least 1− δ:

Ew∼q̂(·|Sn)φ(w,D) ≤Ew∼q̂(·|Sn)φ(w,Sn) +

[
λKL(q̂||q0) +

σ2

2λn
+ λ ln(1/δ)

]
.

Assume that φ(w,Z) satisfies a uniform Bennett style bound on the logarithmic
moment generating function in Lemma 2.20, and the variance condition of (3.13),
then we can obtain a fast rate result.

Corollary 10.20. Under the assumptions of Theorem 10.18, and assume that
there exists b > 0 so that

−Λ(λ,w) ≤ −φ(w,D) + λψ(λb)VarZ∼D(φ(w,Z)),

where ψ(z) = (ez−z−1)/z2. Assume further that the variance condition of (3.13)
holds. Then with probability at least 1− δ:(

1− c1ψ(b/(λn))

λn

)
Ew∼q̂(·|Sn)φ(w,D)

≤Ew∼q̂(·|Sn)φ(w,Sn) +

[
λKL(q̂||q0) +

c2
0ψ(b/(λn))

λn
+ λ ln(1/δ)

]
.
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We also have the expected generalization error bound:(
1− c1ψ(b/(λn))

λn

)
ESn Ew∼q̂(·|Sn)φ(w,D)

≤ESn Ew∼q̂(·|Sn)φ(w,Sn) +

[
λESn KL(q̂||q0) +

c2
0ψ(b/(λn))

λn

]
.

Proof We have

Λ(1/(λn), w) ≥φ(w,D)− 1

λn
ψ(b/(λn))VarZ∼D(φ(w,Z)) (assumption on Λ)

≥φ(w,D)− 1

λn
ψ(b/(λn))(c2

0 + c1φ(w,D)) (variance condition)

=

(
1− c1ψ(b/(λn))

λn

)
φ(w,D)− c2

0ψ(b/(λn))

λn
.

This estimate, together with Theorem 10.18, implies the desired bounds.

The result can be compared to the stability analysis of Gibbs algorithm in
Theorem 7.19, and to the local Rademacher complexity analysis in Theorem 6.41.

Example 10.21. Consider the least squares problem in Example 3.18 with either
a convex or a nonconvex but realizable function class. Let

φ(w, z) = (f(w, x)− y)2 − (fopt(x)− y)2.

We can take b = M2, c0 = 0, and c1 = 4M2. Let λ = 4M2/n, and note that
ψ(b/(λn) = ψ(0.25) < 0.6. We obtain the following bound from Corollary 10.20.
With probability at least 1− δ:

0.4Ew∼q̂(·|Sn)φ(w,D) ≤ Ew∼q̂(·|Sn)φ(w,Sn) +
4M2

n
[KL(q̂||q0) + ln(1/δ)] .

For least squares regression with sub-Gaussian noise, one can also perform a
more direct calculation of logarithmic moment generating function with a slightly
improved result. See Proposition 12.21.

A more recent development of the information theoretical approach to general-
ization analysis is to rewrite the expected generalization result in Theorem 10.18
in terms of the mutual information between a learning algorithm A and the train-
ing data Sn. Using the notations of Theorem 10.18, we can define the mutual
information of A and Sn as follows:

I(A,Sn) = ESnEw∼q̂(·|Sn) ln
q̂(w|Sn)

q̂(w)
, q̂(w) = ESn q̂(w|Sn).

We note that the mutual information optimizes the expected KL divergence in
Theorem 10.18 over prior q0:

I(A,Sn) = inf
q0

ESnKL(q̂||q0).

The following result is a direct consequence of Theorem 10.18 with q0(w) = q̂(w).
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Corollary 10.22. Under the assumptions of Theorem 10.18, we have the follow-
ing expected generalization bound for all λ > 0:

ESnEAΛ(λ,D) ≤ESnEA
1

n

n∑
i=1

φ(w,Zi) + λI(A,Sn),

where EA denotes the expectation over the randomization of algorithm A: that is,
w ∼ q̂(·|Sn).

Similar to Example 10.19, we have the following result for sub-Gaussian loss
functions. This is the result that is often stated in the literature.

Example 10.23. Assume that sup[φ(w, z) − φ(w, z′)] ≤ M . Then we have the
following sub-Gaussian inequality

Λ(λ) ≤ λ2M2

8
.

We obtain from Corollary 10.22:

ESnEAφ(w,D) ≤ESnEA
1

n

n∑
i=1

φ(w,Zi) + inf
λ>0

[
λI(A,Sn) +

M2

8λn

]

=ESnEA
1

n

n∑
i=1

φ(w,Zi) +M

√
I(A,Sn)

2n
.

We may also derive fast rate result for the mutual information generalization
bound as follows.

Example 10.24. Under the conditions of Corollary 10.20, we obtain(
1− c1ψ(b/(λn))

λn

)
ESn EAφ(w,D)

≤ESn EA
1

n

n∑
i=1

φ(w,Zi) +

[
λI(A,Sn) +

c2
0ψ(b/(λn))

λn

]
.

We now consider the Gibbs Algorithm of (7.9), which we restate using notations
of this section as follows:

q̂(w|Sn) ∝ q0(θ) exp

(
− 1

λn

n∑
i=1

φ(w,Zi)

)
. (10.12)

We have the following oracle inequality for the Gibbs algorithm.

Corollary 10.25. The following expected oracle inequality holds for the Gibbs
distribution (10.12):

ESnEw∼q̂Λ(1/(λn), w) ≤ inf
q

[Ew∼qφ(w,D) + λKL(q||q0)] ,

where Λ(·) is defined in Theorem 10.18.
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Proof From Proposition 7.16, q̂ is the solution of the following regularized em-
pirical risk minimization problem:

q̂ = arg min
q

[
Eθ∼q

1

n

n∑
i=1

φ(w,Zi) + λKL(q||q0)

]
. (10.13)

Therefore for any q, we obtain from Theorem 10.18

ESnEw∼q̂Λ(1/(λn), w) ≤ESn

[
Ew∼q̂

1

n

n∑
i=1

φ(w,Zi) + λKL(q̂||q0)

]

≤ESn

[
Ew∼q

1

n

n∑
i=1

φ(w,Zi) + λKL(q||q0)

]
= [Ew∼qφ(w,D) + λKL(q||q0)] .

The first inequality used Theorem 10.18. The second inequality used (10.13). The
last equation used the fact that Zi ∼ D. This implies the result.

We note that similar to the analysis of least squares using Corollary 10.20 of
Theorem 10.18, we may use Corollary 10.25 to obtain a simpler oracle inequality
than that of the local Rademacher complexity. One interesting application, which
we state below, is a simple analysis of conditional density estimation for Gibbs
algorithms.

Corollary 10.26. Consider the conditional density estimation problem with a
density class {p(Y |w,X) : w ∈ Ω}. Let λ = 1/(αn) for some α ∈ (0, 1), and
φ(w,Z) = − ln p(Y |w,X) in (10.12). Then

(1− α)ESn∼DnEw∼q̂EX∼DDα(p(·|w,X)||p∗(·|X))

≤ inf
q

[
αEw∼qEX∼DKL(p∗(·|X)||p(·|w,X)) +

KL(q||q0)

n

]
,

where Dα is the α-divergence defined in (B.3), and p∗(Y |X) is the true conditional
density of D.

Proof Consider φ′(w,Z) = ln p∗(Y |X)−ln p(Y |w,X). Then the Gibbs algorithm
does not change if we replace φ(w,Z) by φ′(w,Z). By applying Corollary 10.25
with φ(w,Z) replaced by φ′(w,Z). With this replacement, we note that

Λ(1/(λn), w) =− 1

α
lnE(X,Y )∼D

(
p(Y |w,X)

p∗(Y |X)

)α
=− 1

α
ln [1− (1− α)EX∼DDα(p(·|w,X)||p∗(·|X))]

≥1− α
α

EX∼DDα(p(·|w,X)||p∗(·|X)).

Moreover, EDφ′(w,Z) = EXKL(p∗(·|X)||p(·|w,X)). The desired bound follows
directly from Corollary 10.25.
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Example 10.27. The squared Hellinger distance is α-divergence with α = 0.5.
Consider the following the Gibbs algorithm with log-likelihood loss and λ = 2/n:

q̂(w|Sn) ∝ q0(θ) exp

(
0.5

n∑
i=1

ln p(Yi|w,Xi)

)
.

Corollary 10.26 implies that

ESn∼DnEw∼q̂EX∼DH(p∗(·|X)||p(·|w,X))2

≤ inf
q

[
Ew∼qEX∼DKL(p∗(·|X)||p(·|w,X)) +

2KL(q||q0)

n

]
.

One may also obtain high probability oracle inequalities for the Gibbs algo-
rithm. For example, we have the following result.

Theorem 10.28. Assume that supw,z,z′ [φ(w, z) − φ(w, z′)] ≤ M . Let q0 be a
distribution on Θ. Let q̂ be the Gibbs distribution of (10.12). Then with probability
at least 1− δ:

Ew∼q̂φ(w,D) ≤ inf
q

[Ew∼qφ(w,D) + λKL(q||q0)] +
M2

8λn
+ 2M

√
ln(2/δ)

2n
.

Proof Let ∆(Ω) denote the set of posterior distributions q̂(·|Sn). We note that
with h(q) = λKL(q||q0), Theorem 10.18 (with ∆n(h) = 0) implies that

εhn(∆(Ω),D) = ESn∼Dn sup
q∈∆(Ω)

[Ew∼qφ(w,Sn)− λKL(q||q0)] ≤ M2

8λn
,

with a calculation similar to Example 10.19. We obtain the desired bound from
Corollary 6.21.

10.4 Boosting and Greedy Algorithm

In (10.1), both wj and θj needs to be learned from the training data. A popular
algorithm to do so is boosting, which assumes the existence of an ERM algorithm
A that can learn θ̂ = A(S̃n) from any weighted version of data S̃n = {(ρi, Xi, Yi) :
i = 1, . . . , n} as follows:

n∑
i=1

ρiL̃(ψ(θ̂, Xi), Yi) ≤ inf
θ∈Θ

n∑
i=1

ρiL̃(ψ(θ,Xi), Yi) + ε̃, (10.14)

where ρi ≥ 0, and for simplicity, we normalize ρi so that
∑

i ρi = 1. The learner A
is often referred to as a weak learner (or base learner) in the boosting literature.

In boosting, we repeatedly generate modified data S̃jn (j = 1, 2, . . .) from the
training data Sn and apply A to obtain θj. We then find weight wj to form
the additive model in (10.1). There are two commonly used weaker learners. In
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AdaBoost, classification weak learner is employed, where ψ(θ,Xi) ∈ {±1} and
Yi ∈ {±1} are both binary, and

L̃(ψ(θ,X), Y ) = 1(ψ(θ,X) 6= Y ).

For AdaBoost, each dataset S̃jn is formed by adjusting the weights {ρi}. In gra-
dient boosting, A is assumed to be a regression learner, with

L̃(ψ(θ,X), Y ) = (ψ(θ,X)− Y )2.

For gradient boosting, each dataset S̃jn is formed by adjusting the response {Yi}.
Both AdaBoost and gradient boosting may be regarded as greedy algorithms, and
their convergence will be analyzed in this section. In fact, the convergence analysis
shows that greedy algorithms approximately solves the L1 regularization problem.
One may then use the Rademacher complexity analysis of L1 regularization to
analyze the generalization behavior of greedy algorithms.

Algorithm 10.1: AdaBoost

Input: Sn, Ψ
Output: f (T )(x)

1 Let f (0)(x) = 0
2 Let ρ1 = · · · = ρn = 1/n
3 for t = 1, 2, . . . , T do
4 Find θt by approximately solving
5 θt ≈ arg minθ∈Θ

∑n
i=1 ρi1(ψ(θ,Xi)Yi ≤ 0)

6 Let rt =
∑n

i=1 ρiψ(θt, Xi)Yi
7 Let wt = 1

2
ln((1 + rt)/(1− rt))

8 Let ρi = ρi · exp(−wtψ(θt, Xi)Yi) for i = 1, . . . , n.
9 Normalize ρi so that

∑n
i=1 ρi = 1

10 Let f (t)(x) = f (t−1)(x) + wtψ(θt, x)

Return: f (T )(x)

Theorem 10.29. Assume that Ψ = Ψ±, ψ(θ, x) ∈ {±1}, and y ∈ {±1}. Then
AdaBoost implements the greedy algorithm to minimize the loss function

L(f(x), y) = exp(−f(x)y).

That is, at each time t, AdaBoost (with exact minimization in Line 5 of Algo-
rithm 10.1) solves the following problem:

[wt, θt] = arg min
w,θ

n∑
i=1

e−(f(t−1)(Xi)+wψ(θ,Xi))Yi .

Moreover, the prediction function f (T ) obtained by Algorithm 10.1 satisfies

1

n

n∑
i=1

e−f
(T )(Xi)Yi ≤

T∏
t=1

√
1− r2

t .
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Proof Let

[w̃t, θ̃t] = arg min
w,θ

n∑
i=1

e−(f(t−1)(Xi)+wψ(θ,Xi))Yi .

By the definition of ρi, we know that

[w̃t, θ̃t] = arg min
w∈R,θ∈Θ

n∑
i=1

ρie
−wψ(θ,Xi)Yi . (10.15)

It follows that w̃t is the solution of

w̃t = arg min
w

n∑
i=1

ρi

[
e−w

ψ(θ̃t, Xi)Yi + 1

2
+ ew

1− ψ(θ̃t, Xi)Yi
2

]
.

Taking derivative with respect to w at w = w̃t, we obtain

n∑
i=1

ρi

[
−e−w̃t ψ(θ̃t, Xi)Yi + 1

2
+ ew̃t

1− ψ(θ̃t, Xi)Yi
2

]
= 0.

Therefore if we let r̃t =
∑n

i=1 ρiψ(θ̃t, Xi)Yi, then

−e−w̃t(1 + r̃t) + ew̃t(1− r̃t) = 0.

This implies that

w̃t =
1

2
ln

1 + r̃t
1− r̃t

,

and
n∑
i=1

ρie
−w̃tψ(θ̃t,Xi)Yi =

√
1− r̃2

t . (10.16)

Since Ψ = Ψ±, the parameter θ̃t that achieves the smallest classification error also
achieves the smallest 1 − r̃2

t . This means that we can take θ̃t = θt and w̃t = wt
to achieve the minimum of (10.15). This proves the first desired result. Since
ρi ∝ exp(−f (t−1)(Xi)Yi) at each iteration t, we obtain from (10.16) that∑n

i=1 e
−f(t)(Xi)Yi∑n

i=1 e
−f(t−1)(Xi)Yi

≤
√

1− r2
t .

By using induction on t, we obtain the second desired bound.

In practice, one often observes that the test performance of AdaBoost im-
proves even after AdaBoost achieves zero-training error. This phenomenon can
be explained by the fact that AdaBoost tries to minimize the margin under L1

constraints. This can be seen from the following simple corollary.

Corollary 10.30. Under the assumptions of Theorem 10.29, and assume further
that Ψ has VC-dimension d. Let

‖f (T )‖1 =
T∑
t=1

wt.
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Assume that for t = 1, . . . , T , we have rt ≥ r0 > 0 in Algorithm 10.1. Then there
exists an absolute constant C so that with probability at least 1− δ:

E(X,Y )∼D1(f (T )(X)Y ≤ 0) ≤ 1.5

n

n∑
i=1

1(f (T )(Xi)Yi ≤ 1)︸ ︷︷ ︸
margin error

+ C
(‖f (T )‖1 + 1)2d lnn ln(n+ ‖f (T )‖1) + ln(1/δ)

n
,

where margin error is upper bounded by

exp

(
1− 0.4

T∑
t=1

min(1, w2
t )

)
≤ exp

(
1− T

10
min

(
2, ln

1 + r0

1− r0

)2
)
.

Proof We note that wt ≥ 0. We have

rt =
e2wt − 1

e2wt + 1
,

which implies that√
1− r2

t =
2ewt

e2wt + 1
≤ 1

1 + 0.5w2
t

≤ e−0.4 min(w2
t ,1),

where we used (ex + e−x)/2 ≥ 1 + 0.5x2 and 1 + 0.5x ≥ e0.4x when x ∈ [0, 1].
Therefore Theorem 10.29 implies that

1

n

n∑
i=1

1(f (T )(Xi)Yi ≤ 1) ≤ 1

n

n∑
i=1

e−f
(T )(Xi)Yi+1 ≤ e1−0.4

∑T
t=1 min(1,w2

t ). (10.17)

We also note that from Sauer’s lemma and Theorem 5.21, we know that there
exists a constant C0 > 0 so that for any A > 0:

lnN(FA,L1
(Ψ), ε, L∞(Sn)) ≤ C0A

2d lnn ln(n+A/ε)

ε2
.

The multiplicative bound in Theorem 4.21 with γ = 0.1 implies that with prob-
ability at least 1− δ, for any f ∈ FA,L1

(Ψ), we have

0.81E(X,Y )∼D1(f(X)Y ≤ 0) ≤ 1

n

n∑
i=1

1(f (T )(Xi)Yi ≤ 0.1)

+O

(
A2d lnn ln(n+A) + ln(1/δ)

n

)
,

where O(·) hides an absolute constant. Taking union bound over A = 1, 2, . . .,
with probability 1 − δ/(A(A + 1)), we obtain that for all A ∈ {1, 2, . . .} and
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f ∈ FA,L1
, we have

0.81E(X,Y )∼D1(f(X)Y ≤ 0) ≤ 1

n

n∑
i=1

1(f (T )(Xi)Yi ≤ 0.1)

+O

(
A2d lnn ln(n+A) + ln(1/δ)

n

)
.

Now we apply this bound to f (T ) with A = d‖f‖1e, and use (10.17), we obtain
the desired bound.

For simplicity, we assume that each rt < 1− δ for some δ > 0. Otherwise, the
problem itself becomes easy. If each time AdaBoost achieves error rt ≥ r0 > 0,
then ‖f (T )‖1 grow linearly but the margin error of Corollary 10.30 decreases
exponentially. This shows that the generalization performance of AdaBoost can
still reduce even when the training error goes to zero, because the margin error
can still decrease.

While AdaBoost implements the greedy algorithm for the exponential loss and
binary classification problem, gradient boosting can be applied to arbitrary loss
functions using a least squares base learner. The resulting method, described in
Algorithm 10.2, is referred to as gradient boosting. We use L′1(f, y) to denote
the gradient of L(f, y) with respect to f , which is also referred to as functional
gradient in the boosting literature when evaluated on the training data.

Algorithm 10.2: Gradient Boosting

Input: Sn, Ψ, L(·, ·)
Output: f (T )(x)

1 Let f (0)(x) = 0
2 for t = 1, 2, . . . , T do
3 Let gi = L′1(f (t−1)(Xi), Yi) (i = 1, . . . , n) be the functional gradients
4 Solve for [wt, θt] = arg minw∈R,θ∈Θ

∑n
i=1[wψ(θ,Xi) + gi]

2

5 Let f (t)(x) = f (t−1)(x) + wtψ(θt, x)

Return: f (T )(x)

Boosting is closely related to L1 regularization. In Corollary 10.30, L1 regu-
larization bound is used to estimate the generalization of AdaBoost. Moreover,
a slight modification of gradient boosting, described in Algorithm 10.3, can also
be used to solve L1 constrained optimization problem.

The following result shows that Algorithm 10.3 converges to the solution of L1

regularization problem.

Theorem 10.31. Assume that supθ ‖ψ(θ, ·)‖L2(Sn) ≤ B, and L(f, y) is a γ-
smooth convex function with respect to f . If we take ηt = 2/(t + 1) in Algo-
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Algorithm 10.3: Gradient Boosting for L1 Constrained Optimization

Input: Sn, Ψ, L(·, ·), γ,{ηt > 0}
Output: f (T )(x)

1 Let f (0)(x) = 0
2 for t = 1, 2, . . . , T do
3 Let gi = L′1(f (t−1)(Xi), Yi) (i = 1, . . . , n) be the functional gradients
4 Solve for θt = arg minθ∈Θ

∑n
i=1[γηtψ(θ,Xi) + gi]

2

5 Let f (t)(x) = (1− ηt)f (t−1)(x) + ηtψ(θt, x)

Return: f (T )(x)

rithm 10.3, then

1

n

n∑
i=1

L(f (t)(Xi), Yi) ≤ inf
f∈conv(Ψ)

1

n

n∑
i=1

L(f(Xi), Yi) +
10γB2

T + 1
.

Proof Consider

f(x) =
m∑
j=1

ujψ(θ̃j, x),

where uj ≥ 0, and
∑m

j=1 uj = 1. We obtain from the definition of ηt that for all
j = 1, . . . ,m:

2ηt

n∑
i=1

giψ(θt, Xi) + γη2
t

n∑
i=1

ψ(θt, Xi)
2

≤2ηt

n∑
i=1

giψ(θ̃j, Xi) + γη2
t

n∑
i=1

ψ(θ̃j, Xi)
2.

Now multiplying the inequality by uj and then summing over j, we obtain

2ηt

n∑
i=1

giψ(θt, Xi) + γη2
t

n∑
i=1

ψ(θt, Xi)
2

≤2ηt

n∑
i=1

gi

m∑
j=1

ujψ(θ̃j, Xi) + γη2
t

m∑
j=1

uj

n∑
i=1

ψ(θ̃j, Xi)
2.

Therefore

ηt

n∑
i=1

giψ(θt, Xi) ≤ ηt
n∑
i=1

gif(Xi) +
nγ

2
η2
tB

2. (10.18)
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We have
n∑
i=1

L(f (t)(Xi), Yi) =
n∑
i=1

L((1− ηt)f (t−1)(Xi) + ηtψ(θt, Xi), Yi)

≤
n∑
i=1

[
L(f (t−1)(Xi), Yi) + ηtgi(ψ(θt, Xi)− f (t−1)(Xi))

]
+
η2
t γ

2

n∑
i=1

((ψ(θt, Xi)− f (t−1)(Xi))
2

≤
n∑
i=1

[
L(f (t−1)(Xi), Yi) + ηtgi(f(Xi)− f (t−1)(Xi))

]
+
nη2

t γB
2

2
+
nη2

t γ

2
4B2

≤
n∑
i=1

L(f (t−1)(Xi), Yi) + ηt(L(f(Xi), Yi)− L(f (t−1)(Xi), Yi)) +
5nγη2

tB
2

2
.

The first inequality used γ-smoothness of L(f, y) with respect to f , so that
L(f ′, y) ≤ L(f, y) + L′1(f, y)(f ′ − f) + 0.5γ(f ′ − f)2. The second inequality used
(10.18). The third inequality used the convex of L(f, y) with respect to f , so that
L(f, y) + L′1(f, y)(f ′ − f) ≤ L(f ′, y). Let

βt =
1

n

n∑
i=1

L(f (t)(Xi), Yi)−
1

n

n∑
i=1

L(f(Xi), Yi),

then we have shown with ηt = 2/(t+ 1):

βt ≤
t− 1

t+ 1
βt−1 +

10γB2

(t+ 1)2
.

Now multiply by t(t+ 1), w have

(t+ 1)tβt ≤ (t− 1)tβt−1 + 10γB2.

By summing over t = 1, 2, 3, . . . , T , we obtain the desired bound.

Algorithm 10.3 can be extended to solve hard-constrained L1 regularization
problem of the form ‖w‖1 ≤ A. However this requires knowing A in advance. One
may also use gradient boosting to solve the sparse approximation problem in the
more general setting without specifying A. While results can be obtained for the
original gradient boosting algorithm in Algorithm 10.2, a stronger convergence
result can be obtained for a slight modification referred to as the fully-corrective
gradient boosting algorithm (see Shalev-Shwartz et al., 2010).

Theorem 10.32 (Shalev-Shwartz et al., 2010). Assume that L(p, y) is convex
and γ smooth in p. Then at time T , the solution f (T ) of Algorithm 10.4 satisfies

n∑
i=1

L(f (T )(Xi), Yi) ≤ inf
f∈FL1

(Ψ)

[
n∑
i=1

L(f(Xi), Yi) +
2γ‖f‖21B2

T

]
,

where B2 = supθ
∑n

i=1 ψ(θ,Xi)
2.
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Algorithm 10.4: Fully Corrective Gradient Boosting

Input: Sn, Ψ, L(·, ·)
Output: f (T )(x)

1 Let f (0)(x) = 0
2 for t = 1, 2, . . . , T do
3 Let gi = L′1(f (t−1)(Xi), Yi) (i = 1, . . . , n) be functional gradients
4 Solve for [αt, θt] = arg minα∈R,θ∈ΘQt(α, θ),
5 where Qt(α, θ) =

∑n
i=1[αψ(θ,Xi) + gi]

2

6 Let w(t) = arg min[ws]

∑n
i=1 L

(∑t
s=1wsψ(θs, Xi), Yi

)
7 Let f (t)(x) =

∑t
s=1w

(t)
s ψ(θs, x)

Return: f (T )(x)

One can use the relationship of greedy algorithm and L1 regularization to
analyze the generalization behavior of boosting. By combining a convergence
analysis of greedy algorithm in terms of L1 norm, with generalization analysis
using L1 regularization, one can show the consistency of boosting procedures
(Zhang and Yu, 2005). It is also possible to investigate the generalization of
boosting using margin with respect to the L1 norm, similar to Corollary 10.30
(also see Bartlett et al. (1998)) for AdaBoost. In addition to the L∞-covering
number analysis, one may also use Rademacher complexity to derive such a data-
dependent margin bound. This leads to a O(1/

√
n) convergence rate instead of

O(1/n) convergence rate.

Corollary 10.33. Assume that Y ∈ {±1}, and ψ(θ, x) ∈ [−1, 1]. Then ∀γ > 0,
with probability 1− δ: for all f(x) =

∑
j wjψ(θj, x), we have

ED1(f(X)Y ≤ 0) ≤ 1

n

n∑
i=1

1(f(Xi)Yi ≤ γ) + 4(1 + γ−1‖w‖1)Rn(Ψ±,D)

+ (3 + 2γ−1‖w‖1)

[√
ln(2 + log2(1 + ‖w‖1/γ))2)

2n
+

√
ln(1/δ)

n

]
.

Proof Let L(p, y) = min(1,max(0, 1−py/γ)), which is γ−1 Lipschitz. Let A0 = γ,
B = 1, and M0 = 1. By using the fact that

1(f(X), Y ) ≤ L(f(X), Y ) ≤ 1(f(X)Y ≤ γ),

The result is a directly consequence of Corollary 10.14 .

10.5 Sparse Recovery Analysis

We have shown that it is possible to approximate the L1 regularized solution by
sparse solutions using greedy boosting. On the other hand, L1 regularization has
frequently been used as an approximation technique to solve the nonconvex L0

regularization problem. Under appropriate conditions, it can be shown that such
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a convex relaxation leads to exact or approximate solutions to the nonconvex
problem.

We consider the same linear model (9.19), in the fixed design setting and with
w∗ replaced by the symbol w̄ so that subscripts are less cluttered. We assume
that w̄ is sparse. For convenience, we replace the general feature map ψ(x) by
x. We also rescale the feature vector and target by 1/

√
n, so that the factor 1/n

(which denotes the average over the training data) is absorbed into x and y.
In the subsequent discussions, we will use the common convention in the high

dimensional statistics literature, so that symbols may carry meanings not consis-
tent with other sections. Specifically, we will let X denote an n×p design matrix,
and Y denote an n dimensional observation vector. The model parameter w is
p-dimensional. We assume the following sparse linear regression model

Y = Xw̄ + ε, (10.19)

where ε is n-dimensional zero-mean noise vector with independent components.
Note that due to the rescaling mentioned above, we will assume that columns of
X are bounded in 2-norms. The corresponding proper scaling of ε is to assume
that each

√
nεi is σ sub-Gaussian.

We also assume that ‖w̄‖0 � p. It is known that in this case, the complexity of
learning w̄ is O(‖w̄‖0 ln p) instead of O(p) (see Example 10.5). We allow p � n,
and in the statistics literature, this situation is referred to as high dimensional.
Instead of solving the sparsity problem using L0 regularization, one often employs
the following L1 regularization problem (Lasso) as a surrogate:

ŵ = arg min
w
QL1

(w); QL1
(w) =

1

2
‖Xw − Y ‖22 + λ‖w‖1, (10.20)

where λ > 0 is an appropriately chosen regularization parameter.
Under appropriate conditions, one can recover the true sparse parameter w̄

using Lasso. This is referred to as the sparse recovery problem. In sparse recovery,
theoretical questions we ask for Lasso is whether the solution ŵ of Lasso with an
appropriately chosen λ leads to a good estimate of w̄ in the following sense:

• (Support Recovery) Whether Lasso finds the correct feature set: supp(ŵ) =
supp(w̄)? Moreover, we say the Lasso solution is sign consistent if supp(ŵ) =
supp(w̄) and sign(ŵj) = sign(w̄j) when j ∈ supp(w̄).

• (Parameter Recovery) How good is the parameter estimation, or how small is
‖ŵ − w̄‖2?

To answer these questions, we need to analyze the solution of the Lasso prob-
lem (10.20) using its Karush–Kuhn–Tucker conditions ( KKT conditions) at ŵ,
which provide more precise characterizations of the solution than those from
the empirical process analysis studied earlier. From the standard convex analysis
(see Rockafellar, 2015), a solution of (10.20) satisfies the first order optimality
equation (KKT condition) in Proposition 10.34.

Proposition 10.34. Let F̂ = supp(ŵ), then ŵ is a solution of (10.20) if and
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10.5. SPARSE RECOVERY ANALYSIS 217

only if

X>
F̂

(XF̂ ŵF̂ − Y ) + λsign(ŵ)F̂ = 0,

X>j (XF̂ ŵF̂ − Y ) ∈ [−λ, λ] (j 6∈ F̂ ),

where XF̂ contains columns of X with columns in F̂ , and Xj is the j-th column
of X.

Note that the first condition in the proposition implies that ŵ is a solution
with support restricted to F̂ :

QL1
(ŵ) = min

w
QL1

(w) subject to supp(w) ⊂ F̂ .

In general, Lasso solutions may not be unique. For example, when j 6= j′ ∈ F̂
such that Xj = Xj′ , then for any solution ŵ such that ŵj 6= 0, we can construct
w̃ so that w̃k = ŵk when k /∈ {j, j′}, w̃j = 0 and w̃j′ = ŵj + ŵj′ . Then it is easy to
show that w̃ 6= ŵ is also a Lasso solution. However, under suitable assumptions,
we can also obtain the uniqueness of Lasso solution.

Proposition 10.35. Let F̂ = supp(ŵ). If X>
F̂
XF̂ is positive definite, and

X>
F̂

(XF̂ ŵF̂ − Y ) + λsign(ŵ)F̂ = 0,

X>j (XF̂ ŵF̂ − Y ) ∈ (−λ, λ) (j 6∈ F̂ ),

then ŵ is the unique solution of (10.20).

Proof We only need to show that for any ∆w 6= 0, ŵ + ∆w is not a solution.
For j /∈ F̂ , we define

λ′j = |X>j (XF̂ ŵF̂ − Y )| < λ,

and let

Q′L1
(w) = 0.5‖Xw − Y ‖22 + λ

∑
j∈F̂

|wj|+
∑
j /∈F̂

λ′j|wj|.

Since there exists a subgradient ∇Q′L1
(ŵ) = 0, we know that ŵ achieves the

minimum of Q′L1
(w), and thus Q′L1

(ŵ+∆w) ≥ Q′L1
(ŵ) = QL1

(ŵ). Now, if ∆wj 6=
0 for some j /∈ F̂ , then QL1

(ŵ+∆w) > Q′L1
(ŵ+∆w) ≥ QL1

(ŵ), and thus ŵ+∆w

is not a solution of the original Lasso problem. If ∆wj = 0 for all j /∈ F̂ , then

supp(ŵ + ∆w) ⊂ F̂ . However, the positive definiteness of X>
F̂
XF̂ means that

QL1
(w) is strictly convex when the support is restricted to F̂ , and hence the

solution (with support restricted to F̂ ) is unique. This implies that ∆w = 0.

One important property of Lasso is that under suitable conditions, the method
can find the set of nonzero elements supp(ŵ) that equals supp(w̄). This property
is referred to as feature selection consistency for the support recovery problem.

Proposition 10.36. Let F̄ = supp(w̄). Let

w̃F̄ = w̄F̄ + (X>F̄XF̄ )−1(−λsign(w̄)F̄ +X>F̄ ε)
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and w̃j = 0 for j /∈ F̄ . Assume that X>F̄XF̄ is positive definite, and

sign(w̃F̄ ) = sign(w̄F̄ ),

|X>j [−λXF̄ (X>F̄XF̄ )−1sign(w̄)F̄ + (XF̄ (X>F̄XF̄ )−1X>F̄ − I)ε]| < λ (∀j 6∈ F̄ ).

Then ŵ = w̃ is the unique solution of (10.20) that is sign consistent.

Proof We note that for j /∈ F̄ :

X>j (XF̄ w̃F̄ − Y ) = X>j [−λXF̄ (X>F̄XF̄ )−1sign(w̄)F̄ + (XF̄ (X>F̄XF̄ )−1X>F̄ − I)ε].

By the assumption of the proposition, we have

|X>j (XF̄ w̃F̄ − Y )| < λ (∀j /∈ F̄ ).

Moreover, we have

X>F̄ (XF̄ w̃F̄ − Y ) + λsign(w̃)F̄ = X>F̄ (XF̄ w̃F̄ −XF̄ w̄F̄ − ε) + λsign(w̄)F̄ = 0.

Therefore w̃ satisfies the KKT conditions of Proposition 10.34, and thus is a
solution of the Lasso problem. Proposition 10.35 implies that w̃ is the unique
solution of the Lasso problem.

Theorem 10.37. Let F̄ = supp(w̄). Assume that X>F̄XF̄ is positive definite, and

µ = sup
j 6∈F̄
|X>j XF̄ (X>F̄XF̄ )−1sign(w̄)F̄ | < 1.

Assume that we choose a sufficiently large λ so that

λ > (1− µ)−1 sup
j 6∈F̄
|X>j (XF̄ (X>F̄XF̄ )−1X>F̄ − I)ε|.

If the weight w̄ is sufficiently large:

min
j∈F̄
|w̄j| > ‖(X>F̄XF̄ )−1‖∞→∞(λ+ ‖X>F̄ ε‖∞),

then the solution of (10.20) is unique and sign consistent. Here ‖M‖∞→∞ =
supu[‖Mu‖∞/‖u‖∞] is the maximum absolute row sum of M .

Proof The proof is just a verification of Proposition 10.36. Since

‖(X>F̄XF̄ )−1(−λsign(w̄)F̄ +X>F̄ ε)‖∞ ≤ ‖(X>F̄XF̄ )−1‖∞→∞(λ+ ‖X>F̄ ε‖∞),

we know that sign(w̃j) = sign(w̄j) for all j ∈ F̄ . This verifies the first condition.
The second condition can be similarly verified as follows.

|X>j [−λXF̄ (X>F̄XF̄ )−1sign(w̄)F̄ + (XF̄ (X>F̄XF̄ )−1X>F̄ − I)ε]|
≤µλ+ (1− µ)λ < λ,

where the inequality used the assumptions on µ and λ. This verifies the second
condition.
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If µ < 1, then in order for the theorem to apply, we only need to choose a small
λ when ε is small for the first condition to hold. When λ is small enough, then
the second condition will also hold. Therefore the result means that given any
w̄, if µ < 1, then as long as the noise ε is sufficiently small, we can obtain sign
consistency using Lasso. The requirement of µ < 1 is called the irrepresentable
condition (Zhao and Yu, 2006), which is sufficient for the feature selection con-
sistency of Lasso.

Example 10.38. It is known that if elements of
√
nX have iid standard normal

distributions, then for any fixed w̄, such that ‖w̄‖0 = s, the irrepresentable con-
dition holds with high probability when n = Ω(s ln p), where w̄ is independent of
X (see Exercise 10.7).

A stronger condition (mutual incoherence condition) guarantees support recov-
ery for all w̄ such that ‖w̄‖0 ≤ s. It assumes that supi6=j |X>i Xj| < 1/(2s − 1)
when we normalize columns of X so that ‖Xi‖2 = 1 for all i ∈ [p]. Under this con-
dition, the irrepresentable condition holds for all ‖w̄‖0 ∈ Rp such that ‖w̄‖0 ≤ s.
However, this stronger condition is only satisfied with n = Ω(s2 ln p) (see Exer-
cise 10.8).

A slightly weaker condition µ ≤ 1 is necessary for the feature selection consis-
tency of Lasso with sufficiently small noise ε. That is, when µ > 1, we have the
following inconsistency result of Lasso sated in Proposition 10.39.

Proposition 10.39. Let F̄ = supp(w̄). Assume that X>F̄XF̄ is positive definite,
and

µ = sup
j 6∈F̄
|X>j (X>F̄XF̄ )−1sign(w̄)F̄ | > 1.

Then for sufficiently small ε,∣∣X>j [−λXF̄ (X>F̄XF̄ )−1sign(w̄)F̄ +XF̄ (X>F̄XF̄ )−1X>F̄ ε]
∣∣ > λ

for some j /∈ F̄ . This implies that Lasso is not sign consistent.

Assume that µ < 1. If the noise ε is non-stochastic, the conditions of Theo-
rem 10.37 can be satisfied when ε is small. For stochastic zero-mean noise, the
conditions can be satisfied when n is large, as shown in the Theorem 10.37.

Theorem 10.40. Let F̄ = supp(w̄). Assume that the columns are normalized
so that supj ‖Xj‖22 ≤ B2 and (with the corresponding proper scaling) components
of
√
nε are independent zero-mean σ sub-Gaussian noise: lnEeλεi ≤ λ2σ2/(2n).

Assume that X>F̄XF̄ is positive definite, and

µ = sup
j 6∈F̄
|X>j XF̄ (X>F̄XF̄ )−1sign(w̄)F̄ | < 1.
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Given δ ∈ (0, 1), and assume we choose a sufficiently large λ so that

λ > (1− µ)−1σB

√
2 ln(2p/δ)

n
,

min
j∈F̄
|w̄j| > ‖(X>F̄XF̄ )−1‖∞→∞

(
λ+ σB

√
2 ln(2p/δ)

n

)
.

Then with probability at least 1 − δ, the solution of (10.20) is unique and sign
consistent.

Proof Note that the sub-Gaussian probability tail inequality (Corollary 2.26)
implies that for each fixed Xj, we have: if j ∈ F̄ , then

Pr[|X>j ε| ≥ ε0] ≤ 2e−nε
2
0/(2B

2σ2),

and if j /∈ F̄ ,

Pr[|X>j (PF̄ − I)ε| ≥ ε0] ≤ 2e−nε
2
0/(2B

2σ2),

with PF̄ = XF̄ (X>F̄XF̄ )−1X>F̄ denoting the projection matrix to the subspace
spanned by Xj (j ∈ F̄ ). Therefore by taking the union bound for j = 1, . . . , p,
we obtain the following inequalities. With probability at least 1− δ:

‖X>j ε‖∞ ≤ σB
√

2 ln(2p/δ)

n
(j ∈ F̄ )

‖X>j (PF̄ − I)ε‖∞ ≤ σB
√

2 ln(2p/δ)

n
(j /∈ F̄ ).

We can now verify that the conditions of Theorem 10.37 hold. This implies the
desired result.

It is also possible to study the support recovery question without sign con-
sistency, which leads to a slightly weaker condition. For parameter recovery, we
often employ a condition that is weaker than the irrepresentable condition, re-
ferred to as the restricted isometry property (RIP) Candes and Tao (2005). RIP
requires the smallest eigenvalue of the matrix X>FXF to be bounded away from
zero for all subsets F such that |F | ≤ const×‖w̄‖0. A similar condition, referred
to as restrictive eigenvalue condition (RE), can be stated as follows.

Definition 10.41 (RE). An n × p matrix X satisfies the restricted eigenvalue
condition RE(F, c0) for F ⊂ [p] if the following quantity is nonzero:

κRE(F, c0) = min
w 6=0,‖w‖1≤c0‖wF ‖1

‖Xw‖2
‖w‖2

.

Under this condition, we have the following parameter estimation bound.

Theorem 10.42. Let F̄ = supp(w̄). Assume that the columns are normalized
so that supj ‖Xj‖2 ≤ B and (with the corresponding proper scaling) components
of
√
nε are independent zero-mean σ sub-Gaussian noise: lnEeλεi ≤ λ2σ2/(2n).
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Assume that λ ≥ 2σB
√

2 ln(2p/δ)

n
. Then with probability at least 1− δ, the solution

of (10.20) satisfies

‖ŵ − w̄‖22 ≤
16λ2‖w̄‖0
κRE(F̄ , 4)2

.

Proof Let ŵ = w̄ + ∆ŵ. From

1

2
‖Xŵ − Y ‖22 + λ‖ŵ‖1 ≤

1

2
‖Xw̄ − Y ‖22 + λ‖w̄‖1,

we obtain
1

2
‖X∆ŵ‖22 − ε>X∆ŵ + λ‖ŵ‖1 − λ‖w̄F̄‖1 ≤ 0. (10.21)

From Corollary 2.26, and a union bound over X>j ε for j ∈ [p], we obtain the
following sub-Gaussian tail probability inequality. With probability at least 1−δ,

‖ε>X‖∞ ≤ σB
√

2 ln(2p/δ)

n
≤ λ/2. (10.22)

We obtain

1

2
‖X∆ŵ‖22 +

λ

2
‖∆ŵ‖1

≤1

2
‖X∆ŵ‖22 − ε>X∆w + λ‖∆ŵ‖1

≤1

2
‖X∆ŵ‖22 − ε>X∆w + λ‖ŵ‖1 − λ‖w̄F̄‖1 + 2λ‖∆ŵF̄‖1

≤2λ‖∆ŵF̄‖1.

The first inequality used (10.22). The second inequality used the triangle inequal-
ity for ‖ · ‖1 and ŵF̄ c = ∆ŵF̄ c . The third inequality used (10.21). This implies the
RE condition ‖∆ŵ‖1 ≤ 4‖∆ŵF̄‖1. Therefore we obtain

κRE(F̄ , 4)

2
‖∆ŵ‖22 ≤ 2λ‖∆ŵF̄‖1 ≤ 2λ

√
|F̄ |‖∆ŵ‖2.

This proves the desired bound.

It is also known that for random Gaussian matrices, RE (or RIP) is satisfied
uniformly for all F̄ = supp(w̄) such that ‖w̄‖0 ≤ s with large probability when
n = Ω(s ln p). This sample size requirement is weaker than that of the mutual
incoherence condition in Example 10.38, which holds only when n = Ω(s2 ln p).
Moreover, the RE (or RIP) condition does not imply irrepresentable condition,
and thus under RE (or RIP), Lasso may not necessarily select features consis-
tently.

Sparse recovery results similar to those of Lasso can also be obtained using
greedy algorithms, both for support recovery and for parameter recovery. For
example, such results can be found in (Tropp, 2004; Zhang, 2009a, 2011).
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10.6 Historical and Bibliographical Remarks

Additive models have been extensively studied in statistics (Friedman and Stuet-
zle, 1981; Huber, 1985; Buja et al., 1989), and more recently, sparse additive
models were studied explicitly by Ravikumar et al. (2009). Two-layer neural net-
works can also be regarded as special cases of additive models. It is known that
many additive model families are sufficiently large so that they are universal func-
tion approximators. For example, it is known that both boosted shallow decision
trees and two layer neural networks are universal function approximators.

The L0 regularization method is a natural solution to the subset selection
(variable selection) problem in classical statistics, where the goal is to choose
a subset of the variables to fit the data. The subset selection problem can be
regarded as a model selection problem, where each model corresponds to a subset
of features. Model selection criteria such as AIC (Akaike, 1974) or BIC (Schwarz,
1978) can be applied. In the context of subset selection, AlC is closely related
to the Cp criterion of Mallows (2000), which has also been used frequently in
the statistics literature. The use of L1 regularization as an alternative to L0

regularization for variable selection has been popularized by the seminal work of
Tibshirani (1996), where L1 regularization is referred to as Lasso. The method is
also referred to as basis pursuit (Chen et al., 2001) in the engineering literature.

In the machine learning literature, the Rademacher complexity of convex hull
and L1 regularization was first used by Koltchinskii and Panchenko (2002) to
analyze model combination, and its simplicity helped the quick popularization
of the Rademacher complexity as one of the main techniques for generalization
analysis in supervised learning problems. The analysis presented in Section 10.2
follows this approach.

Entropy regularization can be regarded as a smoothed upper bound of con-
vex hull regularization. Its use in machine learning appeared first in the online
learning literature, and referred to as multiplicative updates (see Littlestone and
Warmuth, 1994; Littlestone, 1988), which was used to combine a finite number of
experts. It was shown that the polynomial dependency in the number of experts
is needed with additive updates (corresponding to L2 regularization), while loga-
rithmic dependency in the number of experts can be achieved using multiplicative
updates (corresponding to entropy regularization). The situation is analogous
to Example 10.9. The connection of multiplicative update and entropy regular-
ization was explicitly discussed in (Zhang et al., 2002). The analysis of entropy
regularization in the batch learning setting is often referred to as PAC-Bayes
analysis (McAllester, 1999). The results stated in Theorem 10.18 can be found
in Zhang (2006). In recent years, there has been renewed interest in entropy-
regularization, due to the mutual information based generalization bound stated
in Corollary 10.22. Although the bound is a direct consequence of previously
known results, the analysis allows some additional applications (see Russo and
Zou, 2016, 2019; Xu and Raginsky, 2017).

In the statistics literature, greedy algorithms have been used in projection
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pursuit and matching pursuit (Friedman and Stuetzle, 1981; Huber, 1985; Mal-
lat and Zhang, 1993). The convergence analysis of greedy algorithm in the
convex hull class (similar to Theorem 10.31) was obtained first by Jones (1992)
for least squares regression, and later extended by Li and Barron (1999); Zhang
(2003b); Barron et al. (2008) for other loss functions. The method of greedy
approximation in convex hull is also referred to as Frank Wolfe’s algorithm in
the optimization literature (Frank and Wolfe, 1956; Clarkson, 2010). The re-
lated boosting algorithms were pioneered by Freund and Schapire (1997) from
the point of view of combining weak learners (see Theorem 10.29). Its connection
to greedy algorithm was observed by Friedman et al. (2000), and this insight was
further developed by Friedman (2001) into gradient boosting, which has been
widely used in practical applications. The margin analysis of boosting in Corol-
lary 10.30 was first developed by Bartlett et al. (1998) and later by Koltchinskii
and Panchenko (2002). The connection of boosting and L1 regularization was ex-
plored by (Zhang and Yu, 2005) to prove the consistency of boosting procedure.

The sparse recovery problem was initially investigated for the compressed sens-
ing problem (Donoho, 2006), where the goal is to reconstruct a sparse signal from
its random projections. The problem can be regarded as solving a sparse reg-
ularized least squares regression problem, and both greedy algorithm and L1

regularization can be used to recover the sparse signal. Since the signal dimen-
sion can be significantly larger than the number of examples, the theory is often
referred to as high dimensional statistical analysis (Wainwright, 2019). The sup-
port recovery of L1 regularization in Theorem 10.37 under the irrepresentable
condition was due to Zhao and Yu (2006), and a similar analysis was given by
Tropp (2006) around the same time. The asymptotic properties of irrepresentable
condition was investigated by Wainwright (2009).

For sparse least squares problem, it was shown in a seminal work (Candes
and Tao, 2005) that a weaker condition, referred to as the RIP condition, can
be used to obtain parameter estimation bounds in L2-norm. This condition has
been generalized to handle other sparse estimation problems. The RE condition
introduced in (Bickel et al., 2009) can be considered as a variant of RIP. Other
variations such as conditions suitable for obtaining estimation results in Lp-norms
can be found in (Zhang, 2009b).

Both support recovery and parameter recovery results can be established for
greedy algorithms under conditions that are similar to irrepresentable condition
(for support recovery) and RIP (for parameter estimation) (Tropp, 2004; Zhang,
2009a, 2011). In addition to L1 regularization which is convex, some nonconvex
regularization methods have also been proposed in the literature (Fan and Li,
2001; Zhang, 2010). It was shown that by using appropriate numerical algorithms
that can take advantage of the sparsity structure, one can solve nonconvex for-
mulations, and obtain support recovery results under RIP-like conditions (Zhang,
2010; Zhang and Zhang, 2012).
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Exercises

10.1 In Example 10.9, assume that the vectors [ψ(X) : X ∈ Sn] are orthogonal for ψ(X) ∈ Ψ.

Derive a lower bound for the Rademacher complexity of FA,L2
(Ψ) via direct calculation.

10.2 Let w∗ = e1 ∈ Rd. Consider ψ(x) = [ψ1(x), · · · , ψd(x)] ∈ Rd such that for observa-

tions {(X1, Y1), . . . , (Xn, Yn)}, n−1/2[ψj(X1), . . . , ψj(Xn)] are d orthonormal vectors in

Rn (j = 1, . . . , d), and Yi = w>∗ ψ(Xi) + εi, where εi ∼ N(0, σ2) (i = 1, . . . , n) are zero-

mean noises. Consider ridge regression:

ŵ(λ) = arg min
w

[
1

n

n∑
i=1

(w>ψ(Xi)− Yi)2 + λ‖w‖22

]
.

Find the optimal λ so that

Eε ‖ŵ(λ)− w∗‖22

is minimized. Compute the minimum value.

10.3 In the previous example. Consider the Lasso regression:

ŵ(λ) =
1

n

n∑
i=1

(w>ψ(Xi)− Yi)2 + λ‖w‖1.

For λ > 0, find an upper of

Eε ‖ŵ(λ)− w∗‖22.

Find λ to approximately minimize the upper bound with logarithmic dependency on d,

and compare to that of the ridge regression.

10.4 Consider the uniform convergence bound in Theorem 10.4. Let {1, . . . ,m} = J1 ∪ · · · ∪ Jg
be a non-overlapping partition of {1, . . . ,m} into g groups of size m/g each (we assume

m/g is an integer). Let H contain the subsets of {1, . . . ,m} that can be expressed as the

union of one or more groups {J`}. That is, if J ∈ H, then for all ` = 1, . . . , g: either J` ⊂ J
or J` ∩ J = ∅.
In group sparsity, we consider only the sparse models indexed by F ∈ H.

• Derive a uniform convergence bound for group sparsity, where we consider a uniform

bound that holds for all w and F with supp(w) ⊂ F .

• Compare this bound to the sparse learning bound of Theorem 10.4, and derive an

estimation method in (10.5) with r(F ) obtained using this bound. Explain when does

group sparsity perform better.

10.5 Use the Rademacher complexity of constrained entropy regularization in Corollary 10.17,

and the same techniques in the proof of Corollary 10.14 for the following.

• Derive a data dependent bound that holds uniformly for all A > 0.

• Use the bound to derive an oracle inequality for the soft regularization version of the

Gibbs algorithm, and compare the result to Theorem 10.18.

10.6 Prove Proposition 10.39.

10.7 Consider Theorem 10.37. Assume that
√
nX is an n×p random matrix, with iid standard

Gaussian entries, and F̄ is independent of X. Show that there exists an absolute constant

c0 > 0 so that if

n ≥ c0|F̄ | ln(p),

then the irrepresentable condition µ < 1 holds with probability at lest 0.5.

10.8 Consider Theorem 10.37 with columns of X normalized: ‖Xi‖2 = 1 for all i ∈ [p].
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• Show that if the mutual incoherence condition supi 6=j |X>i Xj | < 1/(2s − 1) holds

for some integer s ≥ 1, then the irrepresentable condition holds for all w̄ such that

‖w̄‖0 ≤ s.
• Show that if columns of Xi are normalized from X ′ where X ′ is an n×p random matrix

with iid standard Gaussian entries, then the mutual incoherence condition holds with

n = Ω(s2 ln p).
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11

Analysis of Neural Networks

The idea of neural networks (NNs) can be dated back to the 1960s, and the key
computational procedures for neural network using stochastic gradient descent
was developed in the 1980s. However, the training of neural networks was quite
costly, and large scale training of neural networks has only become practical with
the advance of GPU computing in the 2010s.

A major difficulty to analyze neural networks is its nonconvexity, and many of
its empirically observed properties have not been fully explained by theory. This
chapters presents some known theoretical results for neural networks, including
some theoretical analysis that has been developed recently. While a general the-
ory of neural networks is still under development, we will cover some existing
results, including function approximation results and generalization analysis. In
particular, we show that neural networks can be analyzed both using the kernel
analysis of Chapter 9, and the L1 regularization based analysis of Chapter 10.

11.1 Introduction to Neural Networks

The simplest neural networks are two-layer neural networks that are closely re-
lated to additive models. With real-valued output, and d-dimensional input vector
x ∈ Rd, such two-layer neural networks can be written as an additive model in
(10.1)

fm(w, x) =
m∑
j=1

ujh(θ>j x+ bj), (11.1)

where x ∈ Rd, θj ∈ Rd, bj ∈ R, uj ∈ R, and w = {[uj, θj, bj] : j = 1, . . . ,m}.
The function h(·) is referred to as an activation function, and some popular
choices include rectified linear unit (ReLU) h(z) = max(0, z) and sigmoid h(z) =
1/(1 + e−z) as shown in Figure 11.1.

In practice, the model parameters w are often trained using stochastic gradient
descent (SGD). Since a two-layer neural network can be regarded as an additive-
model, we may apply the generalization analysis in Chapter 10 directly. Similar to
kernel methods, it is known that two-layer neural networks are universal function
approximators (see Section 11.2).

More generally, we may define a K-layer fully-connected deep neural network
with real-valued output as follows. Let m(0) = d and m(K) = 1, we recursively
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Figure 11.1 Neural network activation functions
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Figure 11.2 Four-layer fully-connected neural network

define

x
(0)
j =xj (j = 1, . . . ,m(0)),

x
(k)
j =h

m(k−1)∑
j′=1

θ
(k)
j,j′x

(k−1)
j′ + b

(k)
j

 (j = 1, . . . ,m(k)), k = 1, 2, . . . ,K − 1

f(x) =x
(K)
1 =

m(K−1)∑
j=1

ujx
(K−1)
j ,

where the model parameters can be represented by w = {[uj, θ(k)
j,j′ , b

(k)
j ] : j, j′, k},

with m(k) being the number of hidden units at layer k. Figure 11.2 illustrates
a K = 4 layer neural network with m(0) = 3, m(1) = m(2) = 5, m(3) = 4, and
m(4) = 1.
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CHAPTER 11. NEURAL NETWORKS 228

11.2 Function Approximation

It is known that neural networks are universal function approximators. In fact,
it is known that a two-layer neural network (11.1) is universal if h(·) is not a
polynomial (Leshno et al., 1993).

Theorem 11.1 (Leshno et al., 1993). If h is a non-polynomial continuous func-
tion, then the function class in (11.1) is dense in C0(K) for all compact subsets
K of Rd, where C0(K) denotes the set of continuous functions on K.

A more refined result was obtained in Barron (1993), which considered func-
tions with a certain smoothness property in Fourier representation.

Definition 11.2. Consider a real valued function f(x) : Rd → R. Assume that
f ∈ L1(Rd) has the following Fourier representation:

f(x) =

∫
Rd
eiω
>xf̃(ω) dω,

where f̃(ω) is the Fourier transform of f(x) that may be a complex function.
Define

C(f) =

∫
Rd
‖ω‖2|f̃(ω)|dω.

Theorem 11.3 (Barron, 1993). If h(z) is a bounded measurable function on
the real line for which limz→−∞ h(z) = 0 and limz→∞ h(z) = 1. Consider Br =
{x ∈ Rd : ‖x‖2 ≤ r}, and let f be a real-valued function defined on Br such that
C(f) <∞. Then there exists a neural network (11.1) such that∫

(f(x)− f(0)− fm(w, x))2 dµ(x) ≤ (2rC(f))2

m
,

where µ is an arbitrary probability measure on Br.

Proof A key property of the complexity measure C(f), shown in Barron (1993),
is that f(x)− f(0) belongs to the convex closure of functions

{uh(θ>x+ b) : |u| ≤ 2rC(f)},

where the closure is taken with respect to µ. This result, together with Theo-
rem 10.7, implies Theorem 11.3.

Note that we can take any b so that h(b) 6= 0, and

f(0) = (f(0)/h(b))h(0>x+ b).

It follows that if f(x) − f(0) can be represented by a two-layer neural network
(11.1) with m neurons, then f(x) can be represented by a two-layer neural net-
work (11.1) with m+1 neurons. Therefore Theorem 11.3 implies that any f with
finite C(f) can be approximated by a two-layer neural network. It can be shown
that the function class {f : C(f) < ∞} is dense on any compact set of Rd. This
implies the desired universal approximation result.

Theorem 11.3 can also be applied to the ReLU activation function h(z) =
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11.2. FUNCTION APPROXIMATION 229

max(0, z) via an intermediate function h′(z) = h(z+1)−h(z), which satisfies the
conditions of Theorem 11.3.

The universal approximation theory of Barron (1993) shows that a function
can be efficiently represented by a two-layer neural network if C(f) is small.
However, for certain target functions with large C(f), two layer neural networks
may require exponentially many nodes to represent. In some of such cases, using
deep representation can reduce the number of nodes needed to represent such
functions. This phenomenon has been extensively investigated in the literature.
A representative result along this line of research is stated below. It shows that
a small deep neural network can efficiently represent a function that requires
exponentially many nodes to represent with a shallow neural network. The con-
struction appeared in (Telgarsky, 2016), which also includes functions defined on
Rd. Here we state a simplified result for d = 1.

Theorem 11.4. Consider any integer k ≥ 3. There exists f(x) : [0, 1] → [0, 1]
computed by a 2k2-layer neural network with standard ReLU activation function,
with no more than 2 neurons per layer so that∫ 1

0

|f(x)− g(x)|dx ≥ 1

16
, (11.2)

where g is any function of a ReLU network with no more than k layers and ≤ 2k−2

nodes per layer.

Proof We will briefly explain the high-level intuition of Telgarsky (2016), which
indicates what kind of functions are difficult to approximate with shallow neural
networks. Consider the case of d = 1, a specific construction of a hard func-
tion f(x) for shallow neural networks is via the function composition of the
triangle function f0(x) = max(0,min(2x, 2(1 − x))) on [0, 1]. We may define
fk(x) = f0(fk−1(x)) with k ≥ 1, as illustrated in Figure 11.3. Since f0(x) can be
represented by a two-layer neural ReLU network with no more than two nodes per
layer as f0(x) = 2 max(0, x)− 4 max(0, x− 0.5) in [0, 1], fk(x) can be represented
by a 2k-layer neural network with no more than two nodes per layer.
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Figure 11.3 Plot of fk(x) with k = 0, 1, 2

It can be seen that fk(x) contains 2k points that reach values of 1, and 2k + 1
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CHAPTER 11. NEURAL NETWORKS 230

points that reach values of 0. It follows that the number of solution segments of
fk(x) = 0.5, referred to as its crossing number, is 2k+1.

It is easy to show that f(x)−fk(x) cannot be approximated well by a function
g(x) with crossing number < 2k in that the approximation error is lower bounded
by (11.2).

Therefore in order to show that fk(x) cannot be approximated efficiently by
shallow neural networks, we only need to show that the function of a shallow
neural network cannot have many crossings unless it contains exponentially many
nodes. Specifically, it can be shown (see Exercise 11.2) that an `-layer ReLu
network with no more than m ReLU nodes per layer has a crossing number of
no larger than 2(2m)`. It follows that if a neural network can approximate fk2(x)
well, then (2m) ≥ 2(k2−1)/`. Therefore the node number m > 2k−2if ` ≤ k.

At a high level, we note that function composition allows a deep neural net-
work to reuse learned patterns (e.g., functions with high crossing numbers) to
form more complex patterns. This corresponds to the intuition that shallow neu-
ral networks only learn basic lower-level features. To form high-level features,
one needs to employ deeper neural networks that can combine basic features to
form more complex features. Theorem 11.4 presents a mathematical model in
which deep combinations of high level features cannot be easily represented using
shallow networks.

11.3 Random Feature Method

Assume that in two-layer neural networks, we do not train the parameters [θ, b],
but randomly draw these parameters from a fixed distribution, then the resulting
method becomes the random feature method. For notation simplicity, in this
section, we do not include a bias term b. This does not affect generality because
we may always change x ∈ Rd into x̃ = [x, 1] ∈ Rd+1, and change θ ∈ Rd and
b ∈ R into θ̃ = [θ, b] ∈ Rd+1, so that we have θ>x+ b = θ̃>x̃.

With the simplified notation, we assume that {θj : j = 1, . . . ,m} are m in-
dependent samples drawn from a distribution µ on Rd. A typical example is to
take µ as a Gaussian distribution. The two-layer neural network in (11.1) can be
written as

fm(u, x) =
1

m

m∑
j=1

ujh(θ>j x). (11.3)

It follows from Theorem 11.1 that (11.3) is universal with appropriate h. As
m→∞, the law of large numbers implies that the limit can be written as

f∞(x) = Eθ∼µu(θ)h(θ>x), (11.4)

where u(θ) is a weight function. In this formulation, we may treat both u(θ)
and h(θ>x) as infinite dimensional vectors indexed by θ. In this setting, we may
regard the limiting function class (11.4) as a linear system, in which we would
like to learn the infinite dimensional linear weight u(θ).
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11.3. RANDOM FEATURE METHOD 231

In order to learn this function class, it is necessary to impose a regularization
condition on u(θ). Of particular interests, we may consider the L2 regularization
for random feature method, where the function class is given by

Eθ∼µ|u(θ)|2 ≤ A2.

This function class induces a kernel class, and Theorem 9.8 implies the following
result.

Proposition 11.5. Consider any probability measure µ on Rd. The function class
(11.4) with L2 regularization

‖f‖2 =
(
Eθ∼µ|u(θ)|2

)1/2
is equivalent to the RKHS function class defined in Definition 9.4 with kernel

k∞(x, x′) = Eθ∼µh(θ, x)h(θ, x′).

Note that the equivalence also holds for the empirical measure on {θ1, . . . , θm},
which are independently drawn from µ. The kernel corresponding to (11.3) is

km(x, x′) =
1

m

m∑
j=1

h(θj, x)h(θj, x
′).

As m → ∞, km(x, x′) → k∞(x, x′) in probability. This means that (11.3) with
the L2 regularizer

1

m

m∑
j=1

u2
j ≤ A2

converges to (11.4) with L2 regularization. A particular class of random features
are random Fourier features (aka random cosine features) on Rd, considered in
(Rahimi and Recht, 2007). This class of features can be written as

ψ(θ, x) =
√

2 cos(ω>x+ b), θ = [ω, b],

where ω is sampled from a distribution µ on Rd, and b is sampled from the
uniform distribution U(0, 2π) on [0, 2π]. The following result (see Rudin, 2017),
together with the convergence of (11.3) to (11.4), were used to justify the choice
of Fourier random features in (Rahimi and Recht, 2007), with µ chosen as a
probability measure.

Proposition 11.6 (Bochner’s theorem). Any translation invariant kernel of the
form k(x, x′) = k(x− x′) can be written as

k(x− x′) = Eω∼µ,b∼U [0,2π]2 cos(ω>x+ b) cos(ω>x′ + b),

where µ is a non-negative measure on Rd that may not be a probability measure
(i.e. may not integrate to 1).
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CHAPTER 11. NEURAL NETWORKS 232

For the L2-regularized random feature method, we immediately obtain the
following Rademacher complexity result from Theorem 9.20.

Corollary 11.7. Let

F2
A = {Eθ∼µu(θ)h(θ>x) : Eθ∼µu(θ)2 ≤ A2},

then

Rn(F2
A,D) ≤ A

√
Ex∼DEθ∼µh(θ>x)2

n
.

Similarly, we have the following result for (11.3).

Corollary 11.8. Let

F2
A,m =

{
1

m

m∑
j=1

ujh(θ>j x) : ‖u‖2 ≤
√
mA

}
,

then

Rn(F2
A,m,D) ≤ A

√
Ex∼D

∑m
j=1 h(θ>j x)2

mn
.

We may compare the result of kernel method to that of L1 regularization, which
requires an estimate of the Rademacher complexity of h(θ>x).

Proposition 11.9. Let F = {h(θ>x) : θ ∈ Rd} and F± = F ∪ −F . Let

F1
A = {Eθ∼µu(θ)h(θ>x) : Eθ∼µ|u(θ)| ≤ A}.

Then for all monotone function h(·) with h(·) ∈ [−M,M ]:

R(F±,Sn) ≤M 32
√
d+ 1√
n

R(F1
A,Sn) ≤AM 32

√
d+ 1√
n

.

Proof Since h(·) is monotone, we know that F is a VC-subgraph class with VC
dimension d + 1. Therefore from Theorem 5.11 and the calculation in Exam-
ple 6.26, we obtain

R(F ,Sn) ≤M 16
√
d+ 1√
n

.

This leads to the first bound. The second bound follows from Theorem 10.8.

We note that Eθ∼µ|u(θ)| ≤
√
Eθ∼µ|u(θ)|2. Therefore the L1 and L2 regularized

continuous random feature methods satisfy F2
A ⊂ F1

A. Moreover, given any A > 0,
there exists f ∈ F1

A so that Eθ∼µ|u(θ)| ≤ A but Eθ∼µu(θ)2 is arbitrarily large. For
the finite random feature method (11.3), we have the following result.
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Corollary 11.10. Let

F1
A,m =

{
1

m

m∑
j=1

ujh(θ>j x) : ‖u‖1 ≤ mA
}
.

Assume that h(·) ∈ [−M,M ] and h(·) is monotone. Then

R(F1
A,m,Sn) ≤ AM 32

√
d+ 1√
n

.

For the random kernel method with L2 regularization, we require ‖u‖2 ≤
√
mA,

which implies that ‖u‖1 ≤ mA. However, the reverse is not true, as shown in the
following example.

Example 11.11. Consider a target function which is represented by a single
neuron

f∗(x) = u1h(θ>1 x),

with |u1| ≤ 1 and h(·) ∈ [−1, 1]. Then f∗ ∈ F1
1,m for all m ≥ 1. Corollary 11.10

implies that the Rademacher complexity using L1 regularization is Rn(F1
1,m) =

O(
√
d/n), which is well-behaved when m→∞.

However, if we employ L2 regularization, then f∗ ∈ F2√
m,m. The corresponding

Rademacher complexity bound becomes Rn(F2√
m,m) ≤

√
m/n, which becomes

infinity when m→∞.

More generally, when m is large, for sparse target that can be represented
by fm(u, x) with a sparse u of small L1 norm ‖u‖1, the random kernel method
with L2 regularization may be inferior to L1 regularization when complexity is
measured by Rademacher complexity.

11.4 Neural Tangent Kernel

In the random feature approach, the bottom layer model parameter θ is fixed, and
only the top layer model parameter u is trained. However, in practical applications
of neural networks, both model parameter θ and parameter u are trained jointly.
It is possible to generalize the kernel view to handle this case, which leads to the
concept of neural tangent kernel (NTK) by Jacot et al. (2018).

To derive NTK, we start with a random initialization of the neural network
(11.1) (again, for simplicity, we assume bj = 0) at [u, θ] = [ũ, θ̃], which we refer to
as the NTK initialization. Here we independently draw m d+1 dimensional model
parameters [ũj, θ̃j] ∈ Rd+1 from a probability distribution µ on Rd+1. The prob-
ability distribution is often chosen as an iid normal distribution. The resulting
initial neural network is

f̃NTK
m (x) =

1√
m

m∑
j=1

ũjh(θ̃>j x), (11.5)
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CHAPTER 11. NEURAL NETWORKS 234

which is similar to the random feature method (11.3), but ũj is also drawn ran-
domly. Note that in practice, we often choose µ to be a normal distribution with a
diagonal covariance matrix. We do not make this assumption unless specified ex-
plicitly. However, to simplify the computation, throughout the section, we assume
that µ is chosen so that

E[ũj|θ̃j] = 0.

Given x ∈ Rd, the variance of f̃NTK
m (x) is

Varµ(f̃NTK
m (x)) = E[ũ0,θ̃0]∼µũ

2
0h(θ̃>0 x)2.

This implies that the variance is finite when the right hand side is finite. Moreover,
the variance is independent of m as m→∞. This explains why we divide by

√
m

instead of dividing by m as in (11.3). Because of this normalization difference, we
cannot obtain an explicit integration formulation similar to (11.4) for f̃NTK

m (x) as
m → ∞. Nevertheless, we have the following limiting behavior of f̃m using the
central limit theorem. This means that the m→∞ limit of the NTK initialization
converges to a well-behaved random function as m→∞.

Proposition 11.12. Assume that the central limit theorem holds for (11.5) (uni-
formly for all x) as m→∞. Then as m→∞, f̃NTK

m (x) converges to a Gaussian
process f̃NTK

∞ (x) with zero-mean and covariance matrix

k(x, x′) = E[ũ0,θ̃0]∼µũ
2
0h(θ̃>0 x)h(θ̃>0 x

′).

In general, neural networks are trained via SGD (see Algorithm 7.1), which
employs gradient of the neural network. We have the following characterization
of gradients at the NTK initialization.

Proposition 11.13. Consider f̃NTK
m (x) defined in (11.5). Let h′(z) be the deriva-

tive of h(·). We have for all x and j:

E‖∇ũj f̃NTK
m (x)‖22 =

1

m
Eθ̃0∼µh(θ̃>0 x)2,

E‖∇θ̃j f̃
NTK
m (x)‖22 =

1

m
E[ũ0,θ̃0]∼µũ

2
0h
′(θ̃>0 x)2‖x‖22,

where the expectation is with respect to the random initialization. Moreover, for
any x, as m→∞:

‖∇ũf̃NTK
m (x)‖22

p→Eθ̃0∼µh(θ̃>0 x)2,

‖∇θ̃f̃NTK
m (x)‖22

p→E[ũ0,θ̃0]∼µũ
2
0h
′(θ̃>0 x)2‖x‖22,

where the probability is with respect to the random initialization.

Proposition 11.13 shows that asm→∞, the gradient g of the NTK formulation
has small L∞-norm: ‖g‖∞ → 0, although the L2-norm is finite: ‖g‖2 = O(1). We
note that the progress of the SGD procedure is measured by the gradient 2-
norm (for example, see Theorem 14.9). Therefore in the NTK formulation, the

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



11.4. NEURAL TANGENT KERNEL 235

convergence of SGD is independent of m as m → ∞, and the training process
occurs in an infinitely small neighborhood of the initialization in terms of the
L∞-norm as m→∞. Assume for simplicity that h(z) is a smooth function with
derivative h′(z), then we can perform a Taylor expansion in a small neighbor
around [ũ, θ̃] to obtain a linear approximation around the initialization.

In the following discussion, we let w = [u, θ] and w̃ = [ũ, θ̃]. Let B∞(w̃, r) =
{w : ‖w − w̃‖∞ ≤ r}. Let

fnn(w, x) =
1√
m

m∑
j=1

ujh(θ>j x),

and we can define its NTK approximation as

fNTK
m (w, x) =f̃NTK

m (x) +
1√
m

m∑
j=1

[
(uj − ũj)h(θ̃>j x)

+ũjh
′(θ̃>j x)(θj − θ̃j)>x

]
. (11.6)

When w ∈ B∞(w̃, r) for a sufficiently small r, we have fNTK
m (w, x) ≈ fnn(w, x)

and ∇wfNTK
m (w, x) ≈ ∇wfnn(w, x). More formally, we may impose the following

assumption for µ and h.

Assumption 11.14. For any x, δ ∈ (0, 1) and ε > 0, there exist A0 > 0, r0 > 0
and m0 > 0 such that when m > m0, with probability at least 1− δ over random
initialization, the following events hold uniformly for w ∈ B∞(w̃, r0):

• |f̃NTK
m (x)| ≤ A0

• ‖∇wfNTK
m (w, x)‖2 + ‖∇wfnn(w, x)‖2 ≤ A0

• |fNTK
m (w, x)− fnn(w, x)| ≤ ε

• ‖∇wfNTK
m (w, x)−∇wfnn(w, x)‖2 ≤ ε

• ‖∇wfNTK
m (w, x)‖∞ + ‖∇wfnn(w, x)‖∞ ≤ m−1/4

The following result is not difficult to verify. We leave it as an exercise.

Proposition 11.15. Assumption 11.14 holds for both ReLU and for sigmoid
activation functions with Gaussian initialization w̃ ∼ N(0, σ2I).

Next we will examine the property of fNTK
m (w, x) when m → ∞. Observe

that the NTK approximation of neural network is linear in the model parameter
w = [u, θ], with random features m−1/2h(θ̃>j x) and m−1/2ũjh

′(θ̃>j x)x. This means
that if we implicitly impose the L2 regularization on the model parameter w,
then we can obtain a kernel function class, which is well-behaved as m→∞.

Proposition 11.16. Consider the feature space NTK formulation (11.6). Then
fNTK
m (w, x)−f̃NTK

m (x) belongs to the RKHS function class defined in Definition 9.4
with kernel

kNTK
m (x, x′) = kNTK

m,1 (x, x′) + kNTK
m,2 (x, x′),
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where

kNTK
m,1 (x, x′) =

1

m

m∑
j=1

h(θ̃>j x)h(θ̃>j x
′),

kNTK
m,2 (x, x′) =

1

m

m∑
j=1

ũ2
jh
′(θ̃>j x)h′(θ̃>j x

′)x>x′.

Moreover, for any x, x′, as m→∞, we have

kNTK
m,1 (x, x′)

p→ kNTK
∞,1 (x, x′) = Eθ̃0∼µh(θ̃>0 x)h(θ̃>0 x

′),

kNTK
m,2 (x, x′)

p→ kNTK
∞,2 (x, x′) = E[ũ0,θ̃0]∼µũ

2
0h
′(θ̃>0 x)h′(θ̃>0 x

′)x>x′,

where the probability is with respect to the random initialization.

In the NTK representation, the kernel kNTK
∞,1 is the same kernel as the random

feature kernel in Proposition 11.5. The extra kernel kNTK
∞,2 in NTK corresponds to

the fact that we allow θ to move away from the initialization θ̃, while θ is fixed
in the random feature kernel. It is not difficult to generalize NTK to deep neural
networks by including kernels with respect to other layers.

Since for appropriate h, random feature kernel is universal, it follows that the
NTK kernel kNTK

∞ (x, x′) = kNTK
∞,1 (x, x′) + kNTK

∞,2 (x, x′) is also universal for such h.
This implies that as m → ∞, we can find a two-layer neural network within an
infinitesimally small perturbation of the NTK initialization to approximate an
arbitrary function f(x).

Theorem 11.17. Assume that the limiting NTK kernel kNTK
∞ (x, x′) in Proposi-

tion 11.16 is universal. Consider an arbitrary function f(x), and n distinct points
{X1, . . . , Xn}. Consider a two-layer neural network with initialization (11.5).
Given any ε > 0 and δ ∈ (0, 1), there exist A > 0 and m0 such that when
m > m0, with probability at least 1− δ, there exists w ∈ B∞(w̃, rm) that satisfy:

• rm = A/m1/4 and ‖w − w̃‖2 ≤ A.

• |fNTK
m (w,Xi)− f(Xi)| ≤ ε for all i = 1, . . . , n.

Proof Since kNTK
∞ (x, x′) is universal, its Gram matrix KNTK

∞ on {X1, . . . , Xn} is
invertible (see Theorem 9.19). There exists α ∈ Rn so that KNTK

∞ α = ∆f , where
∆f ∈ Rn is the vector with ∆fi = f(Xi)− f̃NTK

m (Xi) as its components.
By Assumption 11.14, with probability at least 1 − δ/3, for sufficiently large

m, ∆fi = f(Xi)− f̃NTK
m (Xi) is bounded (i = 1, . . . , n), and hence, α is bounded.

It follows that there exists a constant A > 1 such that A ≥ 1 + ‖α‖1 + ‖α‖KNTK
∞

.
Let Hm be the RKHS of kNTK

m , and define

fm(x) =
A

max(A, ‖f ′m‖Hm)
f ′m(x), f ′m(x) =

n∑
i=1

αik
NTK
m (Xi, x)

inHm, then ‖fm(x)‖Hm ≤ A. Proposition 9.1 implies that there exists w such that
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fNTK
m (w, x) = fm(x) and ‖w − w̃‖2 ≤ A. Moreover, using (9.4), we can represent
w − w̃ by

w − w̃ =
A

max(A, ‖f ′m‖Hm)

n∑
i=1

αi∇wfNTK
m (w̃,Xi).

Assumption 11.14 also implies that with probability at least 1− δ/3,

sup
i=1,...,n

‖∇wfNTK
m (w̃,Xi)‖∞ ≤ 1/m1/4.

This implies that

‖w − w̃‖∞ ≤ ‖α‖1 sup
i=1,...,n

‖∇wfNTK
m (w̃,Xi)‖∞ ≤ rm = A/m1/4.

Proposition 11.16 implies that as m → ∞, kNTK
m (·) → kNTK

∞ (·), and thus

fNTK
m (w,Xi)− f̃NTK

m (Xi)
p→ ∆fi for all i = 1, . . . , n. Therefore with probability at

least 1− δ/3, for sufficiently large m, |fNTK
m (w,Xi)− f(Xi)| < ε for i = 1, . . . , n.

We obtain the desired result by taking the union bound of the three events
with probability 1− δ/3 each.

Theorem 11.17 implies that when m → ∞, one can approximate an arbitrary
function f(x) using fNTK

m (w, x) with ‖w − w̃‖∞ → 0. In this regime, referred to
as the NTK-regime, Assumption 11.14 implies that the two-layer neural network
can be approximated using the NTK approximation:

f(x) ≈ fNTK
m (w,Xi) ≈ fnn(w, x).

That is, two-layer neural network is equivalent to a kernel method as m → ∞.
Moreover, Assumption 11.14 , together with an SGD convergence result such as
Theorem 14.9, implies that as m → ∞, SGD can find the minimizer of any loss
function within the NTK-regime.

Corollary 11.18. Assume that the NTK kernel kNTK
∞ (x, x′) in Proposition 11.16

is universal. Let f(x) be an arbitrary function, and {(X1, Y1), . . . , (Xn, Yn)} be n
distinct points. Consider a convex loss function L(f(x), y) which is Lipschitz in
f(x). There exists A > 0 so that the following holds. For any T > 0, assume we
run SGD from the NTK initialization (11.5) for T steps with constant learning
rate 1/

√
T , and return fnn(w, x) with w chosen uniformly at randomly from the

SGD iterates. Then as m→∞, ‖w − w̃‖∞
p→ 0 and

Ew
1

n

n∑
i=1

L(fnn(w,Xi), Yi) ≤
1

n

n∑
i=1

L(f(Xi), Yi) +
A√
T

+ op(1),

where Ew indicates the randomness from the SGD iterates, and the convergence
in probability is with respect to the randomness in the initialization.

Corollary 11.18 implies that as m → ∞, the neural network training process
using SGD is always inside the NTK-regime. The property can be generalized to
deep neural networks with more than two-layers.

In the NTK regime, the generalization of neural network can be easily obtained
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using Rademacher complexity. Specifically, the following result can be obtained
from Theorem 9.20.

Corollary 11.19. Let

FNTK
A (w̃) = {fNTK

m (w, x) : ‖w − w̃‖22 ≤ A2},

then

Rn(FNTK
A (w̃,D) ≤ A

√
Ex∼DkNTK

m (x, x)

n
.

11.5 Mean-Field Formulation

As pointed out in Section 11.4, the NTK approximation of neural networks (11.1)
does not have a continuous integral formulation similar to that of the continu-
ous random feature method (11.4), due to the 1/

√
m normalization in the NTK

formula. The reason for this normalization is to ensure that (11.5) has a nonzero
finite variance. In this section, we consider a different normalization of (11.1)
(still ignoring bj) as

fm(x) =
α

m

m∑
j=1

ujh(θ>j x), (11.7)

with a scaling constant α > 0. We assume that θj ∈ Rd and uj ∈ R.
If we allow α to vary in m, and take α =

√
m, then it leads to the NTK

formulation (11.5) and (11.6). On the other hand, if we let m→∞ with α fixed,
then we may treat [uj, θj] as iid random samples from an underlying distribution
q on Rd+1. Similar to the continuous formulation of the random feature method,
this leads to a continuous formulation of two-layer neural network as m→∞:

fmf(q, x) = αE[u,θ]∼q uh(θ>x). (11.8)

This continuous formulation is referred to as the mean field formulation in Mei
et al. (2018). In this formulation, the distribution q on Rd+1 characterizes the
model, and can be trained using noisy gradient descent (see Mei et al., 2018). The
finite two-layer neural network can be regarded as sampling from this distribution.
In essence, this approach is a generalization of the random feature method but
with the underlying random distribution trained to better fit the data, instead
of using a fixed random distribution. The training of the underlying random
distribution corresponds to feature learning in neural networks.

In the mean-field formulation, as α→∞, the behavior of the resulting model
becomes more and more similar to that of the NTK formulation. Therefore one
may argue that the mean field formulation is more general, while the NTK for-
mulation is a limiting situation with α → ∞. One disadvantage of the mean
field formulation is that with standard random initialization of [ũ, θ̃], the initial
function is always 0 in the continuous limit of m → ∞. This is not desirable
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11.5. MEAN-FIELD FORMULATION 239

when we train a neural network in practice. On the other hand, the advantage
of the mean field formulation is that it allows [u, θ] to move outside of a small
neighbor of [ũ, θ̃], which is consistent with feature learning in practical neural
network applications.

Convergence Analysis

It can be shown that in the continuous limit, neural network training converges
to the optimal solution of the mean field formulation (11.8), under suitable con-
ditions (see Chizat and Bach, 2018; Mei et al., 2018). We will consider the
entropy regularization model studied in (Mei et al., 2018) for the mean-field for-
mulation. It was shown in (Mei et al., 2018) that for the mean-field formulation
of two-layer neural networks, the Langevin algorithm converges to an entropy
regularized ERM problem. In the following, we will prove this result for the con-
tinuous mean-filed formulation, in which we seek a density function q on Rd+1 to
to solve the following optimization problem

min
q

[
1

n

n∑
i=1

L(fmf(q,Xi), Yi) + E[u,θ]∼qr(u, θ) + λE[u,θ]∼q ln q([u, θ])

]
,

where fmf(q, x) is given by (11.8), and r([u, θ]) is an appropriately chosen regu-
larization term such as L2 regularization.

In the convergence analysis, we employ a simplified notation with w = [u, θ] ∈
Rd+1, and take

p0(w) ∝ exp(−r(w)/λ).

We thus obtain the following equivalent optimization problem:

q∗ = arg min
q
Q(q), Q(q) =

[
1

n

n∑
i=1

L(fmf(q,Xi), Yi) + λKL(q||p0)

]
, (11.9)

where

fmf(q, x) =

∫
h̃(w, x)q(w)dw, h̃(w, x) = αuh(θ>x).

The convergence theory of continuous two-layer neural networks to optimize
(11.9) requires some knowledge on partial differential equations (PDEs). Since
the required mathematical background is isolated from other parts of the book,
we shall keep the discussion concise without concerning about issues such as the
existence of PDE solutions. Readers who are not familiar with partial differential
equations can skip the derivation.

In the convergence analysis, we will consider the continuous time noisy gra-
dient descent, which can be described by a partial differential equation. In this
setting, the underlying mathematical model is to sample m → ∞ neurons, each
represented by an initial weight w0 ∼ q0 at t = 0. When time t increases, we
move each sampled neuron, represented by a weight wt from the the neuron dis-
tribution qt(w) at time t, using noisy gradient descent (Langevin algorithm). We
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assume that the the moving neuron distribution of wt at time t has density qt(w).
Mathematically, the gradient descent method can be implemented as a stochastic
partial differential equation (SDE):

dwt =− ηg̃(wt, qt)dt+
√

2ληdBt,

g̃(w, q) =
1

n

N∑
i=1

L′1(fmf(q,Xi), Yi)∇wh̃(w,Xi) +∇r(w),

where Bt is the standard Brownian motion and L′1(f, y) is the derivative of L(f, y)
with respect to f . The discretized version can be implemented using the SGLD
algorithm (see Algorithm 7.2). It is well-known that the dynamics of qt satisfies
the following Fokker-Plank equation (see Pavliotis, 2014, for example):

∂qt(w)

∂t
= η∇w · [qt(w)∇wg(w, qt)], (11.10)

where

g(w, q) = g0(w, q) + λ ln
q(w)

p0(w)
, g0(w, q) =

1

n

N∑
i=1

L′1(fmf(q,Xi), Yi)h̃(w,Xi).

We have the following general convergence result for (11.10).

Theorem 11.20. Assume that L(f, y) is convex in f . Moreover, for any density
function q′ on Rd+1, the density

q(w) ∝ p0(w) exp
(
−λ−1g0(w, q′)

)
satisfies the logarithmic Soblev inequality (LSI) with parameter µ > 0: for all
density functions p on Rd+1,

KL(p||q) ≤ 1

2µ
Ew∼p

[∥∥∥∥∇ ln

(
p(w)

q(w)

)∥∥∥∥2

2

]
. (11.11)

Then we have

Q(qt) ≤ Q(q∗) + e−2ηλµt[Q(q0)−Q(q∗)].

Proof We define a density function

q′t(w) ∝ p0(w) exp
(
−λ−1g0(w, qt)

)
,

then it is easy to verify that

q′t(w) ∝ qt(w) exp
(
−λ−1g(w, qt)

)
. (11.12)
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We have

dQ(qt)

dt
=

∫
δQ(qt)

δqt
· ∂qt(w)

∂t
dw

=

∫
g(w, qt)η∇w · [qt(w)∇wg(w, qt)]dw

=− η
∫
‖∇wg(w, qt)‖22 qt(w)dw

=− ηλ2

∫ ∥∥∥∥∇w ln
qt(w)

q′t(w)

∥∥∥∥2

2

qt(w)dw

≤− ηλ2µKL(qt||q′t). (11.13)

The first equation used calculus of variation. The second equation used (11.10),
and the fact g(w, qt) may be considered as a functional gradient of Q with respect
to qt by treating qt as an infinite dimensional vector indexed by w. The third
equation used integration by parts. The fourth equation used (11.12). The last
inequality used (11.11), which is satisfied by q′t. Moreover,

Q(q∗)−Q(qt) ≥
∫
g(w, qt)(q∗(w)− qt(w))dw + λKL(q∗||qt)

≥− λ lnEw∼qt exp
(
−λ−1g(w, qt)

)
− Ew∼qtg(w, qt)

=− λKL(qt||q′t). (11.14)

The first inequality used the fact that Q(q) − λKL(q||p0) is convex in q, and
g0(w, qt) is the functional gradient of Q(qt)− λKL(q||p0) with respect to q as an
infinite dimensional vector indexed by w; it also used the fact that KL(q∗||p0)−
KL(qt||p0) =

∫
ln(qt(w)/p0(w))(q∗(w) − qt(w))dw + KL(q∗||qt). The second in-

equality used Proposition 7.16 (with p = q∗ and p0 = qt).
Now by combining (11.13) and (11.14), we obtain

d[Q(qt)−Q(q∗)]

dt
≤ −2ηλµ[Q(qt)−Q(q∗)].

By solving the differential equation, we obtain the result.

Theorem 11.20 shows that the logarithmic Soblev inequality (11.11) implies
that the two-layer neural network in the mean field regime converges linearly. To
obtain concrete examples for which (11.11) holds, we can employ the following
well-known result.

Lemma 11.21. Let V (w) be a smooth and λ-strongly convex function on Rd+1,
and U(w) be a smooth function so that |U(w) − V (w)| ≤ M < ∞. Then the
density

q(w) =
exp(−U(w))∫
exp(−U(w))dw

.

satisfies (11.11) with parameter µ = λ exp(−2M).
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Proof LSI holds for a strongly concave density function is a directly consequence
of the Bakry-Emery criterion (Bakry and Émery, 1985). It is also known that LSI
is stable under a bounded perturbation (see Holley and Stroock, 1987), which
implies the result.

Example 11.22. Lemma 11.21 implies the following result. Assume that g0(w, q)
is smooth in w: ‖∇2

wg0(w, q)‖2 ≤ L for all w and q. If we take r(w) = λ′‖w‖α2 ,
then for any λ′ > 0 and α > 2, (11.11) is valid for some µ > 0 (see Exercise 11.7).
This implies that the convergence result in Theorem 11.20 holds.

Generalization Analysis

Because the parameter q of the mean-filed model is a distribution, the two-layer
NN in this continuous formulation can be regarded as a convex hull of the in-
dividual models uh(θ>x). We can thus apply the L1-regularization result and
the entropy-regularization result from Chapter 10 to compute the correspond-
ing Rademacher complexity. The following result is identical to Proposition 11.9,
except that we allow q to be learned for both parameters [u, θ].

Proposition 11.23. Let

Fmf
A = {E[u,θ]∼q uh(θ>x) : Eu∼q|u| ≤ A},

then

R(Fmf
A ,Sn) ≤ AM 32

√
d+ 1√
n

.

Moreover, Theorem 11.20 shows that noisy gradient descent for the mean field
formulation leads to entropy regularization. We can analyze its generalization
performance by using the Rademacher complexity analysis in Theorem 10.17, or
by using Theorem 10.18 without assuming the boundedness of uh(·).

In addition to Theorem 11.20, it is also possible to prove convergence without
entropy regularization under suitable conditions (see Chizat and Bach, 2018).
One can study properties of the global solution of (11.8), as the limiting solution
of the ERM method for two-layer neural networks. An interesting observation
of the mean-field formulation (11.8) without entropy regularization is that any
convex regularization in u leads to L1 regularization, which implies that Proposi-
tion 11.23 can be directly applied for the solution of the mean-filed formulation.

Proposition 11.24. Consider an arbitrary distribution D̂ on X × Y. Assume
that sup{|h(θ>x)| : θ ∈ Ω} is bounded. Let ∆(R × Ω) be the set of probability
measures on (u, θ) ∈ R× Ω. Consider the following optimization problem:

min
q∈∆(R×Ω)

[
E(X,Y )∼D̂L(E[u,θ]∼q uh(θ>X), Y ) + Eu∼qr(|u|)

]
,

where r(·) is an increasing and strictly convex function on R+. Let q̂ be an optimal
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solution. Then there exists A > 0 such that |u| = A a.e. u ∼ q̂(·), and q̂ is a
solution to

min
q∈∆(R×Ω)

E(X,Y )∼D̂L(E[u,θ]∼q uh(θ>X), Y ) Eu∼q|u| ≤ A.

Proof For notation simplicity, we consider discrete q̂ (the continuous case is
analogous except for more complex notations). Consider discrete values of [u1, θ1]
with probability q̂1 > 0 and [u2, θ2] with probability q̂2 > 0. Without loss of
generality, we may assume that |u1| ≥ |u2| ≥ 0.

We prove the first statement by contradiction. If |u1| > |u2|, then we can find
δ > 0, and let q̂′1 = q̂1 + δ, q̂′2 = q̂2 − δ, so that |u′1| = |u′2| with u′1 = u1q̂1/q̂

′
1

and u′2 = u2q̂2/q̂
′
2. Let q̂′ be the distribution on [u, θ] which equals q̂ on all other

points, except for a change of probability mass q̂j on [uj, θj] to a probability
mass q̂′j on [u′j, θj] (j = 1, 2). The construction implies that E[u′,θ]∼q̂′u

′h(θ>x) =
E[u,θ]∼q̂uh(θ>x) and

Eu′∼q̂′r(|u′|)− Eu∼q̂r(|u|) = (q̂1 + q̂2)r

(
q̂1|u1|+ q̂2|u2|)

q̂1 + q̂2

)
−

2∑
j=1

q̂jr(|uj|) < 0,

where we used |u′1| = |u′2| = (q̂1|u1| + q̂2|u2|)/(q̂1 + q̂2). This is a contradiction
to the optimality of q̂. Therefore we must have |u1| = |u2|. This implies that
|u| = const when u ∼ q̂(·).

We prove the second statement by contradiction. If q̂ is not a solution of the
L1 regularization formulation, then we can find q̂′ with a smaller objective value
so that Eu′∼q̂′ |u′| ≤ A. From the previous analysis, we can also find a solution q̂′

such that |u′| = A′ for some A′ ≤ A with a smaller objective value. However, this
is not possible because q̂′ would lead to a smaller regularized loss than that of q̂
with respect to the r(·) regularization formulation.

Proposition 11.24 can be interpreted as follows. Even if we use L2 regular-
ization on u in a two-layer neural network, which seemingly is related to the
kernel method, it effectively solves an L1 regularizaton problem for the mean-
field formulation, when we allow both u and θ to be optimized simultaneously.
The optimization of θ modifies the L2 regularization on u into the L1 regulariza-
tion with respect to the function class {h(θ>x)}. This means Proposition 11.23
can be used to characterize the complexity of the mean-filed formulation.

In the discrete mean-filed formulation (11.7), {[uj, θj]} may be regarded as m
independent samples from q. In such a formulation, [uj, θj] are trained simulta-
neously. The following result shows that with L1 regularization, the Rademacher
complexity is insensitive to m.

Corollary 11.25. Let

Fmf
A,m =

{
1

m

m∑
j=1

ujh(θ>j x) : ‖u‖1 ≤ mA
}
.
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Assume that h(·) ∈ [−M,M ] and h(·) is monotone. Then

R(Fmf
A,m,Sn) ≤ AM 32

√
d+ 1√
n

.

Note that unlike Corollary 11.10, where {θj} are random, Corollary 11.25 allows
{θj} to be trained together with {uj}. This means that it is more effective in
learning the correct feature representation using a small m.

11.6 Analysis of Deep Neural Networks

It is possible to extend the NTK analysis to deep neural networks using an ex-
tension of the linear approximation (11.6) for two-layer neural networks without
too much difficulty. We will not consider it here for simplicity. It has similar flaws
as the kernel approaches for random features and for two-layer neural networks,
in that the linearization requires model parameters to be restricted in a small
region around the initialization.

An additional disadvantage of the NTK approximation is that it can be re-
garded as a shallow network approximation of a deep network using a linear
model. According to Theorem 11.4, highly oscillating functions with large cross-
ing numbers cannot be approximated efficiently with NTK, although they can
be well approximated using deep neural networks. This is related to the fact
that NTK cannot learn features efficiently. However, the efficient learning of fea-
ture representation is the key advantage of deep neural networks. Therefore in
this section we will investigate the deep neural network method directly without
considering the NTK approximation.

Here we consider a formulation of deep neural networks which may be consid-
ered as an extension of the mean field formulation of two-layer neural networks,
and then investigate its generalization. The deep function class is defined recur-
sively as follows:

F (1) = {θ>x : θ ∈ Θ},

and for k = 2, . . . ,K, using the notation of Section 10.2, we define

F (k) =FAk,L1
(h ◦ F (k−1)) (11.15)

=

{
m∑
j=1

wjh(fj(x)) : ‖w‖1 ≤ Ak, fj ∈ F (k−1),m > 0

}
.

When A1, . . . , Ak are sufficiently large, then it is clear that any function f(x)
that can be represented by a deep K layer neural network that belongs to F (K).
The representation allows an arbitrary large m, and thus can handle continuous
deep neural networks. This implies that it can be regarded as an extension of
the two-layer mean field formulation, which as we have shown, also employs L1

regularization implicitly.
For simplicity, we consider the case that h ◦ F (1) is bounded, h is monotone
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and Lipschitz. The following result, first presented in Koltchinskii and Panchenko
(2002), is a direct consequence of Theorem 10.8.

Theorem 11.26. Consider K-layer neural networks defined by (11.15). Assume
that h(θ>x) ∈ [−M,M ] for all θ ∈ Θ and x ∈ X . Assume also that h is 1-Lipschitz
and monotone. Then there exists a constant C, such that for all distribution D
on X , we have

R(F (k),Sn) ≤ AM 32
√
d+ 1√
n

,

where A = 2k−2
∏k
`=2A`.

Proof We prove the statement by induction. The case k = 2 follows from Corol-
lary 11.10. Assume the statement holds at layer k − 1, then at layer k. We have

R(F (k),Sn) ≤Ak[R(h ◦ F (k−1),Sn) +R(−h ◦ F (k−1),Sn)]

≤2AkR(F (k−1),Sn).

The first inequality used Theorem 10.8. The second inequality used Theorem 6.28
with γi = 1 and h = 0. Now by using induction, we obtain the desired bound.

The result implies that if we use L1 regularization for every layer of a deep
neural network, then the Rademacher complexity can be easily bounded using
the multiplications of the layer-wise L1 regularization parameters. For the ReLU
function, the L1 regularization can be moved to the last layer. It is also worth
noticing that the learning complexity for the function composition example con-
sidered in Theorem 11.4 still high if we measure it by L1 regularization. This is
not surprising because functions with exponentially many crossing numbers are
complex, and L1 regularization allows a large neural network with many neurons.

One benefit of the generalization bound in Theorem 11.26 is that the gener-
alization performance does not depend on the number of neurons. Therefore the
more neurons we use, the better. This is consistent with empirical observations
that wide neural networks are easier to optimize. If we allow the number of neu-
rons to approach infinity, then we obtain a continuous formulation of deep neural
networks with the same learning bound measured by Rademacher complexity.

11.7 Double Descent and Benign Overfitting

Modern neural networks are usually overparameterized, in that the number of
model parameters is significantly larger than the number of training data. This is
consistent with both the NTK view and the mean-field view, where both consider
the limit of m → ∞. Without proper regularization, such a system will lead to
overfitting based on classical statistics. However, with proper regularization such
as RKHS regularization in the NTK view, and L1 regularization in the mean-field
view, such systems have bounded complexity when measured by quantities such
as the Rademacher complexity. In general, such a complexity measure implies a
small effective model dimension as discussed in Section 9.5. In the classical setting,
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the effective dimension should be smaller than the number of training data, and
one typically observes a U shaped test loss as the model complexity increases.
This is shown in Figure 1.1. However, some of modern overparameterized models
go beyond this regime, where it is observed that such models (including neural
networks) exhibit the so-called double-descent phenomenon when the model size
increases (see Belkin et al., 2019).

The double descent phenomenon is illustrated in Figure 11.4. It can be seen that
when the effective dimension is smaller than the number of training data, we are
in the classical regime where the test loss has a U shape. In the overparameterized
regime, the test loss is large when the effective model dimension is approximately
the same as the number of training data, but it will decrease further when the
effective dimension increases beyond the number of training data. In this regime,
overfitting happens and the model generally starts to interpolating the observed
function value which may potentially contain noise. Such overfitting is referred to
as benign overfitting because even though the learned function overfits the noise,
the test loss will decrease, and the minimum test loss that can be achieved is
smaller than the minimum test loss that can be achieved in the classical regime.

loss

effective model dimension

test loss

training loss

overparameterized regime
(benign overfitting)

classical regime
(bias variance tradeoff)

training data size

Figure 11.4 Double descent curve

A number of papers tried to explain the double-descent phenomenon, which
occurs even for overparameterized linear regression models, noticeably with min-
imum L2-norm estimator, where we try to fit a linear model with the smallest
L2-norm. This is equivalent to ridge regression with the regularization parame-
ter approaching zero. Although double-descent may look mysterious, it does not
contradict to the classical learning theory. In the classical learning theory, the
more complex a model class is, the lower the training loss is required to obtain
the optimal training loss, and the more overfitting one observes. In the extreme
case that the model class is extremely complex, the optimal tradeoff potentially
requires the overfitting of the training data.

To explain what causes the double-descent phenomenon, we consider the fol-
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lowing simple problem in the Bayesian setting with (X,Y ) ∈ Rd × R:
Y = w>∗ X + ε

X ∼ N(0, Id×d)

ε ∼ N(0, σ2)

w∗ ∼ N
(

0, τ
2

d
Id×d

) (11.16)

We consider least squares regression in the overparameterized setting, where we
observe n � d training data {(Xi, Yi) : i = 1, . . . , n}. In this situation, the
model belongs to a very complex function class because the target is a dense
overparameterized family, with data generated by a dense target vector w∗ ∈ Ω.
It is impossible to learn w∗ accurately, but nevertheless, we will try to find ŵ
from the training data to achieve the smallest test loss

E(X,Y )∼D(ŵ>X − Y )2 = ‖ŵ − w∗‖22 + σ2.

Note that we assume a generation process of w∗ so that the optimal Bayes esti-
mator, which is the best estimator among all possible learning algorithms, can
be explicitly computed. We can then compare the results of other methods to
this estimator. A simple calculation shows that the optimal Bayes estimator that
minimizes the quantity is given by ridge regression:

ŵ = arg min
w

[
n∑
i=1

(w>Xi − Yi)2 + λd‖w‖22

]
(11.17)

with λ = σ2/τ 2. The following result compares the training loss and the test loss
of ridge regression.

Theorem 11.27. Consider (11.16) with fixed τ, σ, n. Let X = [X1, . . . , Xn] be
the d× n data matrix with response Y = [Y1, . . . , Yn]>. Given any δ ∈ (0, 1), let

c =

√
min(n, d)

max(n, d)
+

√
2 ln(2/δ)

max(n, d)
.

Then with probability 1−δ over the random choice of X, the following statements
hold for the ridge regression estimator (11.17). There exists c′, c′′ ∈ [−min(1, c), c]
such that the expected training loss and expected test loss satisfy the following
equations. When d ≤ n:

E
[

1

n
‖X>ŵ − Y ‖22

∣∣∣∣X] =

(
1− d

n

)
σ2 +

d2

n2
· λ

2(τ 2(1 + c′)2 + (d/n)σ2)

((1 + c′)2 + λd/n)2
,

E
[
‖ŵ − w∗‖22 + σ2

∣∣∣∣X] =σ2 +
d

n
· (λ2τ 2(d/n) + (1 + c′′)2σ2)

((1 + c′′)2 + λd/n)2
,
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and when d ≥ n:

E
[

1

n
‖X>ŵ − Y ‖22

∣∣∣∣X] =
λ2(τ 2(1 + c′)2 + σ2)

((1 + c′)2 + λ)2
,

E
[
‖ŵ − w∗‖22 + σ2

∣∣∣∣X] =σ2 +
(

1− n

d

)
τ 2 +

n

d
· (λ2τ 2 + (1 + c′′)2σ2)

((1 + c′′)2 + λ)2
.

The conditional expectation is with respect to both w∗ and {Yi}.

Proof Let Y = [Y1, . . . , Yn]> and ε = Y − X>w∗ be the noise vector. We can
express

ŵ = X(X>X + λdIn×n)−1X>w∗ +X(X>X + λdIn×n)−1ε.

Let K = 1
d
X>X be an n× n matrix. It is easy to verify that

E
[

1

n
‖X>ŵ − Y ‖22

∣∣X] =
λ2

n
trace((τ 2K + σ2I)(K + λI)−2) (11.18)

E [‖ŵ − w∗‖22|X] =
(

1− n

d

)
τ 2 +

1

d
trace

((
λ2τ 2I + σ2K

)
(K + λI)−2

)
. (11.19)

Since X is a d × n matrix with iid standard Gaussian entries, it is well known
(see Rudelson and Vershynin, 2010, for example) that with probability at least
1− δ, any singular value of X belongs to the interval[√

max(n, d)(1− c),
√

max(n, d)(1 + c)

]
.

If d ≤ n, d eigenvalues of K belong to [(n/d)(1 − min(1, c))2, (n/d)(1 + c)2],
and n − d eigenvalues of K are zeros. We can now obtain the desired result by
plugging this estimate into (11.18) and (11.19).

If d ≥ n, then all n eigenvalues of K belong to [(1 − min(1, c))2, (1 + c)2].
We can now obtain the desired result by plugging this estimate into (11.18) and
(11.19).

The result of Theorem 11.27 focuses on the case min(n, d)� max(n, d), which
implies that c′, c′′ → 0. It is also possible to derive more precise asymptotic results
than that of Theorem 11.27 when

√
n/d → c ∈ (0,∞) and d, n → ∞. In such

case, by using the Marchenko-Pastur law from the theory of random matrix (see
Bai and Silverstein, 2010, Theorem 3.7 and Lemma 3.11), we can obtain the
limiting eigenvalue distribution of K in the proof of Theorem 11.27, and use it
to compute asymptotically precise characterizations of training and test losses.
We leave the detailed calculations to Exercise 11.10. Specifically, when λ = 0, the
following asymptotic expression is valid as n→∞ and

√
n/d→ c < 1:

E
[

1

n
‖X>ŵ − Y ‖22

∣∣X] = σ2 +
n

d− n
σ2 +

(
1− n

d

)
τ 2 + op(1). (11.20)
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To interpret Theorem 11.27, we may first consider the classical regime, where
d/n� 1 so that c ≈ 0. With λ = 0, the training and test loss become

training loss ≈
(

1− d

n

)
σ2,

test loss ≈
(

1 +
d

n

)
σ2.

In this regime, we only overfit the training loss slightly by (d/n)σ2, with a small
generalization penalty (d/n)σ2 for the test loss. The term (d/n)σ2 corresponds to
the estimation variance. The result is similar to that of the optimal λ = σ2/τ 2.

Next we consider the overparameterized regime, where n/d� 1 so that c ≈ 0.
The expected test loss is minimized with λ = σ2/τ 2, which corresponds to the
choice of the optimal Bayes estimator. With λ = σ2/τ 2 and c ≈ 0, we have

training loss ≈ σ4

τ 2 + σ2
,

test loss ≈σ2 +
n/d

1 + σ2/τ 2
σ2 +

(
1− n

d

)
τ 2.

If σ � τ , then the training loss is approximately σ2(σ/τ)2. It is significantly
smaller than the test loss, which is approximately (1+n/d)σ2 +(1−n/d)τ 2. This
shows that significant overfitting is necessary to achieve optimal performance in
complex overparameterized models. We note the variance term becomes (n/d)σ2

in the overparameterized case, and there is an extra bias term (1− n/d)τ 2.
We can also simply set λ = 0, corresponding to the minimum norm estimator,

which is the focus in the recent literature. In this case, we obtain that the training
loss is zero, while while test loss decreases as d increases.

training loss =0,

test loss =σ2 +
n/d

(1 + c′′)2
σ2 +

(
1− n

d

)
τ 2.

When σ/τ is small, the test loss achieved at λ = 0 is close to the optimal test
loss achieved at λ = σ2/τ 2 up to a difference of O((n/d)σ2).

More generally, when
√
d/n → c ∈ (0, 1), we can obtain (11.20) with λ = 0.

This means even if we completely overfit the data, the resulting classifier still
achieves near optimal test performance since it nearly matches the result of the
optimal Bayes estimator. The phenomenon that overfitting the noise is required
to achieve near optimal test performance is often referred to as benign overfitting.

The term O((n/d)σ2) in the overparameterized regime can be interpreted as
estimation variance which decreases as d increases. The reduction in variance as
d increases is what caused the double-descent phenomenon, which only happens
in the overparameterized regime d > n. In contrast, when d � n, the variance
term is O((d/n)σ2), which increases as d increases. Moreover, in our example,
if we choose p out of d variables and perform regression with p parameters,
then a similar calculation shows that in the overparameterized benign overfitting
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regime, the larger the chosen variable dimension p is, the smaller the variance
term O(σ2n/p) is, and the better the generalization error becomes. However, in
the classical regime where the dimensionality p is smaller than n, the variance
term is O(σ2p/n), and we observe a classical U shaped curve as in Figure 1.1 due
to bias-variance tradeoff. See (Belkin et al., 2020) for a detailed analysis of this
phenomenon for the minimum L2 norm estimator.

One side-effect of benign overfitting is that it is difficult to employ empirical
process or stability techniques developed in earlier chapters in the overparam-
eterized regime, because both methods work when the difference between the
training loss and the test loss is small. However, such analysis may not be precise
enough in the overparameterized regime when the difference between training
loss and test loss becomes large. In fact, in the classical regime, we expect the
generalization to behave as O(σ2d/n), where d may also be replaced with the
effective dimension as shown in Chapter 9. In the overparameterized regime with
minimum regularization, we expect an additive variance-like term of O(σ2n/d),
in addition to a bias term of (1 − n/d)τ 2. Even if τ is small, the variance term
becomes smaller when d increases, and the bias term eventually dominates. How-
ever, the classical learning theory has not developed effective technical tools to
analyze the resulting bias terms in the general case.

The key insight that can be obtained from Theorem 11.27 is that if the true
model belongs to a complex overparameterized model class, then to achieve near
optimal test performance, it is beneficial to overfit the training data. While it
is often difficult to differentiate complex models from noise, the example in this
section shows that overfitting is needed in overparameterized model learning,
although the conclusion doesn’t apply to observation noise in the classical regime
where the effective dimension is smaller than n.

Intuitively, the reason that variance reduces when d increases is because over-
fitting to noise causes random perturbations in the estimated model parameter,
and the perturbation belongs to the subspace spanned by the training data. Its
effect on the test data becomes minor when d increases because the test data are
nearly orthogonal to the training data. This means that test data are insensitive
to a random perturbation of parameter in the subspace spanned by the training
data. One can generalize this observation to the situation that test data are nearly
orthogonal to the training data outside of a low dimensional space. This allows
a more general covariance structure of the data matrix for which benign overfit-
ting can happen. If the main function belongs to the low dimensional space, then
by using the classical statistical analysis inside the low dimensional space, and
orthogonality outside of the low dimensional space, one can prove Bayes consis-
tency of the minimum norm estimator even when such an estimator completely
overfits the noise (Bartlett et al., 2020).

11.8 Historical and Bibliographical Remarks

Mathematical models of biological neurons have appeared in the 1940s (McCul-
loch and Pitts, 1943). The idea was further developed into a computational model
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called perceptron by Rosenblatt (1962). However its limitation in representation
power was soon recognized by Minsky and Papert (1969). To overcome the limita-
tion, modern neural networks employ multilayer perceptrons with hidden layers,
which can be trained using gradient descent (also referred to as back propagation)
(Rumelhart et al., 1986). In fact, even two-layer neural networks are known to
be universal (Leshno et al., 1993).

However, deep neural networks have additional benefits in representation power
because high-level composite features can be more easily represented using deep
networks with fewer neurons. There exist functions that can be represented by
deep neural networks with a small number of nodes, but require exponentially
number of nodes to represent using shallow neural networks (Liang and Srikant,
2017; Telgarsky, 2016). Related results show that deep neural networks can also
represent any function with a fixed number of nodes per layer. (Lu et al., 2017;
Hanin, 2019), This implies that in order to represent a complex function, one
can either increase a network’s width, or its depth. From representation point
of view, depth is more important than width in that a wide shallow network
can be represented by a fixed width deep neural network with similar number
of neurons (Vardi et al., 2022). Nevertheless, wide neural networks are generally
easier to optimize, and it was observed in practice that with a fixed model size,
the optimal trade-off between depth and width requires a balanced increase of
both width and depth (Tan and Le, 2019).

The idea of using random features in machine learning was proposed by Huang
et al. (2006). The resulting method is closely related two two-layer neural net-
works without optimizing the input layer (Rahimi and Recht, 2008). Its connec-
tion to kernel methods using random Fourier features was investigated in (Rahimi
and Recht, 2007). One advantage of random Fourier features is that the compu-
tation may rely on fast Fourier transform (Le et al., 2013). Due to its simplicity
and efficient computation, the method has been applied to various problems.

The formulation of infinitely-wide neural networks as kernel methods or Gaus-
sian processes has already been considered in the 1990s (Neal, 1995; Williams,
1996). However, the more rigorous development of neural tangent kernel has ap-
peared more recently (Jacot et al., 2018). From the optimization perspective, it
is known that with the NTK initialization in Section 11.4, if we let m→∞, then
gradient descent finds a solution with zero training loss in an infinitely small
neighborhood of the initialization (see Li and Liang, 2018; Zou et al., 2020; Du
et al., 2019; Allen-Zhu et al., 2019a,b; Zou and Gu, 2019). These results are con-
sistent with the existence of universal representation in a small neighborhood of
the initialization in Theorem 11.17. This phenomenon is also referred to as the
“lazy training” regime by Chizat et al. (2019). In the lazy training regime, the
optimization problem is nearly linear, and the dynamics of gradient descent can
be analyzed using a linear model approximation.

The mean field view of neural networks was motivated by the mean field analy-
sis in statistical physics (Engel and Van den Broeck, 2001), where the interaction
of a large number of neurons can be represented using the average effect accord-
ing to their joint probability distribution. It was shown that using such a mean
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field analysis, and techniques related to optimal transport, the continuous limit
of two-layer neural networks converge globally by using either noisy gradient de-
scent (Mei et al., 2018) or suitable activation functions such as ReLU (Chizat and
Bach, 2018). The global convergence is possible because the mean field formula-
tion of two-layer neural networks is convex in the probability distribution of the
model parameters, although the original discrete neural network is nonconvex in
the model parameters. It was shown recently that the convexification of overpa-
rameterized neural networks can be extended to neural networks with more than
two layers (Gu et al., 2020; Fang et al., 2022). However, the convergence analysis
for deep neural networks is far more complexity than the analysis of two-layer
neural networks, and only specialized results can be established under limited
conditions Fang et al. (2021, 2022).

As we have shown in Section 11.5, the mean field view employs a global L1 reg-
ularization while the NTK formulation implicitly uses a local L2 regularization.
Therefore the two methods have different behaviors. In particular, L1 regulariza-
tion allows the mean-field formulation to learn feature representations, which is
not possible in the NTK view. The solution behavior under the mean field setting
has also been investigated by Chizat and Bach (2020). Moreover, one can show
that when the scaling parameter α→∞, the convergence behavior of mean-field
approaches that of the NTK regime (see Mei et al., 2019; Chen et al., 2020).

It was observed by Zhang et al. (2017) that modern neural network training
procedure can overfit a completely noisy target, and thus the model class of these
neural networks is extremely complex. For such a complex model class, the clas-
sical learning theory does not fully explain its good generalization performance.
The term benign overfitting is introduced to explain this mystery. The underlying
assumption is that for certain computational procedures such as the minimum
norm estimator or estimator obtained from SGD, there is an implicit constraint of
the search space (also referred to as implicit bias) so that among all models that
achieve small training loss, the procedure can choose a model that perform well
on the test set. Some recent mathematical analysis proved such claim more rig-
orously under appropriate conditions (Bartlett et al., 2020; Tsigler and Bartlett,
2020; Zou et al., 2021) under which test data are nearly orthogonal to the training
data except for a small dimensionality k < n. Benign overfitting is closely related
to the double-descent phenomenon observed in Belkin et al. (2019); Nakkiran
et al. (2021) for neural network training. This phenomenon has since drawn con-
siderable theoretical interests (Hastie et al., 2022; Belkin et al., 2020; Mei and
Montanari, 2022). The intuition of benign overfitting in Theorem 11.27 is anal-
ogous to the example given by (Belkin et al., 2020) to illustrate double-descent.
The Bayesian argument in our analysis also implies that in order to achieve good
test performance, it is necessary to overfit (also see Cheng et al., 2022). Both
benign overfitting and double descent are still active research areas because the
mathematical tools to handle the general situation have not been fully developed.
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Exercises

11.1 Consider ReLU neural networks for approximating one-dimensional functions on [0, 1].

Prove that any piecewise linear function can be represented by a two-layer ReLU network.

11.2 For a k-layer ReLU neural network, with m nodes per layer, show that its output is a

piecewise linear function. Estimate the maximum possible number of linear segments,

hence the crossing number it may contain. How large should m be to achieve the same

crossing number as that of the fk2(x) function defined in the proof of Theorem 11.4?

11.3 Prove Proposition 11.12 and Proposition 11.13.

11.4 Prove Proposition 11.15.

11.5 Show if Assumption 11.14 holds, then starting from the NTK initialization, a finite number

of gradient descent steps with finite step size remains in the NTK regime when m is

sufficiently large.

11.6 Prove Proposition 11.16.

11.7 Consider Example 11.22. Let r′(w) = 2(L/λ)‖w‖22/(1 + β‖w‖22).

• Show that ‖∇2r′(w)‖2 ≤ c0(L/λ) for some absolute constant c0 independent of β.

• Show that if β is sufficiently small, then V (w) = λ−1[g0(w, p)+r(w)]+r′(w) is strongly

convex.

• Let U(w) = λ−1[g0(w, p) + r(w)], then |U(w) − V (w)| = |r′(w)| is bounded. Use

Lemma 11.21 to show that (11.11) holds with some µ > 0.

11.8 Consider (11.16), and assume that we randomly select p out of d variables and train a

linear model using minimum L2 norm estimator with the selected variables. Find the

expected test loss for both p < n and p > n.

11.9 Prove (11.18) and (11.19).

11.10 Consider Theorem 11.27 under the assumption that
√
n/d → c ∈ (0, 1) and n → ∞.

Consider the n × n matrix K in its proof. Lemma 3.11 of (Bai and Silverstein, 2010)

implies that as n→∞:

g(λ) =
1

n
trace((K + λI)−1) =

√
(1 + c2 + λ)2 − 4c2 + c2 − 1− λ

2c2λ
.

Show that
1

n
trace((αK + βI)(K + λI)−2) = αg(λ) + (αλ− β)

dg(λ)

dλ
.

Use this formula to give closed form expressions for (11.18) and (11.19).
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Lower Bounds and Minimax Analysis

This chapter considers lower bounds for empirical processes and statistical estima-
tion problems. We know that upper bounds for empirical processes and empirical
risk minimization can be obtained from the covering number analysis. We show
that under suitable conditions, lower bounds can also be obtained using covering
numbers.

12.1 Lower Bounds for Empirical Processes

In previous chapters, such as Chapter 6, we showed that uniform convergence of
empirical processes in terms of Rademacher complexity can be obtained using
covering numbers and the chaining technique.

This section considers techniques to derive lower bounds. For simplicity, we will
only consider empirical processes associated with a function family F = {f(w, z) :
w ∈ Ω}, defined on the empirical measure Sn = {Z1, . . . , Zn}.

We shall first introduce the notation of Gaussian complexity, which is useful
for obtaining lower bounds.

Definition 12.1. The empirical Gaussian complexity of F is defined as

G(F ,Sn) = Eg sup
f∈F

1

n

n∑
i=1

gif(Zi),

where [g1, . . . , gn] are independent standard normal random variables: gi ∼ N(0, 1)
for i = 1, . . . , n.

The following result shows that Gaussian complexity and Rademacher com-
plexity are equivalent up to a logarithmic factor in n.

Proposition 12.2 (Bartlett and Mendelson, 2002). There exists an absolute
constant C > 0 such that if F = −F , then

C−1R(F ,Sn) ≤ G(F ,Sn) ≤ C lnn R(F ,Sn).

Both Rademacher complexity and Gaussian complexity can be used to obtain
expected uniform convergence for empirical processes. Upper bounds for both
Rademacher complexity and Gaussian complexity can be obtained from cover-
ing numbers via Dudley’s entropy integral, as shown in Theorem 6.25. However,
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the Gaussian complexity also has a lower bound using covering numbers, called
Sudakov minoration. Its proof relies on Slepian’s lemma, which is a comparison
lemma for Gaussian complexity, similar to the comparison lemma for Rademacher
complexity in Lemma 6.29. The proof of this result can be found in (Slepian, 1962;
Joag-Dev et al., 1983).

Lemma 12.3 (Slepian’s Lemma). Let [X1, . . . , Xn] and [Y1, . . . , Yn] denote two
zero-mean multivariate normal random vectors. Assume that

∀i 6= j, E(Xi −Xj)
2 ≥ E(Yi − Yj)2.

Then

E max
i
Xi ≥ E max

i
Yi.

Empirical process lower bounds rely on the packing number M(·), which is
defined in Definition 5.1. Theorem 5.2 implies that it is equivalent to covering
number up to a scale of 2. The following result, referred to as Sudakov minoration,
is a direct consequence of Slepian’s lemma.

Theorem 12.4 (Sudakov Minoration). For any ε > 0:√
lnM(ε,F , L2(Sn)) ≤ 2

√
nG(F ,Sn)

ε
+ 1.

Proof Let FM = {f1, . . . , fM} ⊂ F be an ε packing subset of F under the L2(Sn)
metric. Consider independent standard Gaussian random variables [g1, . . . , gn].

E sup
f∈F

1

n

n∑
i=1

gif(Zi) ≥ E sup
j∈[M ]

1

n

n∑
i=1

gifj(Zi).

Let g′1, . . . , g
′
M be independent zero-mean normal random variables with variance

ε2/(2n) each. We then have for each j 6= k:

E

(
1

n

n∑
i=1

gifj(Zi)−
1

n

n∑
i=1

gifk(Zi)

)2

=
1

n2

n∑
i=1

(fj(Zi)− fk(Zi))2

≥ 1

n
ε2 = E (g′j − g′k)2.

Using Slepian’s lemma, we have

G(F , L2(Sn)) ≥E sup
j
g′j.
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We know from Theorem 2.1 that for all j and z ≥ 0,

Pr

(
g′j ≤

εz√
2n

)
≤1− 0.5e−(z+1)2/2

Pr

(
g′j ≤ −

εz√
2n

)
≤0.5e−z

2/2,

and thus

Pr

(
sup
j
g′j ≤

εz√
2n

)
≤(1− 0.5e−(z+1)2/2)M

Pr

(
sup
j
g′j ≤ −

εz√
2n

)
≤0.5Me−Mz2/2.

We note that the desired inequality is trivial for M ≤ 2. For M ≥ 3:

E sup
j

√
2ng′j
ε

=−
∫ 0

−∞
Pr

(
sup
j
g′j ≤

εz√
2n

)
dz +

∫ ∞
0

Pr

(
sup
j
g′j ≥

εz√
2n

)
dz

≥
∫ ∞

0

(
1− (1− 0.5e−(z+1)2/2)M

)
dz −

∫ 0

−∞
0.5Me−Mz2/2dz

≥
∫ √2 lnM−1

0

(
1− 0.5(1− 0.5/M)M

)
dz −

∫ 0

−∞
0.5Me−Mz2/2dz

≥
∫ √2 lnM−1

0

(
1− 0.5/

√
e
)
dz − 0.5M+1M−1/2

∫ ∞
−∞

e−z
2/2dz

=(1− 0.5/
√
e)(
√

2 lnM − 1)− 0.5M+1(3)−1/2
√

2π

≥0.98
√

lnM − 0.9.

This implies the desired bound.

A more precise characterization of Gaussian complexity, due to Talagrand
(1996a), is to consider a generalization of covering numbers ( majorizing mea-
sures), with a generalization of the chaining technique referred to as generic
chaining. We consider any measure µ on F , and let

µ(f, ε, L2(Sn)) = µ
(
{f ′ ∈ F : ‖f ′ − f‖L2(Sn) ≤ ε}

)
.

Then − lnµ(f, ε, L2(Sn)) may be regarded as a generalization of the entropy num-
ber of F localized around f . If we define

γ2(F ,Sn) = inf
µ

sup
f∈F

∫ ∞
0

√
− lnµ(f, ε, L2(Sn))

n
dε,

then the following result shows the equivalence of Gaussian complexity and
the corresponding entropy-integral in terms of majorizing measure (Talagrand,
1996a).
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Theorem 12.5 (The Majorizing Measure Theorem). There exists an absolute
constant C > 0 so that

C−1γ2(F ,Sn) ≤ G(F ,Sn) ≤ Cγ2(F ,Sn).

The result shows that the entropy integral bound for empirical processes is
generally tight, although one may need to replace covering numbers by majorizing
measures in certain situations. In other cases, the difference between covering
number and majorizing measure is not significant.

12.2 Minimax Analysis for Statistical Estimation

We consider the general statistical estimation problem, where we want to estimate
a certain quantity θ ∈ Θ based on a sample Z from a distribution D on Z. A
learning algorithm (estimator) A is a (possibly random) map Z → Θ. The quality
of the estimated distribution dependent quantity θ ∈ Θ can be measured by a
general loss function

Q(θ,D),

and the goal is to find an estimator A that achieves the smallest loss Q(A(Z),D)
when Z ∼ D.

Note that this definition can handle the general setting of supervised learning,
where we observe n iid training examples Sn = {Z1, . . . , Zn} from an unknown
underlying distribution D. In this case, we may simply take Z = Sn that is
generated according to the product distribution Dn. The model parameter space
Θ can be regarded as the set of prediction functions, and we may denote θ by f ,
so that the learning algorithm A learns a function f̂ = A(Sn).

Example 12.6. For least squares problem, f(x) is a real valued regression func-
tion. Let fD(x) = ED [Y |X = x]. We may define

Q(f,D) = EX∼D(f(X)− fD(X))2.

Example 12.7. For conditional density estimation withK classes y ∈ {1, . . . ,K},
we may consider Θ as the class of vector valued density functions

f(x) = [p(y = 1|x), . . . , p(y = K|x)].

For density estimation, the estimation quality can be measured by the KL-
divergence

Q(f,D) = EX∼DEY∼pD(Y |X) ln
pD(Y |X)

p(Y |X)
,

or by squared Hellinger distance:

Q(f,D) = 2− 2EX∼DEY∼pD(Y |X)

(
p(Y |X)

pD(Y |X)

)1/2

.
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Example 12.8. For K class classification problems, if we are interested in clas-
sification accuracy, then we may use the excess classification error over the Bayes
classification error as quality measure. Here

fD(x) = arg max
`

pD(Y = `|X = x)

is the optimal Bayes classifier. Let f(x) ∈ {1, . . . ,K} be any classifier, then we
can define

Q(f,D) = EX∼D[Pr(Y = fD(X)|X)− Pr(Y = f(X)|X)].

In statistical estimation, we do not know the true distribution D, but can
only observe a sample Sn from Dn. In this case, we may consider a family of
distributions P that contains D. For each D ∈ P, a learning algorithm learns a
quantity θ that depends on D from a sample Sn ∼ Dn. We are interested in the
worst case expected risk of a learning algorithm A to measure the ability of the
algorithm to learn the quantity θ with respect to a family of distributions P.

Definition 12.9. Consider a distribution family P on sample space Z, a param-
eter space Θ. A learning algorithm A : Zn → Θ, a loss function Q : Θ× P → R.
Then the worst case expected risk of a learning algorithm (i.e., a statistical esti-
mator) A with respect to P is given by

rn(A,P, Q) = sup
D∈P

ESn∼Dn EA Q(A(Sn),D),

where EA is the expectation over any internal randomization of A. Moreover, the
minimax risk is defined as:

rn(P, Q) = inf
A
rn(A,P, Q).

The standard statistical framework for optimality is to find an algorithm with
the smallest worse case risk rn(A,P, Q). This type of analysis is referred to as
minimax analysis. The minimax risk rn(P, Q) depends only on the sample size n,
distribution family P, and the loss function Q. In nonparametric statistics, it is
difficult to find the exact expression of minimax risk. Therefore we often consider
rate optimal algorithms A, which achieves the optimal minimax risk rn(P, Q) up
to a constant factor as n→∞.

In minimax analysis, we are interested in estimating the minimax risk (up
to a constant factor). To establish an upper bound of rn(P, Q), we consider
specific learning algorithms and analyze their convergence rates. For example, if
we consider the ERM method Aerm for the least squares regression problem, then
we may obtain an upper bound of

rn(P, Q) ≤ rn(Aerm,P, Q) = O(n−r),

for some r > 0, based on the analysis of Example 6.49.
On the other hand, if we can show a lower bound rn(P, Q) ≥ cn−r for some

constant c that may depend on P but independent of n, then we know that the
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ERM method achieves the optimal minimax lower bound. That is, no statistical
estimator can perform much better than ERM up to a constant factor for this
distribution family. If the lower bound is O(n−r

′
) for r′ > r, then ERM may not

be optimal. As we will see, both situations can happen depending on the entropy
of the function class F to be estimated.

12.3 Lower Bounds Using Fano’s Inequality

In this section, we will describe a general method to derive lower bounds for
statistical estimation based on Fano’s inequality, which is stated as follows.

Theorem 12.10 (Fano’s Inequality). Consider a finite family of distributions
P = {D1, . . . ,DN}. Assume that j is a random variable that is uniformly dis-
tributed in {1, . . . , N}, and conditioned on j , Z ∼ Dj. Let f(Z) ∈ {1, . . . , N} be
an estimate of the index j. Then

1

N

N∑
j=1

Pr
Z∼Dj

(f(Z) 6= j) ≥ 1− I(j, Z) + ln 2

ln(N)
,

where

I(j, Z) = E(j,Z)∼p(j,Z) ln
p(j, Z)

p(j)p(Z)

is the mutual information between random variables j and Z (see Appendix B).

In the following, we prove a generalization of the Fano’s inequality, which is
more convenient to apply for our purpose.

Theorem 12.11. Consider a finite family of distributions P = {D1, . . . ,DN}.
Given a loss function Q on Θ× P, let

m = sup
θ∈Θ

∣∣∣∣ {k : Q(θ,Dk) < ε}
∣∣∣∣.

Assume that j is a random variable that is uniformly distributed in {1, . . . , N},
and conditioned on j , Z ∼ Dj. Given any (possibly random) estimator A(Z).
Then

1

N

N∑
j=1

Pr
Z∼Dj

(Q(A(Z),Dj) < ε) ≤ max

(
m

N
,
I(j, Z) + ln 2

ln(N/m)

)
,

where I(j, Z) is the mutual information of j and Z. The probability includes
possible randomization in A.

Proof Let pj be the density function of Z for Dj. Then the joint distribution of
(j, Z) is given by

p(j, Z) =
1

N
pj(Z).
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We can introduce a random variable Z ′ with the same marginal distribution as
Z, but is independent of j:

p(Z ′) =
1

N

N∑
j=1

pj(Z
′).

Now, consider an arbitrary and possibly random estimator θ̂ = A(Z). Let θ̂′ =
A(Z ′). By the data processing inequality for KL-divergence (see Theorem B.4),

with input (j, Z) and binary output h(j, Z) = 1(Q(θ̂,Dj) < ε), where 1(·) is the
indicator function. We obtain

KL(1(Q(θ̂,Dj) < ε)||1(Q(θ̂′,Dj) < ε)) ≤ KL((j, Z)||(j, Z ′)) = I(j, Z).

Now let q = Pr(Q(θ̂,Dj) < ε) and q′ = Pr(Q(θ̂′,Dj) < ε), then the above
inequality can be rewritten as:

KL(q||q′) = q ln
q

q′
+ (1− q) ln

1− q
1− q′

≤ I(j, Z).

Since θ̂′ is independent of j, and

|{j : Q(θ̂′,Dj) < ε}| ≤ m

for each θ̂′, we obtain

q′ ≤ m/N.

If q ≤ m/N , we have proved the desired inequality. Otherwise, since KL(q||q′)
as a function of q′ is decreasing in [0, q], we have

q ln
q

m/N
+ (1− q) ln

1− q
1−m/N

≤ I(j, Z).

Since q ln q + (1− q) ln(1− q) ≥ − ln 2, we obtain

− ln 2 + q ln
N

m
+ (1− q) ln

N

N −m
≤ I(j, Z).

This implies that

q ≤ I(j, Z) + ln 2

ln(N/m)
.

We thus obtain the desired bound.

Example 12.12. In Theorem 12.11, if we take Θ = {1, . . . , N}, Q(θ,Dj) =
1(θ 6= j), and ε = 1, then we have m = 1. Note that 1/N ≤ ln 2/ ln(N), we
obtain the following result

1

N

N∑
j=1

Pr
Z∼Dj

(A(Z) = j) ≤ I(j, Z) + ln 2

lnN
.

This implies Fano’s inequality of Theorem 12.10.
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The following example gives an application of m > 1.

Example 12.13. In Theorem 12.11, if we take Θ = [1, N ] for N > 2, Q(θ,Dj) =
|θ− j|, and ε = 1, then we have m = 2. Note that 2/N ≤ ln 2/ ln(N/2), we obtain
the following result

1

N

N∑
j=1

Pr
Z∼Dj

(|A(Z)− j| < 1) ≤ I(j, Z) + ln 2

ln(N/2)
.

The following result shows that if the distributions {Dj} are close to each other,
then the mutual information I(j, Z) in Theorem 12.11 is small.

Lemma 12.14. The mutual information I(j, Z) in Theorem 12.11 satisfies the
inequality

I(j, Z) ≤ 1

N2

N∑
j=1

N∑
k=1

KL(Dj||Dk) ≤ sup
j,k

KL(Dj||Dk).

Proof We have

I(j, Z) =
1

N

N∑
j=1

EZ∼Dj ln
pDj (Z)

1
N

∑N
k=1 pDk(Z)

≤ 1

N2

N∑
j=1

N∑
k=1

EZ∼Dj ln
pDj (Z)

pDk(Z)
,

where the inequality used Jensen’s inequality and the convexity of − ln z.

The following minimax risk lower bound is a direct application of generalized
Fano’s inequality to the product distribution of KL-divergence. We leave its proof
as an exercise.

Theorem 12.15. Consider a distributions family P that contains a finite subset
of distributions {D1, . . . ,DN}. Let Q be a loss function on Θ× P, and

m = sup
θ∈Θ

∣∣∣∣ {k : Q(θ,Dk) < ε}
∣∣∣∣.

Let A(Sn) be an arbitrary (possibly random) estimator of Dj from iid data Sn =
[Z1, . . . , Zn] ∼ Dnj . If m ≤ N/2 and

ln(N/m) ≥ ln 4 + 2n sup
j,k

KL(Dj||Dk),

then

1

N

N∑
j=1

Pr
Sn∼Dnj

(Q(A(Sn),Dj) < ε) ≤ 0.5,

where the probability also includes possible randomization in A. If Q(·, ·) is non-
negative, then this implies that rn(P, Q) ≥ 0.5ε.
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The following example illustrates how to use the result.

Example 12.16. Consider the d-dimensional Gaussian mean estimation prob-
lem, where the goal is to estimate a Gaussian N(θ, I) with unknown mean θ ∈ Rd

such that ‖θ‖2 ≤ 1, based on observations Z1, . . . , Zn ∼ D = N(θ, I). Let θ̂ be
the estimated mean, and we define metric

Q(θ̂,D) = Q(θ̂, θ) = ‖θ̂ − θ‖2.

Then we are interested in the number of samples n needed to obtain an estimate
as good as 0.5ε for some small ε > 0.

In order to apply Theorem 12.15, we consider the ball B(4ε) = {θ : ‖θ‖2 ≤ 4ε}.
From Theorem 5.3, we know that there exists N = ((4ε)/(2ε))d = 2d centers

{θj : j = 1, . . . , N} in B(4ε) such that ‖θj−θk‖2 > 2ε for j 6= k. Since ‖θ̂−θj‖2 +

‖θ̂ − θk‖2 ≥ ‖θj − θk‖2 > 2ε, we obtain

|{k : Q(θ, θk) < ε}| ≤ 1.

Let pj = N(θj, I). This implies that for all θj, θk ∈ B(4ε),

KL(pj||pk) =
1

2
‖θj − θk‖22 ≤ 32ε2.

The condition of Theorem 12.15 holds when

ln(N) = ln(2d) ≥ ln 4 + 64nε2 ≥ ln 4 + 2n sup
j,k

KL(pj||pk).

This implies that if

n ≤ (d− 2) ln 2

64ε2
,

then for all mean estimator θ̂, there exists θj ∈ B(4ε) so that for n iid samples
from pj:

E‖θ̂ − θj‖2 ≥ 0.5ε.

12.4 Minimax Analysis for Least Squares Regression

For the least squares regression problem in Example 12.6, we consider a function
class F that contains the optimal prediction rule fD(X) = E[Y |X], and

QLS(f,D) = EX∼D(f(X)− fD(X))2.

The following result is a direct consequence of Theorem 12.15.

Theorem 12.17. Consider the regression model, where X ∼ DX with known
DX , and

Y = fD(X) + ε,
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where ε is zero-mean noise that may depend on fD(·) ∈ F . Assume there exists
σ > 0 so that

EX∼DX (f(X)− f ′(X))2 ≥ 2σ2KL(Df ||Df ′),

where Df is the distribution of (X,Y ) when fD = f . If F contains N functions
f1, . . . , fN such that

lnN ≥ ln 4 + nσ−2 sup
j,k

EX∼D(fj(X)− fk(X))2,

then

rn(P, QLS) ≥ 0.125 inf
j 6=k

EX∼DX (fj(X)− fk(X))2.

Proof Define Q(f, f ′) = EX∼D(f(X) − f ′(X))2. Note that for each f ∈ F , we
associate a Df ∈ P = {Df : f ∈ F}. We also let ε = 0.25 minj 6=kQ(fj, fk), and it
can be checked that for all j 6= k:

max(Q(f, fj), Q(f, fk)) ≥ (Q(f, fj) +Q(f, fk))/2 ≥ Q(fj, fk)/4 ≥ ε.

This means that we can take m = 1, and obtain the theorem as a direct conse-
quence of Theorem 12.15.

The following result implies that the condition of Theorem 12.17 holds for
Gaussian noise.

Proposition 12.18. Consider Df (X,Y ) so that X ∼ DX is identical for all
f ∈ F , and Y ∼ N(f(X), σ2) for some constant σ > 0. Then

EX∼DX (f(X)− f ′(X))2 = 2σ2KL(Df ||Df ′).

Proof We consider a distribution D over Z = (X,Y ) associated with each f ∈ F ,
with density defined as

pD(Z) = pDX (X) pN(0,1)((Y − f(X))/σ),

where pDX (X) is the density of X ∼ DX and pN(0,1) is the density of standard
normal distribution. Using this notation, we have

KL(Df̂ ||Df ) =
EX(f̂(X)− f(X))2

2σ2
.

This proves the desired result.

Similar results can also be obtained for other noise models such as Bernoulli
noise, where Y ∈ {0, 1}.

Proposition 12.19. Assume that Y ∈ {0, 1} such that

E [Y |X] = f(X),

for some f ∈ F , and let Df (Z) be the distribution of Z = (X,Y ). If there exists
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c ∈ (0, 0.5), and for all f ∈ F and X: f(X) ∈ [c, 1 − c], then there exists σ > 0
such that for all f, f ′ ∈ F :

EX∼DX (f(X)− f ′(X))2 ≥ 2σ2KL(Df ||Df ′).

Consider a distribution DX over X, with the metric

‖f − f ′‖L2(DX) =
(
EX∼DX (f(X)− f ′(X))2

)1/2
.

The following result shows that the corresponding metric entropy leads to a lower
bound on the minimax risk.

Corollary 12.20. If for some C > 0 and ε > 0:

C−1ε−q ≤ lnM(ε,F , L2(DX)) ≤ Cε−q.

For noise model that satisfies the condition of Theorem 12.17, we have

rn(P, QLS) ≥ C ′n−2/(2+q)

for some C ′ > 0.

Proof We consider an ε packing subset F ′ of F with size of at least exp(C−1ε−q).
Since for some C0 > 0,

lnN(0.5C0ε,F , L2(DX)) ≤ 0.5C−1ε−q,

it implies that there exists a ball of size 0.5C0ε, which contains at least

exp(C−1ε−q)

exp(0.5C−1ε−q)
= exp(0.5C−1ε−q)

members of F ′.
This means we can find N ≥ exp(0.5C−1ε−q) functions {f1, . . . , fN} such that

sup
j 6=k

Q(fj, fk) ≤C2
0ε

2,

inf
j 6=k

Q(fj, fk) ≥ε2,

where Q(f, f ′) = EX∼DX (f(X) − f ′(X))2. Now let n = d(C ′/ε2)(q+2)/2e for a
sufficiently small constant C ′, then we have

lnN ≥ 0.5C−1ε−q ≥ ln 4 + nσ−2C2
0ε

2 ≥ ln 4 + nσ−2 sup
j 6=k

Q(fj, fk).

Theorem 12.17 implies that rn(P, QLS) ≥ 0.125ε2. Since ε2 ≥ C ′n−2/(q+2), we
obtain the desired bound.

If the regression function class F is bounded, and has a uniform covering num-
ber of O(ε−q) for q < 2, then we know from the local Rademacher complexity
analysis of Example 6.49 that for the empirical risk minimization method

f̂erm = arg min
f∈F

n∑
i=1

(f(Xi)− Yi)2,

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



12.4. MINIMAX ANALYSIS FOR LEAST SQUARES REGRESSION 265

the following risk bound holds:

ESn∼DnEX∼DX (f̂erm(X)− fD(X))2 = O(n−2/(q+2)).

This matches the lower bound of Corollary 12.20.
For q > 2, the generalization bound for empirical risk minimization method is

ESn∼DnEX∼DX (f̂erm(X)− fD(X))2 = O(n−1/q),

and since 1/q < 2/(q + 2), the rate is inferior to the minimax rate. In general,
this rate cannot be improved without additional assumptions (Birgé and Massart,
1993). Therefore when the nonparametric family has a large entropy, ERM can
be suboptimal.

It is possible to achieve the optimal rate of O(n−2/(q+2)) even when q > 2.
One of the optimal method is least squares on sieves, and a related method is
Gibbs algorithm with an appropriate prior. A third method is exponential model
aggregation method, studied in Section 15.3.

In the following, we consider the sieve method (Grenander, 1981; Geman and
Hwang, 1982; Birgé and Massart, 1998), which in our setting, is simply least
squares regression on discrete ε-net.

Given a function class F , instead of running least squares on F with

f̂ = arg min
f∈F

n∑
i=1

(f(Xi)− Yi)2,

the sieve method considers a subset Fn ⊂ F , and then perform least squares
regression restricted to this subset:

f̂Fn = arg min
f∈Fn

n∑
i=1

(f(Xi)− Yi)2.

The following result shows that with appropriate Fn, we may achieve the minimax
risk of Corollary 12.20.

Proposition 12.21. Assume that the distribution of X is DX . Let Fn be an ε
packing subset of F in the L2(DX) metric with M(ε,F , L2(DX)) members. As-
sume there exists b > 0 such that [f(X)− f ′(X)] ≤ 2b for all f, f ′ ∈ F . Assume
that fD ∈ F and Y is sub-Gaussian:

lnEY |X exp(λ(Y − fD(X))) ≤ λ2b2

2
.

Then

ESn∼DnEX∼DX (f̂Fn(X)− fD(X))2 ≤
[
4ε2 +

14b2

n
lnM(ε,F , L2(DX))

]
.

Proof Let φ(f, Z) = (f(X)−Y )2−(fD(X)−Y )2 with Z = (X,Y ). Let ρ = b−2/4.
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Then we have

Λ(ρ, f) =− 1

ρ
lnEZe−ρφ(f,Z) (definition of Λ in Theorem 10.18)

=− 1

ρ
lnEZe−ρ(f(X)−fD(X))2+2ρ(f(X)−fD(X))(Y−fD(X)) (definition of φ)

≥− 1

ρ
lnEXe(−ρ+2ρ2b2)(f(X)−fD(X))2 (sub-Gaussian noise assumption)

≥1

ρ

[
1− EXe−0.5ρ(f(X)−fD(X))2

]
(− ln z ≥ 1− z)

≥1

ρ
EXe−2ρb20.5ρ(f(X)− fD(X))2 (1− e−z ≥ e−az for z ∈ [0, a])

≥0.3EX(f(X)− fD(X))2. (2ρb2 = 0.5)

It follows from Theorem 10.18 by setting 1/(λn) = ρ = b−2/4 (which implies that
λ = 4b2/n) that for any random estimator q̂ on Fn:

0.3ESnEf∼q̂(·|Sn)EX(f(X)− fD(X))2

≤ESnEf∼q̂(·|Sn)

1

n

n∑
i=1

φ(f, Zi) +
4b2

n
ESnKL(q̂||q0). (12.1)

Let q̂ corresponding to the deterministic estimator f̂Fn , and q0 be the uniform
distribution on Fn. Then KL(q̂||q0) ≤ ln |Fn|. Therefore we obtain

0.3ESnQLS(f̂Fn ,D) ≤ESn
1

n

n∑
i=1

φ(f̂Fn , Zi) +
4b2

n
ln |Fn|

≤ inf
f∈Fn

ESn
1

n

n∑
i=1

φ(f, Zi) +
4b2

n
ln |Fn|

(f̂Fn is empirical risk minimizer on Fn)

≤ inf
f∈Fn

QLS(f,D) +
4b2

n
ln |Fn| ≤ ε2 +

4b2

n
ln |Fn|.

The last inequality used the fact that Fn is an ε packing of F and fD ∈ F . This
implies the desired bound.

Example 12.22. Consider the covering number condition of Corollary 12.20.
We note that

inf
ε>0

O

(
ε2 +

1

n
lnM(ε,F , L2(DX))

)
= O(n−2/(2+q)).

Therefore the upper bound of Proposition 12.21 matches the lower bound of
Corollary 12.20.

The method of sieves can be regarded as a regularization method for ERM.
The optimality of using a sieve versus ERM on the original function class implies
that ERM can overfit if not used properly, which leads to suboptimality. It is
suitable only for certain function classes but not others.
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The following example gives a simple but intuitive illustration of such overfit-
ting phenomenon.

Example 12.23. Consider the following function class

F = {f0(x)} ∪ {f1(x) + ∆f1(x) : |∆f1(x)| ≤ 1/
√
n},

where f1(x) = f0(x) + 0.5n−1/4.
If we consider ERM with sieve Fn = {fk(x) : k = 0, 1}, then we have a

convergence rate no worse than O(1/n).
However, we have a overfitting problem with ERM on F . To see this, we may

consider the model

Y = f0(X) + ε, ε ∼ N(0, 1),

and training data (X1, Y1), . . . , (Xn, Yn). Let δi = ∆f1(Xi) and εi = Yi − f0(Xi).
Then we have

n∑
i=1

min
|δi|≤1/

√
n
(f1(Xi) + δi − Yi)2 −

n∑
i=1

(f0(Xi)− Yi)2

=
n∑
i=1

min
|δi|≤1/

√
n
(0.5n−1/4 + δi − εi)2 −

n∑
i=1

ε2i

≤
√
n(0.5 + n−1/4)2 − n−1/4

n∑
i=1

εi − 2n−1/2
n∑
i=1

|εi|.

The inequality is achieved by setting δi = sign(εi)/
√
n. When n is large, this

quantity is negative with large probability because the last term

−2n−1/2
n∑
i=1

|εi| = −2n1/2
[
Eε∼N(0,1)|ε|+Op(1/

√
n)
]

dominates with large probability. It implies that with large probability, ERM
gives an estimator f̂(x) = f1(x)+∆f1(x) with |∆f(x)| ≤ 1/

√
n. This means that

ESn EX(f̂(X)− f(X))2 ≥ c/
√
n

for some c > 0. Note that this is a suboptimal rate.

In addition to the ERM on sieve method, one may also employ the Gibbs
algorithm (10.12) with λ = 4b2/n under the assumptions of Proposition 12.21.
From (12.1), and note that the Gibbs distribution q̂ is the solution of the entropy
regularized empirical risk minimization problem (see Proposition 7.16), we obtain

0.3ESnEf∼q̂(·|Sn)QLS(f,D) ≤ inf
q

[
QLS(f,D) + +

4b2

n
ESnKL(q||q0)

]
.

If we choose prior q0 to be uniform on a discrete net as in Proposition 12.21, we
obtain the same rate. However, one may also choose an appropriate continuous
prior q0 to achieve a similar result without explicit discretization.
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Another method which is closely related to the Gibbs algorithm is model ag-
gregation which is studied in Section 15.3. The generalization bound there im-
plies that using model aggregation on a sieve Fn = {f1, . . . , fN}, with N =
M(ε,F , L2(DX)), we have

ESnQLS(f̂ ,D) = O

(
inf
j
QLS(fj,D) + n−1 lnM(ε,F , L2(DX))

)
.

This achieves the same rate as that of Proposition 12.21. It follows that the
exponential aggregation algorithm is also an optimal algorithm for least squares
regression.

12.5 Minimax Analysis for Density Estimation

Assume that we are given a family of conditional distributions

F = {p(Y |X) : p ∈ F},

and the true conditional distribution pD ∈ F . Similar to Section 12.4, we assume
that all conditional densities share a marginal distribution DX on X (which
the learning algorithm does not need to know). The joint distribution is P =
{p(X,Y ) = pDX (X)p(Y |X) : p ∈ F}.

Given any p ∈ F , we are interested in minimizing its squared Hellinger distance
to the true distribution

QH(p,D) = HDX (p||pD)2 = EX∼DXH(p(·|X)||pD(·|X))2.

HereHDX is the Hellinger distance between the joint probability pDX (X)p(Y |X) ∈
P. We focus on the case that there exists cF > 0 so that for all p, p′ ∈ F

EX∼DXKL(p(·|X)||p′(·|X)) ≤ cFHDXp||p′)2. (12.2)

For example, this condition holds if ln p(Y |X) is bounded.
The following result is a direct consequence of Theorem 12.15. The proof is

similar to that of Theorem 12.17, and we leave it as an exercise.

Theorem 12.24. Consider the conditional density estimation problem with X ∼
DX , and assume that the true conditional probability is given by

pD(Y |X) ∈ F .

Assume that (12.2) holds. If F contains N conditional densities p1, . . . , pN such
that

lnN ≥ ln 4 + 2cF sup
j,k

HDX (pj||pk)2,

then

rn(P, QH) ≥ 0.125 inf
j 6=k

HDX (pj||pk)2.
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We have the following lower bound using metric entropy with respect to the
Hellinger distance, which is analogous to Corollary 12.20.

Corollary 12.25. If for some C > 0 and ε > 0:

C−1ε−q ≤ lnM(ε,F , HDX ) ≤ Cε−q.

Assume that (12.2) holds, then we have

rn(P, QH) ≥ C ′n−2/(2+q)

for some C ′ > 0.

We also have the following upper bound using the Gibbs algorithm on sieves.

Proposition 12.26. Assume that the distribution of X is DX . Let Fn be an ε
packing subset of F under the HDX metric with M(ε,F , HDX ) members. Assume
that pD ∈ F and (12.2) holds. Let q̂ be a Gibbs distribution on Fn defined as:

q̂(p|Sn) ∝ q0(p) exp

(
0.5

n∑
i=1

ln p(Y |X)

)
,

where q0(p) is the uniform distribution on Fn. Then

ESn∼DnEp∼q̂QH(p,D) ≤ cFε2 +
2 lnM(ε,F , HDX )

n
.

Proof Let ∆(Fn) denote the set of probability distributions on Fn. We obtain

ESn∼DnEp∼q̂QH(p||D) ≤ inf
q∈∆(Fn)

[
Ep∼qEX∼DXKL(pD(·|X)||p(·|X)) +

2KL(q||q0)

n

]
≤ inf
q∈∆(Fn)

[
cFEp∼qHDX (pD||p)2 +

2 lnM(ε,F , HDX )

n

]
.

The first inequality used Corollary 10.26 with α = 0.5. The second inequality
used (12.2) and KL(q||q0) ≤ lnM(ε,F , HDX ). Since Fn is also an ε-cover of Fn
in HDX , we obtain the desired bound.

Under the condition of Corollary 12.25, we note that

inf
ε>0

O

(
ε2 +

1

n
lnM(ε,F , HDX )

)
= O(n−2/(2+q)).

Therefore the upper bound of Proposition 12.26 matches the lower bound of
Corollary 12.25.

12.6 Lower Bounds using Assouad’s Lemma

While the minimax risk analysis using Fano’s inequality is applicable to a number
of problems, the resulting bound employs KL divergence which can be infinity for

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



CHAPTER 12. LOWER BOUNDS AND MINIMAX ANALYSIS 270

certain distributions. In comparison, the analysis based on Assouad’s lemma em-
ploys the TV norm (see Appendix B) between distributions that is always finite.
It is also easier to use this approach for some sequential estimation problems.

Lemma 12.27 (Generalized Assouad’s Lemma). Consider a finite family of dis-
tributions P. Let d ≥ 1 be an integer, and Q can be decomposed as

Q(θ,D) =
d∑
j=1

Qj(θ,D),

where Qj ≥ 0 are all non-negative. Assume for all j, there exists a partition Mj

of P. We use notation D′ ∼j D to indicate that D′ and D belong to the same
partition in Mj. Let mj(D) be the number of elements in the partition containing
D. Assume there exist ε, β ≥ 0 such that

∀D′ ∼j D,D′ 6= D : inf
θ

[Qj(θ,D′) +Qj(θ,D)] ≥ ε,

∀D ∈ P :
1

d(P)

d∑
j=1

∑
D∈Pj

1

mj(D)− 1

∑
D′∼jD

‖D′ −D‖TV ≤ β,

where Pj = {D ∈ P : mj(D) > 1} and d(P) =
∑d

j=1 |Pj|. Let A(Z) be any
estimator, we have

1

|P|
∑
D∈P

EZ∼DEAQ(A(Z),D) ≥ εd(P)

2|P|
[1− β] ,

where EA is with respect to the internal randomization in A.

Proof For notation convenient, assume there exists dµ(z) so that for all D ∈ P,
pD(z)dµ(z) is the distribution of D. Then

2

|P|

d∑
j=1

∑
D∈P

EZ∼DQj(A(Z),D) ≥ 2

|P|

d∑
j=1

∑
D∈Pj

EZ∼DQj(A(Z),D)

=
1

|P|

d∑
j=1

∑
D∈Pj

1

mj(D)− 1

∑
D′∼jD
D′ 6=D

[EZ∼D′Qj(A(Z),D′) + EZ∼DQj(A(Z),D)]

=
1

|P|

d∑
j=1

∑
D∈Pj

1

mj(D)− 1

∑
D′∼jD
D′ 6=D

∫
[Qj(A(z),D)pD(z) +Qj(A(z),D′)pD′(z)]dµ(z)

(a)

≥ 1

|P|

d∑
j=1

∑
D∈Pj

1

mj(D)− 1

∑
D′∼jD
D′ 6=D

∫
εmin(pD(z), pD′(z))dµ(z)

(b)
=

1

|P|

d∑
j=1

∑
D∈Pj

1

mj(D)− 1

∑
D′∼jD
D′ 6=D

ε(1− ‖D −D′‖TV).
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In the above derivation, the first inequality used Qj(·) ≥ 0; (a) used the assump-
tion of the lemma, and (b) used the definition of TV-norm (see Appendix B).
By rearranging the last term and using the definition of β, we obtain the desired
bound.

The Assouad’s lemma stated here is a generalization of the typical Assouad’s
lemma appeared in the literature. The latter is often stated with

P = {Dτ : τ ∈ {±1}d},

and Mj contains indices in {±1}d that may differ from τ by only one coordi-
nate j. The following result is a direct application of Assouad’s Lemma with
this representation, and the TV-norm of product distributions is estimated by
Theorem B.13.

Theorem 12.28. Let d ≥ 1 be an integer and Pd = {Dτ : τ ∈ {−1, 1}d} contain
2d probability measures. Suppose that the loss function Q can be decomposed as

Q(θ,D) =
d∑
j=1

Qj(θ,D),

where Qj(·, ·) ≥ 0. For any j and τ , let τ−[j] be the index that differs with τ only
by one coordinate j. Assume that there exists ε, βj ≥ 0 such that

∀τ : [Qj(θ,Dτ ) +Qj(θ,Dτ−[j])] ≥ ε, H(Dτ ||Dτ−[j]) ≤ βj.

Consider randomized A(Sn) based on Sn ∼ Dnτ for some τ . We have

1

2d

∑
τ

ESn∼Dnτ EAQ(A(Sn),Dτ ) ≥
εd

2
− ε

2

d∑
j=1

√
2− 2(1− 0.5β2

j )
n,

where EA is with respect to the internal randomization in A. This implies that

rn(Pd, Q) ≥ εd

2
− ε

2

d∑
j=1

√
2− 2(1− 0.5β2

j )
n.

In general, if we can choose βj = O(ε), then Theorem 12.28 implies a bound of

rn(Pd, Q) ≥ Ω(dε)

when n = O(1/ε2). The following example illustrates this with a specific applica-
tion.

Example 12.29. Consider observations Zi ∈ {0, 1}d, where each Zi has d com-
ponents Zi,j ∼ Bernoulli(θj) for j = 1, . . . , d. Let θ = [θ1, . . . , θd] ∈ (0, 1)d be the
model parameters to be estimated. For τ ∈ {±1}d, we let θτ,j = ε2(1+τj)/2, where
ε ∈ (0, 0.5). Let Dτ be the corresponding Bernoulli distribution, and Pd = {Dτ}.
Define the metric

Q(θ̂, θ) =
d∑
j=1

Qj(θ̂, θ), Qj(θ̂, θ) =

∣∣∣∣√θ̂j −√θj∣∣∣∣.
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We cannot apply Theorem 12.15 directly on this subclass Pd because the KL-
divergence of two distributions in Pd can be infinity. On the other hand, for all
τ :

[Qj(θ,Dτ ) +Qj(θ,Dτ−[j])] ≥ ε

and

H(Dτ ||Dτ−[j]) ≤ 2ε.

We thus obtain from Theorem 12.28 that

rn(Pd, Q) ≥ 0.5dε− 0.5dε
√

2− 2(1− 2ε2)n.

For sufficiently small ε, with n ≤ 1/(6ε2), we obtain

rn(Pd, Q) ≥ 0.1dε.

12.7 Historical and Bibliographical Remarks

While Rademacher complexity is more widely used in machine learning, Gaussian
complexity has also been studied (Bartlett and Mendelson, 2002; Koltchinskii and
Panchenko, 2002). Slepian’s Lemma, which is the comparison lemma for Gaussian
complexity, is more versatile than the corresponding Lemma 6.29 for Rademacher
complexity. Among different applications, it directly implies Sudakov Minoration
as a lower bound for Gaussian complexity (Sudakov, 1969). It can also be used
to obtain upper bounds on empirical L2 covering numbers. Due the convenience
of Gaussian distributions, more sophisticated results such as generic chaining can
be developed (Talagrand, 1996a).

The minimax criterion has become a widely adopted approach in statistical
analysis. It has origins both from the game theory and from the statistical decision
theory. The latter is closely related to Bayesian statistics, although the concept
of minimax analysis has been studied mostly in the frequentist setting.

In parametric statistics, with suitable regularity conditions, the classical asymp-
totic lower bound for unbiased parameter estimation of a probability model is
given by the Cramer-Rao inequality (Rao, 1992; Cramér, 2016). The matching
upper bound can be achieved by the maximum likelihood method. This leads
to the asymptotic optimality of the maximum likelihood method (under appro-
priate regularity conditions). In non-parametric statistics, one needs to consider
other techniques originated from information theory to establish lower bounds for
statistical convergence rates, usually up to a constant. Common techniques for
lower bounds include the Fano’s inequality (Fano, 1961) and Assouad’s lemma
(Assouad, 1983). Assouad’s method employs TV-norm and multiple hypothesis
testing for a decomposable loss function. The idea of using TV-norm for hypoth-
esis testing as a method to obtain lower bounds for statistical estimation has
also been studied earlier by LeCam (1973). See (Yu, 1997) for a discussion of
the relationship of these methods. These techniques have been employed in the
minimax analysis of nonparametric statistical estimation problems (Birgé, 1986;
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Yang, 1999; Yang and Barron, 1999). The condition used in the generalization of
Fano’s inequality in Theorem 12.11 is motivated by the analysis of Zhang (2006).

The method of sieves has been suggested in nonparametric statistics in the
1980s (Grenander, 1981; Geman and Hwang, 1982), although the sub-optimality
of ERM was only formally shown much later in (Birgé and Massart, 1993). Both
of the sieve method and the exponential aggregation method are known to achieve
the optimal convergence rate. The minimax analysis of the Gibbs algorithm can
be found in Zhang (2006). Similar result holds for misspecified models for convex
function classes when the variance condition holds (see Example 3.18). However,
we can only achieve an inferior result with nonconvex function classes using ERM
when competing to the optimal function in the function class (see Example 3.25
and Proposition 8.12). For general nonconvex function classes, it is known (see
Example 15.21 ) that exponential model aggregation is superior to empirical risk
minimization when model is misspecified (see Lecué, 2007; Audibert, 2007). The
case of misspecified model does not affect the minimax analysis of this chapter,
because we have only considered well specified models in our analysis.
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Exercises

12.1 Prove Proposition 12.2.

12.2 Consider the function class

F = {w>x : ‖w‖2 ≤ 1}.

Consider empirical distribution Sn = {X1, . . . , Xn} so that ‖Xi‖2 ≤ 1 for all i.

Derive an upper bound for the Gaussian complexity G(F ,Sn), and obtain an upper bound

for N(ε,F , L2(Sn)) using Sudakov minoration.

12.3 Prove Theorem 12.15 using Theorem 12.11, Lemma 12.14, and Theorem B.6.

12.4 Consider a function class defined on [0, 1) as

F = {f0(x)} ∪ {f0(x) + 0.1n−r/3 + n−r/2∆fu(x) : u ∈ {±1}n},

with r ∈ (0, 1].

Let f0(x) = 0 and ∆fu(x) = uj∀x ∈ [(j − 1)/n, j/n) (j = 1, . . . , n), Let

Y = f∗(x) + ε, ε ∼ N(0, 1),

for f∗ ∈ F , and X drawn uniformly from [0, 1).

Consider least squares problem

QLS(f,D) = EX∼D(f(X)− fD(X))2,

and consider n samples Sn = {(X1, Y1), . . . , (Xn, Yn)}.
• Find the minimax risk (up to a constant) for estimating f∗ using these n samples.

• Show that there is a small enough constant c so that with probability at least 0.5,

there are at least 0.1n buckets [(j − 1)/n, j/n) so that one and only one Xi belongs to

[(j − 1)/n, j/n).

• Find a risk lower bound on the risk for the ERM method on F for sufficiently large n.

12.5 Prove Theorem 12.24 and Corollary 12.25.

12.6 Use Theorem 12.28 to derive a lower bound for Example 12.16.

12.7 Consider a distribution family D parametrized by θD ∈ Rd, which we want to estimate

from observations Z1, . . . , Zn ∼ N(θD, I). Assume that θD is sparse: ‖θD‖0 = s for some

s� d.

• Derive a lower bound for estimating θ with Q(θ,D) = ‖θ − θD‖22.

• Derive a matching upper bound.
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13

Probability Inequalities for Sequential
Random Variables

In sequential estimation problems investigated in the next few chapters, one ob-
serves a sequence of random variables Zt ∈ Z for t = 1, 2, . . ., where each Zt may
depend on the previous observations St−1 = [Z1, . . . , Zt−1] ∈ Zt−1. The sigma
algebra generated by {St} forms a natural filtration {Ft}.

We say a sequence {ξt} is adapted to the filtration {Ft}, if each ξt is a function
of St. That is, each ξt at time t does not depend on future observations Zs for
s > t. Alternatively one may also say that ξt is measurable in Ft. The sequence

ξ′t = ξt − E[ξt|Ft−1], or equivalently ξ′t(St) = ξt(St)− EZt|St−1
ξt(St),

is referred to as a martingale difference sequence with the property

E[ξ′t|Ft−1] = EZt|St−1
ξ′t(St) = 0.

The sum of a martingale difference sequence

t∑
s=1

ξ′s =
t∑

s=1

ξ′s(Ss)

is referred to as a martingale, which satisfies the following equality for all t:

E

[
t∑

s=1

ξ′s|Ft−1

]
=

t−1∑
s=1

ξ′s, or EZt|St−1

t∑
s=1

ξ′s(Ss) =
t−1∑
s=1

ξ′s(Ss).

Martingale is a natural generalization of the sum of independent random vari-
ables (studied in Chapter 2) to the sequential estimation setting, where we allow
each random variable to depend on previous random variables. This chapter stud-
ies probability inequalities and uniform convergence for martingales, which are
essential in analyzing sequential statistical estimation problems.

In the following, we employ a slightly more refined notation, where each Z =
Z(x) × Z(y), and each Zt ∈ Z can be written as Zt = (Z

(x)
t , Z

(y)
t ). We are inter-

ested in the conditional expectation with respect to Z
(y)
t |Z

(x)
t ,St−1, rather than

with respect to Zt|St−1. This formulation is useful in many statistical estimation
problems such as regression, where conditional expectation is what we are inter-
ested in. Without causing confusion, throughout the chapter, we will adopt the
following shortened notation for simplicity:

E
Z

(y)
t

[·] = E
Z

(y)
t |Z

(x)
t ,St−1

[·].
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13.1 Martingale Exponential Inequalities

Using the technique of logarithmic moment generating functions, we can obtain
martingale inequalities similar to those of Chapter 2.

Lemma 13.1. Consider a sequence of real-valued random (measurable) functions
ξ1(S1), . . . , ξT (ST ). Let τ ≤ T be a stopping time so that 1(t ≤ τ) is measurable
in St. We have

EST exp

(
τ∑
i=1

ξi −
τ∑
i=1

lnE
Z

(y)
i
eξi

)
= 1.

Proof We prove the lemma by induction on T . When T = 0, the equality is
trivial. Assume that the claim holds at T − 1 for some T ≥ 1. Now we will prove
the equation at time T using the induction hypothesis.

Note that ξ̃i = ξi1(i ≤ τ) is measurable in Si. We have

τ∑
i=1

ξi −
τ∑
i=1

lnE
Z

(y)
i
eξi =

T∑
i=1

ξ̃i −
T∑
i=1

lnE
Z

(y)
i
eξ̃i .

It follows that

EZ1,...,ZT exp

(
τ∑
i=1

ξi −
τ∑
i=1

lnE
Z

(y)
i
eξi

)

=EZ1,...,ZT exp

(
T∑
i=1

ξ̃i −
T∑
i=1

lnE
Z

(y)
i
eξ̃i

)

=E
Z1,...,Zn−1,Z

(x)
T

exp

(
T−1∑
i=1

ξ̃i −
T−1∑
i=1

lnE
Z

(y)
i
eξ̃i

)
E
Z

(y)
T

exp(ξ̃T − lnE
Z

(y)
T
eξ̃T )︸ ︷︷ ︸

=1


=EZ1,...,ZT−1

exp

(
T−1∑
i=1

ξ̃i −
T−1∑
i=1

lnE
Z

(y)
i
eξ̃i

)

=EZ1,...,ZT−1
exp

min(τ,T−1)∑
i=1

ξi −
min(τ,T−1)∑

i=1

lnE
Z

(y)
i
eξi

 = 1.

Note that the last equation follows from the induction hypothesis, and the fact
that min(τ, T − 1) is a stopping time ≤ T − 1.

The following result is a direct consequence of Lemma 13.1, which generalizes
Theorem 2.5 for sum of independent variables to martingales.

Theorem 13.2. Consider a sequence of random functions ξ1(S1), . . . , ξt(St), . . .,
with filtration {Ft}. We have for any δ ∈ (0, 1) and λ > 0:

Pr

[
∃n > 0 : −

n∑
i=1

ξi ≥
ln(1/δ)

λ
+

1

λ

n∑
i=1

lnE
Z

(y)
i
e−λξi

]
≤ δ.
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Moreover, consider a sequence of {zt ∈ R} adapted to {Ft}, and events At on Ft:

ln Pr

[
∃n > 0 :

n∑
i=1

ξi ≤ zn &Sn ∈ An

]
≤ inf

λ>0
sup
n>0

sup
Sn∈An

[
λzn +

n∑
i=1

lnE
Z

(y)
i
e−λξi

]
.

Proof We will prove the result for a finite time sequence ξ1(S1), . . . , ξT (ST ). It
implies the desired result by letting T →∞. Let

ξτ (λ) = −
τ∑
i=1

lnE
Z

(y)
i
e−λξi − λ

τ∑
i=1

ξi,

where τ is a stopping time, then we have from Lemma 13.1: E eξτ (λ) = 1. Now for
any given sequence of z̃n(Sn) and An, define the stopping time τ as either T , or
the first time step n so that

ξn(λ) ≥ −z̃n(Sn) & Sn ∈ An
for each sequence ST . It follows that

Pr (∃n : ξn(λ) ≥ −z̃n(Sn) & Sn ∈ An) inf
n>0,Sn∈An

e−z̃n(Sn)

≤E
[
eξτ (λ)+z̃τ (Sτ )

1(Sτ ∈ Aτ )
]

inf
n>0,Sn∈An

e−z̃n(Sn)

≤E
[
eξτ (λ)+z̃τ (Sτ )

1(Sτ ∈ Aτ )e−z̃τ (Sτ )
]

≤E eξτ (λ) = 1.

Therefore we obtain

ln Pr

[
∃n > 0 : −λ

n∑
i=1

ξi ≥ −z̃n(Sn) +
n∑
i=1

lnE
Z

(y)
i
e−λξi & Sn ∈ An

]
≤ sup
n>0:Sn∈An

z̃n(Sn).

Let z̃(Sn) = ln δ, we obtain the first inequality. Let

z̃n(Sn) = λzn +
n∑
i=1

lnE
Z

(y)
i
e−λξi ,

we obtain the second inequality.

One difference between Theorem 13.2 and Theorem 2.5 is that in the latter case,
one may optimize over λ to obtain an inequality in terms of the rate function
IX(z). However, for sequential problems, we cannot directly optimize λ in the first
inequality of Theorem 13.2 without paying a penalty associated with uniform
convergence over λ (which typically leads to an additional lnn term) This is
because for sequential problems, the conditional expectation may still depend
on the observation Sn, and thus optimizing over λ leads to sample dependent
λ. The second inequality in Theorem 13.2 resolves this issue by restricting the
optimization over λ in a restricted event An.
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Now by using the logarithmic moment generating functions of Chapter 2, we
obtain the following results.

Theorem 13.3 (Martingale Sub-Gaussian Inequality). Consider a sequence of
random functions ξ1(S1), . . . , ξt(St), . . .. Assume each ξi is sub-Gaussian with re-

spect to Z
(y)
i :

ln E
Z

(y)
i
eλξi ≤ λE

Z
(y)
i
ξi +

λ2σ2
i

2

for some σi that may depend on Si−1 and Z
(x)
i . Then for all σ > 0, with probability

at least 1− δ,

∀n > 0 :
n∑
i=1

E
Z

(y)
i
ξi <

n∑
i=1

ξi +

(
σ +

∑n
i=1 σ

2
i

σ

)√
ln(1/δ)

2
.

Proof We can let λ =
√

2 ln(1/δ)/σ, and then apply the first inequality of
Theorem 13.2.

Since we allow σi to be data dependent in Theorem 13.3, we cannot in general
choose σ2 =

∑n
i=1 σ

2
i . However, if σi does not depend on data, then we can further

optimize σ for specific time horizon n. In particular, a direct consequence of the
sub-Gaussian inequality is the additive Chernoff bound, which can be stated
below. It is often referred to as the Azuma’s inequality Azuma (1967).

Theorem 13.4 (Azuma’s Inequality). Consider a sequence of random functions
ξ1(S1), . . . , ξn(Sn) with a fixed number n > 0. If for each i: sup ξi − inf ξi ≤ Mi

for some constant Mi, then with probability at least 1− δ,

1

n

n∑
i=1

E
Z

(y)
i
ξi <

1

n

n∑
i=1

ξi +

√∑n
i=1M

2
i ln(1/δ)

2n2
.

Proof Using sub-Gaussian moment bound (see Example 2.14), we can obtain the
desired bound by taking σi = Mi/2, and 4σ2 =

∑n
i=1M

2
i in Theorem 13.3.

For the analogy of multiplicative Chernoff bound, we can obtain a weaker
version than Corollary 2.18.

Theorem 13.5. Consider a sequence of random functions ξ1(S1), . . . , ξt(St), . . .
such that ξi ∈ [0, 1] for all i. We have for λ > 0, with probability at least 1− δ:

∀n > 0 :
1

n

n∑
i=1

E
Z

(y)
i
ξi <

λ

1− e−λ
1

n

n∑
i=1

ξi +
ln(1/δ)

(1− e−λ) n
.

Similarly, for λ > 0, with probability at least 1− δ:

∀n > 0 :
1

n

n∑
i=1

E
Z

(y)
i
ξi >

λ

eλ − 1

1

n

n∑
i=1

ξi −
ln(1/δ)

(eλ − 1) n
.
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Proof We obtain from Lemma 2.15 and Theorem 13.2 that with probability at
least 1− δ

−
n∑
i=1

ξi <
ln(1/δ)

λ
+

1

λ

n∑
i=1

ln(1 + (e−λ − 1)E
Z

(y)
i
ξi)

≤ ln(1/δ)

λ
+

1

λ

n∑
i=1

(e−λ − 1)E
Z

(y)
i
ξi.

This implies the first bound. Moreover, with probability at least 1− δ:

−
n∑
i=1

[1− ξi] <
ln(1/δ)

λ
+

1

λ

n∑
i=1

ln(1 + (e−λ − 1)E
Z

(y)
i

[1− ξi])

implies that

n∑
i=1

ξi <
ln(1/δ)

λ
+

1

λ

n∑
i=1

ln(1 + (eλ − 1)E
Z

(y)
i
ξi)

≤ ln(1/δ)

λ
+

1

λ

n∑
i=1

(eλ − 1)E
Z

(y)
i
ξi.

This implies the second bound.

We can also obtain the following Bennett/Bernstein style inequality, which is
often referred to as the Freedman’s inequality (Freedman, 1975).

Theorem 13.6 (Freedman’s Inequality). Consider a sequence of random func-
tions ξ1(S1), . . . , ξn(Sn). Assume that ξi ≥ E

Z
(y)
i
ξi − b for some constant b > 0.

Then for any λ ∈ (0, 3/b), with probability at least 1− δ:

∀n > 0 :
n∑
i=1

E
Z

(y)
i
ξi <

n∑
i=1

ξi +
λ
∑n

i=1 Var
Z

(y)
i

(ξi)

2(1− λb/3)
+

ln(1/δ)

λ
.

This implies that for all σ > 0, with probability at least 1− δ:

∀n > 0 :
n∑
i=1

E
Z

(y)
i
ξi <

n∑
i=1

ξi + σ
√

2 ln(1/δ) +
b ln(1/δ)

3
or

n∑
i=1

Var
Z

(y)
i

(ξi) > σ2.

Proof Using the logarithmic moment generating function (2.13), we obtain the
first inequality directly from the first inequality of Theorem 13.2.

Moreover, we can obtain from the second inequality of Theorem 13.2 with
An = {Sn :

∑n
i=1 Var

Z
(y)
i

(ξi) ≤ σ2}, zn =
∑n

i=1 EZ(y)
i
ξi − ε − ε2b/(6σ2), and the

rate function estimate corresponding to the third inequality of Lemma 2.9:

Pr

[
∃n > 0 :

n∑
i=1

ξi ≤ zn and Sn ∈ An

]
≤ exp

(
− ε2

2σ2

)
.

This implies the second desired inequality with ε = σ
√

2 ln(1/δ).
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Under the conditions of Theorem 13.6, we may also obtain (see Exercise 13.1)
for V0 > 0, with probability at least 1− δ:

∀n > 0 :
n∑
i=1

E
Z

(y)
i
ξi <

n∑
i=1

ξi +

√√√√4

(
V0 +

n∑
i=1

Var
Z

(y)
i

(ξi)

)
ln((ˆ̀+ 1)2/δ) (13.1)

+
b ln((ˆ̀+ 1)2/δ)

3
, where ˆ̀=

⌊
1 + log2

(
1 +

n∑
i=1

Var
Z

(y)
i

(ξi)/V0

)⌋
.

13.2 Self-Normalizing Vector Martingale Inequalities

The following result is useful in the analysis of contextual bandits. The proof
technique is similar to that of Theorem 2.29.

Theorem 13.7. Let {(Xt, εt)} be a sequence in Rd×R with respect to a filtration
{Ft} so that εt is conditional zero-mean sub-Gaussian noise: for all λ ∈ R,

lnE[eλεt |Xt,Ft−1] ≤ λ2

2
σ2.

Let Λ0 be a positive definite matrix, and

Λt = Λ0 +
t∑

s=1

XsX
>
s .

Then for any δ > 0, with probability at least 1− δ, for all t ≥ 0:∥∥∥∥∥
t∑

s=1

εsXs

∥∥∥∥∥
2

Λ−1
t

< σ2 ln
|Λ−1

0 Λt|
δ2

.

Proof Let ξ ∼ N(0,Λ−1
0 ) be a normal random variable. We have for all 0 ≤ λ ≤

σ−2/2:

exp

λ ∥∥∥∥∥
t∑

s=1

εsXs

∥∥∥∥∥
2

Λ−1
t


=Eξ̃∼N(0,Λ−1

t ) exp

(
√

2λ
t∑

s=1

εsξ̃
>Xs

)

=|Λ−1
0 Λt|1/2Eξ∼N(0,Λ−1

0 ) exp

(
√

2λ
t∑

s=1

εsξ
>Xs −

t∑
s=1

1

2
(ξ>Xs)

2

)

≤|Λ−1
0 Λt|1/2Eξ exp

(
√

2λ
t∑

s=1

εsξ
>Xs −

t∑
s=1

2λσ2

2
(ξ>Xs)

2

)

≤|Λ−1
0 Λt|1/2Eξ exp

(
t∑

s=1

√
2λεsξ

>Xs −
t∑

s=1

lnEεs|Xs,Fs−1
exp

(√
2λεsξ

>Xs

))
.
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The first equality used Gaussian integration. The second equality used the den-
sity of Gaussian distribution and Λt = Λ0 +

∑t
s=1XsX

>
s . The first inequality

used 2λσ2 ≤ 1. The second inequality used the sub-Gaussian assumption. Now
by taking expectation with respect to {(εs, Xs)}ts=1, and apply Lemma 13.1, we
obtain

E exp

λ ∥∥∥∥∥
t∑

s=1

εsXs

∥∥∥∥∥
2

Λ−1
t

 ≤ |Λ−1
0 Λt|1/2.

Using Markov inequality, we obtain

Pr

∥∥∥∥∥
t∑

s=1

εsXs

∥∥∥∥∥
2

Λ−1
t

≥ z

 exp(λz) ≤ |Λ−1
0 Λt|1/2.

Now we can take λ = σ−2/2 and exp(λz) = |Λ−1
0 Λt|1/2/δ to obtain the desired

bound.

The main application of self-normalizing vector martingale inequality is to
bound confidence interval for linear sequential prediction problems, shown by
the following example. Such a result can be used to analyze the regret of linear
contextual bandits (see Section 17.2).

Example 13.8. Consider a sequence of observations {(X1, Y1), . . . , (Xt, Yt), . . .},
and at each time t,Xt may depend on St−1 = {(X1, Y1), . . . , (Xt−1, Yt−1)}. Assume
that Yt|Xt is independent of St−1, and generated according to a model

Yt = f∗(Xt) + εt, f∗(Xt) = w>∗ Xt,

where εt is a zero-mean sub-Gaussian noise as in Theorem 13.7. Assume that at
each time t, we solve

ŵt = arg min
w

[
t∑

s=1

(X>t w − Yt)2 + λI

]
.

We can take Λ0 = λI in Theorem 13.7, f̂t(x) = ŵ>t x, and obtain the following
bound of prediction confidence interval (see the proof of Theorem 17.8):

|f̂t(X)− f∗(X)| ≤

√λ‖w∗‖+

∥∥∥∥∥
t∑

s=1

εsXs

∥∥∥∥∥
Λ−1
t

 ‖X‖Λ−1
t
.

The result is analogous to the result of Lemma 9.34. We note that due to the
dependency of Xs and Ss−1, Lemma 9.34 can not be applied. Self-bounding mar-
tingale inequality can be used to obtain a confidence interval estimation. How-
ever, for independent data, the bound from Theorem 13.7 is worse than that of
Lemma 9.34 by an extra factor

√
ln |Λt/λ|. We know from Proposition 15.8 that

this log-determinant term is Õ(
√
d) for d-dimensional problems.

One may also obtain a Bennett style self-normalizing vector martingale in-
equality. We first introduce a lemma.
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Lemma 13.9. Let Σ0 be a d×d symmetric positive definite matrix, and {ψ(Xt)}
be a sequence of vectors in Rd. Let Σt = Σ0 +

∑t
s=1 ψ(Xs)ψ(Xs)

>, then

t∑
s=1

ψ(Xs)
>Σ−1

s−1ψ(Xs)

1 + ψ(Xs)>Σ−1
s−1ψ(Xs)

≤ ln |Σ−1
0 Σt|.

Proof We have

ψ(Xs)
>Σ−1

s−1ψ(Xs)

1 + ψ(Xs)>Σ−1
s−1ψ(Xs)

=ψ(Xs)
>Σ−1

s ψ(Xs)

=trace(Σ−1
s (Σs − Σs−1))

=trace(∇ ln |Σs|(Σs − Σs−1))

≤ ln |Σs| − ln |Σs−1|.

The first equality is due to the Sherman–Morrison formula. The last inequality
used the fact that ln |Z| is a concave function of Z (see Theorem A.18). Now by
summing over s = 1 to s = t, we obtain the desired bound.

Theorem 13.10. Let {(Xt, εt)} be a sequence in Rd×R with respect to a filtration
{Ft} so that

E[εt|Xt,Ft−1] = 0, Var[εt|Xt,Ft−1] ≤ σ2.

Let Λ0 be a positive definite matrix, and

Λt = Λ0 +
t∑

s=1

XsX
>
s .

If there exists α > 0 such that |εt| ≤ α, then for any δ > 0, with probability at
least 1− δ, for all t ≥ 0:∥∥∥∥∥

t∑
s=1

εsXs

∥∥∥∥∥
2

Λ−1
t

≤ 1.3σ2 ln |Λ−1
0 Λt|+ 4α2 ln(2/δ).

Proof For t ≥ 1, let ŵt = Λ−1
t

∑t
s=1 εsXs ft = ŵ>t−1Xt, and bt = 1 +X>t Λ−1

t−1Xt.
Then we have the following decomposition (proof is left as Exercise 13.6)

∥∥∥∥∥
t∑

s=1

εsXs

∥∥∥∥∥
2

Λ−1
t

=
t∑

s=1

(bs − 1)ε2s + 2εsfs − f2
s

bs
. (13.2)

The right hand side can be bounded using martingale concentration techniques
because bs and fs are all measurable in [Xs,Fs−1].

The assumption of the theorem implies that

|2εsfs/bs| ≤ 2αfs/
√
bs.

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



13.3. UNIFORM CONVERGENCE 283

By using sub-Gaussian exponential inequality of bounded random variable in
Lemma 2.15, we obtain from Theorem 13.2 that with probability at least 1−δ/2:

t∑
s=1

2εsfs − f2
s

bs
≤

t∑
s=1

2λα2f2
s − f2

s

bs
+

ln(2/δ)

λ
.

By setting λ = 0.5α−2, we obtain

t∑
s=1

2εsfs − f2
s

bs
≤ 2α2 ln(2/δ). (13.3)

Moreover, since

(1− b−1
s )ε2s ≤ α2,

we obtain with probability at least 1− δ/2:

t∑
s=1

(1− b−1
s )ε2s ≤

1

λα2

t∑
s=1

(eλα
2

− 1)(1− b−1
s )Eεsε

2
s +

ln(2/δ)

λ
.

The inequality used the second inequality of Theorem 13.5. We now set λ =
0.5α−2, and obtain

t∑
s=1

(1− b−1
s )ε2s ≤1.3σ2

t∑
s=1

(1− b−1
s ) + 2α2 ln(2/δ)

≤1.3σ2 ln |Λ−1
0 Λt|+ 2α2 ln(2/δ). (13.4)

The second equality used Lemma 13.9.
The result of the theorem follows by taking the union bound of the two events

corresponding to (13.3) and (13.4) with probability 1− δ/2 each, and (13.2).

A similar proof can be used to obtain a more refined result, with an even weaker
dependence on the range of εt. Such a result is useful for the analysis of variance
weighted linear regression. We leave it as Exercise 13.7.

13.3 Uniform Convergence

Similar to iid problems, it is possible to derive martingale uniform convergence
results. Such results are useful for analyzing statistical estimation in the sequential
decision setting, such as estimation problems in online learning, bandits, and
reinforcement learning.

Consider a real-valued function class F on Z, and a sequence of observations
Z1, . . . , Zn ∈ Z, and let Sn = [Z1, . . . , Zn]. We assume that each Zt may depend
on St−1. In uniform convergence, we are generally interested in estimating the
following quantity

sup
f∈F

[
1

n

n∑
i=1

[−f(Zi) + E
Z

(y)
i
f(Zi)]

]
.

However, by using logarithmic moment generating function directly, one can get
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a more general and simplified result as a direct consequence of Theorem 13.2. In
the following theorem, M(ε,F , ‖ · ‖∞)) is the ε L∞ packing number of F defined
in Chapter 5, with the metric ‖f‖∞ = supZ |f(Z)|.

Theorem 13.11. We have for any λ > 0, with probability at least 1− δ, for all
n ≥ 1 and f ∈ F :[
−

n∑
i=1

f(Zi)−
1

λ

n∑
i=1

lnE
Z

(y)
i
e−λf(Zi)

]
≤ inf

ε>0

[
2nε+

ln(M(ε,F , ‖ · ‖∞))/δ)

λ

]
.

Moreover, for all n ≥ 1:

E sup
f∈F

[
−

n∑
i=1

f(Zi)−
1

λ

n∑
i=1

lnE
Z

(y)
i
e−λf(Zi)

]
≤ inf

ε>0

[
2nε+

ln(M(ε,F , ‖ · ‖∞)))

λ

]
.

Proof Let Fε ⊂ F be an ε maximal packing of F , with |Fε| ≤M(ε,F , ‖·‖∞). We
obtain from Theorem 13.2, and the uniform bound over Fε that with probability
at least 1− δ:

sup
f∈Fε

[
−

n∑
i=1

f(Zi)−
1

λ

n∑
i=1

lnE
Z

(y)
i
e−λf(Zi)

]
≤ ln(M(ε,F , ‖ · ‖∞))/δ)

λ
.

Since Fε is also an ε L∞ cover of F (see Theorem 5.2), we obtain

sup
f∈F

[
−

n∑
i=1

f(Zi)−
1

λ

n∑
i=1

lnE
Z

(y)
i
e−λf(Zi)

]

≤2nε+ sup
f∈Fε

[
−

n∑
i=1

f(Zi)−
1

λ

n∑
i=1

lnE
Z

(y)
i
e−λf(Zi)

]
.

This implies the first inequality. The second inequality is left as an exercise.

If the loss function satisfies the variance condition, then we can obtain the
following uniform convergence result.

Corollary 13.12. Assume that for all f ∈ F and Zt: −f(Zt) + E
Z

(y)
t
f(Zt) ≤ b,

and the following variance condition holds for all f ∈ F and St:

Var
Z

(y)
t

[f(Zt)] ≤ c2
0 + c1EZ(y)

t
[f(Zt)],

then with probability at least 1− δ, for all f ∈ F :

(1− λc1φ(λb))
n∑
t=1

E
Z

(y)
t

[f(Zt)] ≤
n∑
t=1

f(Zt) + λnc2
0φ(λb)

+ inf
ε>0

[
2nε+

ln(M(ε,F , ‖ · ‖∞))/δ)

λ

]
,

where φ(z) = (ez − z − 1)/z2.
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Proof Note that by employing the moment estimation of Bennett’s inequality
in Lemma 2.20, we obtain

1

λ
lnE

Z
(y)
t
e−λf(Zt)

≤− E
Z

(y)
t

[f(Zt)] + λφ(λb)Var
Z

(y)
t

[f(Zt)]

≤− E
Z

(y)
t

[f(Zt)] + λφ(λb)[c2
0 + c1EZ(y)

t
[f(Zt)]].

We can now obtain the desired bound from Theorem 13.11.

Example 13.13. We consider least squares regression of Example 3.18, with
(x, y) = (Z(x), Z(y)). In the realizable case, the variance condition is satisfied with
c0 = 0, c1 = 2M2, and b = 2M2. If we choose λ = 0.2M−2, then λc1φ(λb) < 0.5.
Corollary 13.12 implies that with probability 1− δ, for all φ ∈ G,

n∑
i=1

E
Z

(y)
t

[φ(Zt)] ≤ 2
n∑
i=1

φ(Zt) + inf
ε>0

[
4nε+ 10M2 ln(M(ε,G, ‖ · ‖∞)/δ)

]
.

Since (f(x)− y)2 is a 2M Lipschitz in f(x), we obtain

n∑
i=1

E
Z

(y)
t

[φ(Zt)] ≤ 2
n∑
i=1

φ(Zt) + inf
ε>0

[
8nMε+ 10M2 ln(M(ε,F , ‖ · ‖∞)/δ)

]
.

Note that the result of Theorem 13.11 can be improved using chaining with L∞
cover. Similar to Proposition 4.20, we have the following result (see Exercise 13.4).

Proposition 13.14. Consider a bounded function class F such that |f(Z)| ≤ b
for all f ∈ F . Then with probability 1− δ, for all f ∈ F , we have

1

n

n∑
i=1

E
Z

(y)
i

[f(Zi)] ≤
1

n

n∑
i=1

f(Zi)

+ C inf
ε0>0

[
ε0 +

∫ ∞
0

√
ln(M(ε,F , ‖ · ‖∞))

n
+ b

√
ln(1/δ)

n

]
,

where C is an absolute constant.

In addition to chaining, it is also possible to work with empirical covering
numbers, which is needed for VC-class. We will not discuss it here, but leave it
as an exercise (see Exercise 13.5).

For realizable least squares problem with sub-Gaussian noise, one may also
obtain a simpler estimate more directly. The result is useful both for contextual
bandits and for some reinforcement learning problems.

Theorem 13.15. Let {(Xt, εt)} be a filtered sequence in X × R so that εt is
conditional zero-mean sub-Gaussian noise: for all λ ∈ R,

lnE[eλεt |Xt,St−1] ≤ λ2

2
σ2,
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where St−1 denotes the history data. Assume that Yt = f∗(Xt) + εt, with f∗(x) ∈
F : X → R. Let f̂t be an approximate ERM solution for some ε′ > 0:

(
t∑

s=1

(f̂t(Xs)− Ys)2

)1/2

≤ min
f∈F

(
t∑

s=1

(f(Xs)− Ys)2

)1/2

+
√
tε′.

Then with probability at least 1− δ, for all t ≥ 0:

t∑
s=1

(f̂t(Xt)− f∗(Xt))
2 ≤ inf

ε>0

[
8t(ε+ ε′)(σ + 2ε+ 2ε′) + 12σ2 ln

2N(ε,F , ‖ · ‖∞)

δ

]
.

Proof Let η = σ−2/4, and for f ∈ F , let

φ(f, Zt) = [(f(Xt)− Yt)2 − (f∗(Xt)− Yt)2].

Let Fε be an ε ‖ · ‖∞ cover of F with N = N(ε,F , ‖ · ‖∞) members.
Given any f ∈ Fε,

lnEYt|Xt,St−1
exp(−ηφ(f, Zt))

=− η(f(Xt)− f∗(Xt))
2

+ lnEYt|Xt,St−1
exp(−2η(f(Xt)− f∗(Xt))(f∗(Xt)− Yt))

≤− η(f(Xt)− f∗(Xt))
2 +

4η2σ2

2
(f(Xt)− f∗(Xt))

2

=− (f(Xt)− f∗(Xt))
2

8σ2
.

The inequality used the sub-Gaussian noise assumption. It follows from Theo-
rem 13.11 that with probability at least 1− δ/2, for all f ∈ Fε and t ≥ 0:

t∑
i=1

−ηφ(f, Zi) ≤ −
t∑
i=1

(f(Xi)− f∗(Xi))
2

8σ2
+ ln(2N/δ). (13.5)

Using Exercise 13.3, we have with probability at least 1− δ/2, for all t ≥ 0:

t∑
i=1

(f∗(Xi)− Yi)2

︸ ︷︷ ︸
A

≤ 2tσ2 + 3σ2 ln(2/δ). (13.6)

It follows that with probability at least 1−δ, for all t ≥ 0 and f ∈ Fε, both (13.5)
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and (13.6) hold. Now, let f ∈ Fε so that ‖f̂t − f‖∞ ≤ ε. This implies that

t∑
i=1

[(f(Xi)− Yi)2 − (f∗(Xi)− Yi)2] ≤


√√√√ t∑

i=1

(f̂t(Xi)− Yi)2 +
√
tε

2

−A

≤
(√

A+
√
t(ε+ ε′)

)2

−A
(a)

≤(ε′ + ε)2t+ 2
√
t(ε′ + ε)σ

√
2t+ 3 ln(2/δ)

≤4(ε′ + ε)2t+ 3σt(ε′ + ε) + σ2 ln(2/δ). (13.7)

In the above derivations, the first inequality used |f(Xi)− Yi| ≤ |f̂t(Xi)− Yi|+ ε

for all i. The second inequality used the fact that f̂t is approximate ERM. (a)
follows from (13.6). The last inequality used 2aσ

√
2b+ 3c ≤ 3aσ

√
b+ 3a2 + σ2c.

We thus obtain(
t∑
i=1

(f̂(Xi)− f∗(Xi))
2

)1/2

≤
√
εt+

(
t∑
i=1

(f(Xi)− f∗(Xi))
2

)1/2

(triangle inequality)

≤
√
ε2t+

(
8σ2 ln(2N/δ) + 8σ2

t∑
i=1

ηφ(f, Zi)

)1/2

(from (13.5))

=
√
ε2t+

(
8σ2 ln(2N/δ) + 2

t∑
i=1

[(f(Xi)− Yi)2 − (f∗(Xi)− Yi)2]

)1/2

≤
√
ε2t+

(
10σ2 ln(2N/δ) + 8t(ε′ + ε)2 + 6σt(ε′ + ε)

)1/2
(from (13.7))

≤
(
12σ2 ln(2N/δ) + 16t(ε+ ε′)2 + 8σt(ε+ ε′)

)1/2
,

where the last inequality used
√
a+
√
b ≤
√

6a+ 1.2b. This implies the bound.

13.4 Minimax Analysis for Sequential Statistical Estimation

We may consider a generalization of the statistical estimation problem in Sec-
tion 12.2 for supervised learning to the sequential decision setting.

Consider a general sequential estimation problem, where we observe data Zt ∈
Z from the environment by interacting with the environment using a sequence
of learned policies πt ∈ Π. At each time t, the observation history is St−1 =
[(Z1, π1), . . . , (Zt−1, πt−1)]. Based on the history, the player (or learning algo-
rithm), denoted by q̂, determines the next policy πt ∈ Π that can interact with the
environment. Based on the policy πt, environment generates the next observation
Zt ∈ Z according to an unknown distribution q(Zt|πt,St−1).

In the sequential decision literature, the symbol A is often used to denote the
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action space of the learning algorithm. We will follow this convention, and thus
will use the symbol q̂ to denote a learning algorithm. The following definition
summarizes the sequential statistical estimation problem in the realizable case.

Definition 13.16 (Sequential Statistical Estimation). Consider a family of en-
vironment distributions PZ , where each q ∈ PZ determines the probability for
generating Zt based on policy πt as q(Zt|πt,St−1). Consider also a family of learn-
ing algorithms, represented by PA. Each learning algorithm q̂ ∈ PA maps the
history St−1 deterministically to the next policy πt ∈ Π as πt = q̂(St−1). Given
q ∈ PZ , and q̂ ∈ PA, the data generation probability is fully determined as

p(Sn|q̂, q) =
n∏
t=1

q(Zt|q̂(St−1),St−1).

After observing Sn for some n, the learning algorithm q̂ determines a distribution
q̂(θ|Sn), and draw estimator θ ∈ Θ according to q̂(θ|Sn). The learning algorithm
suffers a loss (also referred to as regret) Q(θ, q). The overall probability of θ and
Sn is

p(θ,Sn|q̂, q) = q̂(θ|Sn)
n∏
t=1

q(Zt|q̂(St−1),St−1). (13.8)

Note that although the notation in Definition 13.16 assumes that πt is a deter-
ministic function of St−1, it can also incorporate randomized algorithms. In such
case, a policy is simply a distribution over the random choices. Since a random
choice can always be characterized by a distribution (over the random choices)
that is a deterministic function of St−1, when we consider random policies in sub-
sequent chapters, it should be understood that such policies can be handled by
Definition 13.16. An example is given below.

Example 13.17 (Online Learning (non-adversarial)). We consider a parameter
space Ω, and at each time t, the learning algorithm chooses a parameter wt ∈ Ω
according to a probability distribution πt(·) on Ω. This probability distribution is
the policy. Given wt ∼ πt, we then observe a Zt ∼ qt from an unknown distribution
qt. We assume that the loss function ` is known. After n rounds, let θ(Sn) =
[π1, . . . , πn], we suffer a loss

Q(θ, q) =
n∑
t=1

Ewt∼πtEZt∼qt`(wt, Zt)− inf
w∈Ω

n∑
t=1

EZ∼qt`(w,Zt).

In non-adversarial online learning, the policy πt only affects the final loss, but
does not affect the observation Zt. However, for some problems, the policy taken
by the learning algorithm may affect the next observation. Such problems are
usually more complex to analyze.

Example 13.18 (MAB). We consider the multi-armed bandit problem, where
we have K arms from A = {1, . . . ,K}. For each arm a ∈ A, we have a probability
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distribution qa on [0, 1]. If we pull an arm a ∈ A, we observe a random reward
r ∈ [0, 1] from a distribution qa that depends on the arm a. Our goal is to find
the best arm θ ∈ Θ = A with the largest expected reward Er∼qa [r], and the
loss Q(θ, q) = supa Er∼qa [r] − Er∼qθ [r]. In this case, a policy πt is a probability
distribution over A. The learning algorithm defines a probability distribution
q̂(St−1) over A at each time, and draw at ∼ q̂(St−1). The observation Zt is the
reward rt which is drawn from qat .

In this example, the learned policy affects the observation, but it does not
need to interact with the environment. In contextual bandits and reinforcement
learning, the policy interacts with the environment.

Example 13.19 (Contextual Bandits). In contextual bandits, we consider a
context space X and action spaceA. Given a context x ∈ X , we can take an action
a ∈ A, and observe a reward r ∼ qx,a. A policy π is a map X → ∆(A), where
∆(A) denotes the set of probability distributions over A (with an appropriately
defined sigma algebra). The policy πt interacts with the environment to generate
the next observation as: the environment generates xt, the player takes an action
at ∼ πt(xt), and then the environment generates the reward rt ∼ qxt,at .

For sequential estimation problems, we may define the minimax risk similar to
Definition 12.9 as follows.

Definition 13.20. Consider an environment distribution family PZ , learning
algorithm distribution family PA. Then the worst case expected risk of a learning
algorithm q̂ ∈ PA with respect to PZ is given by

rn(q̂,PZ , Q) = sup
q∈PZ

Eθ,Sn∼p(·|q̂,q) Q(θ, q),

where p(·|q̂, q) is defined in (13.8). Moreover, the minimax risk is defined as:

rn(PA,PZ , Q) = inf
q̂∈PA

rn(q̂,PZ , Q).

We note that in the sequential decision setting, the following result for KL-
divergence is a straight-forward extension of Theorem B.6 by using the chain-rule
of KL-divergence.

Lemma 13.21. Let P ′ ⊂ PZ be a finite subset. For any q0 ∈ PZ and q̂ ∈ PA.
Assume that for any step t, history St−1:

1

|P ′|
∑
q′∈P′

KL(q0(·|q̂(St−1),St−1)||q′(·|q̂(St−1),St−1))) ≤ β2
t .

Then for any learning algorithm q̂ ∈ PA, and sequence of size n, we have

1

|P ′|
∑
q′∈P′

KL(p(·|q̂, q0) || p(·|q̂, q′))) ≤
n∑
t=1

β2
t .
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Proof We have

1

|P ′|
∑
q′∈P′

KL(p(·|q̂, q0) || p(·|q̂, q′))) =
1

|P ′|
∑
q′∈P′

ESn∼p(·|q̂,q0) ln

(
p(Sn, |q̂, q0)

p(Sn|q̂, q′)

)

=
1

|P ′|
∑
q′∈P′

ESn∼p(·|q̂,q0)

[
ln

(
p(Sn−1|q̂, q0)

p(Sn−1|q̂, q′)

)
+ ln

q0(Zn|q̂(Sn−1),Sn−1)

q′(Zn|q̂(Sn−1),Sn−1)

]

=
1

|P ′|
∑
q′∈P′

ESn∼p(·|q̂,q0)

[
ln

(
p(Sn−1|q̂, q0)

p(Sn−1|q̂, q′)

)
+ KL (q0(·|q̂,Sn−1) || q′(·|q̂,Sn−1))

]

≤ 1

|P ′|
∑
q′∈P′

ESn−1∼p(·|q̂,q0) ln

(
p(Sn−1|q̂, q0)

p(Sn−1|q̂, q′)

)
+ β2

n

≤ · · · ≤
n∑
t=1

β2
t .

This implies the bound.

By using Lemma 13.21 to replace Theorem B.6 with α = 1, we obtain the fol-
lowing straight-forward generalization of Theorem 12.15 from Fano’s inequality.

Theorem 13.22. Consider a finite distribution family PZ = {q1, . . . , qN}. As-
sume for some q̂ ∈ PA, if for all time step t, and history St−1:

1

N2

∑
q∈PZ

∑
q′∈PZ

KL(q(·|q̂(St−1),St−1)||q′(·|q̂(St−1),St−1))) ≤ β2
t .

Let Q be a loss function on Θ× PZ , and

m = sup
θ∈Θ

∣∣∣∣ {k : Q(θ, qk) < ε
} ∣∣∣∣.

If m ≤ N/2 and

ln(N/m) ≥ ln 4 + 2
n∑
t=1

β2
t ,

then

1

N

N∑
j=1

Pr
θ,Sn∼p(·|q̂,qj)

(
Q(θ, qj) < ε

)
≤ 0.5,

where the probability also includes possible randomization in A. If Q(·, ·) is non-
negative, then this implies that rn(q̂,PZ , Q) ≥ 0.5ε.

We can also obtain the following result from Fano’s inequality in Theorem 13.22,
which is stated in a style that is similar to Theorem 12.28, but with Hellinger
distance replaced by KL-divergence.

Corollary 13.23. Let d ≥ 32 be an integer and let Pd = {qτ : τ ∈ {−1, 1}d} con-
tain 2d probability measures. Suppose that the loss function Q can be decomposed
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as

Q(θ, q) =
d∑
j=1

Qj(θ, q),

where Qj ≥ 0 are all non-negative. For any j and τ , let τ−[j] be the index that
differs with τ only by one coordinate j. Assume there exists ε, β ≥ 0 such that

∀τ : [Qj(θ, q
τ ) +Qj(θ, q

τ−[j]

)] ≥ ε.

Assume for some q̂ ∈ PA,

sup
q,q′∈PZ

sup
St−1

KL(q(·|q̂(St−1),St−1)||q′(·|q̂(St−1),St−1))) ≤ β2
t .

If
∑n

t=1 β
2
t ≤ (d/32− 1), then rn(q̂,Pd, Q) ≥ dε/16.

Proof Consider drawing τi ∈ {±1}d from uniform distribution i = 1, . . . , N ,
where N = bexp(d/16)c. For any fixed 1 ≤ i < j ≤ N , using the Chernoff bound
with |τi − τj| ∈ [0, 2]d and E‖τi − τj‖1 = d, we obtain

Pr(‖τi − τj‖1 ≤ d/2) ≤ exp(−d/8).

Therefore

Pr(∃i 6= j : ‖τi − τj‖1 ≤ d/2) ≤ N(N − 1) exp(−d/8) < 1.

It follows there exists a subset of T of {±1}d with N members so that for τi 6=
τj ∈ T :

1

2
‖τi − τj‖1 ≥ d/4.

This implies that

Q(θ, qτi) +Q(θ, qτj ) ≥ dε/4.

It follows that

m = sup
θ∈Θ

∣∣∣∣ {k : Q(θ, qτk) < dε/8}
∣∣∣∣ = 1.

Since the condition of the corollary implies that

ln(N) ≥ ln 4 + 2
n∑
t=1

β2
t ,

the desired result is a direct consequence of Theorem 13.22.

While Theorem 13.22 and Corollary 13.23 can be applied to online learning
problems, it is not convenient to use for bandit problems. For bandit problems,
we will employ the following result which directly follows from Assouad’s lemma.
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Theorem 13.24. Let d ≥ 1 and m ≥ 2 be integers, and let PZ = {qτ : τ ∈
{1, . . . ,m}d} contain md probability measures. Suppose that the loss function Q
can be decomposed as

Q(θ, q) =
d∑
j=1

Qj(θ, q),

where Qj ≥ 0 are all non-negative. For each j, τ ∼j τ ′ if τ = τ ′ or if τ and τ ′

differs by only one component j. Assume that there exists ε, β ≥ 0 such that

∀τ ′ ∼j τ, τ ′ 6= τ : [Qj(θ, q
τ ) +Qj(θ, q

τ ′)] ≥ ε,

and there exists qτj such that all τ ′ ∼j τ map to the same value: qτ
′

j = qτj . Given
any learning algorithm q̂. If for all τ , j ∈ [d], time step t, and St−1:

1

m

∑
τ ′∼jτ

KL(qτj (·|q̂(St−1),St−1)||qτ
′
(·|q̂(St−1),St−1))) ≤ β2

j,t,

then

1

md

∑
τ

Eθ,Sn∼p(·|q̂,qτ )Q(θ, qτ ) ≥ 0.5dε

1−

√√√√2

d

d∑
j=1

n∑
t=1

β2
j,t

 .

Proof We have

1

dmd

∑
τ

d∑
j=1

1

m− 1

∑
τ ′∼jτ

‖p(·|q̂, qτ )− p(·|q̂, qτ
′
)‖TV

≤ 1

dmd

∑
τ

d∑
j=1

1

m− 1

∑
τ ′∼jτ,τ ′ 6=τ

[
‖p(·|q̂, qτj )− p(·|q̂, qτ

′
)‖TV

+‖p(·|q̂, qτj )− p(·|q̂, qτ )‖TV

]
=

2

dmd

∑
τ

d∑
j=1

1

m

∑
τ ′∼jτ

‖p(·|q̂, qτj )− p(·|q̂, qτ
′
)‖TV

≤ 2

md

∑
τ

√√√√ 1

dm

d∑
j=1

∑
τ ′∼jτ

‖p(·|q̂, qτj )− p(·|q̂, qτ ′)‖2TV

≤ 2

md

∑
τ

√√√√ 1

2dm

d∑
j=1

∑
τ ′∼jτ

KL(p(·|q̂, qτj )||p(·|q̂, qτ ′))

≤

√√√√2

d

d∑
j=1

n∑
t=1

β2
t .

The first inequality is triangle inequality for TV-norm. The first equality used
q̂τj = q̂τ

′

j when τ ∼j τ ′. The second inequality used Jensen’s inequality and the
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concavity of
√
·. The third inequality used Theorem B.9. The last inequality used

Lemma 13.21. Now in Lemma 12.27, we let Mj(q
τ ) = {qτ ′ : τ ′ ∼j τ} be the

partitions. The result is a simple application of Lemma 12.27 with mj(q
τ ) = m,

|P| = md, and d(P) = dmd.

Example 13.25. Consider estimating the mean of a d dimensional Gaussian
random variable Z ∼ N(θ, Id×d). Each time the player draws an action at ∈
{1, . . . , d}, and the environment draws Z̃t ∼ N(θ, Id×d), and reveals only the at-
th component Zt = Z̃t,at . After T rounds, we would like to estimate the mean as

θ̂, and measure the quality with Q(θ̂, θ) = ‖θ̂ − θ‖22. In this case, a policy πt can
be regarded as a distribution over {1, . . . , d}, and we draw at ∼ πt.

To obtain an upper bound of the loss, we can simply randomly pick at, and
use the following unbiased estimator:

θ̂j =
d

n

n∑
t=1

Zt,at1(at = j).

This implies that

E ‖θ̂ − θ‖22 =
d2

n
.

To obtain a lower bound of the loss, we consider Corollary 13.23, with θτ =
ετ/(
√
d) and PZ = {N(θτ , Id×d) : τ ∈ {±1}d. Consider the decomposition

Q(θ, qτ ) =
d∑
j=1

Qj(θ, q
τ ), Qj(θ, q

τ ) = (θj − θτj )2.

This implies that

∀τ : [Qj(θ, q
τ ) +Qj(θ, q

τ−[j]

)] ≥ ε2/d.

Let Zt and Z ′t be the observations under q, q′ ∈ PZ , then for any at, KL(Zt, Z
′
t) ≤

β2
t = 2ε2/d. When

2nε2 ≤ d2/32− d,

we have

rn(PA,PZ , Q) ≥ ε2/16.

This matches the upper bound up to a constant.

13.5 Historical and Bibliographical Remarks

Sequential estimation problems have many applications that involve random ob-
servations over time. The formal mathematical tool to study such random vari-
ables is stochastic process (Doob, 1953). Martingale and martingale difference
sequence are natural mathematical concepts in stochastic process that can be
regarded as a generalization of sum of independent random variables. Martingale
difference sequence is also a mathematical formalization of a fair game, where
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the expected outcome at each play is zero. Martingale concentration means that
the cumulative mean of such a game should be close to zero. Azuma’s inequal-
ity (Azuma, 1967) maybe regarded as a generalization of Hoeffding’s inequality
with a similar proof. It can be used to prove McDiarmid’s inequality in Chap-
ter 6. Freedman’s inequality (Freedman, 1975) can be regarded as a generalization
of Bernstein’s inequality for independent random variables. It has been widely
used in sequential decision problems with refined variance control. The treatment
given in this chapter using Lemma 13.1 follows (Zhang, 2005). Theorem 13.7 was
obtained in (Abbasi-yadkori et al., 2011) to analyze linear contextual bandits.
Theorem 13.10 was used by Zhou et al. (2021) to analyze variance weighted
regression for model based reinforcement learning for linear mixture MDP. How-
ever, more better analysis of variance weighted regression can be obtained using
a more refined result in Exercise 13.7 (also see Zhou and Gu (2022)).
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Exercises

13.1 In Freedman’s inequality, we want to remove the condition

or

n∑
i=1

Var
Z

(y)
i

(ξi) > σ2

by deriving a data-dependent probability bound that depends on the empirical conditional

standard deviation (instead of a predefined σ) as

σ̂ =

√√√√ 1

n

n∑
i=1

Var
Z

(y)
i

(ξi).

• Show how to derive such an inequality using uniform convergence over a sequence of

σ2 of V0, 2V0, 4V0, · · · .
• Apply the above result to ξi ∈ [0, b] that satisfies the variance condition

Var
Z

(y)
i

(ξi) ≤ c1EZ(y)
i

ξi.

Obtain a probability inequality to upper bound
∑n
i=1 EZ(y)

i

ξi in terms of
∑n
i=1 ξi, with

probability at least 1− δ.

13.2 Use Lemma 13.1 to prove the second inequality of Theorem 13.11.

13.3 Let {ξi} be a sequence of dependent zero-mean sub-Gaussian random variables:

lnEξi exp(λξi) ≤ 0.5λ2σ2.

Use the logarithmic moment generating function estimate in Theorem 2.29 to show that

with probability 1− δ, for all t ≥ 0:

t∑
i=1

ξ2
i ≤ 2tσ2 + 3σ2 ln(1/δ).

13.4 Consider a bounded function class F such that |f(Z)| ≤ b for all f ∈ F .

• If |F| ≤ N is finite, show that with probability 1− δ, for all f ∈ F :

1

n

n∑
i=1

E
Z

(y)
i

[f(Zi)] ≤
1

n

n∑
i=1

f(Zi) + b

√
2 ln(N/δ)

n
.

• Show that every f ∈ F can be expressed as the summation of

f(Z) =

∞∑
`=0

f`(Z),

where |f`(Z)| ≤ 3 · 2`b, using a decomposition similar to that in the proof of Theo-

rem 6.25. Use this decomposition to prove Proposition 13.14.

13.5 Consider a bounded function class F such that f(Z) ∈ [0, 1] for all f ∈ F . LetN∞(ε,F , 2n)

be L∞ uniform covering number of F defined in Definition 4.4. Consider a sequence of

samples {Zt, Z′t} such that Z′t has the same distribution of Zt conditioned on St−1 =

[Z1, . . . , Zt−1].
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• Find

Pr

[
sup
f∈F

1

n

n∑
i=1

[f(Z′i)− f(Zi)] ≥ ε

]

using N∞(ε,F , 2n).

• Let f̂ be an arbitrary estimator that depends on Sn, find

Pr

[
1

n

n∑
i=1

[E
Z

(y)
i

[f̂(Zi)]− f̂(Z′i)] ≥ ε

]
.

• Use the previous two results to find

Pr

[
sup
f∈F

1

n

n∑
i=1

[E
Z

(y)
i

[f(Zi)]− f(Zi)] ≥ ε

]
.

13.6 Prove (13.2) by using Theorem 15.6 with Yt = εt (and set σ = 0 in the theorem).

13.7 Assume that in Theorem 13.10, we replace the condition |εt| ≤ α by

∀t ≥ 1 : |εt|min
(

1, α′‖Xt‖Λ−1
t−1

)
≤ α,

where α′ > 0. Let

βt(α, δ) =

√
1.3σ2 ln |Λ−1

0 Λt|+ 4(α2 + σ2) ln(2/δ).

If we can choose α′ so that inequality α′ ≥ αβT (α, δ)/(1.5σ2) always holds for some T > 0,

then with probability at least 1− 1.5δ, for all 0 ≤ t ≤ T , we have∥∥∥∥∥
t∑

s=1

εsXs

∥∥∥∥∥
Λ−1
t

≤ βt(α, δ).

The proof of this statement is similar to that of Theorem 13.10.

• Show that we have decomposition εt = ε
(1)
t + ε

(2)
t , where

ε
(1)
t =εt1(|εt| ≤ α)− E[εt1(|εt| ≤ α)|Xs,Fs−1])

ε
(2)
t =εt1(|εt| > α)− E[εt1(|εt| > α)|Xs,Fs−1]).

• Show that (13.4) still holds for probability at least 1− δ/2.

• (13.3) holds with εt replaced by ε
(1)
t with probability at least 1− δ/2.

• Define events

Et =

St :

∥∥∥∥∥
t∑

s=1

εsXs

∥∥∥∥∥
Λ−1
t

≤ βt(α, δ)

 ,

E′ =
{
∀t : (13.3) holds for ε

(1)
t , and (13.4) holds

}
.

Show that under ∩s<tEs, |εsfs| ≤ βs−1|εs| ‖Xs‖Λ−1
t−1
≤ M/2 (s = 1, . . . , t), and thus

for s = 1, . . . , t, ε
(2)
s fs ∈ [−M,M ] (with respect to the conditional distribution over

ε
(2)
s ), where M = 2(α/α′)βT .
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• Show that under Ect ∩ E′ ∩s<t Es, the following event holds.

t∑
s=1

2ε
(2)
s fs − f2

s

bs
≥ 4σ2 ln(2/δ). (13.9)

Let At = E′ ∩s<t Es. Use the second inequality of Theorem 13.2 and (2.13) to show

that

Pr (∃t ∈ [T ] : At & (13.9) holds) ≤ 0.5δ.

• Show that Pr
(
∩t∈[T ]Et ∩ E′

)
≥ 1− 1.5δ, and this implies the desired result.

13.8 Derive a lower bound on Example 13.25 using Theorem 13.24, and compare to the result

obtained in the example from Corollary 13.23.
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14

Basic Concepts of Online Learning

In online learning, we consider a learning model that is different from that of su-
pervised learning, in that we make predictions sequentially and obtain feedbacks
after predictions are made. In this chapter, we introduce this learning model as
well as some first order online learning algorithms.

14.1 Online Learning Model

We will use the notations that are consistent with earlier chapters on supervised
learning. In online learning, we consider observing Zt = (Xt, Yt) one by one in
a time sequence from t = 1, 2, . . .. At each time step, we try to predict the next
datum in the sequence, and then obtain a feedback of the prediction.

More formally, the online learning learning model can be considered as a re-
peated game. For t = 1, 2, . . .,

• An adversary picks (Xt, Yt), and reveals Xt only.

• An online learning algorithm A predicts f̂t−1(Xt).

• The value of Yt is revealed and a loss L(f̂t−1(Xt), Yt) is computed.

The goal of online learning is to minimize the aggregated loss

T∑
t=1

L(f̂t−1(Xt), Yt).

In general, an online algorithm A picks a prediction model f(x) from F =
{f(w, x) : w ∈ Ω} by learning a model parameter wt−1 ∈ Ω at time t based

on previously observed data St−1 = {Z1, . . . , Zt−1}. That is, we take f̂t−1(Xt) =
f(wt−1, Xt) with wt−1 = A(St−1). We are interested in the following inequality,
referred to as regret bound, where the aggregated loss of an online algorithm is
compared to the optimal aggregated loss:

T∑
t=1

L(f(wt−1, Xt), Yt)− inf
w∈Ω

T∑
t=1

L(f(w,Xt), Yt) ≤ εT . (14.1)

In many situations, online regret bounds hold for all sequences {Zt}, although
the definition can also be modified to hold in expectation. In the online learning
literature, the choice of prediction functions in the form f(wt−1, x) is referred
to as proper learning, since it matches the function form of {f(w,X) : w ∈ Ω}

298
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which it competes with. More generally, one may also consider improper online
learning, where f̂t−1(x) may not belong to the function class {f(w, x) : w ∈ Ω}.
We do not differentiate the two situations in our discussion.

To differentiate from online learning, the standard supervised learning setting
is often referred to as batch learning in the machine learning literature. Regret
bound analysis can be considered as a generalization of the oracle inequality in
batch learning. We will show later that a regret bound directly implies an oracle
inequality using a simple technique called online to batch conversion.

14.2 Perceptron Algorithms

In this section, we will study a simple online learning algorithm called the per-
ceptron Algorithm, which is a precursor to modern neural networks.

Consider the binary classification problem with Y ∈ {±1}, and linear functions

f(w,X) = w>X,

with prediction rule: {
1 f(w,X) ≥ 0

−1 otherwise
.

The loss function is binary classification error: 1(f(w,X)Y ≤ 0). The perceptron
algorithm (Rosenblatt, 1957, 1962) is an online learning algorithm that takes
data sequentially as in Algorithm 14.1. It is mistake-driven, which means it only
updates the model weight vector when the prediction makes a mistake. The algo-
rithm belongs to the family of linear classifiers. In many applications, one needs
to design the linear features by hand.

Algorithm 14.1: Perceptron Algorithm

Input: Sequence (X1, Y1), . . . , (XT , YT )
Output: ws

1 Let w0 = 0
2 for t = 1, 2, . . . , T do
3 Observe Xt and predict label sign(w>t−1Xt)
4 Observe Yt and compute mistake 1(w>t−1XtYt ≤ 0)
5 if w>t−1XtYt > 0 then
6 // No mistake
7 Let wt = wt−1

8 else
9 // A mistake is observed

10 Let wt = wt−1 +XtYt

11 Randomly pick s from 0 to T − 1
Return: ws

Note that the randomly choice of the returned predictor in the perceptron
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CHAPTER 14. ONLINE LEARNING 300

algorithm is for the purpose of online to batch conversion, which we will discuss
later. In the following, we first state the mistake bound of perceptron as follows.

Theorem 14.1. Consider the perceptron Algorithm in Algorithm 14.1. Consider
γ > 0 and weight vector w∗ such that for all t

w>∗ XtYt ≥ γ.

Then we have the following mistake bound:

T∑
t=1

1(w>t−1XtYt ≤ 0) ≤ ‖w∗‖
2
2 sup{‖Xt‖22}
γ2

.

Proof Let M = supt ‖Xt‖2, and let η = γ/M2. Assume that we have a mistake
at time step t, then we have

(ηwt−1 − w∗)>XtYt ≤ 0− w>∗ XtYt ≤ −γ.

This implies that

‖ηwt − w∗‖22 =‖ηwt−1 + ηXtYt − w∗‖22
=‖ηwt−1 − w∗‖22 + 2η(ηwt−1 − w∗)>XtYt + η2‖Xt‖22
≤‖ηwt−1 − w∗‖22 − 2ηγ + η2M2

≤‖ηwt−1 − w∗‖22 −
γ2

M2
.

Note also that ‖ηwt − w∗‖22 = ‖ηwt−1 − w∗‖22 if there is no mistake at time step
t. Therefore by summing over t = 1 to t = t, we obtain

0 ≤ ‖ηwt − w∗‖22 ≤ ‖ηw0 − w∗‖22 −
γ2

M2
k,

where k is the number of mistakes. This implies the bound.

The perceptron mistake bound can be regarded as an online version of the
margin bound discussed in Chapter 9, where empirical process was used to obtain
similar margin bounds for the ERM method. The technique required for analyzing
the ERM method is much more complicated.

Using essentially the same proof, we can also obtain a mistake bound for multi-
class classification problems (Collins, 2002). In comparison, the analysis of the
ERM method for multi-class classification is more complex, as discussed in Sec-
tion 9.4.

For multi-class prediction with q classes y ∈ {1, . . . , q}, we may use the nota-
tions of Section 9.4, and consider a vector prediction function f(x) ∈ Rq, with
linear prediction model for class ` in (9.14) defined as:

f`(x) = w>ψ(x, `).

The predicted class for each x is

ŷ(w, x) ∈ arg max
`

[w>ψ(x, `)],
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and the error (or mistake) for an instance x with true label y is

1(ŷ(w, x) 6= y).

Algorithm 14.2: Multi-Class Perceptron Algorithm

Input: Sequence (X1, Y1), . . . , (XT , YT )
Output: ws

1 Let w0 = 0
2 for t = 1, 2, . . . , T do

3 Observe Xt and predict label Ŷt ∈ arg max`{w>t−1ψ(Xt, `)}
4 Observe Yt and compute mistake 1(Ŷt 6= Yt)

5 if Ŷt == Yt then
6 // No mistake
7 Let wt = wt−1

8 else
9 // A mistake is observed

10 Let wt = wt−1 + [ψ(Xt, Yt)− ψ(Xt, Ŷt)]

11 Randomly pick s from 0 to T − 1
Return: ws

Theorem 14.2. Consider Algorithm 14.2. We have the following mistake bound:

T∑
t=1

1(Ŷt 6= Yt) ≤ inf
γ>0,w

[
T∑
t=1

2 max

(
0, 1− γ−1 min

` 6=Yt
w>[ψ(Xt, Yt)− ψ(Xt, `)]

)
+
‖w‖22 sup{‖ψ(Xt, Yt)− ψ(Xt, Y`)‖22}

γ2

]
.

Proof The proof is basically the same as that of the binary case. Given any
γ > 0 and w. We let ψt = ψ(Xt, Yt) − ψ(Xt, Ŷt), M = sup{‖ψt‖2}, and η =

γ/M2. Assume that we have a mistake at time step t, then we have Ŷt 6= Yt, and
w>t−1ψt ≤ 0. It implies that

(ηwt−1 − w∗)>ψt ≤ 0− w>∗ ψt ≤ max(0, γ − w>∗ ψt)− γ.

Therefore by taking

‖ηwt − w∗‖22 =‖ηwt−1 + ηψt − w∗‖22
=‖ηwt−1 − w∗‖22 + 2η(ηwt−1 − w∗)>ψt + η2‖ψt‖22
≤‖ηwt−1 − w∗‖22 + 2ηmax(0, γ − w>∗ ψt)− 2ηγ + η2M2

≤‖ηwt−1 − w∗‖22 + 2ηmax(0, γ − w>∗ ψt)−
γ2

M2
.

Note also that ‖ηwt − w∗‖22 = ‖ηwt−1 − w∗‖22 if there is no mistake at time step
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t. Therefore by summing over t = 1 to t = T , we obtain

0 ≤ ‖ηwT − w∗‖22 ≤ 2η
T∑
t=1

max(0, γ − w>∗ ψt) + ‖ηw0 − w∗‖22 −
γ2

M2
k,

where k is the number of mistakes. This implies the bound.

Unlike Theorem 14.1, Theorem 14.2 does not require there exists γ > 0 so
that w>∗ ψ(X,Y ) ≥ w>∗ ψ(X, `) + γ for all ` 6= Y . The bound is thus a soft-margin
bound, with a margin based hinge loss as penalty. In the special case of hard-
margin condition, where w>∗ ψ(X,Y ) ≥ w>∗ ψ(X, `) + γ for all ` 6= Y , we obtain
the simpler mistake bound

T∑
t=1

1(Ŷt 6= Yt) ≤
‖w‖22 sup{‖ψ(Xt, Yt)− ψ(Xt, Y`)‖22}

γ2
.

This is analogous to the binary class perceptron mistake bound of Theorem 14.1.

14.3 Online to Batch Conversion

In online learning, each time, we train a model using historic data, and then test
on the next datum. This naturally corresponds to the generalization performance.
If we assume that in online learning, the observed data are random, with Zt =
(Xt, Yt) ∼ D, then by taking expectation, we can obtain an expected oracle
inequality.

Specially, we may consider an online algorithm A such that it returns a weight
vector wt = A(St) with St = {Z1, . . . , Zt}. Assume that we have a regret bound
of the general form:

T∑
t=1

φ(wt−1, Zt) ≤ ε(ST ). (14.2)

By taking expectations, we obtain an expected generalization bound of

EST
T∑
t=1

EZφ(wt−1, Z) ≤ EST ε(ST ).

This implies that if we select s uniformly from 0 to T − 1, then

ESTEsEZφ(ws, Z) ≤ EST ε(ST )/T.

For example, for the perceptron algorithm, we may let

φ(w,Z) = 1(ŷ(w,X) 6= Y )− 2 max

(
0, 1− γ−1 min

` 6=Y
w>[ψ(X,Y )− ψ(X, `)]

)
,

then the following expected generalization bound can be obtained from the per-
ceptron mistake bound of Theorem 14.2.
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Proposition 14.3. Consider Algorithm 14.2, with s chosen uniformly at random
from 0 to T − 1. If Zt = (Xt, Yt) ∼ D are iid observations, then we have

EST−1
EsEZ∼D1(ŷ(ws, X) 6= Y )

≤ inf
γ>0,w

[
2EZ∼Dmax

(
0, 1− γ−1 min

` 6=Yt
w>[ψ(X,Y )− ψ(X, `)]

)
+
‖w‖22 sup{‖ψ(X,Y )− ψ(X,Y ′)‖22}

γ2 T

]
,

where the prediction rule ŷ(w, x) ∈ arg max`w
>ψ(x, `) is consistent with Algo-

rithm 14.2.

Proof We simply note that

EST−1

T∑
t=1

EZ∼D1(ŷ(wt−1, X) 6= Y ) = EST
T∑
t=1

1(ŷ(wt−1, Xt) 6= Yt),

and

T∑
t=1

2EZ∼Dmax

(
0, 1− γ−1 min

6̀=Yt
w>[ψ(X,Y )− ψ(X, `)]

)

=EST
T∑
t=1

2 max

(
0, 1− γ−1 min

6̀=Yt
w>[ψ(Xt, Yt)− ψ(Xt, `)]

)
.

Now, a straight-forward application of Theorem 14.2 implies that

EST−1

T∑
t=1

EZ∼D1(ŷ(wt−1, X) 6= Y )

≤ inf
γ>0,w

[
2TEZ∼Dmax

(
0, 1− γ−1 min

` 6=Yt
w>[ψ(X,Y )− ψ(X, `)]

)
+
‖w‖22 sup{‖ψ(X,Y )− ψ(X,Y ′)‖22}

γ2

]
.

This implies the desired result.

From Chapter 13, we know that one can further employ martingale tail prob-
ability bounds to obtain a high probability result of the following form: with
probability at least 1− δ over ST ,

T∑
t=1

EZ∼Dφ(wt−1, Z) ≤
T∑
t=1

φ(wt−1, Zt) + ε(δ). (14.3)

We may combine this bound with (14.2), and obtain the following probability
bound for the randomized estimator s, uniformly chosen from 0 to T − 1. With
probability at least 1− δ over ST :

Es EZ∼Dφ(ws, Z) ≤ ε(δ) + ε(ST )

T
.
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The following result is a concrete example on how to use martingale inequalities
and online mistake bound to derive high probability generalization error bound.

Proposition 14.4. Consider Algorithm 14.1, with s uniformly drawn from 0 to
T − 1. Assume w>∗ XY ≥ γ > 0 for all Z = (X,Y ). If Zt = (Xt, Yt) ∼ D, then
with probability at least 1− δ:

EsEZ∈D1(ŷ(ws, X) 6= Y )

≤ inf
λ>0

[
λ

1− e−λ
‖w∗‖22 supX ‖X‖22

γ2T
+

ln(1/δ)

(1− e−λ) T

]
.

Proof Let

{ξi = 1(w>i−1XiYi ≤ 0) : i = 1, 2, . . . , n}

be a sequence of random variables, Theorem 13.5 implies that for any λ > 0, with
probability at least 1− δ,

1

T

T∑
i=1

E(Xi,Yi)∼Dξi ≤
λ

1− e−λ
1

T

T∑
i=1

ξi +
ln(1/δ)

(1− e−λ) T
.

Also note that the mistake bound in Theorem 14.1 implies that

T∑
i=1

ξi ≤
‖w∗‖22 sup{‖X‖22}

γ2
.

Since E(X,Y )∼D1(w>i−1XY ≤ 0) = E(Xi,Yi)∼Dξi, we obtain the desired result.

14.4 Online Convex Optimization

One can extend the analysis of perceptron algorithms to general convex loss
functions, leading to the so-called online convex optimization, introduced into
machine learning by Zinkevich (2003). A general first-order algorithm for online
convex optimization, which we refer to as online gradient descent, can be found
in Algorithm 14.3. Its analysis is given in Theorem 14.5.

Algorithm 14.3: Online Gradient Descent

Input: Sequence of loss functions `1, . . . , `T defined on Ω
Output: ŵ

1 Let w0 = 0
2 for t = 1, 2, . . . , T do
3 Observe loss `t(wt−1)
4 Let w̃t = wt−1 − ηt∇`t(wt−1)
5 Let wt = arg minw∈Ω ‖w − w̃t‖22
6 Let ŵ = T−1

∑T
t=1wt−1 or ŵ = ws for a random s from 0 to T − 1

Return: ŵ
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Theorem 14.5. Let {`t(w) : w ∈ Ω} be a sequence of real-valued convex loss
functions defined on a convex set Ω. Assume that all `t(w) are G-Lipschitz (that
is, ‖∇`t(w)‖2 ≤ G). If we let ηt = η > 0 be a constant in Algorithm 14.3. Then
for all w ∈ Ω, we have

T∑
t=1

`t(wt−1) ≤
T∑
t=1

`t(w) +
‖w0 − w‖22

2η
+
ηT

2
G2.

Proof We have the following inequality:

‖w̃t − w‖22 =‖wt−1 − w − η∇`t(wt−1)‖22
=‖wt−1 − w‖22 − 2η∇`t(wt−1)>(wt−1 − w) + η2‖∇`t(wt−1)‖22
≤‖wt−1 − w‖22 − 2η∇`t(wt−1)>(wt−1 − w) +G2η2

≤‖wt−1 − w‖22 − 2η[`t(wt−1)− `t(w)] +G2η2,

where the first inequality used the Lipschitz condition, and the second inequality
used the convexity condition.

Since wt ∈ Ω is the projection of w̃t onto Ω and w ∈ Ω. We also have

‖wt − w‖22 ≤ ‖w̃t − w‖22.

Therefore, we have

‖wt − w‖22 ≤ ‖wt−1 − w‖22 − 2η[`t(wt−1)− `t(w)] +G2η2.

Now we may sum over t = 1 to t = T , and obtain

‖wT − w‖22 ≤ ‖w0 − w‖22 − 2η
T∑
t=1

[`t(wt−1)− `t(w)] + TG2η2.

Rearrange the terms, we obtain the desired bound.

The analysis technique of Theorem 14.5 is quite similar to that of the per-
ceptron mistake bound. In fact, we may state the following more general result
which includes both online convex optimization and perceptron mistake analysis
as special cases. We leave its proof as an exercise.

Theorem 14.6. Consider Algorithm 14.5 with the update rule replaced by the
following method

w̃t = wt−1 − ηtgt.

If we can choose gt so that

g>t (w − wt−1) ≤ ˜̀
t(w)− `t(wt−1),

then
T∑
t=1

`t(wt−1) ≤
T∑
t=1

˜̀
t(w) +

‖w0 − w‖22
2η

+
ηT

2
G2.
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Note that in Theorem 14.6, `t(wt−1) may not necessarily be a convex function
of wt−1.

Example 14.7. Theorem 14.5 is a special case of Theorem 14.6 by taking ˜̀
t(w) =

`t(w) and gt = ∇`t(wt−1).

Example 14.8. When w>t−1XtYt ≤ 0, we have

−(w − wt−1)>XtYt ≤γ − w>XtYt − γ
≤max(0, γ − w>XtYt)− γ1(w>t−1XtYt ≤ 0).

When w>t−1XtYt > 0, we have

0 ≤ max(0, γ − w>XtYt)− γ1(w>t−1XtYt ≤ 0).

Therefore let gt = −1(w>t−1XtYt ≤ 0)XtYt, then

(w − wt−1)>gt ≤ max(0, γ − w>XtYt)− γ1(w>t−1XtYt ≤ 0).

This implies that Theorem 14.1 is a special case of Theorem 14.6 by taking
˜̀
t(w) = max(0, γ − w>XtYt) and `t(wt−1) = γ1(w>t−1XtYt ≤ 0).

We may also obtain an oracle inequality for Algorithm 14.3 as follows.

Theorem 14.9. Consider loss function φ(w,Z) ∈ [0,M ] with Z ∼ D, and w ∈ Ω,
where Ω is a convex set. Assume that φ(w,Z) is convex and G-Lipschitz with
respect to w. Let [Z1, . . . , ZT ] ∼ DT be independent samples, and consider ŵ
obtained from Algorithm 14.3, with `i(w) = φ(w,Zi) and ηt = η > 0. Then with
probability at least 1− δ,

EZ∼Dφ(ŵ, Z) ≤ inf
w∈Ω

[
EZ∼Dφ(w,Z) +

1

2ηT
‖w − w0‖22

]
+
η

2
G+M

√
2 ln(2/δ)

T
.

Proof Note that the convexity and Jensen’s inequality implies that

EZ∼Dφ(ŵ, Z) ≤ 1

T

T∑
t=1

EZtφ(wt−1, Zt). (14.4)

Moreover, using the Azuma’s inequality, we have with probability at least 1−δ/2,

1

T

T∑
t=1

EZtφ(wt−1, Zt) ≤
1

T

T∑
t=1

φ(wt−1, Zt) +M

√
ln(2/δ)

2T
. (14.5)

Using Theorem 14.5, we obtain

1

T

T∑
t=1

φ(wt−1, Zt) ≤
1

T

T∑
t=1

φ(w,Zt) +
‖w0 − w‖22

2ηT
+
η

2
G2. (14.6)

Using the Chernoff bound, we have with probability at least 1− δ/2:

1

T

T∑
t=1

φ(w,Zt) ≤ EZ∼Dφ(w,Z) +M

√
ln(2/δ)

2T
. (14.7)
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By taking the union bound, and combine the above four inequalities, we obtain
the following. With probability at least 1− δ:

EZ∼Dφ(ŵ, Z) ≤ 1

T

T∑
t=1

EZtφ(wt−1, Zt)

≤ 1

T

T∑
t=1

φ(wt−1, Zt) +M

√
ln(2/δ)

2T

≤ 1

T

T∑
t=1

φ(w,Zt) +
‖w0 − w‖22

2ηT
+
η

2
G2 +M

√
ln(2/δ)

2T

≤EZ∼Dφ(w,Z) +
‖w0 − w‖22

2ηT
+
η

2
G2 +M

√
2 ln(2/δ)

T
.

The first inequality used (14.4). The second inequality used (14.5). The third
inequality used (14.6). The last inequality used (14.7).

If we take η = O(1/
√
T ), then we obtain a convergence result of O(1/

√
T ) in

Theorem 14.9. This result can be compared to that of Corollary 9.27, which has
a similar convergence rate if we set λ = 1/(ηT ).

In Corollary 9.27, the loss function does not have to be convex, and the theorem
applies to ERM, which implies the following bound for the ERM estimator:

EDφ(ŵ, Z) ≤EDφ(w,Z) + λ‖w‖22

+O

(√
ln((λ+B2)/(δλ))

n

)
+O

(
B2 ln((λ+B2)/(δλ))

λn

)
.

This result is similar to that of Theorem 14.9 with η = 1/(λT ).
However, the result in Theorem 14.9 does not apply to ERM, but rather the spe-

cific online learning procedure for convex functions described in Algorithm 14.3.
We note that the definitions of Lipschitz constants are different, with G ≤ γB,
where γ is the Lipschitz of the loss function, and B = sup{‖X‖2}. In addition,
one may regard the regret bound in the online learning analysis as an analogy
of the Rademacher complexity bound for ERM estimator. Azuma’s inequality is
the counterpart of McDiarmid’s inequality to obtain the concentration results.

The techniques used in online learning analysis are closely related to the sta-
bility analysis of Chapter 7. In fact, these two techniques often lead to similar
results. Stability analysis has the advantage of allowing the computational pro-
cedure (SGD) to go through the data more than once, while the online to batch
conversion technique only allows the computational procedure (online algorithm)
to go through the training data once.

For vector valued functions, the Rademacher complexity analysis is trickier
unless one works with covering numbers. This is due to the fact that the corre-
sponding comparison lemma based on the Lipschitz loss assumption may depend
on the dimensionality of the vector function, as discussed in Section 9.4. However,
the Lipschitz parameter of φ(w, ·) in Theorem 14.9 is with respect to the model
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parameter, and thus the difficulty of Rademacher complexity analysis does not
exist. In particular, we may directly analyze the structured-SVM loss of Exam-
ple 9.32 without much difficulty using online learning (or stability analysis).

Example 14.10. Consider the structured-SVM loss of Example 9.32, where

φ(w, z) = max
`

[γ(y, `)− w>(ψ(x, y)− ψ(x, `))].

If ‖ψ(x, y) − ψ(, `)‖2 ≤ B, then we can take G = B. Using Theorem 14.5, we
obtain

1

T

T∑
t=1

φ(wt−1, Zt) ≤
1

T

T∑
t=1

φ(w,Zt) +
‖w0 − w‖22

2ηT
+
η

2
B2.

By taking expectation, and using Jensen’s inequality with λ = 1/(ηT ), we obtain

EST EZ∼Dφ(ŵ, Z) ≤ EZ∼D φ(w,Z) +
λ

2
‖w0 − w‖22 +

1

2λT
B2.

For L2 regularization (or kernel methods), one can obtain a better bound using
strong convexity. Observe that for regularized loss, we take

`t(w) = φ(w,Zt) +
λ

2
‖w − w0‖22. (14.8)

If φ(w, z) is convex in w, then `t(w) is λ strongly convex.
The following result holds for strongly convex loss functions, and the specific

learning rate schedule was proposed by (Shalev-Shwartz et al., 2011) to solve
SVMs.

Theorem 14.11. Consider convex loss functions `t(w) : Ω → R, which are G-
Lipschitz (that is, ‖∇`t(w)‖2 ≤ G) and λ strongly convex. If we let ηt = 1/(λt) >
0 in Algorithm 14.3, then for for all w ∈ Ω, we have

T∑
t=1

`t(wt−1) ≤
T∑
t=1

`t(w) +
1 + lnT

2λ
G2.

Proof Similar to the proof of Theorem 14.5, we have

‖wt − w‖22 ≤‖w̃t − w‖22
=‖wt−1 − w − ηt∇`t(wt−1)‖22
=‖wt−1 − w‖22 − 2ηt∇`t(wt−1)>(wt−1 − w) + η2

t ‖∇`t(wt−1)‖22
≤‖wt−1 − w‖22 + 2ηt[`t(w)− `t(wt−1)]− ηtλ‖wt−1 − w‖22 +G2η2

t

=(1− ληt)‖wt−1 − w‖22 + 2ηt[`t(w)− `t(wt−1)] +G2η2
t ,

where strong-convexity is used to derive the second inequality. Note that 1−ηtλ =
ηt/ηt−1 and for notation convenience we take 1/η0 = 0. This implies that

η−1
t ‖wt − w‖22 ≤ η−1

t−1‖wt−1 − w‖22 + 2[`t(w)− `t(wt−1)] +G2ηt.
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By summing over t = 1 to t = T , we obtain

η−1
T ‖wT − w‖22 ≤ η−1

0 ‖w0 − w‖22 + 2
T∑
t=1

[`t(w)− `t(wt−1)] +G2
T∑
t=1

1

λt
.

Using
∑T

t=1(1/t) ≤ 1 + lnT , we obtain the desired bound.

It is possible to remove the lnT factor if we use weighted regret, as shown in
the following theorem.

Theorem 14.12. Consider convex loss functions `t(w) : Ω → R, which are
G-Lipschitz (that is, ‖∇`t(w)‖2 ≤ G) and λ strongly convex. If we let ηt =
2/(λ(t+ 1)) > 0 in Algorithm 14.3, then for for all w ∈ Ω, we have

T∑
t=1

2(t+ 1)

T (T + 3)
`t(wt−1) ≤

T∑
t=1

2(t+ 1)

T (T + 3)
`t(w) +

2G2

λ(T + 3)
.

Proof As in the proof of Theorem 14.11, we have

‖wt − w‖22 ≤ (1− ηtλ)‖wt−1 − w‖22 + 2ηt[`t(w)− `t(wt−1)] +G2η2
t .

This implies that η−2
t (1− ηtλ) ≤ η−2

t−1, where we set η−2
0 = 0:

η−2
t ‖wt − w‖22 ≤ η−2

t−1‖wt−1 − w‖22 + 2η−1
t [`t(w)− `t(wt−1)] +G2.

By summing over t = 1 to t = T , we obtain

η−2
T ‖wT − w‖22 ≤ η−2

0 ‖w0 − w‖22 + 2
T∑
t=1

η−1
t [`t(w)− `t(wt−1)] +G2T.

This leads to the bound.

Using batch to online conversion, we can obtain the following expected oracle
inequality as a straight-forward result of Theorem 14.11 and Theorem 14.12.

Corollary 14.13. Consider the regularized loss function (14.8) with w0 = 0,
where φ(w, z) is convex in w, and G Lipschitz in w. Moreover assume that
d(Ω) = sup{‖w‖2 : w ∈ Ω}. If Z1, . . . , ZT ∼ D are independent samples, then
we can obtain the following expected oracle inequality for Algorithm 14.3 if we
take learning rate in Theorem 14.11:

ESTEDφ(ŵ, Z) +
λ

2
‖ŵ‖22 ≤ inf

w∈Ω

[
EDφ(w,Z) +

λ

2
‖w‖22

]
+

ln(eT )

2λT
[G+ λd(Ω)]2.

We can also obtain the following expected oracle inequality for Algorithm 14.3 if
we take learning rate in Theorem 14.12 with

ŵ′ =
T∑
t=1

2(t+ 1)

T 2 + 3T
wt−1,
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then

ESTEDφ(ŵ′, Z) +
λ

2
‖ŵ′‖22 ≤ inf

w∈Ω

[
EDφ(w,Z) +

λ

2
‖w‖22

]
+

2[G+ λd(Ω)]2

λ(T + 3)
.

Proof Note that `t(w) is λ-strongly convex in w. Moreover, it is G + λd(Ω)
Lipschitz. We simply take expectation and apply Jensen’s inequality to obtain
the desired bounds.

In the stochastic setting, the online gradient algorithm is often referred to as
the stochastic gradient descent algorithm (SGD). The result in Corollary 14.13
directly imply both a generalization bound and convergence bound for SGD. In
order to obtain concentration bounds, or obtain an oracle inequality without the
assumption of d(Ω), one can apply the technique of sample dependent bounds
similar to the analysis of kernel methods as in Corollary 9.26 and Corollary 9.27.
If we restrict D to the uniform distribution of training data, then Corollary 14.13
implies the convergence of SGD to a minimizer of the training loss. However,
once we go through the data more than once, Corollary 14.13 cannot be used
to obtain a generalization bound for SGD. In this case, we have to combine the
convergence analysis of Corollary 14.13 and the stability analysis of Theorem 7.14
to obtain a generalization bound if we run SGD multiple times over the data. We
leave the resulting bound as an exercise. Moreover, some recent work studied
the generalization of SGD (and the related SGLD method) using the mutual
information based generalization bound of Corollary 10.22.

14.5 Online Nonconvex Optimization

Consider the online optimization problem with a nonconvex but bounded loss
function `t(w). In this case, in order to obtain a meaningful online regret bound,
it is necessary to consider randomized algorithms. We have the following negative
result for any deterministic algorithm.

Proposition 14.14. Consider Ω = {w0, w1, . . . , wT} that contains T members.
Given any deterministic online learning algorithm A that returns a model param-
eter wt−1 based on {`s : s = 1, . . . , t−1}, there exists a loss sequence `t(w) ∈ {0, 1}
so that

inf
w

T∑
t=1

`t(w) = 0,
T∑
t=1

`t(wt−1) = T.

Proof We simply pick the loss at each time t so that

`t(w) = 1(w = wt−1).

In this case, after time T , there exists one w ∈ Ω that differs from w1, . . . , wT . It
follows that

∑T
t=1 `t(w) = 0.
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In general, Proposition 14.14 implies that for a deterministic online learning
algorithm, the worst case regret for nonconvex loss cannot be logarithmic in
the size of the model family Ω. To resolve this difficult, one needs to employ
randomized algorithms. In fact, it is known that the Gibbs algorithm considered
in Section 7.4 for nonconvex supervised learning problems can also be used for
nonconvex online learning. In the online learning context, this algorithm is often
referred to as Hedge. In the setting of general online (nonconvex) optimization,
the Gibbs distribution of (7.9) can be defined after time t as follows

pt(w) ∝ p0(w) exp

(
−η

t∑
s=1

`s(w)

)
, (14.9)

where p0(w) is a prior on Ω.

Algorithm 14.4: Hedge Algorithm

Input: T , prior p0(w) on Ω, learning rate η > 0
1 Randomly draw w0 ∼ p0(w)
2 for t = 1, 2, . . . , T do
3 Observe loss `t(wt−1)
4 Randomly draw wt ∼ pt(w) according to (14.9)

We have the following result for the Hedge algorithm, using conditions similar
to those of Theorem 7.17.

Theorem 14.15. Assume that for all t:

sup
w∈Ω

`t(w)− inf
w∈Ω

`t(w) ≤M,

then Algorithm 14.4 has regret

T∑
t=1

Ewt−1∼pt−1(·)`t(wt−1) ≤ inf
p∈∆(Ω)

[
Ew∼p

T∑
t=1

`t(w) +
1

η
KL(p||p0)

]
+
ηTM2

8
,

where ∆(Ω) denotes the set of probability distributions on Ω.

Proof Let

Zt = − lnEw∼p0 exp

(
−η

t∑
s=1

`s(w)

)
be the log-partition function for observations up to time t. We have

Zt−1 − Zt = lnEw∼pt−1
exp (−η`t(w))

≤− ηEw∼pt−1
`t(w) +

η2M2

8
,

where the first equation is simple algebra, and the inequality follows from the
estimate of logarithmic moment generation function in Lemma 2.15. By summing
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over t = 1 to T , and noticing that Z0 = 0, we obtain

T∑
t=1

Ewt−1∼pt−1(·)`t(wt−1) ≤ 1

η
ZT +

ηTM2

8
.

The desired bound follows by applying Proposition 7.16 to reformulate the log-
partition function ZT .

If Ω contains a discrete number of functions, and consider p to be a measure
concentrated on a single w ∈ Ω, then KL(p||p0) = ln(1/p0(w)). We thus obtain
from Theorem 14.15

T∑
t=1

Ewt−1∼pt−1(·)`t(wt−1) ≤ inf
w∈Ω

[
T∑
t=1

`t(w) +
1

η
ln

1

p0(w)

]
+
ηTM2

8
.

If |Ω| = N with p0(w) = 1/N , then by setting η =
√

8 lnN/(TM2), we obtain

T∑
t=1

Ewt−1∼pt−1(·)`t(wt−1) ≤ inf
w∈Ω

T∑
t=1

`t(w) +M

√
T lnN

2
.

This matches the generalization result using empirical process in Chapter 3. Large
probability bounds can be obtained by using online to batch conversion with
Azuma’s inequality. Theorem 14.15 is also comparable to the stability analysis of
Gibbs algorithm in Example 7.18.

We note that the proof of Theorem 14.15 relied on the logarithmic moment
generating function in the proof of Chernoff bound, which leads to a regret of
O(
√
T ). In Theorem 14.11, it is shown that for strongly convex problems, one

can obtain an online regret bound of O(lnT ). The following result shows that if
the variance condition holds, then similar result can be obtained for nonconvex
problems as well by using Bennett’s inequality. The resulting bound is similar to
that of the stability analysis in Theorem 7.19.

Theorem 14.16. Assume that at each step t, we draw `t ∼ Dt, where Dt is an
arbitrary sequence of distributions, and the variance condition holds

Var`t∼Dt [`t(w)] ≤ c1E`t∼Dt [`t(w)],

Assume that − inft,w[`t(w)] ≤ M , and we choose a small enough η > 0 so that
ηc1φ(−ηM) < 1, where φ(z) = (ez − 1− z)/z2. Then Algorithm 14.4 has regret

E
T∑
t=1

`t(wt−1) ≤ 1

1− ηc1φ(−ηM)
inf

p∈∆(Ω)

[
Ew∼p

T∑
t=1

E`t∼Dt`t(w) +
1

η
KL(p||p0)

]
,

where ∆(Ω) denotes the set of probability measures on Ω.

Proof Let

Zt = −E lnEw∼p0 exp

(
−η

t∑
s=1

`s(w)

)
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be the log-partition function for observations up to time t. We have

E Zt−1 − E Zt
=E lnEw∼pt−1

exp (−η`t(w))

≤E
[
Ew∼pt−1

exp (−η`t(w))− 1
]

≤− ηE Ew∼pt−1
`t(w) + η2E Ew∼pt−1

φ(−ηM)Var`t∼Dt [`t(w)]

≤− ηE Ew∼pt−1
`t(w) + η2E Ew∼pt−1

φ(−ηM)Var`t∼Dt [`t(w)]

≤− η(1− ηc1φ(−ηM))E Ew∼pt−1
E`t∼Dt`t(w).

The first inequality used ln z ≤ z − 1. The second inequality used the fact that
φ(z) is an increasing function of z, which was used to estimate the moment gen-
erating function in the Bennett’s inequality. The last inequality used the variance
condition. By summing over t = 1 to T , and notice that Z0 = 0, we obtain

E
T∑
t=1

Ewt−1∼pt−1(·)`t(wt−1) ≤ 1

η(1− ηc1φ(−ηM))
ZT .

The desired bound follows by applying Proposition 7.16 to reformulate the log-
partition function ZT .

Since for the Gibbs distribution, if we replace `t(w) by `t(w) − `t(w∗) for any
w∗ ∈ Ω, the posterior is unchanged. Therefore if `t(w) − `t(w∗) satisfies the
variance condition, and |Ω| = N is finite, then we obtain from Theorem 14.16

E
T∑
t=1

`t(wt−1) ≤
T∑
t=1

E`t∼Dt`t(w∗) +
lnN

η(1− ηc1φ(−ηM))
,

which does not grow when T increases. This matches the result of empirical pro-
cess analysis in Chapter 3 using the variance condition and Bernstein’s inequality.
The result is also comparable with that of Theorem 7.19.

14.6 Historical and Bibliographical Remarks

The perceptron algorithm for binary classification was studied in (Rosenblatt,
1957, 1962; Novikoff, 1963), and is the precursor of neural networks. It is also
closely related to support vector machines (SVMs), because the perceptron mis-
take bound depends on the concept of margin, which motivated the design of
SVM loss. The idea of online learning was motivated by the analysis of the per-
ceptron algorithm, and a number of different online learning algorithms were
developed in the 1990s by the computational learning community. The multiclass
perceptron algorithm was used by Collins (2002) for natural language processing,
and it has achieved great success for a number of problems using hand-tuned
features. Although the standard analysis of perceptron algorithms assumes that
the data is linear separable, the result in Theorem 14.2 allows the data to be
non-separable.

The idea of online to batch conversion has been frequently used to obtain
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algorithms with performance guarantees in the supervised learning setting using
online learning techniques. The high probability results can be obtained as direct
consequences of martingale exponential tail inequalities.

One can extend the mistake analysis of the perceptron algorithms to gen-
eral convex loss functions, leading to the analysis of online convex optimization.
The problem was introduced into machine learning by Zinkevich (2003), and the
stochastic optimization setting was studied by Zhang (2004a). The resulting proof
technique is also very similar to that of the first order gradient descent methods in
the optimization literature (Nesterov, 2014). If we assume that each online sample
is drawn from an iid distribution, then the online learning technique can be used
to analyze both the convergence behavior and the generalization performance
of the underlying stochastic optimization problem. The analysis of nonsmooth
strongly convex function was studied by Shalev-Shwartz et al. (2011), with a
convergence rate of O(lnT/T ) using the standard online to batch conversion.
The O(lnT/T ) can be improved to O(1/T ) using weighted averaging as shown
in (Rakhlin et al., 2012; Shamir and Zhang, 2013). The results for convex and
strongly convex problems match the lower bounds of (Agarwal et al., 2009).

The Hedge algorithm is the online counterpart of the Gibbs algorithm, which
was named in (Freund and Schapire, 1997). It is related to the weighted majority
algorithm and the Winnow algorithm studied by Littlestone and Warmuth (1994);
Littlestone (1988). The analysis is analogous to the stability analysis of the Gibbs
algorithm in Section 7.4. In fact, online learning heavily relies on a similar stability
argument, which can be seen clearly in the analysis of online convex optimization.
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Exercises

14.1 Prove Theorem 14.6.

14.2 Consider Corollary 14.13. Show that even if d(Ω) = ∞, we can still derive an oracle

inequality for ŵ of the form

ESTEDφ(ŵ, Z) ≤ inf
w∈Ω

[
EDgw(Z) +

λ

2
‖w‖22

]
+ εT . (14.10)

Derive such a bound.

14.3 For the previous problem, obtain a large probability statement of an oracle inequality

which is of the form (14.10).

Hint: First derive a sample dependent version of the sub-Gaussian inequality with bound-

edness condition |gŵt−1
(z) − g0(z)| ≤ G‖ŵt−1‖2, where the concentration term depends

on the sample dependent quantity

O

G
√√√√ T∑
t=1

‖wt−1‖22

 .

Then obtain the desired oracle inequality.

14.4 Assume that we run SGD for strongly convex problem more than once over the data with

a learning rate schedule ηt = 1/(λt). Use Theorem 14.11 and Theorem 7.14 to obtain an

oracle inequality.

14.5 Use Theorem 14.16 to obtain an upper bound for the least squares problem in Section 12.4,

and compare the result to that of Proposition 12.21 and Corollary 12.20.
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15

Online Aggregation and Second Order
Algorithms

In Chapter 14, we introduced the basic definitions of online learning, and analyzed
a number of first order algorithms. In this chapter, we consider more advanced
online learning algorithms that inherently exploit second order information.

15.1 Bayesian Posterior Averaging

Consider conditional probability density estimation with log-loss (negative-log-
likelihood), where the loss function is

φ(w,Z) = − ln p(Y |w,X).

Although we consider conditional probability models for online learning, in the
regret bound analysis, we do not have to assume that the true conditional model
of p∗(Y |X) is given by p(Y |w,X) for any w.

Example 15.1. For discrete y ∈ {1, . . . ,K}, we have

p(y|w, x) =
exp(fy(w, x))∑K
k=1 exp(fk(w, x))

,

and (let Z = (x, y)):

φ(w,Z) = −fy(w, x) + ln
K∑
k=1

exp(fk(w, x)).

Example 15.2. For least squares regression with noise variance σ2, we may have

p(y|w, x) =
1√
2πσ

exp

(
−(y − f(w, x))2

2σ2

)
,

and (let Z = (x, y)):

φ(w,Z) =
(y − f(w, x))2

2σ2
+ ln(

√
2πσ).

We may also consider the noise as part of the model parameter, and let

p(y|[w, σ], x) =
1√
2πσ

exp

(
−(y − f(w, x))2

2σ2

)
φ([w, σ], Z) =

(y − f(w, x))2

2σ2
+ ln(

√
2πσ).
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In the Bayesian setting, the optimal statistical estimation of posterior density
for log-loss is the Bayesian posterior averaging estimator. Here we consider a prior
p0(w) on Ω. Given the training data Sn = {Z1, . . . , Zn}, the posterior distribution
is

p(w|Sn) =

∏n
i=1 p(Yi|w,Xi)p0(w)∫

Ω

∏n
i=1 p(Yi|w′, Xi)p0(w′) dw′

. (15.1)

Unlike ERM, the Bayesian posterior averaging method does not use p(y|ŵ, x)
for a specific ŵ ∈ Ω that is estimated from the training data, but instead use the
averaged probability estimate over the posterior as follows:

p̂(y|x,Sn) =

∫
Ω

p(y|w, x)p(w|Sn) dw. (15.2)

As pointed out in Section 14.1, such a method is referred to as improper online
learning.

In the online setting, we have the following result, which may be regarded as
a generic regret bound for the Bayesian posterior model averaging method.

Theorem 15.3. We have

−
T∑
t=1

ln p̂(Yt, |Xt,St−1) =− lnEw∼p0
T∏
t=1

p(Yt|w,Xt)

= inf
q∈∆(Ω)

[
−Ew∼q

T∑
t=1

ln p(Yt|w,Xt) + Ew∼q ln
q(w)

p0(w)

]
,

where ∆(Ω) is the set of probability distributions over Ω.

Proof We have

ln p̂(Yt, |Xt,St−1) = ln

∫
Ω

p(Yt|w,Xt)p(w|St−1) dw

= ln

∫
Ω

∏t
i=1 p(Yi|w,Xi)p0(w)dw∫

Ω

∏t−1
i=1 p(Yi|w′, Xi)p0(w′)dw′

= lnEw∈p0
t∏
i=1

p(Yi|w,Xi)− lnEw∈p0
t−1∏
i=1

p(Yi|w,Xi).

By summing over t = 1 to t = T , we obtain

T∑
t=1

ln p̂(Yt, |xt,St−1) = lnEw∈p0
T∏
t=1

p(Yt|w,Xt)

= sup
q

[
Ew∼q ln

T∏
t=1

p(Yt|w,Xt)− Ew∼q ln
q(w)

p0(w)

]
,

where the second equality used Proposition 7.16. This implies the desired result.

The following result is a direct consequence of Theorem 15.3.
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Corollary 15.4. If Ω = {w1, . . .} is discrete, then

−
T∑
t=1

ln p̂(Yt, |Xt,St−1) ≤ inf
w∈Ω

[
−

T∑
t=1

ln p(Yt|w,Xt)− ln p0(w)

]
.

Proof Given any w′ ∈ Ω, if we choose q(w) = 1 when w = w′, and q(w) = 0
when w 6= w′, then

−Ew∼q
T∑
t=1

ln p(Yt|w,Xt) + Ew∼q ln
q(w)

p0(w)
= −

T∑
t=1

ln p(Yt|w′, Xt)− ln p0(w′).

This implies the result.

If |Ω| = N is finite, and p0(w) = 1/N is the uniform distribution on Ω, then
we have

−
T∑
t=1

ln p̂(Yt, |Xt,St−1) ≤ inf
w∈Ω

[
−

T∑
t=1

ln p(Yt|w,Xt) + lnN

]
.

This means that we have a constant regret which is independent of T .
If we use online to batch conversion, then by taking expectation, we have

− 1

T
EST

T∑
t=1

EZ∼D ln p̂(Y |X,St−1) ≤ inf
w∈Ω

[
−EZ∼D ln p(Y |w,X) +

lnN

T

]
.

Therefore the statistical convergence rate of the Bayesian posterior averaging al-
gorithm for density estimation problem is naturally lnN/T . This rate is generally
superior to that of ERM, which is sub-optimal when the entropy number grows
quickly in ε (see Section 12.4 and Section 12.5). In comparison, under similar
conditions, the Bayesian posterior averaging algorithm can achieve the optimal
minimax convergence rate of Theorem 12.24 under a suitable prior. We may also
compare the Bayesian posterior average algorithm to the Gibbs algorithm studied
in Proposition 12.26. In particular, the Gibbs algorithm, which is a proper learn-
ing algorithm that samples a model from a generalized posterior distribution,
can bound the Hellinger distance between the estimated conditional density and
the true conditional density. On the other hand, the Bayesian posterior averag-
ing method, which is an improper learning algorithm that employs the posterior
mean, can bound the KL divergence between the estimated conditional density
and the true conditional density. The result for posterior averaging is stronger
because a small KL divergence implies a small Hellinger distance (see Proposi-
tion B.12) but not vice versa.

It is worth mentioning that the Bayesian posterior averaging result of this
section is valid even when the true conditional density does not belong to the
model class, and thus can directly handle model mis-specification with lnN/T
regret. However, Gibbs algorithm will not achieve a lnT/T regret under mis-
specification.
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15.2 Ridge Regression as Bayesian Posterior Averaging

The general regret bound for Bayesian posterior averaging can be used to analyze
the ridge regression method. Consider the following linear prediction problem
with least squares loss:

f(w, x) = w>ψ(x),

with loss function

(y − f(w, x))2.

Consider the following ridge regression estimator:

ŵ(Sn) = arg min
w

[
n∑
i=1

(Yi − w>ψ(Xi))
2 + ‖w‖2Λ0

,

]
, (15.3)

where Λ0 is a symmetric positive definite matrix, which is often chosen as λI
for some λ > 0 in applications. We have the following Bayesian interpretation of
ridge regression.

Proposition 15.5. Consider probability model

p(y|w, x) = N(w>ψ(x), σ2),

with prior

p0(w) = N(0, σ2Λ−1
0 ).

Then given Sn = {(X1, Y1), . . . , (Xn, Yn)}, we have

p(w|Sn) = N(ŵ(Sn), σ2Λ̂(Sn)−1),

where ŵ(Sn) is given by (15.3) and

Λ̂(Sn) =
n∑
i=1

ψ(Xi)ψ(Xi)
> + Λ0.

Given x, the posterior distribution of y is

p̂(y|x,Sn) = N
(
ŵ(Sn)>ψ(x), σ2 + σ2ψ(x)>Λ̂(Sn)−1ψ(x)

)
.

Proof It is clear that

p(w|Sn) ∝ exp

(
−

n∑
i=1

(w>ψ(Xi)− Yi)2

2σ2
−
‖w‖2Λ0

2σ2

)
.

Note that (15.3) implies that

n∑
i=1

(w>ψ(Xi)− Yi)2

2σ2
+
‖w‖2Λ0

2σ2

=
n∑
i=1

(ŵ>ψ(Xi)− Yi)2

2σ2
+
‖ŵ‖2Λ0

2σ2
+

1

2σ2
(w − ŵ)>Λ̂(Sn)(w − ŵ). (15.4)
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This implies the first desired result. Moreover, given x, and let the random vari-
able u = w>ψ(x) with w ∼ p(w|Sn), we have

u|x,Sn ∼ N(ŵ>ψ(x), σ2ψ(x)>Λ̂(Sn)−1ψ(x)).

Since in posterior distribution, the observation y|u ∼ u+ ε with ε ∼ N(0, σ2), we
know that

y|x,Sn ∼ N(ŵ>ψ(x), σ2ψ(x)>Λ̂−1ψ(x) + σ2).

This implies the desired result.

We note that the probability calculation in Theorem 15.3 is only for the purpose
of calculating the posterior distribution. In particular, the calculation does not
assume that the underlying model is correct. That is, the observed Yt may not
satisfy the underlying probability model. The result of Theorem 15.3 implies the
following predictive loss bound for ridge regression for all sequences ST .

Theorem 15.6. Consider the ridge regression method of (15.3). We have the
following result for any σ ≥ 0 and for all observed sequence ST :

T∑
t=1

[
(Yt − ŵ(St−1)>ψ(Xt))

2

bt
+ σ2 ln bt

]

= inf
w

[
T∑
t=1

(Yt − w>ψ(Xt))
2 + ‖w‖2Λ0

]
+ σ2 ln

∣∣Λ−1
0 ΛT

∣∣ ,
where

Λt = Λ0 +
t∑

s=1

ψ(Xs)ψ(Xs)
>,

and bt = 1 + ψ(Xt)
>Λ−1

t−1ψ(Xt).

Proof Assume w ∈ Rd. We note that from Gaussian integration that

Ew∼p0
T∏
i=1

p(Yi|w,Xi)

=

∫ |Λ−1
0 |−1/2

(2π)(T+d)/2σTσd
exp

(
− 1

2σ2

T∑
i=1

(Yi − w>ψ(Xi))
2 −
‖w‖2Λ0

2σ2

)
dw

=
|Λ−1

0 ΛT |−1/2

(2π)T/2σT
exp

(
− 1

2σ2

T∑
i=1

(Yi − ŵ(ST )>ψ(Xi))
2 −
‖ŵ(ST )‖2Λ0

2σ2

)
,

where the last equation used Gaussian integration with decomposition (15.4).
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That is,

− lnEw∼p0
T∏
i=1

p(Yi|w,Xi) = T ln(
√

2πσ) +
1

2
ln
∣∣Λ−1

0 ΛT

∣∣
+

1

2σ2

T∑
i=1

(Yi − ŵ(ST )>ψ(Xi))
2 +
‖ŵ(ST )‖2Λ0

2σ2
.

Moreover, from Proposition 15.5, we have

T∑
i=1

− ln p(Yt|ŵ(St−1), Xt)

=
T∑
t=1

[
(Yt − ŵ(St−1)>ψ(Xt))

2

2σ2bt
+

1

2
ln(bt) + ln(

√
2πσ)

]
.

The desired result now follows from Theorem 15.3.

Theorem 15.6 does not require Yt to be generated according to the probability
model N(w>ψ(x), σ2). Therefore the formula holds for all σ. In particular, by
matching σ dependent terms, we have

T∑
t=1

σ2 ln bt = σ2 ln
∣∣Λ−1

0 ΛT

∣∣ .
By choosing specific σ in Theorem 15.6, we can obtain the following result.

Corollary 15.7. Assume that Yt ∈ [0,M ] for t ≥ 1. Consider the ridge regression
method of (15.3), and let

Ŷt = max(0,min(M, ŵ(St−1)>ψ(Xt))).

We have

T∑
t=1

(Yt − Ŷt)2 ≤ inf
w

[
T∑
t=1

(Yt − w>ψ(Xt))
2 + ‖w‖2Λ0

]
+M2 ln

∣∣Λ−1
0 ΛT

∣∣ ,
where

ΛT = Λ0 +
T∑
s=1

ψ(Xs)ψ(Xs)
>.

Proof We can apply Theorem 15.6 by taking σ2 = M2. By using the following
inequality

0 ≤ 1− bt
bt

+ ln bt,
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we obtain

T∑
t=1

(Yt − Ŷt)2 ≤
T∑
t=1

[
(Yt − Ŷt)2 +M2 1− bt

bt
+M2 ln bt

]

≤
T∑
t=1

[
(Yt − Ŷt)2 + (Yt − Ŷt)2 1− bt

bt
+M2 ln bt

]
(15.5)

≤
T∑
t=1

[
(Yt − ŵ(St−1)>ψ(Xi))

2

bt
+M2 ln bt

]
,

where bt is defined in Theorem 15.6. Note that (15.5) used 1− bt ≤ 0 and (Yt −
Ŷt)

2 ≤M2. The desired result is now a direct application of Theorem 15.6.

In order to interpret the regret bound in Corollary 15.7, we need to find an
interpretable upper bound of Λ−1

0 ΛT . For Λ0 = λI, we have the following result.

Proposition 15.8. Given any X and ψ : X → H, where H is an inner product
space. Then for each λ > 0 and integer T , the embedding entropy of ψ(·) can be
defined as

entro(λ, ψ(X )) = sup
D

ln

∣∣∣∣I +
1

λ
EX∼Dψ(X)ψ(X)>

∣∣∣∣ .
If supX∈X ‖ψ(X)‖H ≤ B and dim(H) <∞, then

entro(λ, ψ(X )) ≤ dim(H) ln

(
1 +

B2

dim(H)λ

)
.

Moreover generally, assume that H has representation ψ(x) = [ψj(x)]∞j=1 with
2-norm, and given any ε > 0:

d(ε) = min

|S| : sup
x

∑
j /∈S

(ψj(x))2 ≤ ε

 .

Then

entro(λ, ψ(X )) ≤ inf
ε>0

[
d(ε) ln

(
1 +

B2

λd(ε)

)
+
ε

λ

]
.

Proof Let A = I + (λ)−1EX∼Dψ(X)ψ(X)> and d = dim(H), then

trace(A) ≤ d+ (λ)−1EX∼Dtrace(ψ(X)ψ(X)>) ≤ d+B2/λ.

Using the AM-GM inequality, we have

|A| ≤ [trace(A)/d]d ≤ (1 +B2/(dλ))d.

This implies the first desired bound. The proof of the second bound is left as an
exercise.
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Example 15.9. Consider Corollary 15.7 with Λ0 = λI. We can use Proposi-
tion 15.8 to obtain

T∑
t=1

(Yt − Ŷt)2 ≤ inf
w

[
T∑
t=1

(Yt − w>ψ(Xt))
2 + ‖w‖2Λ0

]
+M2d ln

(
1 +

TB2

dλ

)
,

where we assume that ‖ψ(x)‖2 ≤ B, and d is the dimension of ψ(x).

We note that we can also obtain regret bounds for infinite dimensional feature
maps using Proposition 15.8. The resulting bound is similar to that of the effective
dimension bound in Proposition 9.36. The latter is slightly better by a logarithmic
factor. Using Proposition 15.8, we can obtain regret bounds for nonparametric
models such as kernel methods.

Example 15.10. Consider the RKHS induced by the RBF kernel

k(x, x′) = exp

[
−‖x− x′‖22

2

]
,

on {x ∈ Rd : ‖x‖2 ≤ 1} with

k(x, x′) = exp

(
−‖x‖

2
2

2

)
exp

(
−‖x

′‖22
2

) ∞∑
j=0

1

j!
(x>x′)j.

The feature can be expressed as ψ = [ψj,k], where k corresponds to the Taylor
expansion terms of (x>x′)j. Given j0 ≥ 2, the total number of terms in {ψj,k :
j ≤ j0}) is (

j0 + d

d

)
≤ (j0 + d)d.

Moreover, when j0 ≥ 4:∑
j>j0

∑
k

ψj,k(x)2 = e−‖x‖
2
2

∑
j>j0

(x>x)j

j!
≤ 1

(j0 + 1)!

∑
j>j0

(j0 + 1)!

j!
<

1

ej0+1
e1 = e−j0 .

This implies that for ε ≤ e−4, we can set j0 = dln(1/ε)e ≥ 4 to obtain

d(ε) ≤ (ln(1/ε) + d+ 1)d.

Proposition 15.8 implies that if d ≥ 4, we can take B = 1 and ε = exp(−d):

entro(λ, ψ(X )) ≤ (2d+ 1)d ln

(
1 +

1

λ

)
+
e−d

λ
.

Similarly, from Proposition 9.36, we also obtain the following bound for the ef-
fective dimension:

dim(λ, ψ(X )) ≤ (2d+ 1)d +
e−d

λ
.
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If we consider the case of online to batch conversion, where Zt = (Xt, Yt)
are coming from an underlying distribution, then we can replace Yt ∈ [0,M ] by
ED [Y |X] ∈ [0,M ] and VarD[Y |X] ≤ σ2. This naturally leads to the following
result.

Corollary 15.11. Consider an arbitrary sequence {(Xt, Yt)}, where Yt|Xt is
generated from a distribution D. Assume that f∗(Xt) = E [Yt|Xt] ∈ [0,M ] and
Var[Yt|Xt] ≤ σ2. Consider the ridge regression method of (15.3), and let

f̂(w, x) = max(0,min(M,w>ψ(X))).

We have

EST
T∑
t=1

(f∗(Xt)− f̂(ŵ(St−1), Xt))
2

≤EST inf
w

T∑
t=1

[
(f∗(Xt)− w>ψ(Xt))

2 + ‖w‖2Λ0

]
+ (M2 + σ2)EST ln

∣∣Λ−1
0 ΛT

∣∣ ,
where ΛT = Λ0 +

∑T
s=1 ψ(Xs)ψ(Xs)

>.

Proof We have the following derivation, which is similar to that of Corollary 15.7:

EST
T∑
t=1

[
σ2 + (f∗(Xt)− f̂(ŵt−1(St−1), Xt))

2
]

≤EST
T∑
t=1

[
[σ2 + (f∗(Xt)− f̂(ŵt−1(St−1), Xt))

2]

+[σ2 + (f∗(Xt)− f̂(ŵt−1(St−1), Xt))
2]

1− bt
bt

+ [M2 + σ2] ln bt

]
≤EST

T∑
t=1

[
(Yt − ŵt−1(St−1)>ψ(Xt))

2

bt
+ [M2 + σ2] ln bt

]
.

In the above derivation, the proof of the first inequality is the same as that of
(15.5). The last inequality used (by noticing the truncation definition of f̂(w, x))

(f∗(Xt)− f̂(ŵt−1(St−1), Xt))
2 ≤ (f∗(Xt)− ŵt−1(St−1)>ψ(Xt))

2.

Now using Theorem 15.6, we obtain

EST
T∑
t=1

[
σ2 + (f∗(Xt)− f̂(ŵ(St−1), Xt))

2
]

≤ inf
w

[
EST

T∑
t=1

(Yt − w>ψ(Xt))
2 + ‖w‖2Λ0

]
+ [M2 + σ2]EST ln

∣∣Λ−1
0 ΛT

∣∣
= inf

w

[
EST

T∑
t=1

[σ2 + (f∗(Xt)− w>ψ(Xt))
2] + ‖w‖2Λ0

]
+ [M2 + σ2]EST ln

∣∣Λ−1
0 ΛT

∣∣ .
This implies the result.
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If we assume that (Xt, Yt) ∼ D are iid examples, then by taking expecta-
tion with respect to D, and by using Jensen’s inequality for the concave log-
determinant function, we obtain from Corollary 15.11 that with Λ0 = λI, we
have

EST
1

T

T∑
t=1

EX∼D (f∗(X)− f̂(ŵ(St−1), X))2

≤ inf
w

EX∼D
[
(f∗(X)− w>ψ(X))2 + λ‖w‖22

]
+
M2 + σ2

T
ln

∣∣∣∣I +
T

λ
EX∼Dψ(X)ψ(X)>

∣∣∣∣ .
Note that this bound is superior to the Rademacher complexity bound, and the
best convergence rate can be achieved is O(lnT/T ). The result can be compared
to Theorem 9.35, where log-determinant is replaced by trace.

15.3 Exponential Model Aggregation

Exponential model aggregation is a generalization of Bayesian model averaging by
using the average prediction over the Gibbs distribution (which may be regarded
as a generalization of Bayesian posterior distribution). Consider a general loss
function with Z = (X,Y ):

φ(w,Z) = L(f(w,X), Y ),

where L(f, y) is convex with respect to f . Consider a prior p0(w) on Ω, and the
following form of Gibbs distribution (which we will also refer to as posterior):

p(w|Sn) ∝ exp

[
−η

n∑
i=1

φ(w,Zi)

]
p0(w), (15.6)

where η > 0 is a learning rate parameter. The exponential model aggregation
algorithm computes

f̂(x|Sn) =

∫
Ω

f(w, x)p(w|Sn) dw, (15.7)

where p(w|Sn) is given by (15.6).

Algorithm 15.1: Online Exponential Model Aggregation

Input: η > 0, {f(w, x) : w ∈ Ω}, prior p0(w)

Output: f̂(·|ST )
1 for t = 1, 2, . . . , T do
2 Observe Xt

3 Let f̂t = f̂(Xt|St−1) according to (15.7)
4 Observe Yt

5 Compute L(f̂t, Yt)

Return: f̂(·|ST )
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In order to analyze Algorithm 15.1, we need to employ the concept of α-
exponential concavity introduced below.

Definition 15.12. A convex function g(u) is α-exponential concave for some
α > 0 if

e−αg(u)

is concave in u.

The following property is convenient to show exponential concavity.

Proposition 15.13. A convex function φ(u) is α exponentially concave if

α∇φ(u)∇φ(u)> ≤ ∇2φ(u).

Proof We have

∇2e−αφ(u) = e−αφ(u)
[
−α∇2φ(u) + α2∇φ(u)∇φ(u)>

]
≤ 0.

This implies the concavity of exp(−αφ(u)).

Proposition 15.14. If a convex function φ(u) is α-exponentially concave for
some α > 0, then it is also β exponentially concave for β ∈ (0, α].

Proof Let h(u) = exp(−αφ(u)). We note that exp(−βφ(u)) = g(h(u)), where
g(z) = zβ/α is an increasing and concave function. Since h(u) is concave, g(h(u))
is also concave.

Example 15.15. We note that if φ(u) is both Lipschitz ‖∇φ(u)‖2 ≤ G, and
λ-strongly convex, then

(λ/G2)∇φ(u)∇φ(u)> ≤ λI ≤ ∇2φ(u).

Proposition 15.13 implies that φ(u) is λ/G2 exponentially concave.

The following proposition says that the property of exponential concavity holds
under a linear transformation of the model parameter. Therefore in general, the
exponential concavity criterion is easier to satisfy than strong convexity.

Proposition 15.16. Assume φ(u) is α exponentially concave in u. Let φ̃(w) =
φ(w>X), then φ̃ is also α exponentially concave in w.

Proof Since e−αφ(u) is concave, we know e−αφ̃(w) = e−αφ(w>X) is also concave.

Example 15.17. Consider the loss function L(u, y) = (u− y)2. If |u− y| ≤ M ,
then L(u, y) is α-exponentially concave in u with α ≤ 1/(2M2).

Example 15.18. Consider a function f(·), and let L(f(·), y) = − ln f(y), then
L(f(·), y) is α exponentially concave in f(·) for α ≤ 1. This loss function is
applicable to conditional probability estimate ln f(y|x).

For exponentially concave loss functions, we have the following result for the
exponential model aggregation algorithm.
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Theorem 15.19. Assume that L(f, y) is η-exponentially concave. Then (15.7)
satisfies the following regret bound:

T∑
t=1

L(f̂(Xt|St−1), Yt) ≤ inf
q

[
Ew∼q

T∑
t=1

L(f(w,Xt), Yt) +
1

η
Ew∼q ln

q(w)

p0(w)

]
.

Proof Since e−ηL(f,y) is concave in f , we obtain from Jensen’s inequality

ln

∫
e−ηL(f(w,x),y)p(w|St−1)dw ≤ ln e−ηL(f̂(x|St−1),y).

With (x, y) = (Xt, Yt), this can be equivalently rewritten as

L(f̂(Xt|St−1), Yt) ≤
−1

η
ln

∫
Ω

exp(−η
∑t

i=1 L(f(w,Xi), Yi))p0(w)dw∫
Ω

exp(−η
∑t−1

i=1 L(f(w,Xi), Yi))p0(w)dw
.

By summing over t = 1 to t = T , we obtain

T∑
t=1

L(f̂(Xt|St−1), Yt) ≤
−1

η
ln

∫
Ω

exp

(
−η

T∑
i=1

L(f(w,Xi), Yi)

)
p0(w)dw.

Using Proposition 7.16, we obtain the desired result.

Example 15.20. Theorem 15.3 is a special case of Theorem 15.19, with η = 1,
L(f(·|w, x), y) = − lnP (y|w, x) and f(·|w, x) = P (·|w, x). In this case,

exp(−L(f(·|·), y)) = f(y|·)

is a component of f(·|·) indexed by y, and thus concave in f(·|·).

The following result holds for nonlinear least squares regression, which gener-
alizes the ridge regression result.

Example 15.21. Assume that L(f, y) = (f − y)2, and sup |f(w, x) − y| ≤ M .
Then for η ≤ 1/(2M2), L(f, y) is η exponentially concave. Therefore we have

T∑
t=1

(f̂(Xt|St−1)− Yt)2 ≤ inf
q

[
Ew∼q

T∑
t=1

(f(w,Xt)− Yt)2 +
1

η
Ew∼q ln

q(w)

p0(w)

]
.

In particular, if Ω is countable, then

T∑
t=1

(f̂(Xt|St−1)− Yt)2 ≤ inf
w∈Ω

[
T∑
t=1

(f(w,Xt)− Yt)2 +
1

η
ln

1

p0(w)

]
.

We may also compare this result for model aggregation to that of the Gibbs
algorithm in Theorem 14.16 which randomly samples a model from the Gibbs
distribution (also see Corollary 10.25). We note that model aggregation is superior
for misspecified models, because the regret with respect to the best function in the
function class is still O(1/n). In comparison, using ERM or the Gibbs algorithm,
one can only achieve a worst case regret of O(1/

√
n) when competing with the

best function in a nonconvex function class (see lower bounds in Example 3.25
and Proposition 8.12).
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Example 15.22. In Example 15.21, if we assume further that f(w, x) = w>ψ(x)

is linear, σ2 = 1/(2η) and p0(w) ∼ N(0, σ2/λ). Let q = N(ŵ(St−1), Σ̂) be the pos-
terior distribution of ridge regression. This implies that the model aggregation
estimator is given by the posterior mean f̂(x|St−1) = ŵ(St−1)>x, where ŵ(St−1)
is the ridge regression solution. One can thus obtain a bound similar to Corol-
lary 15.7 from Theorem 15.19. We leave it as an exercise.

15.4 Second Order Online Convex Optimization

We note that ridge regression may be regarded as a second order method. This
section shows that a similar analysis can be extended to more general second
order methods for α exponentially concave loss functions.

In general, we consider online learning with loss functions `1(w), . . . , `T (w),
where we assume that each `t(w) is α-exponentially concave. Algorithm 15.2,
referred to as online Newton step (ONS) in Hazan et al. (2007), may be regarded
as a generalization of the online ridge regression algorithm.

Algorithm 15.2: Online Newton Step

Input: η > 0, w0, A0, and a sequence of loss functions `t(w)
Output: wT

1 for t = 1, 2, . . . , T do
2 Observe loss `t(wt−1)
3 Let gt = ∇`t(wt−1)
4 Let At = At−1 + gtg

>
t

5 Let w̃t = wt−1 − ηA−1
t gt

6 Let wt = arg minw∈Ω(w − w̃t)>At(w − w̃t)
Return: wT

The following result shows that ONS can achieve a logarithmic regret under
exponential concavity. The result is analogous to that of the first order gradient
descent for strongly convex loss functions. However, it employs the condition of
α exponential concavity, which is strictly weaker than strong convexity according
to Example 15.15 and Proposition 15.16.

Theorem 15.23. Assume that for all t, the loss function `t : Ω→ R is α expo-
nentially concave and Lipschitz: ‖∇`t‖2 ≤ G. Let η−1 = β < 0.5 min(α, 1/(G∆2)).
Then ONS has the following regret bound:

T∑
t=1

`t(wt−1) ≤ inf
w∈Ω

[
T∑
t=1

`t(w) +
1

2η
(w − w0)>A0(w − w0)

]
+
η

2
ln
|AT |
|A0|

.

where ∆2 = sup{‖w′ − w‖2 : w,w′ ∈ Ω} is the diameter of Ω.

We will first prove the following lemma.

Lemma 15.24. For a function `t : Ω→ R that satisfies the conditions of Theo-
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rem 15.23, we have

`t(w
′) ≥ `t(w) +∇`t(w)>(w′ − w) +

β

2
(w′ − w)>∇`t(w)∇`t(w)>(w′ − w)

for all w,w′ ∈ Ω.

Proof Since exp(−α`t(w)) is concave and 2β ≤ α, we know that the function
h(x) = exp(−2β`t(w)) is concave, which implies that

h(w′) ≤ h(w) +∇h(w)>(w′ − w).

That is

exp(−2β`t(w
′)) ≤ exp(−2β`t(w))[1− 2β∇`t(w)>(w′ − w)].

By taking logarithm on each side, we obtain

−2β`t(w
′) ≤− 2β`t(w) + ln[1− 2β∇`t(w)>(w′ − w)]

≤− 2β`t(w)− 2β∇`t(w)>(w′ − w)− 1

4
(2β∇`t(w)>(w′ − w))2,

where the second inequality is because ln(1− z) ≤ −z − z2/4 when |z| < 1, and
|2β∇`t(w)>(w′ − w)| ≤ 2βG∆2 < 1.

Proof of Theorem 15.23 Consider w ∈ Ω, then from Lemma 15.24, we obtain

− (wt−1 − w)>gt ≤ `t(w)− `t(wt−1)− 1

2η
[(w − wt−1)>gt]

2. (15.8)

Using this inequality, we obtain:

(w̃t − w)>At(w̃t − w)

=(wt−1 − ηA−1
t gt − w)>At(wt−1 − ηA−1

t gt − w)

=(wt−1 − w)>At(wt−1 − w)− 2η(wt−1 − w)>gt + η2g>t A
−1
t gt

≤(wt−1 − w)>At(wt−1 − w) + 2η[`t(w)− `t(wt−1)]− [(w − wt−1)>gt]
2

+ η2g>t A
−1
t gt

(a)
=(wt−1 − w)>At−1(wt−1 − w) + 2η[`t(w)− `t(wt−1)]

+ η2trace(A−1
t (At −At−1))

(b)

≤(wt−1 − w)>At−1(wt−1 − w) + 2η[`t(w)− `t(wt−1)]

+ η2[ln |At| − ln |At−1|].

The first inequality used (15.8). We used gtg
>
t = At − At−1 twice for the last

two terms in (a). In (b), we used the concavity of the log-determinant function
ln |A| = trace(ln(A)) and Theorem A.18.

Now by using the fact that (wt − w)>At(wt − w) ≤ (w̃t − w)>At(w̃t − w), we
obtain

(wt − w)>At(wt − w) ≤(wt−1 − w)>At−1(wt−1 − w)

+ 2η[`t(w)− `t(wt−1)] + η2[ln |At| − ln |At−1|].
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We can now sum over t = 1 to t = T :

(wT − w)>AT (wT − w) ≤ (w0 − w)>A0(w0 − w)

+ 2η
T∑
t=1

[`t(w)− `t(wt−1)] + η2[ln |AT | − ln |A0|].

This implies the desired bound.

Using Proposition 15.8, we obtain a regret bound that is logarithmic in T for
ONS. If we let A0 = λI, then

T∑
t=1

`t(wt−1) ≤ inf
w∈Ω

[
T∑
t=1

`t(w) +
λ

2η
‖w − w0‖22

]
+
ηd

2
ln

(
1 +

TG2

dλ

)
.

If `t(w) = L(f(w,Xt), Yt) with (Xt, Yt) ∼ D, then this implies the following
online-to-batch conversion bound for s randomly chosen from 0 to T − 1:

ESTEsEDL(f(ws, X), Y ) ≤ inf
w∈Ω

[
EDL(f(w,X), Y ) +

λ

2ηT
‖w − w0‖22

]
+
ηd

2T

(
1 +

TG2

dλ

)
.

15.5 Adaptive Gradient Method

In many applications such as neural networks or learning with sparse features,
the gradient ∇`t(w) may have highly varying scales for different components of
the model parameter w. In practice, a popular method called AdaGrad (Adaptive
subGradient Method), which tries to normalize different components, is effective
for such problems.

Algorithm 15.3 describes AdaGrad with diagonal matrix inversion. The cor-
responding full matrix version employs Gt = A1−p

t instead of Gt = diag(At)
1−p.

The standard implementation of AdaGrad in the literature employs p = 0.5.
The version presented in Algorithm 15.3 is a generalization, which includes both
AdaGrad (p = 0.5) and the standard SGD (p = 1) as special cases.

Algorithm 15.3: Adaptive SubGradient Method (AdaGrad)

Input: η > 0, w0, A0, p ∈ [0.5, 1], and a sequence of loss functions `t(w)
Output: wT

1 for t = 1, 2, . . . , T do
2 Observe loss `t(wt−1)
3 Let gt = ∇`t(wt−1)
4 Let At = At−1 + gtg

>
t

5 Let Gt = diag(At)
1−p (full matrix version: Gt = A1−p

t )

6 Let w̃t = wt−1 − ηG−1
t gt

7 Let wt = arg minw∈Ω(w − w̃t)>Gt(w − w̃t)
Return: wT
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The commonly used diagonal matrix inversion version of AdaGrad has the
same computational complexity as the first order of gradient method, and thus
can be regarded as a modification of SGD. However, its analysis is closely related
to second order online methods studied in this chapter. In fact, we can obtain a
regret bound for AdaGrad by using the techniques of analyzing ONS (but without
assuming exponential concavity). The result shows the under suitable conditions,
it is beneficial to use AdaGrad rather than SGD when gradients have different
scales.

Theorem 15.25. Assume that for all t, the loss function `t : Ω → R is convex.
Then AdaGrad method (diagonal version) with p ∈ [0.5, 1) has the following regret
bound:

T∑
t=1

`t(wt−1) ≤ inf
w∈Ω

T∑
t=1

`t(w) +
η

2p
trace(diag(AT )p) +

∆2
q

2η
trace(diag(AT )p)(1−p)/p,

where q = 2p/(2p − 1), ∆q = sup{‖w′ − w‖q : w,w′ ∈ Ω} is the Lq-diameter of
Ω.

Proof Consider w ∈ Ω. The convexity of `t implies that

−2η(wt−1 − w)>gt ≤ 2η[`t(w)− `t(wt−1)].

Let Gt = diag(At)
1−p. We obtain the following result:

(w̃t − w)>Gt(w̃t − w)

=(wt−1 − ηG−1
t gt − w)>Gt(wt−1 − ηG−1

t gt − w)

=(wt−1 − w)>Gt(wt−1 − w)− 2η(wt−1 − w)>gt + η2g>t G
−1
t gt

≤(wt−1 − w)>Gt(wt−1 − w) + 2η[`t(w)− `t(wt−1)] + η2g>t G
−1
t gt

(a)
=(wt−1 − w)>Gt−1(wt−1 − w) + (wt−1 − w)>(Gt −Gt−1)(wt−1 − w)

+ 2η[`t(w)− `t(wt−1)] + η2trace((G
1/(1−p)
t )p−1(G

1/(1−p)
t −G1/(1−p)

t−1 ))

(b)

≤(wt−1 − w)>Gt−1(wt−1 − w) + (wt−1 − w)>(Gt −Gt−1)(wt−1 − w)

+ 2η[`t(w)− `t(wt−1)] + η2p−1[trace(G
p/(1−p)
t )− trace(G

p/(1−p)
t−1 )].

The first inequality used the convexity of `t. In (a), we used the fact that

g>t G
−1
t gt = trace((G

1/(1−p)
t )p−1(G

1/(1−p)
t −G1/(1−p)

t−1 )). In (b), we used the fact that

h(B) = p−1trace(Bp) is concave in B, and with B = G
1/(1−p)
t and B′ = G

1/(1−p)
t−1 ,

Theorem A.18 implies that trace(Bp−1(B−B′)) ≤ p−1[trace(Bp)− trace((B′)p)].
Now let p′ = p/(1 − p). We can use the fact that (wt − w)>Gt(wt − w) ≤

(w̃t − w)>Gt(w̃t − w), and then sum over t = 1 to t = T . This implies that

T∑
t=1

`t(wt−1) ≤
T∑
t=1

`t(w) +
RT
2η

+
η

2p

[
trace(Gp′

T )− trace(Gp′

0 )
]
,
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where

RT =(w0 − w)>G0(w0 − w) +
T∑
t=1

(wt−1 − w)>(Gt −Gt−1)(wt−1 − w)

≤∆2
qtrace(Gp′

0 )1/p′ +
T∑
t=1

∆2
qtrace(|Gt −Gt−1|p

′
)1/p′

≤∆2
qtrace(Gp′

T )1/p′ .

In the derivation, we note that trace(|G|p′)1/p′ is the vector p′-norm of the diagonal
of G. The first inequality used Hölder’s inequality and 2/q+1/p′ = 1. The second
inequality used the triangle inequality of p′-norm. This implies the bound.

Since

trace(diag(AT )p) = O(T p),

if we take optimal η = O(∆qtrace(diag(AT )p)−1/q) in Theorem 15.25, then the
regret bound becomes

O(∆qtrace(diag(AT )p)1/(2p)) = O(∆q

√
T ),

similar to that of Theorem 14.5 for p ∈ [0.5, 1]. In fact, the SGD bound of
Theorem 14.5 is a counterpart of p = 1 in Theorem 15.25.

However, for p < 1 the bound of Theorem 15.25 uses the Lq-diameter with
q > 2, and in this case ∆q of AdaGrad can be significantly smaller than ∆2

for SGD. This situation becomes important when gradient has different scales,
and dimensions with smaller gradients can benefit from larger model parame-
ter corresponding to such dimensions. If the gradient is sufficiently sparse, then
trace(diag(AT )p)1/(2p) with p < 1 can be similar to trace(diag(AT ))1/2, but ∆q �
∆2. The bound of Theorem 15.25 for p < 1 will be superior. In the specific case
of p = 0.5 (that is, q = ∞), we know ∆2 can be as large as Ω(

√
d∆∞), where d

is the dimension of the model parameter.

15.6 Historical and Bibliographical Remarks

In classical statistics, Bayesian posterior averaging is known to be the optimal
method for density estimation if the underlying Bayesian model assumption is
correct. Its online learning analysis without assuming the correctness of the un-
derlying model has been explored in Vovk (1990), who considered more general
aggregation strategies. The same idea has also been used by Yang and Barron
(1999) to derive optimal statistical estimators in statistical minimax analysis.
Vovk later used the same technique to study ridge regression, and obtained Corol-
lary 15.7 in (Vovk, 2001).

Aggregation method is known to be optimal for many statistical estimation
problems, and has been investigated by many researchers both in the online
setting, and in the supervised learning setting. For additional details on this topic,
we refer the readers to (Tsybakov, 2003; Audibert, 2007; Dalalyan and Tsybakov,

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



15.6. HISTORICAL AND BIBLIOGRAPHICAL REMARKS 333

2007; Audibert, 2009; Lecué, 2007; Rigollet and Tsybakov, 2007; Dai et al., 2012;
Lecué and Rigollet, 2014). The idea of exponential concavity was introduced by
Kivinen and Warmuth (1999) to analyze aggregation methods for a general class
of convex optimization problems with conditions weaker than strong convexity.
The idea was later adopted by Hazan et al. (2007) to analyze the second order
online Newton step method.

AdaGrad was proposed in (Duchi et al., 2011), and the original motivation
was to improve the effectiveness of SGD for training with sparse features. The
proof technique is closely related to that of online Newton step. The method
itself has been widely adopted in the training of neural networks, with multiple
variations. In particular, the idea of AdaGrad became an important component in
the popular Adam optimizer for deep learning (Kingma and Ba, 2015). We note
that the original version of AdaGrad in Duchi et al. (2011) was only with p = 0.5,
where a version of AdaGrad with full matrix Gt = A1/2 was also considered. We
also note that the resulting bound stated in Duchi et al. (2011) relied on the L2

diameter of Ω. Theorem 15.25 modified the statement so that its advantage over
Theorem 14.5 is more explicit.
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Exercises

15.1 Consider the conditional density estimation problem, with function class F = {p(y|w, x) :

w ∈ Ω} and log-loss. Consider the upper bound of Corollary 15.4 for Bayesian posterior

averaging. Under what conditions can you derive a matching lower bound using Theo-

rem 12.15? Compare the results to Corollary 12.25 and Proposition 12.26.

15.2 Prove the second inequality of Proposition 15.8.

15.3 In Proposition 15.8, consider ψ(x) = [ψj(x)]∞j=1 so that ψj(x)2 ≤ c0µj for µ ∈ (0, 1).

• Find an upper bound for d(ε).

• Use the bound for d(ε) to find an upper bound for the log-determinant function

ln
∣∣∣I +

1

λ
EX∼Dψ(X)ψ(X)>

∣∣∣ .
• Derive a generalization bound for ridge regression using Corollary 15.11.

• Compare to Theorem 9.35, with λ1,λ estimated from Proposition 9.36.

15.4 In Example 15.21, we assume that f∗(Xt) = E[Yt|Xt] but f∗ may not belong to the func-

tion class {f(w, x)}. Derive a regret bound for the Hedge algorithm using Theorem 14.16

and compare to that of the result for exponential model aggregation.

15.5 In Example 15.22, obtain a regret bound from Theorem 15.19, and compare to that of

Corollary 15.7.

15.6 In Algorithm 15.3. Let Gt = trace(diag(At))
1/2I. Derive a regret bound by mimicking the

proof of Theorem 15.25.
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16

Multi-armed Bandits

In supervised learning and online learning, we assume that the outcome y of an
observation is fully observed. For example, for online image classification, we first
predict the label ŷ of an image x, and then the true label y is revealed.

In comparison, for bandit problems, we consider the so-called partial informa-
tion setting, where only the outcome of the action taken is observed. For the
online classification example, we may assume that an image is multiply classified,
and we only predict one label, which is correct if the image contains the label and
incorrect otherwise. Assume the feedback we receive only says whether the pre-
dicted label ŷ is correct or not, but not what the true labels are, then it becomes
a bandit problem. In this chapter, we will investigate some bandit algorithms
that are commonly used.

16.1 Multi-armed Bandit Problem

The multi-armed bandit problem can be regarded as a repeated game, similar to
online learning.

Definition 16.1. In the multi-armed bandit (or MAB) problem, we consider K
arms. The environment generates a sequence of reward vectors for time steps t ≥ 1
as rt = [rt(1), . . . , rt(K)]. Each rt(a) is associated with an arm a ∈ {1, . . . ,K}.
In the literature, an arm a is also referred to as an action. At each time step
t = 1, 2, . . . , T ,

• The player pulls one of the arms at ∈ {1, . . . ,K}.
• The environment returns the reward rt(at), but does not reveal information on

any other arm a 6= at.

At each time t, a (randomized) bandit algorithm takes the historic observations
observed so far, and maps it to a distribution π̂t−1 over actions a ∈ {1, . . . ,K}.
We then draw a random action at (arm) from π̂t−1. Here π̂t−1 is referred to as
policy.

In the adversarial bandit problem, we are given an arbitrary reward sequence
{[r1(1), . . . , rt(K)] : t ≥ 1} before hand. The adversary in this setting is called
oblivious, who decides the rewards of all the rounds before the game starts (but
may take advantage of the bandit algorithm’s weakness). For this reward se-
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quence, the expected cumulative reward of a randomized bandit algorithm is

E
T∑
t=1

rt(at),

where the randomization is over the internal randomization of the bandit algo-
rithm. The expected regret is defined as

REGT = max
a

T∑
t=1

rt(a)− E
T∑
t=1

rt(at). (16.1)

If the bandit algorithm is deterministic: i.e. pulling a single arm at only at any
time step, then the regret is

REGT = max
a

T∑
t=1

rt(a)−
T∑
t=1

rt(at).

In the adversarial bandit problem, our goal is to minimize the expected regret
REGT (and the expectation is with respect to the internal randomization of the
algorithm instead of the data).

Another form of bandit problem, called stochastic bandit, assumes that the
reward rt(a) is drawn independently from a distribution Da, with mean µ(a) =
Ert(a)∼Da [rt(a)]. In this setting, the goal of bandit is to find a that maximizes the
expected reward µ(a). We are interested in the expected regret defined as:

REGT = T max
a
µ(a)− E

T∑
t=1

µ(at). (16.2)

Again, this regret is defined for each realization of the stochastic rewards, and
the expectation is with respect to the randomness of the algorithm. If algorithm
is deterministic and outputs at at each time t, then

REGT = T max
a
µ(a)−

T∑
t=1

µ(at).

We can further include randomization over data into the regret of stochastic
bandit, by considering expected regret as follows:

E REGT = T max
a
µ(a)− E

T∑
t=1

µ(at),

where the expectation is with respect to both the data and the internal random-
ization of the learning algorithm.

16.2 Upper Confidence Bound for Stochastic MAB

An important algorithm for stochastic bandit is Upper Confidence Bound (UCB),
which is a deterministic algorithm presented in Algorithm 16.1. In this method,
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16.2. UPPER CONFIDENCE BOUND FOR STOCHASTIC MAB 337

we define for each a = 1, . . . ,K

n̂t(a) =
t∑

s=1

1(as = a), µ̂t(a) =
1

n̂t(a)

t∑
s=1

rs(as)1(as = a), (16.3)

and a properly defined ct(a), so that the following upper confidence bound holds
for an optimal arm a∗ ∈ arg maxa µ(a) with high probability:

µ(a∗) ≤ µ̂t−1(a∗) + ĉt−1(a∗).

Algorithm 16.1: UCB Algorithm

Input: K and T ≥ K
1 for a = 1, . . . ,K do
2 Let n̂0(a) = 0
3 Let µ̂0(a) = 0

4 for t = 1, 2, . . . , T do
5 if t ≤ K then
6 Let at = t

7 else
8 Let at ∈ arg maxa[µ̂t−1(a) + ĉt−1(a)] according to (16.3)

9 Pull arm at and observe reward rt(at)

We first establish a regret bound for UCB which holds in high probability.
The corresponding analysis is more intuitive. A generic result can be obtained as
follows. We note that while the algorithm only uses upper confidence bound, the
analysis requires both upper and lower confidence bounds.

Lemma 16.2. Let a∗ ∈ arg maxa µ(a). Let

δ1 = Pr [∃t > K : µ(a∗) > µ̂t−1(a∗) + ĉt−1(a∗)]

be the probability that the upper confident bound fails on a∗. Let

δ2 = Pr
[
∃t > K & a ∈ {1, . . . ,K} \ {a∗} : µ(a) < µ̂t−1(a)− ĉ′t−1(a)

]
be the probability that the lower confident bound fails on a 6= a∗. Then for Algo-
rithm 16.1, we have with probability at least 1− δ1 − δ2:

REGT ≤
K∑
a=1

[µ(a∗)− µ(a)] +
T∑

t=K+1

[ĉt−1(at) + ĉ′t−1(at)]1(at 6= a∗).

Proof We have with probability 1− δ1 − δ2, the following hold for all t > K:

µ(a∗) ≤µ̂t−1(a∗) + ĉt−1(a∗), (upper confidence bound)

µ̂t−1(at)1(at 6= a∗) ≤[µ(at) + ĉ′t−1(at)]1(at 6= a∗). (lower confidence bound)
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CHAPTER 16. MULTI-ARMED BANDITS 338

It follows that for all t > K:

µ(a∗)1(at 6= a∗)

≤[µ̂t−1(a∗) + ĉt−1(a∗)]1(at 6= a∗) (upper confidence bound)

≤[µ̂t−1(at) + ĉt−1(at)]1(at 6= a∗) (UCB algorithm)

≤[µ(at) + ĉ′t−1(at) + ĉt−1(at)]1(at 6= a∗). (lower confidence bound)

For t ≤ K, we have

µ(a∗) = µ(at) + [µ(a∗)− µ(at = t)].

We obtain the bound by summing over t = 1 to t = T .

The analysis of bandit problem in Lemma 16.2 is similar to the empirical pro-
cess analysis of ERM. This technique can be used in other bandit problems such
as linear bandits. We note that although the algorithm uses an upper confidence
bound, it only requires the bound to hold for the optimal arm a∗. The regret anal-
ysis, however, relies on both upper confidence and lower confidence bounds. The
lower confidence bound needs to hold for all arms a, which implies that it holds
for at. The estimation of lower confidence requires uniform convergence. However,
the upper confidence bound does not have to satisfy for all at, and thus its esti-
mation does not require uniform convergence. Given upper and lower confidence
bounds, the regret bound for MAB becomes an estimation of the summation of
the confidence bounds, which requires showing that the confidence bounds shrink
to zero as the time step goes to infinity. A careful analysis of the confidence in-
terval size using Martingale exponential inequality leads to the following result
for MAB.

Theorem 16.3. Assume that rewards rt(a) ∈ [0, 1]. Let a∗ ∈ arg maxa µ(a). With
a choice of

ĉt(a) =

√
ln(2(n̂t(a) + 1)2/δ)

2n̂t(a)
,

we have with probability at least 1− δ:

REGT ≤ (K − 1) +
√

8 ln(2KT 2/δ)(T −K)K.

Proof Given any integer m ≥ 1 and a ∈ {1, . . . ,K}. We know that the sequence
r(at)1(at = a) satisfies the sub-Gaussian bound in Theorem 13.3 with σi =
0.51(ai = a). This means that

∑t
i=1 σ

2
i = 0.25n̂t(a). By letting σ = 0.5

√
m for

a constant m, and consider the event n̂t(a) = m, we obtain with probability at
most 0.5δ/(m+ 1)2:

∃t ≥ 1 : µ(a) > µ̂t(a) + ĉt(a) & n̂t(a) = m.

Similarly, with probability at most (0.5/K)δ/(m+ 1)2:

∃t ≥ 1 : µ(a) < µ̂t(a)− ĉ′t(a) & n̂t(a) = m,
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16.2. UPPER CONFIDENCE BOUND FOR STOCHASTIC MAB 339

where the lower confidence interval size is defined as

ĉ′t(a) =

√
ln(2K(n̂t(a) + 1)2/δ)

2n̂t(a)
.

It follows that the failure probability of upper confidence bound is given by

Pr [∃t > K : µ(a∗) > µ̂t(a∗) + ĉt(a∗)]

≤
∞∑
m=1

Pr [∃t > K : n̂t(a∗) = m & µ(a∗) > µ̂t(a∗) + ĉt(a∗)]

≤
∞∑
m=1

0.5δ/(m+ 1)2 ≤ 0.5δ.

Moreover, the failure probability of lower confidence bound is given by

Pr [∃t > K & a ∈ {1, . . . ,K} : µ(a) < µ̂t(a)− ĉ′t(a)]

≤
K∑
a=1

Pr [∃t > K : µ(a) < µ̂t(a)− ĉ′t(a)]

≤
K∑
a=1

∞∑
m=1

Pr [∃t > K : n̂t(a) = m & µ(a) < µ̂t(a)− ĉ′t(a)]

≤
K∑
a=1

∞∑
m=1

δ

2K(m+ 1)2
≤ δ/2.

The following bound follows from Lemma 16.2. With probability at least 1− δ:
T∑
t=1

[µ(a∗)− µ(at)]−
K∑
a=1

[µ(a∗)− µ(a)] ≤
T∑

t=K+1

[ĉt−1(at) + ĉ′t−1(at)]

≤2
T∑

t=K+1

√
ln(2K(n̂t−1(at) + 1)2/δ)

2n̂t−1(at)

=2
K∑
a=1

T∑
t=K+1

√
ln(2K(n̂t−1(at) + 1)2/δ)

2n̂t−1(at)
1(at = a)

(a)
=2

K∑
a=1

n̂T (a)−1∑
m=1

√
ln(2K(m+ 1)2/δ)

2m

≤2
K∑
a=1

∫ n̂T (a)−1

0

√
ln(2Kn̂T (a)2/δ)

2t
dt

=4
K∑
a=1

√
ln(2Kn̂T (a)2/δ)(n̂T (a)− 1)

2

≤4

√
ln(2KT 2/δ)(T −K)K

2
.
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CHAPTER 16. MULTI-ARMED BANDITS 340

Equation (a) used the fact that for each arm a, with at = a, n̂t−1(at) takes values
from m = 1 to m = n̂T (a) − 1, once for each value. In the derivation of the last
inequality, we used Jensen’s inequality and the concavity of

√
z, which implies

that

K∑
a=1

√
n̂T (a)− 1 ≤

√√√√K
K∑
a=1

(n̂T (a)− 1) =
√
K(T −K).

This implies the desired bound.

Example 16.4. Assume in Theorem 16.3, µ(a∗) ≈ 0. In such case, we can use
the following multiplicative Chernoff bound in Theorem 13.5 to obtain an upper
confidence bound. We know that with probability at most 1− δ:

µ(a) ≤ e

e− 1
µ̂t(a) +

e ln(1/δ)

(e− 1)n̂t(a)
& n̂t(a) = m.

This implies that we may use an upper confidence bound

ĉt(a) =
1

e− 1
µ̂t(a) +

e ln(2(n̂t(a) + 1)2/δ)

(e− 1)n̂t(a)

in Algorithm 16.1. In order to obtain a better regret bound than that of Theo-
rem 16.3, one also needs to use the multiplicative Chernoff bound for the lower
confidence interval, and than repeat the analysis of Theorem 16.3 with such a
multiplicative lower confidence interval bound. We leave it as an exercise.

Example 16.5. Assume for each arm a, the reward rt(a) is a sub-Gaussian
random variable, but different arms have different reward distributions:

lnE exp(λrt(a)) ≤ λErt(a) +
λ2

2
M(a)2,

where M(a) is known. Then one can obtain a bound similar to Theorem 16.3,
with an arm dependent UCB estimate involving M(a).

One can also obtain a refined version of Lemma 16.2 that replies on the gap
between a∗ and any other a.

Lemma 16.6. Let a∗ ∈ arg maxa µ(a). Let

δ1 = Pr [∃t > K : µ(a∗) > µ̂t−1(a∗) + ĉt−1(a∗)] ,

δ2 = Pr
[
∃t > K, a ∈ {1, . . . ,K} \ {a∗} : µ(a) < µ̂t−1(a)− ĉ′t−1(a)

]
.

Define ∆(a) = µ(a∗)− µ(a), and

T (a) = max {m : ∆(a) ≤ ĉt−1(a) + ĉ′t−1(a), n̂t−1(a) = m,K < t ≤ T} ∪ {0}.

Then for Algorithm 16.1, we have with probability at least 1− δ1 − δ2:

REGT ≤ inf
∆0>0

[
K∑
a=1

T (a)∆(a)1(∆(a) > ∆0) + (T −K)∆0

]
+

K∑
a=1

∆(a).
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Proof The proof of Lemma 16.2 shows that with probability at least 1 − δ, for
all t ≥ K + 1:

µ(a∗) ≤ µ(at) + [ĉ′t−1(at) + ĉt−1(at)]1(at 6= a∗),

which implies that

∆(at) ≤ [ĉ′t−1(at) + ĉt−1(at)]1(at 6= a∗).

Using the assumption of the lemma, we obtain for all a 6= a∗ and 1 ≤ t ≤ T ,
n̂t−1(a)1(at = a) ≤ T (a).

It follows that for all a 6= a∗, let t be the last time such that at = a, then t ≤ T
and n̂T (a) = n̂t−1(at) + 1 ≤ T (a) + 1. We thus obtain the following regret bound
for any ∆0 ≥ 0:

T∑
t=1

[µ(a∗)− µ(at)] =
K∑
a=1

n̂T (a)∆(a)

≤
K∑
a=1

∆(a) +
K∑
a=1

(n̂T (a)− 1)∆0 +
K∑
a=1

(n̂T (a)− 1)∆(a)1(∆(a) > ∆0)

≤
K∑
a=1

∆(a) + (T −K)∆0 +
K∑
a=1

T (a)∆(a)1(∆(a) > ∆0).

The second inequality used
∑K

a=1 n̂T (a) = T − K and n̂T (a) − 1 ≤ T (a). This
implies the bound.

We note that in Lemma 16.6, δ1 is still the failure probability for the upper
confidence bound, and δ2 is the failure probability for the lower confidence bound.
The intuition of the quantity T (a) is that after we have pulled arm a for more
than T (a) times, the confidence interval for a becomes smaller than the gap ∆(a),
which means that we will not choose arm a in the future. That is, T (a) is the
maximum number of times that one will pull a particular arm a. This means that
the regret caused by choosing a is upper bounded by T (a)∆(a).

Using Lemma 16.6, we can now obtain a gap dependent bound in Theorem 16.7.

Theorem 16.7. Assume that the reward rt(a) ∈ [0, 1]. Let a∗ ∈ arg maxa µ(a).
With a choice of

ĉt(a) =

√
ln(2(n̂t(a) + 1)2/δ)

2n̂t(a)
,

we have

REGT ≤ inf
∆0>0

[
(T −K)∆0 +

K∑
a=1

2 ln(2KT 2/δ)

∆(a)
1(∆(a) > ∆0)

]
+

K∑
a=1

∆(a).
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Proof From the proof of Theorem 16.3, we know that with the choice of

ĉ′t(a) =

√
ln(2K(n̂t(a) + 1)2/δ)

2n̂t(a)
,

the inequality ∆(a) ≤ ĉt−1(a) + ĉ′t−1(a) in the definition of T (a) implies that

∆(a) ≤

√
2 ln(2KT 2/δ)

n̂t−1(a)
.

This implies that

n̂t−1(a) ≤ 2 ln(2KT 2/δ)

∆(a)2
.

Therefore

T (a) ≤ 2 ln(2KT 2/δ)

∆(a)2
.

This implies the desired result from Lemma 16.6.

Example 16.8. We may take ∆0 = 0 in the gap dependent regret bound of
Theorem 16.7, and obtain

REGT ≤
K∑
a=1

2 ln(2KT 2/δ)

∆(a)
+K.

Example 16.9. The gap dependent regret bound of Theorem 16.7 implies the
gap independent regret bound of Theorem 16.3. In fact, if we take

∆0 =

√
K ln(KT/δ)

T
,

then we obtain a regret of

REGT = O

(√
KT ln(KT/δ)

)
from Theorem 16.7.

Results we have obtained so far require the construction of UCB knowing
the confidence level δ. This might be inconvenient for some applications. In the
following, we show that using a similar analysis, it is possible to obtain a regret
analysis with a construction of UCB that does not depend on either T or δ. In
the analysis, we will first introduce a lemma to replace Lemma 16.6 without the
need to consider events that hold uniformly for all t. Lemma 16.10 is a variant
of Lemma 16.6 that considers each specific time step t separately. It leads to a
similar result that holds in expectation.

Lemma 16.10. Let a∗ ∈ arg maxa µ(a). For t > K, define

δ1(t) = Pr [µ(a∗) > µ̂t−1(a∗) + ĉt−1(a∗)] ,

δ2(t) = Pr
[
∃a ∈ {1, . . . ,K} \ {a∗} : µ(a) < µ̂t−1(a)− ĉ′t−1(a)

]
,
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and let

δ =
∑
t>K

[δ1(t) + δ2(t)].

Define ∆(a) = µ(a∗)− µ(a), M = supa ∆(a), and

T (a) = max {m : ∆(a) ≤ ĉt−1(a) + ĉ′t−1(a), n̂t−1(a) = m,K < t ≤ T} ∪ {0}.

Then for Algorithm 16.1, we have

E REGT ≤ inf
∆0>0

[
K∑
a=1

T (a)∆(a)1(∆(a) > ∆0) + (T −K)∆0

]
+ (K + δ)M.

Proof We obtain for any fixed t > K that with probability 1− δ1(t):

µ(a∗) ≤ µ̂t−1(at) + ĉt−1(at).

Moreover, with probability 1− δ2(t):

µ̂t−1(at) ≤ µ(at) + ĉ′t−1(at).

It follows from the same derivation of Lemma 16.2 that with probability 1 −
δ1(t)− δ2(t):

∆(at) = µ(a∗)− µ̂t−1(at) ≤ ĉt−1(at) + ĉt−1(at).

This implies that n̂t−1(at) ≤ T (at). It follows that for all t > K:

Pr(n̂t−1(at) > T (at)) ≤ δ1(t) + δ2(t). (16.4)

Now let

δ(a) =
T∑

t=K+1

E 1(at = a, n̂t−1(a) > T (a)),

then
K∑
a=1

δ(a) =
K∑
a=1

T∑
t=K+1

Pr(at = a, n̂t−1(a) > T (a))

=
T∑

t=K+1

Pr(n̂t−1(at) > T (at)) ≤ δ.

The last inequality used (16.4) and the definition of δ.
Now we have for any fixed a:

E n̂T (a) = 1 + E
T∑

t=K+1

1(at = a)

=1 +
T∑

t=K+1

E 1(at = a, n̂t−1(a) ≤ T (a)) +
T∑

t=K+1

E 1(at = a, n̂t−1(a) > T (a))

≤1 + T (a) + δ(a). (16.5)
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The last inequality used the definition of δ(a).
We can now bound the expected regret as follows.

E
T∑
t=1

[µ(a∗)− µ(at)] =
K∑
a=1

∆(a)E n̂T (a)

≤
K∑
a=1

∆(a)E (n̂T (a)− 1)1(∆(a) > ∆0)

+
K∑
a=1

∆(a)E (n̂T (a)− 1)1(∆(a) ≤ ∆0) +KM

≤
K∑
a=1

[T (a)∆(a)1(∆(a) > ∆0) + δ(a)M ] + ∆0E
K∑
a=1

(n̂T (a)− 1) +KM

≤
K∑
a=1

∆(a)T (a)1(∆(a) > ∆0) + (T −K)∆0 + (δ +K) ·M.

The first inequality used ∆(a) ≤ M . The second inequality used ∆(a) ≤ M and
(16.5). The last inequality used

∑
a δ(a) ≤ δ, and

∑
a[n̂T (a)− 1] = T −K. This

implies the desired bound.

Theorem 16.11. Assume that the reward rt(a) ∈ [0, 1]. Let a∗ ∈ arg maxa µ(a).
With a choice of

ĉt(a) =

√
α ln t

2n̂t(a)

for α > 1. We have

E REGT ≤ inf
∆0>0

[
K∑
a=1

2α ln(T )

∆(a)
1(∆(a) > ∆0) + T∆0

]
+
α+ 1

α− 1
(K + 1).

Proof Using the same analysis of Theorem 16.3, we know that for any fixed
t = K + 1, . . . , T , with probability at least 1− (t− 1)−α:

µ(a∗) ≤ µ̂t−1(a∗) + ĉt−1(a∗).

Moreover, with probability at least 1−K(t− 1)−α: for all a,

µ̂t−1(a) ≤ µ(a) + ĉ′t−1(a) c′t−1(a) =

√
α ln(t− 1)

2n̂t−1(a)
.

Therefore we can choose δ1(t) = (t− 1)−α and δ2(t) = K(t− 1)−α. We have

δ =
∞∑

t=K+1

[δ1(t) + δ2(t)] ≤ (K + 1)
∞∑
t=K

t−α

≤(K + 1)K−α + (K + 1)

∫ ∞
K

t−αdt ≤ 2

α− 1
(K + 1).
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16.3. LOWER BOUNDS FOR STOCHASTIC MAB 345

The inequality ∆(a) ≤ ĉt−1(a) + ĉ′t−1(a) in the definition of T (a) implies that

n̂t−1(a) ≤ 2α ln(T )

∆(a)2
.

It follows that

T (a) ≤ 2α ln(T )

∆(a)2
.

We can now apply Lemma 16.10 to obtain the desired bound.

16.3 Lower Bounds for Stochastic MAB

The following result gives a lower bound on any consistent algorithm for MAB.

Theorem 16.12 (Lai and Robbins, 1985). Assume rt(a) ∈ {0, 1}. Consider an
algorithm such that ∀β ∈ (0, 1), limT→∞(REGT/T

β) = 0, then

lim inf
T→∞

E [
∑T

t=1 1(at = a)]

lnT
≥ 1

KL(µ(a), µ∗)

for all a, where µ∗ = maxa µ(a).

The result implies that

lim inf
T→∞

E REGT

lnT
≥

K∑
a=1

∆(a)

KL(µ(a), µ∗)
1(µ(a) < µ∗).

Since KL(µ(a), µ∗)
−1 = Ω(∆(a)−2), it follows that the UCB bound in The-

orem 16.11 has the worst case optimal dependency on the gap ∆(a) up to a
constant. One may also obtain more refined dependency on ∆(a) using the KL-
divergence version of the Hoeffding’s inequality in Theorem 2.17. This leads to
KL-UCB as in Garivier and Cappé (2011); Maillard et al. (2011), with a gap-
dependence that matches the lower bound of Theorem 16.12.

By taking ∆0 = O(
√
K ln(T )/T ) in Theorem 16.11, we can obtain a gap-

independent expected regret bound similar to Theorem 16.3:

E REGT = O

(√
KT ln(T )

)
.

The lower bound, stated in Theorem 16.13, is Ω(
√
KT ). It only matches the

regret bound for UCB in Theorem 16.11 up to a log(T ) factor. It is known that
there exists an algorithm that can remove this log T factor, and achieve the lower
bound up to a constant (Audibert and Bubeck, 2009).

Theorem 16.13. Given K ≥ 2 and T ≥ 1. Then there exists a distribution
over the assignment of rewards rt(a) ∈ [0, 1] such that the expected regret of any
algorithm (where the expectation is taken with respect to both the randomization
over rewards and the algorithm’s internal randomization) is at least

min(0.02T, 0.06
√
KT ).
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CHAPTER 16. MULTI-ARMED BANDITS 346

Proof We would like to apply Theorem 13.24 with d = 1 and m = K. We
consider a family of K distributions PZ = {qτ , τ = 1, . . . ,K}, and for each
arm a, the distribution qτ (a) is a Bernoulli distribution r ∈ {0, 1} with mean
E[r] = 0.5 + ε1(a = τ) with ε ∈ (0, 0.1] to be determined later. We also define
q0(a) as a Bernoulli distribution r ∈ {0, 1} with mean E[r] = 0.5. Since by
construction, qτ ∼1 q

τ ′ for all τ, τ ′ ∈ [K], we can map them all to qτ1 = q0.
If we pull an arm θ, we have

Q(θ, qτ ) = ε1(θ 6= τ).

It is clear that [Q(θ, qτ ) + Q(θ, qτ
′
)] ≥ ε for τ 6= τ ′. Consider n ≤ T samples

generated sequentially by an arbitrary bandit algorithm and qτ (a), and let the
resulting distribution that generates Sn as pτ (Sn), where Sn = {a1, r1, . . . , an, rn}.

Let ε = min(0.1, 0.24
√
K/T ). We have for all at:

1

K

K∑
τ=1

KL(q0(at)||qτ (at)) =
1

K

K∑
τ=1

KL(q0(at)||qτ (at))1(at = τ)

=
1

K
KL(0.5||0.5 + ε) ≤ 0.5ε2

K(0.5 + ε)(0.5− ε)
≤ 2.1

K
ε2.

The first inequality is left as Exercise 16.4. The second inequality used ε ≤ 0.1.
Theorem 13.24 (with d = 1, m = K, and β2

1,t = 2.1
K
ε2) implies that at the end of

the n-th iteration, θ̂ of any learning algorithm satisfies

1

K

K∑
τ=1

EqτEθ̂ Q(θ̂, qτ ) ≥0.5ε

(
1−

√
2× 2.1(n/K)ε2

)
≥0.25ε = 0.25 min

(
0.1, 0.24

√
K/T

)
.

The second inequality used (n/K)ε2 ≤ 0.242. Since this holds for all steps n ≤ T ,
we obtain the desired bound.

It is worth noting that due to the special structure of MAB, Theorem 13.22
is not suitable because q̂(St−1) may pick an arm at = τ for any qτ , and in such
case, KL(qτ ||qτ ′) = KL(0.5 + ε||0.5) for all τ ′ 6= τ . Therefore a direct application
of Theorem 13.22 can only lead to a loose lower bound of Ω(

√
T ). We leave the

detailed calculation to an exercise.

16.4 Arm Elimination Algorithm for Stochastic Linear Bandits

In the standard MAB problem, the regret bound scales with the number of arms
K. This might not be desirable for problems that contain many arms. In order
to deal with such problems, we need to impose additional structures that model
correlations among arms. A popular model for such problems is stochastic linear
bandits, which allow large action (arm) space. In this section, we assume that
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16.4. ARM ELIMINATION FOR STOCHASTIC LINEAR BANDITS 347

the set of arms (or actions) is A, which is finite: |A| = K. Each time, we pull
one arm a ∈ A. We also know a feature vector φ(a) ∈ H (where H is an inner
product space) so that the expected reward is a linear function

µ(a) = θ>∗ ψ(a)

with an unknown parameter θ∗ ∈ H to be estimated. In this section, we present
an arm elimination method for stochastic linear bandits in Algorithm 16.2 with
regret depending linearly on dim(λ, ψ(A), T ) and logarithmically on K. Here
dim(λ, ψ(A), T ) is defined in Proposition 9.36). The lower order term also depends
on the quantity entro(λ, ψ(A), T ) in Proposition 15.8.

Algorithm 16.2: Arm Elimination for Stochastic Linear Bandit

Input: A, {ψ(a) : a ∈ A}
1 Let A0 = A
2 for ` = 1, 2, . . . , L do
3 Set parameters λ`, T`, β`, n`, η`
4 Use Algorithm 9.1 (with λ = λ`, n = n`, η = η`) to obtain a policy∑m`

i=1 π`,i1(a = a`,i) with m` ≤ n` examples {a`,s ∈ A`−1}
5 For each i = 1, . . . , T`, pull a`,i for J` = dT`π`,ie times, and observe

rewards r`,i,j ∈ [0, 1] (j = 1, . . . , J`)

6 Let θ` = arg minθ
∑m`

i=1

∑J`
j=1

[
(θ>ψ(a`,i)− r`,i,j)2 + λ`‖θ‖22

]
7 Let a` = arg maxa∈A`−1

θ>` ψ(a)
8 Let A` = {a ∈ A`−1 : θ>` ψ(a) ≥ θ>` ψ(a`)− β`}

Theorem 16.14. Assume that we know ‖θ∗‖2 ≤ B. Let a∗ ∈ arg maxa∈A µ(a).
Given η > 0. For each ` ≥ 1 we set

λ` = α2/(B2T`), T` = 2`−1,

n` = d8entro(λ`, ψ(A))e, η` = min(0.1, 0.1/ dim(λ`, ψ(A))),

β` = 2

(
α+

√
ln(2K(`+ 1)2/δ)

2

)√
4 dim(λ`, ψ(A))

T`

in Algorithm 16.2. We also define β0 = 0.5. It follows that ∀` ≥ 0, a∗ ∈ A` and

sup{µ(a∗)− µ(a) : a ∈ A`} ≤ 2β`.

This implies that after iteration L, and we have pulled total number of T ≤
(2L − 1) +

∑L
`=1 n` arms, with probability at least 1− δ:

REGT ≤ 2
L∑
`=1

(n` + T`)β`−1.

Proof The claim holds for ` = 0. Assume the claim holds for `− 1, and consider

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang



CHAPTER 16. MULTI-ARMED BANDITS 348

stage `. Let Σ` =
∑m`

i=1 J`[ψ(a`,i)ψ(a`,i)
>+λ`I] and Σ̃` =

∑m`
i=1 π`,i[ψ(a`,i)ψ(a`,i)

>+
λ`I]. From Example 9.41, we have for all a ∈ A`−1:

‖ψ(a)‖2
Σ−1
`
≤
‖ψ(a)‖2

Σ̃−1
`

T`
≤ 4 dim(λ`, ψ(A))

T`
.

It follows from Lemma 9.34 (with σ = 0.5 since r`,s ∈ [0, 1]) and a union bound
over a ∈ A`−1 that with probability at least 1− δ/(`+ 1)2, for all a ∈ A`−1,

θ>` ψ(a)− 0.5β` ≤ θ>∗ ψ(a) ≤ θ>` ψ(a) + 0.5β`. (16.6)

Therefore

θ>` ψ(a∗) ≥ θ>∗ ψ(a∗)− 0.5β` ≥ θ>∗ ψ(a`)− 0.5β` ≥ θ>` ψ(a`)− β`.

The first and the third inequalities used (16.6). The second inequality used the
definition of a∗ as the optimal arm. Because a∗ ∈ A`−1 by the induction hypoth-
esis, we know that a∗ ∈ A`.

Moreover, if a ∈ A`, then

θ>∗ ψ(a) ≥θ>` ψ(a)− 0.5β` ≥ θ>` ψ(a`)− 1.5β` ≥ θ>` ψ(a∗)− 1.5β`

≥θ>∗ ψ(a∗)− 2β`.

The second inequality used the definition of A`. The third inequality used the
definition of a`. The first and the last inequalities used (16.6). By taking the
union bound over `, we complete the proof.

Example 16.15. For finite dimensional linear bandits, we can take dim(H) = d
and α = 1 in Theorem 16.14. Proposition 15.8 implies that

dim(λ`, ψ(A)) ≤ d, entro(λ`, ψ(A)) ≤ d ln(1 + (BB′)2/(λ`d)) = O(d`),

where we assume that B′ = supa ‖ψ(a)‖2. We thus have n` = O(d lnT ). One can
obtain a regret of

O

(√
Td ln(KT )

)
.

If we ignore the log-factors, this generalizes the result of MAB. In fact, we note
that MAB can be regarded as a linear bandit with ψ(a) = ea ∈ RK , where ea is
the vector with value 1 at component a, and value 0 elsewhere. Therefore with
d = K, we recover MAB results up to logarithmic factors.

Example 16.16. We may also consider nonparametric problems with infinite
dimensional embedding. We assume that

dim(λ`, ψ(A)) = λ−q`

for some q ∈ (0, 1). In Theorem 16.14, with α =
√

ln(8KT/δ), we can upper
bound T0(α) by a constant, and obtain a regret of

O

(√
(ln(KT ))1−qT q+1

)
.
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16.5. THOMPSON SAMPLING FOR STOCHASTIC MAB 349

16.5 Thompson Sampling for Stochastic MAB

As a popular algorithm for bandit problems, Thompson sampling has a rather
long history (Thompson, 1933). The basic idea is to consider a prior distribution
on the mean of the reward distribution of every arm. At any time step, sample
a mean from the posterior for each arm, and then pick the arm with the highest
sampled mean.

In practice, it will be convenient to use a model so that the posterior is simple.
This can be achieved with conjugate priors. For example, we can assume that a
Gaussian prior and reward likelihood:

µ(a) ∼ N(0, 1), rt(a) ∼ N(µ(a), 1).

Then the posterior for arm a after time step t− 1 is given by the normal distri-
bution N(µ̂t−1(a), V̂t−1(a)), where

µ̂t−1(a) =

∑t−1
s=1 1(as = a)rs(as)

1 +
∑t−1

s=1 1(as = a)
, V̂t−1(a) =

1

1 +
∑t−1

s=1 1(as = a)
. (16.7)

This leads to Algorithm 16.3.

Algorithm 16.3: Thompson Sampling (Gaussian)

Input: K and T
1 for t = 1, 2, . . . , T do
2 for a = 1, . . . ,K do

3 Sample µ̃t(a) ∼ N(µ̂t−1(a), V̂t−1(a)) according to (16.7)

4 Let at = arg maxa µ̃t(a)
5 Pull arm at and observe reward rt(at)

Alternatively, for binary rewards rt(a) ∈ {0, 1}, we can use Beta prior with
Bernoulli likelihood:

µ(a) ∼ Beta(1, 1), rt(a) ∼ Bernoulli(µ(a)).

The posterior for arm a after time step t− 1 is given by the Beta distribution

Beta(1 + n̂1
t−1(a), 1 + n̂0

t−1(a))

where for y ∈ {0, 1}:

n̂yt−1(a) =
t−1∑
s=1

1(as = a)1(rs(as) = y). (16.8)

This leads to Algorithm 16.4.
It is known (Agrawal and Goyal, 2013a) that for Thompson Sampling, we can

obtain a regret bound of O(
√
TK lnK) for Gaussian Thompson Sampling, and

a bound of O(
√
TK lnT ) for Beta Thompson Sampling. Moreover, near optimal
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Algorithm 16.4: Thompson Sampling (Beta)

Input: K and T
1 for t = 1, 2, . . . , T do
2 for a = 1, . . . ,K do
3 Sample µ̃t(a) ∼ Beta(1 + n̂1

t−1(a), 1 + n̂0
t−1(a)) according to (16.8)

4 Let at = arg maxa µ̃t(a)
5 Pull arm at and observe reward rt(at) ∈ {0, 1}

gap-dependent bound can also be obtained. In general, one may analyze Thomp-
son sampling using techniques similar to the analysis of UCB, by upper bound the
number of times each suboptimal arm can be pulled based on confidence interval
calculations. The analysis requires an anti-concentration argument, as illustrated
in Exercise 16.7.

16.6 EXP3 for Adversarial MAB

The UCB algorithm can only be applied to stochastic bandit problems. For adver-
sarial bandits, one can use an exponential weighting method motivated from the
Hedge algorithm for online learning. The algorithm, referred to as EXP3 (Auer
et al., 2002b), is given in Algorithm 16.5.

Algorithm 16.5: EXP3

Input: K, T , γ ∈ (0, 1]
1 for a = 1, . . . ,K do
2 Let w0(a) = 1

3 for t = 1, 2, . . . , T do

4 Let wt−1 =
∑K

a=1wt−1(a)
5 for a = 1, . . . ,K do
6 Let π̂t(a) = (1− γ)wt−1(a)/wt−1 + γ/K

7 Sample at according to π̂t(·)
8 Pull arm at and observe reward rt(at) ∈ [0, 1]
9 for a = 1, . . . ,K do

10 Let r̂t(a, at) = rt(at)1(a = at)/π̂t(at)
11 Let wt(a) = wt−1(a) exp(γr̂t(a, at)/K)

Conditioned on the observations made before time step t, the reward estimator
r̂t(a, at) is a random estimator with respect to the random selection of the next
arm at ∼ π̂t(·). It converts a partial information problem (where we only observe
the reward rt(at) at at) into a full information problem, where the reward r̂t(a, at)
as a function of a is defined for all arms a ∈ {1, . . . ,K}. With the choice of
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r̂t(a, at), r̂t(a, at) is an unbiased estimator of the full information reward vector
[rt(a) : a ∈ {1, . . . ,K}]:

rt(a) = Eat∼π̂t(·)r̂t(a, at).

The following regret bound hold for the EXP3 algorithm.

Theorem 16.17. Consider Algorithm 16.5. Let G∗ = maxa
∑T

i=1 rt(a). We have
the following bound for the adversarial regret (16.1):

REGT ≤ (e− 1)γG∗ +
K lnK

γ
.

Proof We have

K∑
a=1

π̂t(a)r̂t(a, at) =rt(at), (16.9)

K∑
a=1

π̂t(a)r̂t(a, at)
2 =r̂t(at, at)rt(at) ≤ r̂t(at, at). (16.10)

It follows that for all t ≥ 1:

wt
wt−1

=
K∑
a=1

wt(a)

wt−1

=
K∑
a=1

wt−1(a)

wt−1

exp(γr̂t(a, at)/K)

=
K∑
a=1

π̂t(a)− γ/K
1− γ

exp(γr̂t(a, at)/K) (definition of π̂t(a))

(a)

≤
K∑
a=1

π̂t(a)− γ/K
1− γ

[
1 + γr̂t(a, at)/K + (e− 2)(γr̂t(a, at)/K)2

]
≤1 +

1

1− γ

[
K∑
a=1

π̂t(a)γr̂t(a, at)/K +
K∑
a=1

π̂t(a)(e− 2)(γr̂t(a, at)/K)2

]
(b)

≤1 +
γ/K

1− γ
rt(at) +

(e− 2)(γ/K)2

1− γ
r̂t(at, at).

In (a), we used exp(z) ≤ 1 + z + (e− 2)z2 when z ≤ 1, and γr̂t(a, at)/K ≤ 1. In
(b), we used (16.9) and (16.10).

Therefore

ln
wt
wt−1

≤ ln

(
1 +

γ/K

1− γ
rt(at) +

(e− 2)(γ/K)2

1− γ
r̂t(at, at)

)
≤ γ/K

1− γ
rt(at) +

(e− 2)(γ/K)2

1− γ
r̂t(at, at).

The second inequality follows from ln(1 + z) ≤ z.
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Now, by summing over t, and let

GT =
T∑
t=1

rt(at),

we obtain

′ ln
wT
w0

≤ γ/K

1− γ
GT +

(e− 2)(γ/K)2

1− γ

T∑
t=1

K∑
a=1

r̂t(a, at),

where we used r̂t(at, at) =
∑K

a=1 r̂t(a, at). Note that for all a′:

ln
wT
w0

≥ ln
wT (a′)

w0

=
γ

K

T∑
t=1

r̂t(a
′, at)− lnK.

It follows that

γ

K

T∑
t=1

r̂t(a
′, at) ≤

γ/K

1− γ
GT +

(e− 2)(γ/K)2

1− γ

T∑
t=1

K∑
a=1

r̂t(a, at) + lnK.

Observe that conditioned on the history,

Eat∼π̂t r̂t(a, at) = rt(a).

We obtain the following bound by taking expectation:

E
γ

K

T∑
t=1

rt(a
′) ≤ γ/K

1− γ
EGT +

(e− 2)(γ/K)2

1− γ
E

T∑
t=1

K∑
a=1

rt(a) + lnK

≤ γ/K
1− γ

EGT +
(e− 2)(γ/K)2

1− γ
KG∗ + lnK.

Let a′ be the optimal arm, and rearrange, we obtain

G∗ ≤
1

1− γ
EGT +

(e− 2)γ

(1− γ)
G∗ +

K

γ
lnK.

This implies the desired result.

If we take

γ =

√
K lnK

(e− 1)g

for some g ≥ max(G∗,K lnK) in Theorem 16.17, then we obtain a bound

REGT ≤ 2
√
e− 1

√
gK lnK.

In particular, with g = T , we have

REGT ≤ 2
√
e− 1

√
TK lnK.
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16.7 Historical and Bibliographical Remarks

The multi-armed bandit problem has a long history (Robbins, 1952), with many
practical applications. An important theoretical development on this topic was
given in Lai and Robbins (1985), where the authors studied asymptotic properties
of the MAB problem. It was shown by Agrawal (1995); Auer et al. (2002a) that a
simple algorithm using upper confidence bounds provides a satisfactory solution
to this problem.

The asymptotic lower bound for MAB was obtained by Lai and Robbins (1985).
The matching upper bound can be found in (Garivier and Cappé, 2011; Maillard
et al., 2011). Finite sample lower bound can be found in Auer et al. (2002b), and
the result is similar to that of Theorem 16.13. The matching upper bound was
obtained by Audibert and Bubeck (2009).

The linear bandit problem was first studied by (Auer, 2002), which was later
adopted in many other follow up works. The model can be regarded as a direct
generalization of MAB, but it can also directly handle large action space (number
of arms). A different generalization of MAB to large action space is to consider
continuous actions, such as actions in a metric space (Kleinberg et al., 2008).
However, without additional structures comparable to linear bandit, the optimal
regret can become near linear in T .

While Thompson sampling has a long history, its theoretical analysis has only
been established very recently (see Agrawal and Goyal, 2012, 2013a; Kaufmann
et al., 2012). We will analyze a variant of Thompson sampling in Chapter 17.

The techniques to analyze MAB can be extended to handle contextual bandit
problems which we will investigate in Chapter 17. We also refer the readers to
(Lattimore and Szepesvári, 2020) for further studies on bandit problems.
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Exercises

16.1 Finish Example 16.4 by analyzing the corresponding UCB algorithm and obtain its regret

bound in the style of Theorem 16.3.

16.2 Finish Example 16.5 by deriving the corresponding UCB algorithm and its regret bound

in the style of Theorem 16.3.

16.3 Consider MAB with K arms and rewards in [0, 1]. We want to obtain a gap dependent

regret bound using the KL Chernoff bound in Theorem 2.17. For each a and t, estimate

T (a) in Lemma 16.10 with δ1(t) = δ2(t) = O((t− 1)−α), and obtain a regret bound with

∆0 = 0. Let T →∞, and compare the result to the lower bound in Theorem 16.12.

16.4 Let KL(q1||q2) = q1 ln(q1/q2) + (1− q1) ln((1− q1)/(1− q2)) for q1, q2 ∈ (0, 1). Show that

KL(q1||q2) ≤ 0.5(q1 − q2)2/min(q1(1− q1), q2(1− q2)).

16.5 Construct a lower bound for the MAB problem using Theorem 13.22, and compare it to

the result of Theorem 16.13.

16.6 In Algorithm 16.2, if an arm a 6= a∗ has a gap ∆(a) = µ(a∗)− µ(a) > 0. In what stage `

will the arm get eliminated? Us this to derive a gap dependent bound for the algorithm.

16.7 In Algorithm 16.3, assume that the reward is Gaussian for all a: rt(a) ∼ N(µ(a), σ2). Let

a∗ be the best arm. At each time t, for each arm a and ε > 0,

• estimate an upper bound of the probability of |µ(a)− µ̃t(a)| ≤ ε
• estimate a lower bound of the probability of µ̃t(a∗) ≥ µ(a∗) + ε (which is referred to as

anti-concentration)

• Using these results to show that the confidence interval of µ̃t(a∗)− µ(a∗) shrinks.

• Use an UCB style analysis to derive a regret bound for Algorithm 16.3.
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17

Contextual Bandits

In the standard multi-armed bandit problem, one observes a fixed number of arms.
To achieve optimal regret bounds, one estimates confidence intervals of the arms
by counting. In the contextual bandit problem, one observes side information for
each arm, which can be used as features for more accurate confidence interval
estimation.

Definition 17.1 (Contextual Bandit Problem). In contextual bandit, we con-
sider a context space X and an action space A. Given context x ∈ X , we take
an action a ∈ A, and observe a reward r ∈ R that can depend on (x, a). The
contextual bandit problem is a repeated game: at each time step t:

• The player observes a sample xt ∈ X
• The player chooses precisely one action (or arm) at ∈ A
• The reward rt is revealed.

Note that in this chapter, we will follow the convention in the bandit literature
of using A to denote the action space instead of the learning algorithm. We may
also introduce the notation of policy for contextual bandits. Using the notation
of Section 13.4, a bandit learning algorithm returns a policy q̂(St−1) based on the
history St−1.

Definition 17.2. A policy π for contextual bandit is a map X → ∆(A), where
∆(A) denotes probability measures over A with an appropriately defined σ-
algebra. One may also write it as a conditional distribution π(a|x), and the policy
draws a ∼ π(·|x) when it observes context x. A contextual bandit algorithm q̂
maps historic observations

St−1 = {(x1, a1, r1), . . . , (xt−1, at−1, rt−1)}

to a policy πt = q̂(·|St−1) at each time step t, and pulls an arm at ∼ πt(·|xt) based
on the observation xt. In this chapter, we will also write the history dependent
policy as at ∼ q̂(at|xt,St−1).

The contextual bandit problem includes the multi-armed bandit problem as a
special case if we take x = x0 to be a fixed context for all time steps.

Similar to the case of multi-armed bandit problem, we may also consider the
adversarial setting with an oblivious adversary as follows. At each time step t,
we have the information of all rewards [rt(a) : a ∈ A], but only reveals the value
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of rt(at) for the chosen arm at. The goal is to maximize the expected cumulative
reward

T∑
t=1

Eat∼πt [rt(at)].

If we are given a policy class Π, then regret of a contextual bandit algorithm with
respect to Π can be written as

REGT = sup
π∈Π

T∑
t=1

Eat∼π[rt(at)]−
T∑
t=1

Eat∼πt [rt(at)]. (17.1)

If we consider the stochastic contextual bandit setting with unknown value
functions

f∗(x, a) = E[r|x, a], f∗(x) = max
a∈A

f(x, a)

that do not change over time, then the goal becomes to maximize the expected
reward

T∑
t=1

Eat∼πt [f∗(xt, at)].

The regret of the algorithm that produces policy sequence {πt} is:

REGT =
T∑
t=1

Eat∼πt [f∗(xt)− f∗(xt, at)]. (17.2)

17.1 EXP4 for Adversarial Contextual Bandits

The EXP4 algorithm is a generalization of the EXP3 algorithm for the adversarial
multi-armed bandit problem (Auer et al., 2002b). It can be regarded as a policy
based method for adversarial contextual bandits. EXP4 can be applied to the
case that the action space A = {1, . . . ,K} is finite, and it works in the setting of
“experts.” An expert in EXP4 can be regarded as a policy.

Assume that we have an expert class indexed by w:

G = {[q̂t(·|w, xt)]t=1,2,... : w ∈ Ω}.

Given any context xt ∈ X , an expert w returns a probability distribution q̂t(·|w, xt)
on at ∈ {1, . . . ,K}.

Let p0(w) be a prior on Ω, then the EXP4 algorithm, presented in Algo-
rithm 17.1, has a regret bound that is logarithmic in |G| for finite G, if the
regret is to compete with the best expert in G. EXP4 can also be regarded as
a generalization of EXP3, which has K experts, and each expert pulls one arm
a ∈ {1, . . . ,K} constantly.
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Example 17.3. Any stationary policy can be regarded as an expert. As an
example, we may consider experts of logistic policies (parametrized by w) defined
as

q̂t(a|w, x) = q̂(a|w, x) =
exp(w>ψ(x, a))∑K
`=1 exp(w>ψ(x, `))

,

with Gaussian prior p0(w):

w ∼ N(0, σ2).

Algorithm 17.1: EXP4

Input: K, T , G, p0(·), γ ∈ (0, 1], η > 0, b ≥ 0
1 Let u0(w) = 1
2 for t = 1, 2, . . . , T do
3 Observe xt
4 for a = 1, . . . ,K do
5 Let π̂t(a) = (1− γ)Ew∼pt−1(w)q̂t(a|w, xt) + γ/K

6 Sample at according to π̂t(·)
7 Pull arm at and observe reward rt(at) ∈ [0, 1]
8 Let r̂t(w, xt, at) = q̂t(at|w, xt)(rt(at)− b)/π̂t(at)
9 Let ut(w) = ut−1(w) exp(ηr̂t(w, xt, at))

10 Let pt(w) = p0(w)ut(w)/Ew∼p0(w)ut(w)

Note that conditioned on the history, the estimator r̂t(w, xt, at) is a random
estimator that depends on the partial reward rt(at) received for at ∼ π̂t(a). More-
over, it is an unbiased estimator of the following shifted reward of w, according
to policy q̂t(·|w, xt):

Eat∼π̂t r̂t(w, xt, at) = Ea∼q̂t(a|w,xt)(rt(a)− b). (17.3)

which relies on the full reward vector [rt(a)] at time step t over all arms a.
Both parameter γ and b control exploration. The original EXP4 set b = 0,

and in such case we need to set γ > 0. The larger γ is, the more uniform q̂t(a)
becomes, and thus we explore more.

Similarly, the larger b is, the more penalty we put on arms that have been
observed, and this favors arms that are not observed in the future. In the full
information case, where all rt(a) are observed at every time step, the parameter
b doesn’t affect the algorithm. However, in the partial information case, if we set
b = 0, we need γ > 0 to perform exploration. On the other hand, if we choose
b = 1, then we can set γ = 0.

Theorem 17.4. For any K, T ≥ 0, and any γ ∈ (0, 1], η > 0 and b ≥ 0.
Consider any expert class G = {[q̂t(·|w, x)]t=1,2,... : w ∈ Ω} with prior p0(w). Let

RT (w) = E
T∑
t=1

Ea∼q̂t(·|w,xt)rt(a)
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CHAPTER 17. CONTEXTUAL BANDITS 358

be the reward of expert w. Then the expected reward of Algorithm 17.1 satisfies:

E
T∑
t=1

rt(at) ≥(1− γ) max
q

[
Ew∼qRT (w)− 1

η
KL(q||p0)

]

− c(η, b)η
T∑
t=1

K∑
a=1

|rt(a)− b|,

where the expectation is with respect to the randomization of the algorithm,

c(η, b) = φ(z0) max(b, 1− b), z0 = max(0, η(1− b)K/γ),

and φ(z) = (ez − 1− z)/z2.

Proof The proof is similar to that of Theorem 16.17. By the definition of π̂t(at),
we have

ρ̃t(at) = Ew∼pt−1(w)q̂t(at|w, xt)/π̂t(at) ≤ 1/(1− γ). (17.4)

Therefore

Ew∼pt−1(w)r̂t(w, xt, at) =Ew∼pt−1(w)q̂t(at|w, xt)[rt(at)− b]/π̂t(at)

≤ 1

1− γ
rt(at)− ρ̃t(at)b. (17.5)

The first equation used the definition of r̂. The inequality used (17.4). Moreover

Ew∼pt−1(w)r̂t(w, xt, at)
2

=Ew∼pt−1(w)q̂t(at|w, xt)2((rt(at)− b)/π̂t(at))2

≤max(b, 1− b)Ew∼pt−1(w)q̂t(at|w, xt)(|rt(at)− b|/π̂t(at)2)

≤max(b, 1− b)
1− γ

(|rt(at)− b|/π̂t(at)). (17.6)

The first equation used the definition of r̂. The first inequality used |rt(at)− b| ≤
max(b, 1− b). The second inequality used (17.4).

If we let

Wt = Ew∼p0(w)ut(w),

then

ln
Wt

Wt−1

= ln Ew∼p0(w)

ut(w)

Wt−1

= ln Ew∼pt−1(w) exp(ηr̂t(w, xt, at))

≤ ln Ew∼pt−1(w)

[
1 + (ηr̂t(w, xt, at)) + φ(z0)(ηr̂t(w, xt, at))

2
]

≤Ew∼pt−1(w)(ηr̂t(w, xt, at)) + φ(z0)Ew∼pt−1(w)(ηr̂t(w, xt, at))
2

≤ η

1− γ
rt(at)− ηρ̃t(at)b+

c(η, b)η2

(1− γ)

|rt(at)− b|
π̂t(at)

.

The second equality used the definition of ut. The first inequality used exp(z) ≤
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17.1. EXP4 FOR ADVERSARIAL CONTEXTUAL BANDITS 359

1+z+φ(z0)z2 when z = ηr̂t(w, xt, at) ≤ z0; the second inequality used ln(1+z) ≤
z; and the third inequality used (17.5) and (17.6).

Now we can sum over t = 1 to t = T , and obtain:

ln
WT

W0

≤ η

1− γ

T∑
t=1

rt(at)− ηb
T∑
t=1

ρ̃t(at) +
c(η, b)η2

(1− γ)

T∑
t=1

|rt(at)− b|
π̂t(at)

.

Note that W0 = 1. We can take expectation with respect to the randomization
of the algorithm, and obtain

E lnEw∼p0(w) exp

(
η

T∑
t=1

r̂t(w, xt, at)

)

≤ η

1− γ
E

T∑
t=1

rt(at)− ηTb+
c(η, b)η2

(1− γ)
E

T∑
t=1

K∑
a=1

|rt(a)− b|. (17.7)

The derivation also used E ρ̃t(at) = E Eat∼π̂t ρ̃t(at) = 1 and

E
|rt(at)− b|
π̂t(at)

= E Eat∼π̂t
|rt(at)− b|
π̂t(at)

= E
K∑
a=1

|rt(a)− b|.

We can lower bound the left hand side of (17.7) as:

E lnEw∼p0(w) exp

(
η

T∑
t=1

r̂t(w, xt, at)

)

=E max
q

[
Ew∼qη

T∑
t=1

r̂t(w, xt, at)−KL(q||p0)

]

≥max
q

[
Ew∼qηE

T∑
t=1

r̂t(w, xt, at)−KL(q||p0)

]
= max

q
[Ew∼qη[RT (w)− bT ]−KL(q||p0)] .

The first equality used Proposition 7.16. The last equation used (17.3) and the
definition of RT . By plugging this estimate into the left hand side of (17.7), we
obtain the desired result.

The following result is a direct consequence of Theorem 17.4. It can be regarded
as a direct generalization of Theorem 16.17.

Corollary 17.5. Let η = γ/K and b = 0. Assumes that the uniform random
policy belongs to Ω and |Ω| = N < ∞. Let p0(w) be the uniform prior over Ω,
then

G∗ − E
T∑
t=1

rt(at) ≤ (e− 1)γG∗ +
K lnN

γ
,
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where the expectation is with respect to the randomization of the algorithm, and

G∗ = arg max
w

T∑
t=1

E Ea∼q̂t(·|w,xt)[rt(a)].

Proof We have ηr̂t(w, xt, at) ≤ 1, and thus c(η, b) = e−2. Note that the uniform
random policy belongs to Ω implies that

1

K

T∑
t=1

K∑
a=1

rt(a) ≤ G∗.

We consider Theorem 17.4, with q defined as q(w) = 1(w = w∗), where w∗
achieves the maximum of G∗. This implies

E
T∑
t=1

rt(at) ≥ (1− γ)

[
G∗ −

K

γ
lnN

]
− (e− 2)γG∗.

This implies the bound.

Example 17.6. We can take γ = 0 and b = 1 in Algorithm 17.1. By noting that
φ(z) is an increasing function of z and η(1− b) ≤ 0, we may take

c(η, b) = 0.5.

Theorem 17.4 implies that

E
T∑
t=1

rt(at) ≥ max
q

[
RT (w)− 1

η
KL(q||p0)

]
− 0.5ηKT.

In the finite policy case |Ω| = N with uniform prior:

G∗ − E
T∑
t=1

rt(at) ≤
lnN

η
+ 0.5ηKT.

By choosing η =
√

lnN/(KT ), we obtain

G∗ − E
T∑
t=1

rt(at) ≤ 2
√
KT lnN.

We may compare EXP4 to its full information counterpart Hedge in Algo-
rithm 14.4. We note that in the online setting of Hedge algorithm, we can ob-
serve the information for all arms a ∈ {1, . . . ,K} even if a is not pulled. In this
case, it is possible to replace r̂t(w, xt, at) by rt(w, xt) = −`t(wt−1), and we do
not have to explore in order to obtain rewards for different arms. This removes
the K-dependency in the resulting online regret bound. Using the same notation
of Theorem 17.4, we obtain the following Hedge online regret bound (in the full
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information case) from Theorem 14.15:

E
T∑
t=1

rt(at) ≥max
q

[
RT (w)− 1

η
KL(q||p0)

]
− ηT/8.

Assumes that |Ω| = N < ∞. Let p0(w) be the uniform prior over Ω, then we
obtain the following online regret bound for Hedge (in the full information case):

G∗ − E
T∑
t=1

rt(at) ≤
lnN

η
+
ηT

8
.

With η =
√

lnN/T , we obtain the full information regret bound of

G∗ − E
T∑
t=1

rt(at) ≤ 2
√
T lnN,

which does not contain the factor K.

17.2 Linear UCB for Stochastic Contextual Bandits

The EXP4 algorithm tries to find the best policy in a policy class. We can also
design an algorithm that finds the best value function from a value function class.
In particular, if f∗(x, a) is a linear function, then we can directly generalize the
UCB algorithm to find a near optimal value function, and use its induced greedy
policy to select an arm to pull. We first introduce the following definition, which
generalizes stochastic linear bandit model in Section 16.4 to the contextual bandit
setting.

Definition 17.7. Stochastic linear contextual bandit (or stochastic contextual
bandit with linear payoff) is a contextual bandit problem, where the reward at
each time step t is given by

rt(a) = rt(xt, a) = w>∗ ψ(xt, a) + εt(xt, a), (17.8)

where εt(x, a) is a zero-mean random variable. We assume that H is a known
inner product space, w∗ ∈ H is the unknown model parameter, and the feature
vector ψ(x, a) ∈ H is known.

In the stochastic linear bandit model, the number of arms can be either infi-
nite or finite, and an UCB style algorithm is presented in Algorithm 17.2. Note
that the algorithm selects an arm which has the largest confidence bound ad-
justed reward. This methodology is referred to as the optimism in the face of
uncertainty, and is a direct generalization of upper confidence bound (UCB) for
MAB. Therefore we call Algorithm 17.2 linear UCB, although it is also referred
to as OFUL (optimism in the face of uncertainty linear bandit) in the literature
(Abbasi-yadkori et al., 2011).
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Algorithm 17.2: Linear UCB Algorithm

Input: λ, T , {βt}
1 Let A0 = λI
2 Let w0 = 0
3 Let b0 = 0
4 for t = 1, 2, . . . , T do
5 Observe xt

6 Let at ∈ arg maxa

[
w>t−1ψ(xt, a) + βt−1

√
ψ(xt, a)>A−1

t−1ψ(xt, a)

]
7 Pull arm at and observe reward rt(xt, at)
8 Let bt = bt−1 + rt(xt, at)ψ(xt, at)
9 Let At = At−1 + ψ(xt, at)ψ(xt, at)

>

10 Let wt = A−1
t bt

In order to analyze Algorithm 17.2, we need to obtain a uniform confidence in-
terval for the linear bandit problem using either Theorem 13.7 or Theorem 13.10.
The bound stated below holds uniformly for all arms (possibly infinitely many)
and both for lower and upper confidence bounds.

Lemma 17.8. Assume that in the stochastic linear bandit model, ‖w∗‖H ≤ B
for some constant B, and in Algorithm 17.2, assume that {βt} is any sequence
so that

Pr

∀0 ≤ t ≤ T : βt ≥
√
λB +

∥∥∥∥∥
t∑

s=1

εs(xs, as)ψ(xs, as)

∥∥∥∥∥
A−1
t

 ≥ 1− δ. (17.9)

Then with probability at least 1− δ, for all t = 0, . . . , T and u ∈ H:

|u>(wt − w∗)| ≤ βt
√
u>A−1

t u.

Proof We have

u>(wt − w∗) =u>A−1
t

t∑
s=1

rs(xs, as)ψ(xs, as)− u>w∗

=u>A−1
t

t∑
s=1

εs(xs, as)ψ(xs, as)− λu>A−1
t w∗

≤‖u‖A−1
t

∥∥∥∥∥
t∑

s=1

εs(xs, as)ψ(xs, as)

∥∥∥∥∥
A−1
t

+ λ‖u‖A−1
t
‖w∗‖A−1

t

≤‖u‖A−1
t

∥∥∥∥∥
t∑

s=1

εs(xs, as)ψ(xs, as)

∥∥∥∥∥
A−1
t

+
√
λB

 ≤ βt‖u‖A−1
t
.

The second equality used (17.8). The first inequality used the Cauchy-Schwartz
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inequality. The last inequality used the definition of βt. This implies the desired
bound.

Example 17.9. Assume that noise in (17.8) satisfies the sub-Gaussian conditions
of Theorem 13.7, and assume that d = dim(H) is finite dimensional, with B′ =
supx,a ‖ψ(x, a)‖H. Then in Lemma 17.8 we can set

βt =
√
λB + σ

√
2 ln(1/δ) + d ln(1 + T (B′)2/dλ)

so that (17.9) holds. Note that Proposition 15.8 is used to obtain a bound on the
log determinant function.

Example 17.10. Assume that noise in (17.8) satisfies the conditions of Theo-
rem 13.10. Then in Lemma 17.8 we can set

βt =
√
λB + 2α

√
ln(2/δ) + 1.2σ

√
entro(λ/T, ψ(X ×A))

so that (17.9) holds. Note that entro(·) is defined in Proposition 15.8.

The confidence interval estimate in Lemma 17.8 can be used to obtain a regret
bound for the UCB method in Algorithm 17.2, and the proof is similar to that
of Theorem 16.3.

Theorem 17.11. Assume that in the stochastic linear bandit model, rt(xt, at) ∈
[0, 1] and ‖w∗‖2 ≤ B for some constant B. Let µt(x, a) = Eεt(x,a)rt(x, a) =
w>∗ ψ(x, a). Let a∗(x) ∈ arg maxa µt(x, a) be the optimal arm for each context
x. Then in Algorithm 17.2, with probability at least 1− δ,

E
T∑
t=1

[µt(xt, a∗(xt))− µt(xt, at)] ≤ 3

√√√√ln |AT/λ|
T∑
t=1

β2
t−1 + 2 ln |AT/λ|,

where {βt} is any sequence that satisfies(17.9).

Proof We have for t ≥ 1:

w>∗ ψ(xt, a∗(xt))

≤w>t−1ψ(xt, a∗(xt)) + βt−1

√
ψ(xt, a∗(xt))>A

−1
t−1ψ(xt, a∗(xt))

≤w>t−1ψ(xt, at) + βt−1

√
ψ(xt, at)>A

−1
t−1ψ(xt, at)

≤w>∗ ψ(xt, at) + 2βt−1

√
ψ(xt, at)>A

−1
t−1ψ(xt, at),

where the first and the third inequalities used Lemma 17.8 . The second inequality
is due to the UCB choice of at in Algorithm 17.2.

Let Et be the event of ‖ψ(xt, at)‖At−1
≤ 1. Since w>∗ ψ(xt, a) ∈ [0, 1], we have

w>∗ ψ(xt, a∗(xt))− w>∗ ψ(xt, at) ≤ 2βt−1‖ψ(xt, at)‖A−1
t−1
1(Et) + 1(Ec

t ).
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By summing over t = 1 to t = T , we obtain

T∑
t=1

[µt(xt, a∗(xt))− µt(xt, at)]

≤2
T∑
t=1

βt−1‖ψ(xt, at)‖A−1
t−1
1(Et) +

T∑
t=1

1(Ec
t )

≤2
T∑
t=1

βt−1

√√√√ 2‖ψ(xt, at)‖2A−1
t−1

1 + ‖ψ(xt, at)‖2A−1
t−1

+ 2
T∑
t=1

ψ(xt, at)
>A−1

t−1ψ(xt, at)

1 + ψ(xt, at)>A
−1
t−1ψ(xt, at)

≤3

√√√√ T∑
t=1

β2
t−1

√√√√ T∑
t=1

ψ(xt, at)>A
−1
t−1ψ(xt, at)

1 + ψ(xt, at)>A
−1
t−1ψ(xt, at)

+ 2 ln |AT/λ|.

The second inequality used simple algebraic inequalities under Et and Ec
t . The

third inequality used the Cauchy-Schwartz inequality and Lemma 13.9. We can
now apply Lemma 13.9 again to obtain the desired bound.

Example 17.12. In order to interpret the results of Theorem 17.11, we may
consider the noise assumption and the choice of βt in Example 17.9 with σ = 0.5.
It implies a bound

E
T∑
t=1

[µt(xt, a∗(xt))− µt(xt, at)] = Õ
(√

λdTB + d
√
T
)
,

where Õ hides logarithmic factors. By setting λ to be sufficiently small, we obtain

E
T∑
t=1

[µt(xt, a∗(xt))− µt(xt, at)] = Õ(d
√
T ).

Similarly, under the conditions of Example 17.10 with α = 1, we obtain

E
T∑
t=1

[µt(xt, a∗(xt))− µt(xt, at)] = Õ
(
σd̃
√
T +

√
d̃T
)
,

where d̃ = entro(λ/T, ψ(X ×A)) with λ = O(1).

For stochastic linear bandit with possibly infinity many arms, the bound in
Example 17.12 is optimal up to a logarithmic factor, as shown by the following
result.

Theorem 17.13. Given any integer d ≥ 1 and T ≥ 1, there exists a (noncon-
textual) stochastic linear bandit problem with 2d arms corresponding to feature
vectors {±1}d, and reward r ∈ [−0.5, 0.5]. So that regret of any bandit algorithm
is at least

min
(

0.05T, 0.12d
√
T
)
.
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17.2. LINEAR UCB FOR STOCHASTIC CONTEXTUAL BANDITS 365

Proof Consider 2d arms, represented by feature vectors ψ(a) = a ∈ {−1, 1}d.
The reward r of pulling arm a (without context) is in {−0.5, 0.5}, and

E[r|a] = w>a

for some w ∈ {−ε, ε}d, where ε ∈ (0, 0.5/d] will be specified later. Using notations
of Theorem 13.24 with τ changed to w and m = 2, PZ = {qw(r|a)}, where each
qw(r|a) is a {−0.5, 0.5} valued binary random variable Bernoulli(0.5 + w>a) −
0.5. A policy π is a probability distribution on A, and we can define qw(r|π) =
Ea∼πqw(r|a).

Let θ indicate an arbitrary arm returned by a learning algorithm, represented
by its feature vector θ ∈ {±1}d. It follows that the regret of pulling arm θ is

Q(θ, w) =
d∑
j=1

Qj(θ, w), Qj(θ, w) = ε− wjθj.

This means that for w ∼j w′ and w 6= w′ (w′ ∼j w means that w′ and w are
identical except at the j-th component):

Qj(θ, qw) +Qj(θ, qw′) ≥ 2ε.

Let w(j) = w−wjej be the vector with value zero at the j-th component but the
same value as that of w elsewhere.

Now we can let ε = min
(

0.1/d, 0.24
√

1/T
)

. Given any learning algorithm q̂,

for all w, time step t, and at represented by feature representation in {−1, 1}d:

1

2

∑
w′∼jw

KL(qw(j)(·|q̂(St−1),St−1)||qw′(·|q̂(St−1),St−1))

≤1

2
sup
at

∑
w′∼jw

KL(0.5 + (w(j))>at||0.5 + (w′)>at)

≤2.1ε2,

where the last inequality follows from (see Exercise 16.4)

KL(q1||q2) = q1 ln
q1

q2

+ (1− q2) ln
1− q1

1− q2

≤ (q1 − q2)2

2 min(q1(1− q1), q2(1− q2))
.

Here we set q1 = 0.5 + (w(j))>a and q2 = 0.5 + (w′)>a. This implies that q1, q2 ∈
[0.4, 0.6] and |q1 − q2| ≤ ε.

We can now take β2
j,t = 2.1ε2 and apply Theorem 13.24. For n ≤ T ,

1

2d

∑
w

Eθ,Sn∼p(·|q̂,qw)Q(θ, qw) ≥dε
(

1−
√

2× 2.1nε2
)

≥0.5dε = 0.5dmin

(
0.1/d, 0.24

√
1/T

)
.

Since this holds for all n ≤ T , we obtain the bound.
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CHAPTER 17. CONTEXTUAL BANDITS 366

We note that the lower bound in Theorem 17.13 requires 2d number of arms.
However, for K arms with small K, this bound is suboptimal.

Example 17.14. The stochastic multi-armed bandit with K arms and rewards
in [0, 1] can be considered as a stochastic linear bandit, where we take w∗ =
[µ(1), . . . , µ(K)], and ψ(a, x) = ea for a ∈ {1, . . . ,K}. Therefore we may chose
B =

√
K, so that ‖w∗‖2 ≤ B. We can also choose λ = 1 and M = 1. Theo-

rem 17.11 implies a suboptimal bound of (ignoring log factors):

E
T∑
t=1

[µt(xt, a∗(xt))− µt(xt, at)] = Õ(K
√
T ).

The extra
√
K factor is due to the fact that the analysis does not take advan-

tage of the fact that only finite number of arms are available. In comparison,
Algorithm 16.2 for the noncontextual stochastic linear bandit achieves a regret
of Õ(

√
KT ) according to Theorem 16.14 and Example 16.15.

The extra dependency on d (and K) is due to the uniform confidence interval
over all u ∈ Rd in Lemma 17.8. To obtain better dependence on K, one needs
to obtain confidence interval which is for a fixed u as in Lemma 9.34, instead
of uniform over all u ∈ Rd. One difficulty for obtaining non-uniform result for
in Algorithm 17.2 is that At depends on εs(as, ts) for s ≤ t, which breaks the
independence argument in Lemma 9.34.

A more complex scheme, presented in Auer (2002); Chu et al. (2011), can be
used to derive such a non-uniform convergence result, which leads to an improved
bound for stochastic linear bandits with finitely many arms. The resulting bound
is similar to that of Theorem 16.14.

It is also relatively easy to apply Thompson sampling to the stochastic linear
bandit model. Consider the prior and likelihood functions defined as

w ∼ p0(w) =N(0, (σ2/λ)I),

rt(x, a) ∼N(w>ψ(x, a), σ2).

At the beginning of any time step t, after we have observed data up to time t−1,
the posterior is

w ∼ N(wt−1,Σt−1), σ2Σ−1
t−1 = λI +

∑
s<t

ψ(xs, as)ψ(xs, as)
>.

The Thompson sampling method samples w̃ from the posterior and plays an arm
that is optimal with respect to w̃. The algorithm is presented in Algorithm 17.3.

In Section 17.4, we will analyze a variant of Thompson sampling with optimistic
prior for the more general nonlinear contextual bandit problem. However, the
theoretical result for the standard Thompson sampling without such an optimistic
prior is inferior to that of linear UCB, although Thompson sampling can be an
effective practical algorithm in many applications (see Chapelle and Li, 2011).
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17.3. NONLINEAR UCB WITH ELUDER COEFFICIENT 367

Algorithm 17.3: Thompson Sampling for Linear Contextual Bandits

Input: λ, σ, T
1 Let A0 = λI
2 Let w0 = 0
3 Let b0 = 0
4 for t = 1, 2, . . . , T do
5 Sample w̃t−1 ∼ N(wt−1, σ

2A−1
t−1)

6 Observe xt
7 Let at ∈ arg maxa

[
w̃>t−1ψ(xt, a)

]
8 Pull arm at and observe reward rt(xt, at)
9 Let bt = bt−1 + rt(xt, at)ψ(xt, at)

10 Let At = At−1 + ψ(xt, at)ψ(xt, at)
>

11 Let wt = A−1
t bt

17.3 Nonlinear UCB with Eluder Coefficient

One may generalize stochastic linear contextual bandits using nonlinear function
approximation as follows.

Definition 17.15. The stochastic nonlinear contextual bandit is a contextual
bandit problem, where the reward at each time step t is given by

rt(a) = rt(xt, a) = f∗(xt, a) + εt(xt, a),

where εt(x, a) is a zero-mean random variable, where we assume that f∗(x, a) ∈ F
for a known function class F : X ×A → R. Given any f(x, a) ∈ F , we also define

f(x) = max
a∈A

f(x, a),

and the greedy policy of f as: πf (x) ∈ arg maxa∈A f(x, a).

For stochastic nonlinear bandit model, we may generalize Algorithm 17.2 as
in Algorithm 17.4. In general, we say Ft is a version space if f∗ ∈ Ft with
high probability. Choosing the optimal ft in a properly defined version space
is a natural generalization of upper confidence bound. The algorithm directly
implements the optimism in the face of uncertainty principle.

The following result shows that with an appropriately defined version space,
Algorithm 17.4 is a generalization of Algorithm 17.2. We leave its proof to an
exercise.

Proposition 17.16. Assume that F = {f(w, x, a) = w>ψ(x, a) : w ∈ Rd}. Let

Ft =
{
f(w, ·) : φt(w) ≤ φt(wt) + β2

t

}
,

where wt = arg minw φt(w), and

φt(w) =
t∑

s=1

(w>ψ(xs, as)− rs(xs, as))2 + λ‖w‖22.
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CHAPTER 17. CONTEXTUAL BANDITS 368

Algorithm 17.4: Version Space UCB Algorithm

Input: λ, T , f0 ∈ F
1 Let F0 = {f0}
2 for t = 1, 2, . . . , T do
3 Observe xt
4 Let ft ∈ arg maxf∈Ft−1

f(xt)
5 Let at ∈ arg maxa ft(xt, a)
6 Pull arm at and observe reward rt(xt, at) ∈ [0, 1]
7 Let Ft be an appropriate version space based on St = {(xs, as)}ts=1.

Then Algorithm 17.4 is equivalent to Algorithm 17.2. In particular, we have

Ft−1 = {f(w, x, a) : ‖w − wt−1‖At−1
≤ βt−1},

and

max
f∈Ft−1

f(xt, a) = w>t−1ψ(xt, a) + βt−1‖ψ(xt, a)‖A−1
t−1
.

In general, the version space Ft in Algorithm 17.4 contains functions that fit
well on historic data St. In order to analyze such a version space algorithm, we
need to introduce the concept of eluder coefficient below.

Definition 17.17. Given a function class F , its eluder coefficient EC(ε,F , T )
is defined as the smallest number d so that for any sequence {(xt, at)}Tt=1 and
{ft}Tt=1 ∈ F :

T∑
t=2

[ft(xt, at)− f∗(xt, at)] ≤

√√√√d
T∑
t=2

(
ε+

t−1∑
s=1

|ft(xs, as)− f∗(xs, as)|2
)
.

The intuition behind eluder coefficient is that on average, if functions in the
version space has small in sample prediction error

t−1∑
s=1

|ft(xs, as)− f∗(xs, as)|2

on the training data at each time step t, then the confidence interval |ft(xt, at)−
f∗(xt, at)| on the next data point is also small (on average). This allows us to
obtain the following generic theorem for version space based upper confidence
bound algorithm.

Lemma 17.18. In Algorithm 17.4, assume that f∗ ∈ Ft−1 for all t ≤ T , and
there exists f̂t and βt > 0 such that

sup
f∈Ft

t∑
s=2

|f(xs, as)− f̂t(xs, as)|2 ≤ β2
t .
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17.3. NONLINEAR UCB WITH ELUDER COEFFICIENT 369

Then we have the following regret bound:

T∑
t=2

[f∗(xt)− f∗(xt, at)] ≤

√√√√EC(ε,F , T )

(
εT + 4

T∑
t=2

β2
t−1

)
.

Proof We have

f∗(xt)− f∗(xt, at)
=f∗(xt)− ft(xt) + ft(xt, at)− f∗(xt, at)
≤ft(xt, at)− f∗(xt, at).

The first equality used ft(xt, at) = ft(xt). The inequality used the fact that
f∗ ∈ Ft−1 and thus ft(xt) = maxf∈Ft−1

f(xt) ≥ f∗(xt).
We can now obtain

T∑
t=2

[f∗(xt)− f∗(xt, at)]

≤
T∑
t=2

[ft(xt, at)− f∗(xt, at)]

≤

√√√√EC(ε,F , T )
T∑
t=2

(
ε+

t−1∑
s=1

|ft(xs, as)− f∗(xs, as)|2
)

≤

√√√√EC(ε,F , T )

(
εT + 4

T∑
t=2

β2
t−1

)
.

The second inequality used the definition of EC(ε,F , T ), and the third inequality
used

t−1∑
s=1

|ft(xs, as)− f∗(xs, as)|2

≤4
t−1∑
s=1

[|ft(xs, as)− f̂t−1(xs, as)|2 + |f∗(xs, as)− f̂t−1(xs, as)|2] ≤ 4β2
t−1.

This proves the desired bound.

Lemma 17.18 is a generic regret analysis for version space upper confidence
bound algorithm, and the proof idea is similar to the upper confidence bound
analysis in multi-armed bandits. It reduces the bandit regret analysis to in-sample
prediction error estimation. The latter can be bounded using Theorem 13.15. This
implies the following result.

Theorem 17.19. Assume that

rt = f∗(xt, at) + εt,
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CHAPTER 17. CONTEXTUAL BANDITS 370

where εt is conditional zero-mean sub-Gaussian noise: for all λ ∈ R,

lnE[eλεt |Xt,Ft−1] ≤ λ2

2
σ2.

In Algorithm 17.4, we define

f̂t = arg min
f∈F

t∑
s=1

(f(xs, as)− rs)2,

and

Ft =

{
f ∈ F :

t∑
s=1

(f(xs, as)− f̂t(xs, as))2 ≤ β2
t

}
,

where

β2
t ≥ inf

ε>0

[
8εt(σ + 2ε) + 12σ2 ln(2N(ε,F , ‖ · ‖∞)/δ)

]
.

Then with probability at least 1− δ:

T∑
t=2

[f∗(xt)− f∗(xt, at)] ≤

√√√√EC(ε,F , T )

(
εT + 4

T∑
t=2

β2
t−1

)
.

Proof We note that Theorem 13.15 (with ε′ = 0) implies that f∗ ∈ Ft−1 for all
t ≥ 2. The result is a direct consequence of Lemma 17.18.

The following result shows that if a function class can be embedded into a
RKHS (which does not need to be known to the algorithm), then its eluder
coefficient is bounded.

Proposition 17.20. Assume that F ⊂ H, where H is a RKHS which does not
need to be known to the learning algorithm. For all f ∈ H, we have the feature
representation f(x, a) = 〈w(f), ψ(x, a)〉. Assume ‖w(f) − w(f∗)‖H ≤ B for all
f ∈ F and f − f∗ ∈ [−1, 1] for all f ∈ F . Then

EC(1,F , T ) ≤ 2entro(1/(B2T ), ψ(X ×A)), (17.10)

where entro(·) is defined in Proposition 15.8. More generally, we have

EC (ε,F , T ) ≤ 4entro(λ, ψ(X ×A))

with ε = λB2T + 2
T

entro(λ, ψ(X ×A)).

Proof Let A0 = (λT )I and At = A0 +
∑T

s=1 ψ(xs, as)ψ(xs, as)
>. Let f∗(x, a) =

〈w∗, ψ(x, a)〉 and ft(x, a) = 〈wt, ψ(x, a)〉. By using the Cauchy Schwartz inequal-
ity, we obtain

|ft(xt, at)− f∗(xt, at)| ≤ ‖wt − w∗‖At−1
‖ψ(xt, at)‖A−1

t−1
. (17.11)
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We also have the following derivations:

T∑
t=1

|ft(xt, at)− f∗(xt, at)|

≤
T∑
t=1

‖wt − w∗‖At−1
· ‖ψ(xt, at)‖A−1

t−1
· 1(‖ψ(xt, at)‖A−1

t−1
≤ 1)︸ ︷︷ ︸

bt

(from (17.11))

+
T∑
t=1

1(‖ψ(xt, at)‖A−1
t−1
≥ 1) (|ft − f∗| ≤ 1)

≤

√√√√ T∑
t=1

‖wt − w∗‖2At−1

√√√√ T∑
t=1

b2
t + 2

T∑
t=1

‖ψ(xt, at)‖2A−1
t−1

1 + ‖ψ(xt, at)‖2A−1
t−1

≤

√√√√ T∑
t=1

‖wt − w∗‖2At−1

√
2 ln |A−1

0 AT |+ 2 ln |A−1
0 AT |.

The second inequality used the Cauchy Schwartz inequality to bound the first
summation term, and algebra to bound the second summation term. The last
inequality used Proposition 15.8 to bound the second summation term, and the
following derivation to simplify the first term.

T∑
t=1

b2
t ≤2

T∑
t=1

‖ψ(xt, at)‖2A−1
t−1

1 + ‖ψ(xt, at)‖2A−1
t−1

(algebra)

≤2 ln |A−1
0 AT |. (Lemma 13.9)

Let d = ln |A−1
0 AT |, we obtain

T∑
t=1

|ft(xt, at)− f∗(xt, at)|

≤

√√√√ T∑
t=1

‖wt − w∗‖2At−1

√
2 ln |A−1

0 AT |+ 2 ln |A−1
0 AT |

≤

√√√√4d
T∑
t=1

‖wt − w∗‖2At−1
+ 8d2

=

√√√√4d
T∑
t=1

[
(λT‖wt − w∗‖2H + 2d/T ) +

t−1∑
s=1

|ft(xs, as)− f∗(xs, as)|2
]
.

This implies the second desired bound. The proof of the first bound is left as an
exercise.

Example 17.21. If F ⊂ H = {w>ψ(x, a) : w ∈ Rd} can be embedded into a d
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CHAPTER 17. CONTEXTUAL BANDITS 372

dimensional linear function class for a finite d, then we have the following bound
from Proposition 17.20 and Proposition 15.8:

EC(1,F , T ) ≤ 2d ln(1 + T (BB′)2/d).

Since Theorem 5.3 implies that the covering number of F is also Õ(d), we can
obtain the following regret bound from Theorem 17.19:

T∑
t=2

[f∗(xt)− f∗(xt, at)] = Õ(d
√
T ),

which is consistent with that of Theorem 17.11. One may also use Proposition 15.8
to obtain bounds for nonparametric models such as RKHS induced by RBF ker-
nels (also see Example 15.10).

We note that different from Algorithm 17.2, Algorithm 17.4 does not use the
feature representation ψ(x, a) explicitly. That is, Algorithm 17.4 allows a nonlin-
ear function class which may be embedded into a RKHS with unknown feature
ψ(x, a). Therefore the algorithm is more flexible. Moreover, if we consider a func-
tion class F that can be represented as a function in RKHS H, it may be a small
subset of H, which has a small covering number. This can also reduce the overall
complexity.

In the literature, one often employs a slightly different concept called eluder
dimension, which is defined below. We note that Definition 17.17 is more general
because it can be shown that a small eluder dimension implies a small eluder
coefficient (also see Dann et al., 2021). We leave it as an exercise.

Definition 17.22 (Eluder Dimension). Given ε > 0, the eluder dimension Edim(F , ε)
of a function class F is the length of the longest possible sequence of elements
{(xt, at)} so that for some ε′ ≥ ε and f ′ ∈ F , ∀t ≥ 2,

∃ft ∈ F :
t−1∑
s=1

|ft(xs, as)− f ′(xs, as)| ≤ (ε′)2, |ft(xt, at)− f ′(xt, at)| > ε′.

17.4 Nonlinear Contextual Bandits with Decoupling Coefficient

Optimism based contextual bandit algorithm described in Algorithm 17.4 requires
an assumption on eluder coefficient, which may not behave well for general non-
linear function classes. In general, eluder coefficient allows mild nonlinearity, but
the underlying structural assumption is analogous to linear function classes. On
the other hand, it is known that if the number of arms K is finite, then it is possi-
ble to design a contextual bandit algorithm with sublinear regret. In this section,
we present a variation of Thompson Sampling called Feel-Good Thompson Sam-
pling, which can solve general nonlinear contextual bandits with finite number
of arms, as well as certain nonlinear contextual bandits with infinite number of
arms.
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17.4. NONLINEAR BANDITS WITH DECOUPLING COEFFICIENT 373

Definition 17.23. Given any value function f ∈ F , let πf (x) ∈ arg mina f(x, a)
be the greedy policy induced by f . Given ε > 0, the decoupling coefficient
DC(ε,F) of a function class F is defined as the smallest d > 0 so that for all
distribution p on F :

Ef∼p[f(x, πf (x))− f∗(x, πf (x))]

≤
√
d (ε+ Ef ′∼pEf∼p[f ′(x, πf (x))− f∗(x, πf (x))]2).

The following result indicates that decoupling coefficient allows linear embed-
ding of the function class with linear weight that can depend on the context x.
This allows it to deal with much more general nonlinear function classes that can-
not be handled by eluder coefficient, such as general nonlinear function classes
with a finite number of arms.

Definition 17.24 (Linearly Embeddable Condition). Let H be a vector space
with inner product 〈·, ·〉. We say a function class F is linearly embeddable in H
if there exists ψ : X × A → H, and w : F × X → H, so that for all f ∈ F and
(x, a) ∈ X ×A, we have

f(x, a) = 〈w(f, x), ψ(x, a)〉.

The following result shows that decoupling coefficients can be estimated for
linear embeddable function classes.

Proposition 17.25. Assume that F satisfies Definition 17.24, and ‖w(f, x) −
w(f∗, x)‖H ≤ B. Then

DC(λB2,F) ≤ dim(λ, ψ(X ×A)),

where dim(·) is defined in Proposition 9.36.

Proof Let A(p) = Ef∼pψ(x, πf (x))ψ(x, πf (x))>. We have

Ef∼p[f(x, πf (x))− f∗(x, πf (x))]

=Ef∼p〈w(f, x)− w(f∗, x), ψ(x, πf (x))〉

≤
√
Ef∼p‖w(f, x)− w(f∗, x)‖2A(p)+λI Ef∼p‖ψ(x, πf (x))‖2(A(p)+λI)−1

=
√

[Ef∼pEf ′∼p(f ′(x, πf (x))− f∗(x, πf (x)))2 + λ‖w(f, x)− w(f∗, x)‖2H]

×
√

trace((A(p) + λI)−1A(p)).

The first inequality is Cauchy-Schwartz. We can now use λ‖w(f, x)−w(f∗, x)‖22 ≤
λB2 to obtain the desired bound.

Example 17.26. If there are only K arms: a ∈ {1, . . . ,K}, then DC(ε,F) ≤ K
for all ε > 0. This can be achieved by embedding all f(x, a) to a weight vector
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CHAPTER 17. CONTEXTUAL BANDITS 374

w(x) such that w(x) = [f(1, x), . . . , f(K,x)], and ψ(x, a) = ea. The decoupling
coefficient is bounded by DC(0,F) ≤ K.

This example shows that the decoupling coefficient in Definition 17.23 for finite
arm nonlinear contextual bandits is always finite, which is a property that does
not hold for eluder coefficient in Definition 17.17.

Example 17.27. Assume F ⊂ H is linearly embeddable in an inner product
space H with ψ. If H is finite dimensional, then DC(0,F) ≤ dim(H). Estimate
for infinite dimensional embeddings can be found in Proposition 9.36.

We now present an algorithm, referred to as Feel-Good Thompson Sampling,
which adds an optimistic prior to Thompson sampling. The resulting algorithm
solves nonlinear contextual bandit under small decoupling coefficient. Given his-
tory St−1 = {(x1, a1, r1), . . . , (xt−1, at−1, rt−1)}. Let p0(f) be an arbitrary prior
distribution on F . We define

p(f |St−1) ∝ p0(f) exp

(
−

t−1∑
s=1

L(f, xs, as, rs)

)
, (17.12)

where L(f, x, a, r) = −λf(x) + η(f(x, a) − r)2. The term λf(x) (referred to as
Feel-Good term) favors an optimistic value function f(x), which plays a similar
role as upper confidence bound.

Algorithm 17.5: Feel-Good Thompson Sampling for Contextual Bandits

Input: p0, T
1 for t = 1, 2, . . . , T do
2 Observe xt ∈ X
3 Draw ft ∼ p(f |St−1) according to (17.12)
4 Pull arm at = πft(xt)
5 Observe reward rt ∈ [0, 1]

To analyze Algorithm 17.5, we need the following lemma that can be used
to reduce regret for contextual bandit problems into online regret analysis for
random Gibbs algorithm.

Lemma 17.28. Given any distribution p on f , we have for all µ > 0:

Ef∼p [f∗(x)− f∗(x, πf (x))]︸ ︷︷ ︸
bandit regret

≤ DC(ε,F)

4µ
+
√

DC(ε,F)ε

+ Ef ′∼p

[f∗(x)− f ′(x)]︸ ︷︷ ︸
Feel-Good term

+µEf∼p [(f ′(x, πf (x))− f∗(x, πf (x)))2]︸ ︷︷ ︸
least squares loss

 .
Proof We note that f(x) = f(x, πf (x))). Therefore

Ef∼p[f∗(x)− f∗(x, πf (x))] =Ef∼p[f∗(x)− f(x)]

+ Ef∼p[f(x, πf (x))− f∗(x, πf (x))].
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Using Definition 17.23, we have

Ef∼p[f(x, πf (x))− f∗(x, πf (x))]

≤
√

DC(ε,F) (ε+ Ef ′∼pEf∼p[(f ′(x, πf (x))− f∗(x, πf (x)))2])

≤
√

DC(ε,F)ε+
DC(ε,F)

4µ
+ µEf ′∼pEf∼p[(f ′(x, πf (x))− f∗(x, πf (x)))2].

By combining the two inequalities, we obtain the desired bound.

The lemma implies that bandit regret can be upper bounded with the Feel-
Good term plus least squares loss. Next we show that both can be bounded using
online learning analysis similar to that of Theorem 14.15 and Theorem 14.16.

Lemma 17.29. Assume that f ∈ [0, 1] for all f ∈ F . If η ≤ 0.5, then the
following bound holds for Algorithm 17.5:

E
T∑
t=1

Ef∼p(·|St−1)

[
(0.5/

√
e)η(f(xt, at)− f∗(xt, at))2 + λ(f∗(xt)− f(xt))

]
≤ inf

p

[
Ef∼p

T∑
t=1

∆L(f, xt, at, rt) + KL(p||p0)

]
+ λ2T/4,

where ∆L(f, x, a, r) = L(f, x, a, r)− L(f∗, x, a, r).

Proof Let

Zt = − lnEf∼p0 exp

(
−

t∑
t=1

∆L(f, xt, at, rt)

)

be the log-partition function for observations up to time t. Let pt−1(f) = p(f |St−1).
We have

E[Zt−1 − Zt] = E lnEf∼pt−1
exp (−∆L(f, xt, at, rt))

≤1

2
E lnEf∼pt−1

exp (2λ(f(xt)− f∗(xt)))

+
1

2
E lnEf∼pt−1

exp
(
−2η((f(xt, at, )− rt)2 − (f∗(xt, at)− rt)2)

)
︸ ︷︷ ︸

At

≤λEf∼pt−1
(f(xt)− f∗(xt)) +

λ2

4
+At. (17.13)

The first inequality follows from Jensen’s inequality and the convexity of the
function lnEZ exp(Z) in Z. The second inequality used the estimate of logarithmic
moment generation function in Lemma 2.15 with f − f∗ ∈ [−1, 1].

Next, we introduce the simplified notation

∆f(x, a) = f(x, a)− f∗(x, a)
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and bound At as follows.

At =
1

2
E lnEf∼pt−1

exp
(
−2η(∆f(xt, at)

2 + 4η(∆f(xt, at)ε(xt, at))
)

≤1

2
E lnEf∼pt−1

Ert|xt,at exp
(
−2η(∆f(xt, at)

2 + 4η∆f(xt, at)(rt − f∗(xt, at))
)

≤1

2
E lnEf∼pt−1

exp
(
−2η(1− η)∆f(xt, at, )

2
)

≤− η(1− η)e−2η(1−η)E Ef∼pt−1
∆f(xt, at)

2. (17.14)

The first inequality used Jensen’s inequality to move Ert|xt,at into the concave
function ln(·). The second inequality used Lemma 2.15 and E [rt|xt, at] = f∗(xt, at).
The third inequality used lnE exp(Z) ≤ exp(c) E[Z] when c ≤ Z ≤ 0.

By combining the previous inequalities, and summing over t, we obtain

E
T∑
t=1

[
0.5ηe−0.5Ef∼pt−1

∆f(xt, at, )
2 + λEf∼pt−1

(f∗(xt)− f(xt))
]

≤E
T∑
t=1

[
η(1− η)e−2η(1−η)Ef∼pt−1

∆f(xt, at, )
2 + λEf∼pt−1

(f∗(xt)− f(xt))
]

≤E
T∑
t=1

[
−At + λEf∼pt−1

(f∗(xt)− f(xt))
]

≤
T∑
t=1

[lnZt − lnZt−1 + λ2/4]

=ZT + λ2T/4.

The first inequality used η ≤ 0.5. The second inequality used (17.14). The third
inequality used (17.13). We can now use Proposition 7.16 to reformulate the
log-partition function ZT , and obtain the desired bound.

Theorem 17.30. Assume that f ∈ [0, 1] for all f ∈ F . If η ≤ 0.5, then the
following bound holds for Algorithm 17.5:

E REGT ≤
1

λ
E inf

p

[
Ef∼p

T∑
t=1

∆L(f, xt, at, rt) + KL(p||p0)

]

+
λT

4
+
√

DC(ε,F)ε T +
λDC(ε,F)

η
T,

where ∆L(f, x, a, r) = L(f, x, a, r)− L(f∗, x, a, r).
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Proof With λµ = 0.5η/
√
e, we obtain

E REGT

≤
T∑
t=1

DC(ε,F)

4µ
+
√

DC(ε,F)ε T

+
1

λ
E

T∑
t=1

Ef ′∼p(·|St−1)

[
λ[f∗(xt)− f ′(xt)] + λµ(f ′(xt, at)− f∗(xt, at))2

]
(Lemma 17.28)

≤
T∑
t=1

DC(ε,F)

4µ
+
√

DC(ε,F)ε T

+
1

λ
E inf

p

[
Ef∼p

T∑
t=1

∆L(f, xt, at, rt) + KL(p||p0)

]
+ λT/4, (Lemma 17.29)

which implies the result by noting that µ−1 ≤ 4λ/η.

Example 17.31. Consider the special case that both the number of arms and
the function class F are finite in Theorem 17.30. We have

inf
p

[
Ef∼p

T∑
t=1

∆L(f, xt, at, rt) + KL(p||p0)

]
≤ ln |F|.

Since DC(0,F) ≤ |A|, we obtain following bound for nonlinear contextual bandit
problems with ε = 0, η = 0.5 and λ =

√
ln |F|/(|A|T ):

E REGT = O

(√
|A|T ln |F|

)
.

Example 17.32. For infinite F , the term

κ = inf
p

[
Ef∼p

T∑
t=1

∆L(f, xt, at, rt) + KL(p||p0)

]
can be regarded as the analogy of ERM sample complex caused by covering
numbers. If we define the following ball in L∞ metric:

F(ε) =

{
f ∈ F : sup

x,a,r
|∆L(f, x, a, r)| ≤ ε

}
,

then we may take p(f) = p0(f)1(f ∈ F(ε))/p0(F(ε)) to obtain κ ≤ ε−ln p0(F(ε)).
We thus obtain

κ ≤ inf
ε>0

[ε− ln p0(F(ε))].

Next, we show that the result obtained in Example 17.31 matches the following
lower bound up to logarithmic factors.
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Theorem 17.33. Consider K ≥ 2 and d ≥ 1. There exists a bandit problem
with {0, 1} valued rewards, such that the realizable condition holds with |A| = K,
|F| = Kd, so that the expected regret of any bandit algorithm q̂ is at least

min
(

0.02T, 0.06
√
KdT

)
.

Proof We would like to apply Theorem 13.24 with m = K. We consider finite
X = {1, . . . , d} with d different contexts. Consider the class of all possible deter-
ministic policies G = {τ : X → [K]}, which contains |G| = Kd policies. For each
policy τ , we define its value function

f τ (x, a) =

{
0.5 + ε if a = τ(x)

0.5 otherwise,

where ε ∈ (0, 0.1] will be specified later. For each j, we assume also that

f τj (x, a) =

{
0.5 if x = j

f τ (x, a) otherwise.

We now consider {0, 1}-valued reward distribution

qτ (r|x, a) = Bernoulli(f τ (x, a)), qτj (r|x, a) = Bernoulli(f τj (x, a)).

Given a (random) policy π which returns a distribution π(a|x) for all x ∈ X , we
can define

qτ (r|π, x) = Ea∼π(·|x)q
τ (r|x, a),

and similarly for qτj (r|π, x). Let τ ∼j τ ′ if τ(x) and τ ′(x) differs at most at x = j.
Assume that we choose context in X uniformly at random. Let θ = θ(·|x) be
a policy learned from a bandit algorithm. We can decompose the regret of θ as
follows:

Q(θ, qτ ) =
1

d

d∑
j=1

εEa∼θ(·|x=j)1 (a 6= τ(j))) =
d∑
j=1

Qj(θ, q
τ ),

where

Qj(θ, q
τ ) =

ε

d
Ea∼θ(·|j)1(a 6= τ(j)).

This implies that when τ ∼j τ ′ and τ 6= τ ′:

Qj(θ, q
τ ) +Qj(θ, q

τ ′) ≥ ε

d
.

We can now set ε = min(0.1, 0.24
√
Kd/T ), and apply Theorem 13.24 with
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m = K. Given any bandit algorithm q̂, and time step t. We have

1

K

∑
τ ′∼jτ

KL(qτj (·|q̂(St−1),St−1)||qτ
′
(·|q̂(St−1),St−1)))

≤ 1

dK
sup
at

∑
τ ′∼jτ

KL(qτj (·|at, xt = j)||qτ
′
(·|at, xt = j))

=
1

dK
KL(0.5||0.5 + ε) ≤ 2.1

dK
ε2.

The first inequality used the fact that KL(·||·) = 0 when xt 6= j, and the proba-
bility of xt = j is 1/d. The last inequality used ε ≤ 0.1 and Exercise 16.4. We can
thus take β2

j,t = 2.1
dK
ε2 in Theorem 13.24, and obtain at the end of n ≤ T iteration

that θ̂ returned by q̂ satisfies

1

Kd

∑
τ

EqτEθ̂ Q(θ̂, qτ ) ≥0.5d
ε

d

(
1−

√
2× 2.1n

dK
ε2

)

≥0.25ε = 0.25 min

(
0.1, 0.24

√
Kd/T

)
.

The second inequality used nε2/(dK) ≤ 0.242. Since this bound holds for all
n ≤ T , we obtain the desired result.

17.5 Nonlinear Bandits with Coverage Coefficient

In this section, we consider the pure exploration setting for nonlinear contextual
bandits, which is defined below.

Definition 17.34. Consider a stochastic contextual bandit problem, in which
the context comes from a fixed distribution: x ∼ D. Let πE be a bandit policy,
(referred to as an exploration policy). Given any integer T , the goal of the pure
exploration problem in contextual bandit is to design an exploration policy πE,
and draw T samples xt ∼ D and at ∼ πE(·|xt) (t = 1, . . . , T ), so that one can
learn a bandit policy π̂ from the samples with small regret defined below:

REG(π̂) = Ex∼DEa∼π̂(·|x)[f∗(x)− f∗(x, a)],

where f∗ is the true value function.

In the following, we show that it is possible to design a pure exploration strategy
to solve the stochastic nonlinear bandit problem if the problem is realizable and
linearly embeddable. This is comparable to the problems which we can solve with
Feel-Good Thompson sampling in Section 17.4. However, instead of decoupling
coefficient, we will introduce the following concept of coverage coefficient.

Definition 17.35. The contextual coverage coefficient of a contextual bandit
policy π is defined as

CCX (ε, π,F) = sup
x∈X

CC(ε, π(·|x),F),
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where

CC(ε, π(·|x),F) = sup
a∈A

sup
f,f ′∈F

|f(x, a)− f ′(x, a)|2

ε+ Eã∼π(·|x)(f(x, ã)− f ′(x, ã))2

is defined for any distribution over A according to Definition 9.42.

The coverage coefficient in Definition 17.35 is the conditional version of the cov-
erage coefficient in Definition 9.42. Theorem 9.44 implies that coverage coefficient
is small for linearly embeddable function classes.

Proposition 17.36. Let F be a function class that is linearly embeddable in
H according to Definition 17.24. Let πG be a pure exploration policy so that for
each x ∈ X , πG(·|x) is the solution of the G-optimal design problem (over A,
conditioned on x) in Definition 9.42:

πG(·|x) = min
π∈∆(A)

CC (ε, π,Fx) , Fx = {f(x, ·) : f ∈ F} ,

then with ‖w(f, x)− w(f ′, x)‖H ≤ B for all f, f ′ ∈ F ,

CCX (ε, πG,F) ≤ dim(ε/B2, ψ(X ×A)).

The following proposition shows that one can reduce the contextual bandit
problem in the pure exploration setting to a supervised least squares regression
problem. It plays a similar role as Lemma 17.28 which employs the decoupling
coefficient.

Proposition 17.37. Assume that f∗ ∈ F , and the context x are drawn from a
fixed distribution D on X . For any exploration policy πE, and f ∈ F , we have

REG(πf ) ≤ 2
√
dε+ 2

√
dEx∼DEa∼πE(·|x)(f(x, a)− f∗(x, a))2,

where d = CCX (ε, πE,F) and πf is the greedy policy of f .

Proof We note that

Ex∼D [f∗(x)− f∗(x, πf (x))]

≤Ex∼D [f∗(x, πf∗(x))− f(x, πf∗(x)) + f(x, πf (x))− f∗(x, πf (x))]

≤2Ex∼D sup
a∈A
|f(x, a)− f∗(x, a)|

≤2
√
Ex∼D sup

a∈A
(f(x, a)− f∗(x, a))

2

≤2
√
dε+ dEx∼DEa∼πE(·|x) (f(x, a)− f∗(x, a))

2
.

The first inequality used the fact that 0 ≤ −f(x, πf∗(x)) + f(x, πf (x)), which
follows from the definition of greedy policy πf . The third inequality used Jensen’s
inequality and the concavity of

√
·. The last inequality used the definition of

coverage coefficient. This implies the desired bound.
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Proposition 17.37 reduces a bandit problem in the pure exploration setting to
a supervised learning problem. We can simply draw T samples x1, . . . , xT from
D, and draw at ∼ π(|̇xt). This means that the generalization error

Ex∼DEa∼πE(·|x)(f(x, a)− f∗(x, a))2.

can be established for the ERM method or the Gibbs algorithm as in Section 12.4.

Example 17.38. Assume that both F and A are finite. Let πE be the uniform
distribution over A and let ε = 0. We have CCX (0, πE,F) ≤ K. Given T samples
with the pure exploration policy πE, and let

fT = arg min
f∈F

T∑
t=1

(f(xt, at)− rt)2.

then it follows from Section 12.4 that with probability 1− δ:

Ex∼D (fT (x, π(x))− f∗(x, π(x)))2 = O

(
ln(|F|/δ))

T

)
.

This implies that

REG(πfT ) = O

(√
|A| ln(|F|/δ)

T

)
.

In the pure exploration setting, the performance of the greedy policy of fT is
comparable to that of Thompson sampling in Example 17.31 by using online to
batch conversion.

17.6 Historical and Bibliographical Remarks

The EXP4 algorithm was studied in (Auer et al., 2002b) as an extension of EXP3.
It handles general policy classes that can change over time, and thus the result
can be directly applied to contextual bandit in the adversarial setting. The prob-
lem of contextual bandit (or bandit with side information) was formulated more
explicitly by Langford and Zhang (2007). It was argued in (Langford and Zhang,
2007) that EXP4 is not an efficient algorithm for contextual bandit because the
computation of

Ew∼pt−1(w)q̂t(a|w, xt)

is difficult to implement efficiently. An empirical risk minimization oracle based
method called epoch-greedy was investigated in (Langford and Zhang, 2007).
However, epoch greedy has a suboptimal regret of O(T 2/3) instead of the regret
of O(

√
T ) for EXP4. The gap was closed in subsequent works (Dudik et al., 2011;

Agarwal et al., 2014) using more complicated algorithms with empirical mini-
mization oracles. However, these algorithms are policy based, and the em-
pirical minimization problems require solutions of classification problems. More
recently, significant interests were given to value function based approaches that
use regression instead of classification (see Agarwal et al., 2012).
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The first model for value-function based approach to the contextual bandit
problem is the stochastic linear bandit model, where the number of arms can be
infinite. The UCB style algorithms for this model have been analyzed in (Auer,
2002; Dani et al., 2008; Chu et al., 2011; Abbasi-yadkori et al., 2011). One
version of the resulting UCB algorithm is described in Algorithm 17.2, and was
analyzed in (Dani et al., 2008) and (Abbasi-yadkori et al., 2011). A matching
lower bound similar to Theorem 17.13 was also obtained by Dani et al. (2008).
It is relatively easy to apply Thompson sampling to linear contextual bandit (see
Agrawal and Goyal, 2013b; Russo and Van Roy, 2016). However, the regret
bound obtained in (Agrawal and Goyal, 2013b) is superlinear in d, and hence
inferior to that of the ridge regression with UCB. The suboptimality can be
addressed by using Feel-Good Thompson sampling (Zhang, 2022).

The idea of eluder dimension was introduced by Russo and Van Roy (2013), and
adopted recently by various researchers as a technique to generalize upper confi-
dence bound based linear bandit and reinforcement learning models to nonlinear
models. The resulting technique can be considered as a nonlinear generalization
of UCB. Section 17.3 employs a different treatment via eluder coefficient instead
of eluder dimension. The concept of eluder coefficient was introduced by Dann
et al. (2021), and it was shown that a small eluder dimension implies a small
eluder coefficient. We note that eluder coefficient was referred to as decoupling
coefficient in (Dann et al., 2021). However, due to the close relationship of eluder
coefficient and eluder dimension, and distinctive difference between eluder co-
efficient and decoupling coefficient, we adopt the more appropriate term eluder
coefficient in this book.

The value function based approach to nonlinear contextual bandit problem
was considered in (Agarwal et al., 2012). A general solution to this problem
using online regression oracle was obtained by Foster and Rakhlin (2020). It was
shown by Simchi-Levi and Xu (2022) that this method can be regarded as an
approximate solution of Dudik et al. (2011). More recently, it was shown by
Zhang (2022) that general nonlinear contextual bandit can also be solved using
a modification of Thompson sampling, referred as Feel-Good Thompson sam-
pling that incorporates an optimistic exploration term. It was shown in (Zhang,
2022) that this optimistic term is necessary, and without this term, the standard
Thompson sampling algorithm will not be able to solve the nonlinear contextual
bandit problem.
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Exercises

17.1 In Algorithm 17.2 for stochastic linear contextual bandits, we consider a pure exploration

scheme where we choose arm in line 6 according to confidence as

at ∈ arg max
a

ψ(xt, a)>A−1
t−1ψ(xt, a).

Similar to Lemma 17.8, we would like to derive an upper confidence bound after step T ,

but instead of a uniform bound for all u ∈ Rd, we consider a bound for any fixed vector

u ∈ Rd. Given any fixed u ∈ Rd, show that with probability at least 1− δ:

|u>(w∗ − wT )| ≤ β̃T
√
u>A−1

T u

for some β̃T that is independent of d.

• Show that for appropriately defined γt,

u>(w∗ − wT ) = λu>A−1
T w∗ +

T∑
t=1

γtεt(xt, at),

where {γt} and {εt(xt, at)} are independent.

• Use Azuma’s inequality to obtain a concentration bound so that

Pr

[
|u>(w∗ − wT )| > β̃T

√
u>A−1

T u

]
≤ δ,

with appropriately chosen β̃T independent of d. As in Lemma 17.8, we assume that

‖w∗‖2 ≤ B with known B, and for all t, rt(xt, at) ∈ [0,M ].

• Assume we have K arms. Define β̃T so that with probability at least 1−δ, the following

inequality holds uniformly for all a ∈ {1, . . . ,K}

|ψ(xT+1, a)>(w∗ − wT )| ≤ β̃T
√
ψ(xT+1, a)>A−1

T ψ(xT+1, a).

Compare this bound to that of Lemma 17.8. Why we cannot use this better β̃T for βT
in the original Algorithm 17.2?

17.2 Consider stochastic linear bandit with K = 2s arms and feature dimension d with s ≤ d.

Construct an example, and so that the regret of any bandit algorithm is at least

Ω(
√
sdT ).

17.3 Prove Proposition 17.16.

17.4 Prove (17.10) by using the following inequality with At−1 = B−2I +At−1:

|ft(xt, at)− f∗(xt, at)|2 ≤
(
‖wt − w∗‖2At−1

+ 1
)

min
(

1, ‖ψ(xt, at)‖2A−1
t−1

)
.

17.5 Compute the eluder coefficient of a function class under the conditions of Example 9.10.

17.6 Using Theorem 13.22 to derive a lower bound for the construction in Theorem 17.33, and

compare the result to that of Theorem 17.33.

17.7 Show that the eluder coefficient EC(ε,F , T ) = Õ(Edim(F , ε)), where Õ hides a logarithmic

factor.

17.8 Assume that F is linearly embeddable with dim(ε, ψ(X )) ≤ c0/εp for some p, c0 > 0, and

assume that F has L∞(D) covering number N(ε,F , L∞(D)) ≤ c1/ε
q for some c1, q >

0. Derive a regret bound for an appropriately designed bandit algorithm in the pure

exploration setting.
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Reinforcement Learning

This chapter describes some theoretical results on reinforcement learning, and
the analysis may be regarded as a natural generalization of technique introduced
for contextual bandit problems. In the literature, there are two formulations of
reinforcement learning, episodic reinforcement learning, and reinforcement learn-
ing with discounted rewards. We focus on episodic reinforcement learning in this
chapter, due to its close relationship with contextual bandits. Generally speak-
ing, results for episodic reinforcement learning can be converted into results for
discounted reinforcement learning. An episodic MDP, illustrated in Figure 18.1,
can be formally defined below.

Definition 18.1. An episodic Markov decision process (MDP) of length H, de-
noted by M = MDP(X ,A, P ), contains a state space X , an action space A,
and probability measures {P h(rh, xh+1|xh, ah)}Hh=1. At each step h ∈ [H] =
{1, . . . ,H}, we observe a state xh ∈ X and take action ah ∈ A. We then get
a reward rh and go to the next state xh+1 with probability P h(rh, xh+1|xh, ah).
We assume that x1 is drawn from an unknown but fixed distribution.

A random policy π is a set of conditional probability πh(ah|xh) that deter-
mines the probability of taking action ah on state xh at step h. If a policy π is
deterministic, then we also write the action ah it takes at xh as πh(xh) ∈ A.

The policy π interacts with the MDP in an episode as follows: for step h =
1, . . . ,H, the player observes xh, and draws ah ∼ π(ah|xh); the MDP returns
(rh, xh+1). The reward of the episode is

H∑
h=1

[rh].

The observations (x, a, r) = {(xh, ah, rh)}Hh=1 is called a trajectory, and each pol-
icy π, when interacting with the MDP, defines a distribution over trajectories,
which we denote as (x, a, r) ∼ π. The value of a policy π is defined as its expected
reward:

Vπ = E(x,a,r)∼π

H∑
h=1

[rh].

We note that the state xH+1 has no significance as the episode ends after taking
action ah at xh and observe the reward rh.
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x1 x2 xh xH
a1 a2 ah−1 ah aH−1 aH

r1 r2 rh−1 rh rh+1 rh+1

Figure 18.1 Episodic Markov decision process

With the above definition of episodic MDP, we can now introduce the episodic
reinforcement learning problem as follows.

Definition 18.2. In episodic reinforcement learning (RL), we consider an episodic
MDP. The player interacts with the MDP via a repeated game: at each time
(episode) t:

• The player chooses a policy πt based on historic observations.

• The policy interacts with the MDP, and generates a trajectory (xt, at, rt) =
{(xht , aht , rht )}Hh=1 ∼ πt.

The regret of episodic reinforcement learning is

T∑
t=1

[V∗ − Vπt ],

where V∗ = supπ Vπ is the optimal value function.

One may also define the optimal value function within a policy class, and define
the regret with respect to the optimal policy in this class. Note that in the case
of contextual bandit, EXP4 can be used to solve such a problem. However, it
is nontrivial to generalize an EXP4 style algorithm to handle episodic reinforce-
ment learning without suffering an exponential dependency in H. Therefore we
will focus on value function based algorithms by extending value function based
contextual bandit analysis. Under the realizability assumption, the resulting re-
gret bound can compete with the optimal value function achieved with the best
policy over the class of all possible policies.

Example 18.3 (Contextual Bandits). Consider the episodic MDP with H = 1.
We observe x1 ∈ X , take action a1 ∈ A, and observe reward r1 ∈ R. This case is
the same as contextual bandits.

Example 18.4 (Tabular MDP). In a Tabular MDP, both X and A are finite:
|X | = S and |A| = A. It follows that the transition probability at each step h

{P h(xh+1|xh, ah) : h = 1, . . . ,H}

can be expressed using HS2A numbers. The expected reward E[rh|xh, ah] can be
expressed using HSA numbers.

Example 18.5 (LQR). Linear quadratic regulator (LQR) has state space X =
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CHAPTER 18. REINFORCEMENT LEARNING 386

Rd and A = Rk. The transition probability is given by

xh+1 = Ahxh +Bhah + εh,

where εh ∼ N(0, σ2I) is Gaussian noise. The reward is

rh = −[(xh)>Qhxh + (ah)>Rhah],

where Qh and Rh are positive semi-definite matrices.

18.1 Value Functions of Episodic MDP

In value function based approach to RL, we consider value functions as follows.

Definition 18.6. Given any policy π, we can define its value function (also
referred to as the Q-function in the literature) starting at a state-action pair
(xh, ah) at step h as follows:

Qh
π(xh, ah) =

H∑
h′=h

Erh′∼π|(xh,ah)[r
h′ ],

where rh
′ ∼ π|(xh, ah) is the reward distribution at step h′ conditioned on starting

from state action pair (xh, ah) at step h. Similarly, we also define

V h
π (xh) =

H∑
h′=h

Erh′∼π|xh [rh
′
].

By convention, we set V H+1
π (xH+1) ≡ 0.

We note that the value of a policy π can be expressed as

Vπ = Ex1V 1
π (x1),

where the distribution of x1 is independent of π.
The following result is a straight-forward application of the definition of value

function. We leave it as an exercise.

Proposition 18.7. We have

Qh
π(xh, ah) =Erh,xh+1|xh,ah [rh + V h+1

π (xh+1)],

V h
π (xh) =Eah∼πh(·|xh)Q

h
π(xh, ah).

We may also define the optimal value functions that are the best possible value
function achieved by any policy, starting from an arbitrary state xh or state-action
pair (xh, ah) at step h.

Definition 18.8. The optimal value functions starting at step h are given by

Qh
∗(x

h, ah) = sup
π
Qh
π(xh, ah), V h

∗ (xh) = sup
π
V h
π (xh).

We also define the optimal value as V∗ = Ex1V 1
∗ (x1).
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18.1. VALUE FUNCTIONS OF EPISODIC MDP 387

In the following, for notation simplicity, we assume that the solution to

arg max
a∈A

Qh
∗(x

h, a)

can be achieved by some a ∈ A so that greedy policy in in Theorem 18.9 can be
properly defined. The following theorem describes key properties of optimal value
functions and optimal policy for reinforcement learning. The proof is straight-
forward, and we leave it as an exercise.

Theorem 18.9. The optimal Q-function Q∗ satisfies the Bellman equation:

Qh
∗(x

h, ah) = Erh,xh+1|xh,ah
[
rh + V h+1

∗ (xh+1)
]
.

The optimal value function satisfies

V h
∗ (xh) = max

a∈A
Qh
∗(x

h, a),

and the optimal value function can be achieved using a deterministic greedy policy
π∗ below

πh∗ (x
h) ∈ arg max

a∈A
Qh
∗(x

h, a).

Theorem 18.9 motivates the following definition of Bellman error for reinforce-
ment learning.

Definition 18.10. We say f is a candidate Q-function if f = {fh(xh, ah) :
X ×A → R : h ∈ [H + 1]}, with fH+1(·) = 0. Define

fh(xh) = arg max
a∈A

fh(xh, a),

and define its greedy policy πf as a deterministic policy that satisfies

πhf (xh) ∈ arg max
a∈A

fh(xh, a).

Given an MDP M , we also define the Bellman operator of f as

(T hf)(xh, ah) = Erh,xh+1|xh,ah [rh + fh+1(xh+1)],

and its Bellman error as

Eh(f, xh, ah) = fh(xh, ah)− (T hf)(xh, ah),

where the conditional expectation is with respect to the MDP M .

Theorem 18.9 implies that

Eh(Q∗, x
h, ah) = 0, ∀h ∈ [H].

The following theorem shows that the difference of the true value of policy πf
and the candidate value function f1(x1) are close if (and only if) the average
Bellman error is small along the path generated by πf . Since Bellman error can
be evaluated on real data, we can use this decomposition to design reinforcement
algorithms and obtain their regret bounds.
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CHAPTER 18. REINFORCEMENT LEARNING 388

Theorem 18.11. Consider any candidate value function f = {fh(xh, ah) : X ×
A → R}, with fH+1(·) = 0. Let πf be its greedy policy. Then

[f1(x1)− V 1
πf

(x1)] = E(x,a,r)∼πf |x1

H∑
h=1

Eh(f, xh, ah).

Proof We prove the following statement by induction from h = H to h = 1.

[fh(xh)− V h
πf

(xh)] = E{(xh′ ,ah′ ,rh′ )}H
h′=h∼πf |x

h

H∑
h′=h

Eh
′
(f, xh

′
, ah

′
). (18.1)

When h = H, we have aH = πHf (xH) and

EH(f, xH , aH) = fH(xH , aH)− ErH |xH ,aH [rH ] = fH(xH)− V H
π (xH).

Therefore (18.1) holds. Assume that the equation holds at h + 1 for some 1 ≤
h ≤ H − 1. Then at h, we have

E{(xh′ ,ah′ ,rh′ )}H
h′=h∼πf |x

h

H∑
h′=h

Eh
′
(f, xh

′
, ah

′
)

=Exh+1,rh,ah∼πf |xh [Eh(f, xh, ah) + fh+1(xh+1)− V h+1
πf

(xh+1)]

=Exh+1,rh,ah∼πf |xh [fh(xh, ah)− rh − V h+1
πf

(xh+1)]

=Eah∼πf |xh [fh(xh, ah)− V h
πf

(xh)]

=[fh(xh)− V h
πf

(xh)].

The first equation used the induction hypothesis. The second equation used the
definition of Bellman error. The third equation used Proposition 18.7. The last
equation used ah = πf (xh) and thus by definition, fh(xh, ah) = fh(xh).

In value function based methods, we consider the following assumptions.

Assumption 18.12. Given a candidate value function class F of functions
f = {fh(xh, ah) : X × A → R}, with fH+1(·) = 0. We assume that (realizable
assumption)

Q∗ = f∗ ∈ F .

Moreover, we assume that f1(x1) ∈ [0, 1] and rh + fh+1(xh+1) ∈ [0, 1] (h ≥ 1).

Bellman error plays an important role in the analysis of reinforcement learn-
ing algorithms. For value function based approach to reinforcement learning, we
would like to approximate Bellman error by minimizing least squares loss

(fh(xh, ah)− rh − fh+1(xh+1))2. (18.2)
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By taking conditional expectation with respect to (xh, ah), we obtain

Erh,xh+1|xh,ah(fh(xh, ah)− rh − fh+1(xh+1))2

=Eh(f, xh, ah)2 + Erh,xh+1|xh,ah

(
rh + fh+1(xh+1)− (T hf)(xh, ah)︸ ︷︷ ︸

f-dependent zero-mean noise

)2

.

Since noise variance depends on f , if we use (18.2) to estimate f , we will favor f
with smaller noise variance, which may not have zero Bellman error. To overcome
this issue, one can estimate the noise variance term, and then substract it from
(18.2) to obtain the term Eh(f, xh, ah)2. This requires an additional assumption
referred to as Bellman completeness (or simply completeness).

Definition 18.13 (Bellman Completeness). A candidate value function class F
is complete with respect to another candidate value function class G if for any
h ∈ [H], f ∈ F , there exists g ∈ G so that for all h ∈ [H]:

gh(xh, ah) = (T hf)(xh, ah) = Erh,xh+1|xh,ah
[
rh + fh+1(xh+1)

]
.

We say F is complete if F is complete with respect to itself.

Note that if F is complete with respect to G, then we may use the solution of

min
gh∈Gh

t∑
s=1

(gh(xhs , a
h
s )− rhs − fh+1(xh+1

s ))2

to estimate (T hf)(xh, ah), which can be used to cancel the variance term in (18.2).
This motivates the following loss function

Lh(f, g, xh, ah, rh, xh+1) =
[
(fh(xh, ah)− rh − fh+1(xh+1))2

−(gh(xh, ah)− rh − fh+1(xh+1))2
]
. (18.3)

The following result is a counterpart of Theorem 13.15.

Theorem 18.14. Assume that assumption 18.12 holds, F is complete with re-
spect to G, and gh(·) ∈ [0, 1] for all g ∈ G. Consider (18.3), and let

Ft =

{
f ∈ F : sup

g∈G

H∑
h=1

t∑
s=1

Lh(f, g, xhs , a
h
s , r

h
s , x

h+1
s ) ≤ β2

t

}
,

where

β2
t ≥ 4εt(4 + ε)H + 2 ln

(
16M(ε,F , ‖ · ‖∞)2M(ε,G, ‖ · ‖∞)/δ2

)
,

with M(·) denotes the ‖ · ‖∞ packing number, and ‖f‖∞ = suph,x,a |fh(x, a)|.
Then with probability at least 1− δ, for all t ≤ n: Q∗ ∈ Ft and for all f ∈ Ft:

t∑
s=1

H∑
h=1

Eh(f, xhs , a
h
s )2 ≤ 4β2

t .
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CHAPTER 18. REINFORCEMENT LEARNING 390

Proof Let Fε be an ε ‖ · ‖∞ packing subset of F of size M1, and let Gε be an ε
‖ · ‖∞ packing subset of G of size M2.

For all f ∈ F and g ∈ G (or g ∈ F), we introduce the simplified notations

εhs (f) =rhs + fh+1
s (xh+1

s )− (T hf)(xhs , a
h
s ),

∆h
s (f, g) =((T hf)(xhs , a

h
s )− gh(xhs , a

h
s )).

We have the following sub-Gaussian inequality (see Lemma 2.15) for any fixed
fε ∈ Fε, h ∈ [H], and ρ ∈ R:

lnErhs ,xh+1
s |xhs ,ahs

exp(ρεhs (fε)) ≤
ρ2

8
.

Using this logarithmic moment generating function, we can now obtain the fol-
lowing statement from Theorem 13.11, by taking a uniform bound over Gε ×Fε,
and consider both under and over estimation (for the absolute value on the left
hand side). With probability at least 1− δ/2: for all fε ∈ Fε, gε ∈ Gε and t ≥ 0,∣∣∣∣∣

t∑
s=1

H∑
h=1

∆h
s (fε, gε)ε

h
s (fε)

∣∣∣∣∣︸ ︷︷ ︸
A

≤
t∑

s=1

H∑
h=1

∆h
s (fε, gε)

2

8
+ ln(4M1M2/δ). (18.4)

In the following for each f ∈ F we choose fε ∈ Fε so that ‖f − fε‖∞ ≤ ε.
Similarly for each g ∈ G we choose gε ∈ Gε so that ‖g − gε‖∞ ≤ ε. Then∣∣∣∣∣

t∑
s=1

H∑
h=1

∆h
s (f, g)εhs (f)

∣∣∣∣∣
≤
∣∣∣∣∣
t∑

s=1

H∑
h=1

∆h
s (f, g)εhs (fε)

∣∣∣∣∣+ 2ε
t∑

s=1

H∑
h=1

|∆h
s (f, g)|

≤
∣∣∣∣∣
t∑

s=1

H∑
h=1

∆h
s (fε, gε)ε

h
s (fε)

∣∣∣∣∣︸ ︷︷ ︸
A

+4Hεt.

The first inequality used |εhs (f) − εhs (fε)| ≤ 2ε. The second inequality used the
ε-covering property |∆h

s (f, g)−∆h
s (fε, gε)| ≤ 2ε, |εhs (fε)| ≤ 1, and |∆h

s (f, g)| ≤ 1.
We also have

A ≤1

8

t∑
s=1

H∑
h=1

∆h
s (fε, gε)

2 + ln(4M1M2/δ)

≤1

8

t∑
s=1

H∑
h=1

(∆h
s (f, g) + 2ε)2 + ln(4M1M2/δ)

≤1

4

t∑
s=1

H∑
h=1

(∆h
s (f, g))2 + ε2Ht+ ln(4M1M2/δ).
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The first inequality used (18.4). The second inequality used the ε-covering prop-
erty |∆h

s (f, g) − ∆h
s (fε, gε)| ≤ 2ε. The last inequality used standard algebra in-

equalities |a+ 2ε|2/8 ≤ (a2/4) + ε2 to simplify the terms.
That is, we have shown that with probability at least 1 − δ/2: for all f ∈ F

and g ∈ G and t ≥ 0:∣∣∣∣∣
t∑

s=1

H∑
h=1

∆h
s (f, g)εhs (f)

∣∣∣∣∣ ≤1

4

t∑
s=1

H∑
h=1

∆h
s (f, g)2

+ εtH(4 + ε) + ln (4M1M2/δ) . (18.5)

Similarly, with probability at least 1− δ/2: for all f ∈ F and t ≥ 0:∣∣∣∣∣
t∑

s=1

H∑
h=1

∆h
s (f, f)εhs (f)

∣∣∣∣∣ ≤1

4

t∑
s=1

H∑
h=1

∆h
s (f, f)2

+ εtH(4 + ε) + ln (4M1/δ) . (18.6)

We have with probability at least 1− δ, both (18.5) and (18.6) hold. We obtain
with probability at least 1− δ: for all t ≥ 0, f ∈ F , g ∈ G:∣∣∣∣∣

H∑
h=1

t∑
s=1

[
∆h
s (f, f)−∆h

s (f, g)
]
εhs (f)

∣∣∣∣∣
≤1

4

H∑
h=1

t∑
s=1

[∆h
s (f, f)2 + ∆h

s (f, g)2] + 0.5β2
t . (18.7)

Therefore

t∑
s=1

H∑
h=1

Lh(f, g, xhs , a
h
s , r

h
s , x

h+1
s )

=
t∑

s=1

H∑
h=1

[
∆h
s (f, f)2 −∆h

s (f, g)2 + 2[∆h
s (f, f)−∆h

s (f, g)]εhs (f)
]

≥
t∑

s=1

H∑
h=1

[
0.5∆h

s (f, f)2 − 1.5∆h
s (f, g)2

]
− β2

t , (by (18.7))

and

t∑
s=1

H∑
h=1

Lh(Q∗, g, x
h
s , a

h
s , r

h
s , x

h+1
s )

=
t∑

s=1

H∑
h=1

[
∆h
s (Q∗, Q∗)

2 −∆h
s (Q∗, g)2 + 2[∆h

s (Q∗, Q∗)−∆h
s (Q∗, g)]εhs (f)

]
≤

t∑
s=1

H∑
h=1

[
1.5∆h

s (Q∗, Q∗)
2 − 0.5∆h

s (Q∗, g)2
]

+ β2
t . (by (18.7))
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Taking sup over g ∈ G, and note that ∆h
s (Q∗, Q∗) = 0, and that F is complete

with respect to G, we obtain

sup
g∈G

t∑
s=1

H∑
h=1

Lh(Q∗, g, x
h
s , a

h
s , r

h
s , x

h+1
s ) ≤ β2

t ,

sup
g∈G

t∑
s=1

H∑
h=1

Lh(f, g, xhs , a
h
s , r

h
s , x

h+1
s ) ≥ 0.5

t∑
s=1

H∑
h=1

∆h
s (f, f)2︸ ︷︷ ︸

Eh(f,xhs ,a
h
s )2

−β2
t .

In the two displayed inequalities, the first implies that Q∗ ∈ Ft. The second
implies that if f ∈ Ft, then

β2
t ≥ 0.5

t∑
s=1

H∑
h=1

Eh(f, xhs , a
h
s )2 − β2

t ,

which implies the second result of the theorem.

18.2 Q-type Model-Free Linear MDP

Linear MDP is a special MDP which can be defined as follows.

Definition 18.15 (Linear MDP). Let H = {Hh} be a sequence of vector spaces
with inner products 〈·, ·〉. An MDP M = MDP(X ,A, P ) is a linear MDP with
feature maps φ = {φh(xh, ah) : X × A → Hh}Hh=1 if for all h ∈ [H], there exist a
map νh(xh+1) : X → Hh and θh ∈ Hh, such that

dP h(xh+1|xh, ah) = 〈νh(xh+1), φh(xh, ah)〉dµh+1(xh+1),

E[rh|xh, ah] = 〈θh, φh(xh, ah)〉.

Here 〈·, ·〉 denotes the inner product in Hh for different h, and the conditional
probability measure dP h(·|xh, ah) is absolute continuous with respect to a mea-
sure dµh+1(·) with density 〈νh(xh+1), φh(xh, ah)〉. In general, we assume that νh(·)
and θh are unknown. We may assume φ(·) to be either known or unknown.

Example 18.16 (Tabular MDP). In a tabular MDP, we assume that |A| = A and
|X | = S. Let d = AS, and we can encode the space of X ×A into a d-dimensional
vector with components indexed by (x, a). Let φh(x, a) = e(x,a) and let νh(xh+1)
be a d dimensional vector so that its (x, a) component is P h(xh+1|xh = x, ah = a).
Similarly, we can take θh as a d dimensional vector so that its (x, a) component
is E[rh|xh = x, ah = a]. Therefore tabular MDP is linear MDP with d = AS.

Example 18.17 (Low-Rank MDP). For a low-rank MDP, we assume that the
transition probability matrix can be decomposed as

P h(xh+1|xh, ah) =
d∑
j=1

P h(xh+1|z = j)P h(z = j|xh, ah).

In this case we can set φh(xh, ah) = [P h(z = j|xh, ah)]dj=1, and νh(xh+1) =
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18.2. Q-TYPE MODEL-FREE LINEAR MDP 393

[P h(xh+1|z = j)]dj=1. Therefore a low-rank MDP is a linear MDPs with rank
as dimension.

We have the following structural result for linear MDP, which is useful in our
analysis.

Proposition 18.18. In a linear MDP with feature map φh(xh, ah) on vector
spaces Hh (h ∈ [H]). Consider the linear candidate Q function class

F =
{
〈wh, φh(xh, ah)〉 : wh ∈ Hh, h ∈ [H]

}
.

Any function gh+1(xh+1) on X satisfies

(T hgh+1)(xh, ah) ∈ F .

It implies that F is complete, and Q∗ ∈ F . Moreover, ∀f ∈ F ,

Eh(f, xh, ah) ∈ F .

Proof Let

uhg =

∫
gh+1(xh+1)νh(xh+1)dµh+1(xh+1).

We have

Exh+1|xh,ahg
h+1(xh+1) =

∫
gh+1(xh+1)〈νh(xh+1), φh(xh, ah)〉dµh+1(xh+1)

=〈uhg , φh(xh, ah)〉.

This implies that

(T hg)(xh, ah) = 〈θh + uhg , φ
h(xh, ah)〉 ∈ F .

Since Qh
∗(x

h, ah) = (T hQ∗)(xh, ah), we know Qh
∗(x

h, ah) ∈ F .
Similarly, since (T hf)(xh, ah) ∈ F , we know that f ∈ F implies

Eh(f, xh, ah) = fh(xh, ah)− (T hf)(xh, ah) ∈ F .

This proves the desired result.

Proposition 18.18 implies that if the feature map φ is known, then a linear
MDP with linear function class is both realizable and complete.

We can generalize the UCB algorithm for contextual bandit to the UCB algo-
rithm for reinforcement learning in Algorithm 18.1. It is again an implementation
of the optimism in the face of uncertainty principle. Its analysis is similar to that
of Algorithm 17.4. We may define an extension of eluder coefficient as follows,
which is similar to Definition 17.17. For convenience, we define it in terms of
expectation, which is more general than the definition without expectation in
Definition 17.17.
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Algorithm 18.1: Bellman Error UCB Algorithm

Input: λ, T , F , G
1 Let F0 = {f0}
2 Let β0 = 0
3 for t = 1, 2, . . . , T do
4 Observe x1

t

5 Let ft ∈ arg maxf∈Ft−1
f(x1

t ).
6 Let πt = πft
7 Play policy πt and observe trajectory (xt, at, rt)
8 Let

Ft =

{
f ∈ F : sup

g∈G

H∑
h=1

t∑
s=1

Lh(f, g, xhs , a
h
s , r

h
s , x

h+1
s ) ≤ β2

t

}
with appropriately chosen βt, where Lh(·) is defined in (18.3).

9 return randomly chosen πt from t = 1 to t = T

Definition 18.19 (Q-type Bellman Eluder Coefficient). Given a candidate Q
function class F , itsQ-type Bellman eluder coefficient ECQ(ε,F , T ) is the smallest
number d so that for any filtered sequence {ft, (xt, rt, at) ∼ πft}Tt=1:

E
T∑
t=2

H∑
h=1

Eh(ft, x
h
t , a

h
t ) ≤

√√√√d E
H∑
h=1

T∑
t=2

(
ε+

t−1∑
s=1

Eh(ft, xhs , a
h
s )2

)
.

One may also replace the sum
∑t−1

s=1 Eh(ft, x
h
s , a

h
s )2 on the right hand side of

Definition 18.19 by

t−1∑
s=1

E(x̃s,ãs)∼πfsE
h(ft, x̃

h
s , ã

h
s )2.

We will not consider this variant for the Q-type problem, but will employ this
variant for the V -type problem in Definition 18.27.

For linear MDP, one can employ Proposition 17.20 and Proposition 15.8 to
obtain an estimate of the eluder coefficient.

Proposition 18.20. Assume that a linear MDP has (possibly unknown) feature
maps φh(xh, ah) in inner product spaces {Hh}, each with inner product 〈·, ·〉 =
〈·, ·〉Hh. Assume also that the candidate Q-function class F can be embedded into
the linear function space F ⊂ {〈wh, φh(xh, ah)〉 : wh ∈ Hh}, and there exists
B > 0 such that ‖Eh(f, ·, ·)‖Hh ≤ B. Assume that |Eh(f, xh, ah)| ∈ [0, 1], then

ECQ(1,F , T ) ≤ 2
H∑
h=1

entro(1/(B2T ), φh(·))
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where entro(·) is defined in Proposition 15.8. In particular, if {Hh} are finite
dimensional, then we have

ECQ(1,F , T ) ≤ 2
H∑
h=1

dim(Hh) ln(1 + T (BB′)2),

where B′ = suph supxh,ah ‖φh(xh, ah)‖Hh.

We note that F may be nonlinear by itself, although it can be embedded
into a linear function space. One may also choose a sufficiently large RKHS to
realize such an embedding assumption. We can now prove a direct extension of
Theorem 17.19 as follows. Similar to Theorem 17.19, the structural assumption
of the MDP is characterized by Definition 18.19, which may include examples
other than linear MDP. For simplicity, we state the result in expectation, and
leave the high probability bound as an exercise.

Theorem 18.21. Assume that Assumption 18.12 holds, F is complete with re-
spect to G, and gh(·) ∈ [0, 1] for all g ∈ G. Assume also that βt is chosen in
Algorithm 18.1 according to

β2
t ≥ inf

ε>0

[
4εt(4 + ε)H + 2 ln

(
16M(ε,F , ‖ · ‖∞)2M(ε,G, ‖ · ‖∞)/δ2

)]
,

with M(·) denoting the ‖ · ‖∞ packing number, and ‖f‖∞ = suph,x,a |fh(x, a)|.
Then

E
T∑
t=2

[V 1
∗ (x1

t )− V 1
πt

(x1
t )] ≤ δT +

√√√√ECQ(ε,F , T )

(
εHT + δHT 2 + 4

T∑
t=2

β2
t−1

)
.

Proof For t ≥ 2, we have

V 1
∗ (x1

t )− V 1
πt

(x1
t )

=V 1
∗ (xt)− ft(x1

t ) + ft(x
1
t )− V 1

πt
(x1
t )

≤1(Q∗ /∈ Ft−1) + [ft(x
1
t )− V 1

πt
(x1
t )]

=1(Q∗ /∈ Ft−1) + E(xt,at,rt)∼πt|x1
t

H∑
h=1

Eh(ft, x
h
t , a

h
t ).

The inequality used the fact that if Q∗ ∈ Ft−1, then ft(x
1
t ) = maxf∈Ft−1

f(x1
t ) ≥

V 1
∗ (x1

t ), and if Q∗ /∈ Ft−1, V 1
∗ (xt) − ft(x1

t ) ≤ 1. The last equation used Theo-
rem 18.11.

Theorem 18.14 implies that Pr(Q∗ ∈ Ft−1) ≥ 1− δ. We thus have

E[V 1
∗ (x1

t )− V 1
πt

(x1
t )] ≤ δ + E

H∑
h=1

Eh(ft, x
h
t , a

h
t ).
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We can now obtain

E
T∑
t=2

[V 1
∗ (x1

t )− V 1
πt

(x1
t )]

≤E
T∑
t=2

H∑
h=1

Eh(ft, x
h
t , a

h
t ) + δT

≤δT +

√√√√ECQ(ε,F , T )E
T∑
t=2

H∑
h=1

(
ε+

t−1∑
s=1

Eh(ft, xhs , a
h
s )2

)

≤δT +

√√√√ECQ(ε,F , T )

(
εHT + δHT 2 + 4

T∑
t=2

β2
t−1

)
.

The second inequality used Definition 18.19. The last inequality used the fact
that for each t, Theorem 18.14 holds with probability 1 − δ, and otherwise,
Eh(ft, x

h
s , a

h
s )2 ≤ 1.

To interpret the theorem, we still consider the d dimensional linear MDP with
bounded F and G. If the model coefficients at different step h are different, then
the metric entropy can be bounded (ignoring log factors) as Õ(H ln(MFMG)) =
Õ(Hd), and hence with ε = δ = O(1/T 2), we have

β2
t = Õ(H ln(MFMG)) = Õ(Hd).

Since ECQ(ε,F , T ) = Õ(dH), we obtain a regret of

E
T∑
t=2

[V 1
∗ (x1

t )− V 1
πt

(x1
t )] = Õ

(
H
√
dT ln(MFMG)

)
= Õ

(
Hd
√
T
)
. (18.8)

If a Q function at different steps h shares the same model coefficient, then we
have β2

t = Õ(ln(MFMG)) = Õ(d), which is independent of H. In this case the
regret becomes

E
T∑
t=2

[V 1
∗ (x1

t )− V 1
πt

(x1
t )] = Õ

(√
dHT ln(MFMG)

)
= Õ(d

√
HT ).

The resulting regret bound is optimal in its dependence on d and T (see Theo-
rem 17.13), but suboptimal in the dependence on H. The H dependency can be
improved using weighted regression, where the weight is inversely proportional to
an upper bound of the variance. The resulting procedure is more complex, and
thus we will not consider it here.

18.3 Least Squares Value Iteration

It was shown in Theorem 18.21 that the UCB method in Algorithm 18.1 can
handle linear MDP with Q-type Bellman eluder coefficient. However, it requires
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solving a minimax formulation with global optimism, which may be difficult com-
putationally. This section shows that a computationally more efficient approach
can also be used to solve linear MDP. In this approach, we are restricted to the
case that the function class F can be factored as the product of Fh, and we need
to make a stronger assumption of Bellman completeness in (18.9), and a stronger
form of Bellman eluder coefficient to control point-wise confidence interval in
(18.10).

Assumption 18.22. Assume that the Q function class F can be factored as the
product of H function classes:

F =
H∏
h=1

Fh, Fh = {〈wh, φh(xh, ah)〉, wh ∈ Hh},

so that for all gh+1(xh+1) ∈ [0, 1]:

(T h gh+1)(xh, ah) ∈ Fh. (18.9)

Assume for any ε > 0, there exist a function class Bh(ε) so that for any sequence

{(xht , aht , f̂ht ) ∈ X × A × Fh : t = 1, . . . , T}, we can construct a sequence of

non-negative bonus functions bht (·) ∈ Bh(ε) (each f̂ht and bht only depend on the
historic observations up to t− 1) such that

bht (xh, ah)2 ≥ sup
fh∈Fh

|fh(xh, ah)− f̂ht (xh, ah)|2

ε+
∑t−1

s=1 |fh(xhs , a
h
s )− f̂ht (xhs , a

h
s )|2

, (18.10)

and the bonus function satisfies the following uniform eluder condition:

sup
{(xht ,aht )}

T∑
t=1

min(1, bht (xht , a
h
t )2) ≤ dim(T,Bh(ε)).

We note that the uniform eluder condition of Assumption 18.22 is related
to the coverage coefficient of Definition 9.42 (also see the conditional versions
in Definition 17.35 and Definition 18.30), and the assumption is stronger than
Bellman eluder coefficients. However, the following example shows that linear
MDP satisfies Assumption 18.22.

Example 18.23. Consider a linear MDP in Definition 18.15, such that

‖θh‖Hh +

∫
‖νh(xh+1)‖Hh |dµh+1(xh+1)| ≤ Bh.

If Fh is any function class that contains

F̃h = {〈wh, φh(xh, ah)〉 : ‖wh‖Hh ≤ Bh},

then the proof of Proposition 18.18 implies that (18.9) holds. Note that if rh ∈
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[0, 1], then (T h gh+1)(xh, ah) ∈ [0, 2]. Therefore at any time step t, we may con-
sider a subset of Fh that satisfies the range constraint on historic observations,
and in the mean time, impose the same range constraints in F̃h as

F̃h =
{
〈wh, φh(xh, ah)〉 : ‖wh‖Hh ≤ Bh, 〈wh, φh(xhs , a

h
s )〉 ∈ [0, 2]∀s ∈ [t− 1]

}
.

If moreover, each fh(xh, ah) ∈ Fh can be written as 〈w̃h(fh), φ̃h(xh, ah)〉 so that
‖w̃h(fh)− w̃h(f̃h)‖2 ≤ B̃h (here we assume that φ̃h may or may not be the same
as φh), then we can take

bht (xh, ah) =‖φ̃h(xh, ah)‖(Σht )−1 , (18.11)

Σh
t =

ε

(B̃h)2
I +

t−1∑
s=1

φ̃h(xh, ah)φ̃h(xh, ah)>,

so that (18.10) holds. By using Lemma 13.9, we have

T∑
t=1

min
(

1, ‖φ̃h(xht , a
h
t )‖2(Σht )−1

)
≤

T∑
t=1

2‖φ̃h(xht , a
h
t )‖2

(Σht )−1

1 + ‖φ̃h(xht , a
h
t )‖2

(Σht )−1

≤ ln
∣∣∣((B̃h)2/ε)Σh

t

∣∣∣ .
Using Proposition 15.8, we can set dim(T,Bh(ε)) = entro

(
ε/((B̃h)2T ), φ̃h(·)

)
.

With the stronger assumptions in Assumption 18.22, we can solve the corre-
sponding RL problem using Algorithm 18.2, which is computationally simpler
than Algorithm 18.1. At each time step t, the algorithm forms upper confidence
bounds of the optimal Q function for h = H,H − 1, . . . , 1, and then plays the
greedy policy according to the upper confidence bounds. This requires explicit
bonus term bht (·). We call this algorithm Least Squares Value Iteration (with UCB)
to be consistent with (Jin et al., 2020). However, the algorithm is also referred
to as Fitted Q-learning in the literature.

Lemma 18.24. Consider Algorithm 18.2 under Assumption 18.22. Assume also
that Qh

∗ ∈ Fh, Qh
∗ ∈ [0, 1], rh ∈ [0, 1], fh ∈ [0, 2] for h ∈ [H] and fh ∈ Fh. Given

any t > 0, let βH+1
t = βH+1(ε, δ) = 0, and for h = H,H − 1, . . . , 1:

βht = βh(ε, δ) ≥4(1 + βh+1)
ε√
T

+
√
ε

+

√
24(1 + βh+1(δ))ε+ 12 ln

2HMh
T (ε)

δ
,

where (with ‖f‖∞ = supx,a,h f
h(x, a))

Mh
T (ε) = M(ε/T,Fh, ‖ · ‖∞)M(ε/T,Fh+1, ‖ · ‖∞)M(ε/T,Bh+1(ε), ‖ · ‖∞).

Then with probability at least 1− δ, for all h ∈ [H], and (xh, ah) ∈ X ×A:

Qh
∗(x

h, ah) ≤ fht (xh, ah),

|fht (xh, ah)− (T hfh+1
t )(xh, ah)| ≤ 2βh(ε, δ)bh(xh, ah).
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Algorithm 18.2: Least Squares Value Iteration with UCB (LSVI-UCB)

Input: ε > 0, T , {Fh}, {Bh(ε)}
1 for t = 1, 2, . . . , T do
2 Let fH+1

t = 0
3 for h = H,H − 1, . . . , 1 do
4 Let yhs = rhs + fh+1

t (xh+1
s ), where fh+1

t (xh+1
s ) = maxa f

h+1
t (xh+1

s , a)
5 Let

f̂ht = arg min
fh∈Fh

t−1∑
s=1

(fh(xhs , a
h
s )− yhs )2.

Find βht > 0 and bonus function bht (·) that satisfies (18.10)

6 Let fht (xh, ah) = min(1,max(0, f̂ht (xh, ah) + βht b
h
t (xh, ah)))

7 Let πt be the greedy policy of fht for each step h ∈ [H]
8 Play policy πt and observe trajectory (xt, at, rt)

9 return randomly chosen πt from t = 1 to t = T

Proof Let Fh+1
ε be an (ε/T ) ‖ · ‖∞ packing of Fh+1, and Bh+1

ε be an (ε/T ) ‖ · ‖∞
packing of Bh+1(ε). Then

F̄h+1
ε = Fh+1

ε ⊕ βh+1Bh+1
ε

is a (1 + βh+1)(ε/T ) ‖ · ‖∞ cover of {fh+1
t (·)}.

Given fh+1
t , let f̄h+1

t ∈ F̄h+1
ε so that ‖f̄h+1

t − fh+1
t ‖∞ ≤ ε̄ = (1 + βh+1)(ε/T ).

Let ȳhs = rhs + f̄h+1
t (xh+1

s ), and

f̃ht = arg min
fh∈Fh

t−1∑
s=1

(fh(xhs , a
h
s )− ȳhs )2.

Then we have(
t−1∑
s=1

(f̂ht (xhs , a
h
s )− ȳhs )2

)1/2

≤
(
t−1∑
s=1

(f̂ht (xhs , a
h
s )− yhs )2

)1/2

+
√
tε̄

≤
(
t−1∑
s=1

(f̃ht (xhs , a
h
s )− yhs )2

)1/2

+
√
tε̄

≤
(
t−1∑
s=1

(f̃ht (xhs , a
h
s )− ȳhs )2

)1/2

+ 2
√
tε̄.

The first and the third inequalities used triangle inequalities. The second in-
equality used the fact that f̂ is the ERM solution of the least squares prob-
lem. We can apply Theorem 13.15 to ȳhs , with f∗ in Theorem 13.15 replaced by
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E[ȳhs |xhs , ahs ] = (T hf̄h+1
t )(xhs , a

h
s ) and ε′ = 2ε̄ and σ = 1. By taking a union bound

over f̄h+1
t ∈ F̄h+1

ε and h ∈ [H], we obtain with probability at least 1− δ:(
t−1∑
s=1

(
f̂ht (xhs , a

h
s )− (T hfh+1

t )(xhs , a
h
s )
)2

+ ε

)1/2

≤
(
t−1∑
s=1

(
f̂ht (xhs , a

h
s )− (T hf̄h+1

t )(xhs , a
h
s )
)2
)1/2

+
√
tε̄+
√
ε

≤
√
tε̄+
√
ε+

√
8t
( ε
T

+ 2ε̄
)(

1 +
2ε

T
+ 4ε̄

)
+ 12 ln

2HMh
T (ε)

δ
≤ βht .

The first inequality used the triangle inequality. The second inequality used The-
orem 13.15 with ε′ = 2ε̄ (and union bound over f̄h+1

t and h ∈ [H]). The last
inequality is algebra.

Now by using the definition of bht (·), we obtain

|f̂ht (xh, ah)− (T hfh+1
t )(xh, ah)| ≤ βht bht (xh, ah).

Therefore the definition of fht in the algorithm implies that

0 ≤ fht (xh, ah)− (T hfh+1
t )(xh, ah) ≤ 2βht b

h
t (xh, ah). (18.12)

This proves the second desired bound. By using induction from h = H,H −
1, . . . , 1, with QH+1

∗ = fH+1
t = 0, we obtain that when fh+1

t (·) ≥ Qh+1
∗ (·):

fht (xh, ah)−Qh
∗(x

h, ah) ≥(T hfh+1
t )(xh, ah)−Qh

∗(x
h, ah)

=E [fh+1
t (xh+1)−Qh+1

∗ (xh+1)|xh, ah] ≥ 0.

The first inequality used (18.12). The next equality used the Bellman equation
for Q∗. The last inequality used the induction hypothesis at h + 1. This proves
the first desired inequality.

We are now ready to prove the following regret bound for Algorithm 18.2. We
state the result in expectation. A slight modification of the proof also leads to a
high probability result (see Exercise 18.4).

Theorem 18.25. Consider Algorithm 18.2, and assume that all conditions of
Lemma 18.24 hold. Then

E
T∑
t=1

[V 1
∗ (x1

t )− V 1
πt

(x1
t )] ≤ δT + 2

√√√√dHT
H∑
h=1

βh(ε, δ)2 + 2Hd,

where d = H−1
∑H

h=1 dim(T,Bh(ε)).

Proof From Lemma 18.24, we know that for each t, with probability at least
1− δ over the observations {(xs, as, rs) : s = 1, . . . , t− 1}, the two inequalities of
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the lemma hold (which we denote as event Et). It implies that under event Et,
fht satisfies the following inequalities for all h ∈ [H]:

Ex1
t
V 1
∗ (x1

t ) ≤ Ex1
t
f1
t (x1

t ), (18.13)

Exht ,aht |E
h(ft, x

h
t , a

h
t )| ≤ 2Exht ,aht β

h(ε, δ)bh(xht , a
h
t ). (18.14)

We thus obtain

E
T∑
t=1

[V 1
∗ (x1

t )− V 1
πt

(x1
t )] ≤ δT + E

T∑
t=1

[f1
t (x1

t )− V 1
πt

(x1
t )]1(Et)

=δT +
T∑
t=1

E
H∑
h=1

Eh(ft, x
h
t , a

h
t )1(Et)

≤δT + 2
T∑
t=1

E
H∑
h=1

[
βh(ε, δ) min(1, bh(xht , a

h
t )) + min(1, bh(xht , a

h
t ))2

]

≤δT + 2

√√√√ T∑
t=1

H∑
h=1

βh(ε, δ)2

√√√√E
T∑
t=1

H∑
h=1

min(1, bh(xht , a
h
t ))2

+ 2E
T∑
t=1

H∑
h=1

min(1, bh(xht , a
h
t ))2

≤δT + 2

√√√√T
H∑
h=1

βh(ε, δ)2

√√√√ H∑
h=1

dim(T,Bh(ε)) + 2
H∑
h=1

dim(T,Bh(ε)).

The first inequality used (18.13). The first equality used Theorem 18.11. The
second inequality used (18.14) and |Eh(ft, x

h
t , a

h
t )| ≤ 2. The third inequality used

the Cauchy Schwartz inequality. This proves the desired bound.

Example 18.26. Consider the linear MDP example in Example 18.23, where we
assume feature φh(·) = φ̃h(·) is known and is d dimensional for all h. We have
lnN(ε/T,Fh, ‖ · ‖∞) = Õ(d). Moreover, since the bonus function of (18.11) can
be regarded as a function class with the d × d matrix Σh

t as its parameter, we
know from Theorem 5.3 that

lnN(ε/T,Bh+1(ε), ‖ · ‖∞) = Õ(d2). (18.15)

This means that in Theorem 18.25, we have βh = Õ(d2). Moreover dim(T,Bh(ε)) =
Õ(d) from Example 18.23 and Proposition 15.8. It follows from Theorem 18.25
that for Algorithm 18.2, we have a regret bound of

Õ(Hd3/2
√
T ).

Compared to (18.8), the bound is inferior by a factor of
√
d. This sub-optimality

is caused by the entropy number of the bonus function class Bh+1(ε) in (18.15),
which is Õ(d2) due to the d2 parameters in Σh

t . In comparison, the Q-function
class Fh has d parameters, and the entropy number is Õ(d).
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18.4 Bellman Factorization and V -type Bellman Eluder Coefficient

In linear MDP, we assume that the Q function class is a linear model. Although
moderate nonlinear generalization can be handled by eluder coefficient, it still
requires a near linear Q-function class. In particular, one condition to ensure small
eluder coefficient is to assume that the Q function lies in the linear space spanned
by the feature maps {φh(·)} of the underlying MDP. It is however, desirable to
allow the Q function class to contain functions outside of {φh(·)}. The resulting
algorithm will be able to allow more non-linearity in the Q function class, similar
to the case of contextual bandits of Section 17.4 and Section 17.5.

We first state the following structural assumption of the MDP, in terms of
eluder coefficient, which we refer to as the V -type Bellman eluder coefficient.

Definition 18.27 (V -type Bellman Eluder Coefficient). Given a candidate Q
function class F , its V -type Bellman eluder coefficient ECh

V (ε,F , T ) at step h ≥ 1
is the smallest number d so that for any filtered sequence {ft, (xt, rt, at) ∼ πft}Tt=1

E
T∑
t=2

Eh(ft, x
h
t , a

h
t ) ≤

√√√√dE
T∑
t=2

(
ε+

t−1∑
s=1

Ex̃∼πfsEh(ft, x̃h, πft(x̃
h))2

)
.

In order to bound the Q-type Bellman eluder coefficient, we need to assume in
Proposition 18.20 that the Q function class can be embedded in a linear vector
space. This is not necessary for the V -type Bellman eluder coefficient, which
allows general nonlinear Q function class.

We note that for linear MDP, from the proof of Proposition 18.18, we know
that for any h ≥ 2, there exists uh−1(f) ∈ Hh−1 so that

Exh|xh−1,ah−1Eh(f, xh, πf (xh)) = 〈uh−1(f), φh−1(xh−1, ah−1)〉.

If moreover, we assume that (xh−1, ah−1) ∼ π′, where π′ is referred to as a roll-in
policy, then we have the following decomposition,

Exh∼π′Eh(f, xh, πf (xh)) = 〈uh−1(f), φh−1(π′)〉,

where φh−1(π′) = Exh−1,ah−1∼π′φ
h−1(xh−1, ah−1).

One may expand this property and define Bellman factorizable MDPs as fol-
lows, which includes linear MDP as a special case.

Definition 18.28 (Bellman Factorization). Let H = {Hh} be a sequence of
vector spaces, with dimensions (Bellman ranks) dim(Hh) for h = 1, . . . ,H. We
allow dim(Hh) = ∞. An MDP has a Bellman factorization with respect to H
if the following condition holds. There exists uh−1(f) ∈ Hh−1 for all h ≥ 2 and
Q-function f ∈ F ; there exists φh−1(π′) ∈ Hh−1 for all policy π′, so that the
following factorization is valid:

Exh∼π′Eh(f, xh, πf (xh)) = 〈uh−1(f), φh−1(π′)〉.
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Note that in general, the feature φh−1(π′) is neither known nor used by the RL
algorithms. The concept is a structural condition of the MDP that is needed only
for bounding the V -type Bellman eluder coefficient. Specifically, the following
result presents such a bound.

Proposition 18.29. Consider an MDP which has a Bellman factorization with
respect to H as in Definition 18.28. Assume that x1

t are iid samples drawn from
the same underlying distribution, and for h ≥ 2, supf∈F ‖uh−1(f)‖Hh−1 ≤ B.
Assume that |Eh(f, xh, ah)| ∈ [0, 1], then

EC1
V (0,F , T ) ≤1 + lnT,

ECh
V (1,F , T ) ≤2entro(1/(B2T ), φh−1(·)), (h ≥ 2),

where entro(·) is defined in Proposition 15.8. In particular, if {Hh} are finite
dimensional, and let B′ = suph≥2 supπ ‖φh−1(π)‖Hh−1, then for h ≥ 2:

ECh
V (1,F , T ) ≤ dim(Hh−1) ln(1 + T (BB′)2).

Proof For h = 1, we have

E
T∑
t=2

E1(ft, x
1
t , a

1
t )

≤E

√√√√ T∑
t=2

1

t− 1

√√√√ T∑
t=2

(t− 1)E1(ft, x1
t , a

1
t )2 (Cauchy-Schwartz inequality)

≤

√√√√ T∑
t=2

1

t− 1

√√√√E
T∑
t=2

(t− 1)Ex1
t
E1(ft, x1

t , πft(x
1
t ))2

≤
√

1 + lnT

√√√√E
T∑
t=2

t−1∑
s=1

Ex1
s
E1(ft, x1

s, πft(x
1
s))

2

The second inequality used the Jensen’s inequality and concavity of
√
·, and

at = πft(x
1
t ). The third inequality used the fact that x1

s has the same distribution

as x1
t , and

∑T
t=2 1/(t− 1) ≤ 1 + lnT .

For h ≥ 2, we let ECh
V = 2entro(1/(B2T ), φh−1(·)), then

E
T∑
t=2

Eh(ft, x
h
t , a

h
t ) =E

T∑
t=2

〈uh−1(ft), φ
h−1(πft)〉

≤

√√√√ECh
V E

T∑
t=2

(
1 +

t−1∑
s=1

(〈uh−1(ft), φh−1(πfs)〉)
2

)

=

√√√√ECh
V E

T∑
t=2

(
1 +

t−1∑
s=1

Ex̃∼πsEh(ft, x̃h, πft(x̃
h))2

)
.
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The inequality follows from (17.10).

Compared with the Q-type Bellman eluder coefficient, the V -type Bellman
eluder coefficient employs the optimal action πft on the historic data without
using the historic action at. It is necessary to draw random actions according
a fixed exploration policy π̃ by using the techniques of Section 17.5. For finite
actions, we can simply draw the actions uniformly at random. Otherwise, we
have to design a policy π̃ for the purpose. The resulting algorithm is given in
Algorithm 18.3.

Algorithm 18.3: V -type Bellman Error UCB Algorithm

Input: λ, T , F , G, π̃
1 Let F0 = {f0}
2 Let β0 = 0
3 for t = 1, 2, . . . , T do
4 Observe x1

t

5 Let ft ∈ arg maxf∈Ft−1
f(x1

t )
6 Let πt = πft
7 Draw ht ∼ [H] uniformly at random

8 Play policy πt and observe trajectory (xt, at, rt) up to xhtt
9 Play random policy ahtt ∼ π̃ht(·|xhtt ), and observe (rhtt , x

ht+1
t )

10 Let

Ft =

{
f ∈ F : sup

g∈G

t∑
s=1

Lhs(f, g, xhss , a
hs
s , r

hs
s , x

hs+1
s ) ≤ β2

t

}
with appropriately chosen βt, where Lh(·) is defined according to
(18.3).

11 return randomly chosen πt from t = 1 to t = T

If we compare Algorithm 18.3 to Algorithm 18.1, there are two major differ-
ences. One difference is that at each time t, it stops at a randomly chosen ht.
Another difference is that a one-step exploration using a predefined policy π̃ is
needed. The policy is designed so that the optimal action πft for any ft is well
covered, so that we can bound the Bellman error with πft by as ∼ π̃. We may
use Definition 17.35, which we adapt to the RL problem as follows.

Definition 18.30. The coverage coefficient CCh(ε, π̃,F) (for ε > 0) of a random
policy π̃ at step h is defined as

CCh(ε, π̃,F) = sup
f∈F,xh∈X

Eh(f, xh, πf (xh))2

ε+ Eah∼π̃h(·|xh)Eh(f, xh, ah)2
.

We note that Definition 18.30 is consistent with Definition 17.35, which can be
regarded as a conditional version of Definition 9.42. Therefore we may employ
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a conditional G-optimal design π̃h(ah|xh) by conditioning on xh. The following
result shows that if Bellman error is linearly embeddable (with possibly unknown
feature map), then good coverage coefficient can be obtained using nonlinear
G-optimal design. It is a direct consequence of Theorem 9.44.

Proposition 18.31. Assume that F is complete with respect to G, then for each
h ∈ [H],

{Eh(f, xh, ah) : f ∈ F} ⊂ Fh 	 Gh = {fh − gh : fh ∈ Fh, gh ∈ Gh}.

If Fh 	 Gh is linearly embeddable in Hh, with a decomposition uh(xh, ah) =
fh(xh, ah) − gh(xh, ah) = 〈wh(uh, xh), ψh(xh, ah)〉 for some unknown embedding
functions wh(·) and ψh(·) (see Definition 17.24). Let B = supxh,uh,ũh ‖wh(uh, xh)−
wh(ũh, xh)‖Hh, and for all xh, let {π̃h(·|xh)} be the solution of the conditional G-
optimal design problem

min
π(·|xh)

sup
xh,ah

sup
uh,ũh∈Fh	Gh

|uh(xh, ah)− ũh(xh, ah)|2

ε+ Eãh∼π(·|xh)(uh(x̃h, ah)− ũh(x̃h, ah))2
.

Then

CCh(ε, π̃,F) ≤ dim(ε/B2, ψh(·)),

where dim(·) is the effective dimension in Proposition 9.36.

The linear embedding condition allows the Q-function class to be nonlinear and
it does not need to be contained in the linear space spanned by the feature maps
of the underlying MDP (which is needed for the analysis of the Q-type problems).
The analogy for the bandit case has been discussed in Section 17.4. For example,
if the number of actions is finite, then any nonlinear function classes F is linearly
embeddable.

Example 18.32. If the number of actions K is finite, then one may use encoding
ψh(xh, ah) = eah ∈ RK , and the corresponding G-optimal design is uniform π̃ over
the actions. Using this result, we obtain CCh(0, π̃,F) ≤ K.

By combining Proposition 18.29 and Proposition 18.31, we know that both
eluder and covering coefficients can be bounded without the need to know either
the linear embedding feature maps or the Bellman factorization. The overall
complexity is stated as follows.

Proposition 18.33. In Algorithm 18.3, we let

d̃ =
H∑
h=1

ECh
V (ε,F , T ) max(1,CCh(ε′, π̃,F)),

then

E
H∑
h=1

T∑
t=2

Eh(ft, x
h
t , a

h
t ) ≤

√√√√d̃E
T∑
t=2

(
εH + ε′HT +

t−1∑
s=1

H∑
h=1

Ēh(ft, πfs , π̃)2

)
,
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where

Ēh(f, π, π̃)2 = Ex̃h∼πEah∼π̃(·|xh)Eh(ft, x
h, ah)2.

Proof Let dh1 = ECh
V (ε,F , T ), and dh2 = CCh(ε′, π̃,F). We obtain

E
H∑
h=1

T∑
t=2

Eh(ft, x
h
t , a

h
t ) ≤

H∑
h=1

√√√√dh1E
T∑
t=2

(
ε+

t−1∑
s=1

Ex̃∼πfsEh(ft, x̃h, πft(x̃
h))2

)

≤
H∑
h=1

√√√√dh1E
T∑
t=2

(
ε+ dh2

t−1∑
s=1

(
ε′ + Ēh(ft, πfs , π̃)2

))

≤
H∑
h=1

√√√√dh1 max(1, dh2)E
T∑
t=2

(
ε+ ε′T +

t−1∑
s=1

Ēh(ft, πfs , π̃)2

)
.

The first inequality used Definition 18.27. The second inequality used Defini-
tion 18.30. We then use the Cauchy Schwartz inequality to obtain the result.

Using Proposition 18.33, we can reduce regret to in-sample prediction error
on historic data. This allows us to prove the following result for Algorithm 18.3,
which is similar to Theorem 18.21.

Theorem 18.34. Assume that Assumption 18.12 holds, F is complete with re-
spect to G, and gh(·) ∈ [0, 1] for all g ∈ G. If we set βt in Algorithm 18.3 as

β2
t ≥ inf

ε>0

[
4εt(4 + ε) + 2.4 ln

(
16M(ε,F , ‖ · ‖∞)2M(ε,G, ‖ · ‖∞)/δ2

)]
,

where M(·) denotes the ‖ · ‖∞ packing number, and ‖f‖∞ = suph,x,a |fh(x, a)|,
then we have

E
T∑
t=2

[V 1
∗ (x1

t )− V 1
πt

(x1
t )] ≤ δT +

√√√√d̃H

(
εT + ε′T 2 + δT 2 + 4

T∑
t=2

β2
t−1

)
,

where d̃ =
∑H

h=1 ECh
V (ε,F , T ) max(1,CCh(ε′, π̃,F)) .

Proof Sketch First, we would like to prove an analogy of Theorem 18.14 for βt by
using the same notations in its proof. Using the same sub-Gaussian logarithmic
moment generating function, we obtain the following counterpart of (18.4) from
Theorem 13.11 by taking conditional expectation with respect to each trajectory.
With probability at least 1− δ/2: for all fε ∈ Fε, gε ∈ Gε and t ≥ 0,∣∣∣∣∣

t∑
s=1

∆hs
s (fε, gε)ε

hs
s (fε)

∣∣∣∣∣︸ ︷︷ ︸
A

≤ 1

λ

t∑
s=1

lnEhsExhss ,ahss
exp

(
λ2∆hs

s (fε, gε)
2

8

)

+
ln(4M1M2/δ)

λ
,
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where we choose λ = 0.9. Let ξ = λ2∆hs
s (fε, gε)

2/8, then ξ ≤ 0.92/8 ≤ 0.102, and
thus

1

λ
lnE exp(ξ) ≤ 1

λ
[E exp(ξ)− 1] ≤ exp(0.102)

λ
Eξ.

By combining the previous two inequalities, and use exp(0.102)λ ≤ 1, and 1/λ ≤
1.2, we obtain

A ≤
t∑

s=1

1

H

H∑
h=1

Exhs∼πs,ahs∼π̃(·|xhs )

∆h
s (fε, gε)

2

8
+ 1.2 ln(4M1M2/δ).

This inequality can replace (18.4) in the proof of Theorem 18.14. The same ar-
gument leads to the following inequalities as counterparts of (18.5) and (18.6).
With probability at least 1− δ, for all f ∈ F , g ∈ G, and t ≥ 0:∣∣∣∣∣

t∑
s=1

∆hs
s (f, g)εhss (f)

∣∣∣∣∣ ≤ 1

4H

t∑
s=1

H∑
h=1

Exhs∼πs,ahs∼π̃(·|xhs )∆
h
s (f, g)2

+ εt(4 + ε) + 1.2 ln (4M1M2/δ) ,∣∣∣∣∣
t∑

s=1

∆hs
s (f, f)εhss (f)

∣∣∣∣∣ ≤ 1

4H

t∑
s=1

H∑
h=1

Exhs∼πs,ahs∼π̃(·|xhs )∆
h
s (f, f)2

+ εt(4 + ε) + 1.2 ln (4M1/δ) .

We can set

0.5β2
t ≥ [εt(4 + ε) + 1.2 ln (4M1M2/δ)] + [εt(4 + ε) + 1.2 ln (4M1/δ)]

as in the proof of Theorem 18.14, and obtain Q∗ ∈ Ft, and

1

H

t∑
s=1

H∑
h=1

Ēh(f, πsπ̃)2 ≤ 4β2
t ,

where Ēh is defined in Proposition 18.33. The result now follows directly from
Proposition 18.33 and the same derivation of Theorem 18.21.

It is worth pointing out that while Algorithm 18.3 returns a policy πt with
good average regret, the online algorithm itself does not achieve such a regret,
because the algorithm needs to employ a one-step pure exploration policy π̃ which
is different from πt. The purpose of this policy is to cover all possible actions
equally well (e.g. by using nonlinear G-optimal design). It is similar to pure
exploration in contextual bandit of Section 17.5, which also employs nonlinear G-
optimal design. Nevertheless, the algorithm can solve the low-Bellman-rank MDP
problem with a nonlinear Q function class, and without knowing the underlying
Bellman factorization. If we consider linear MDP with d dimensional unknown
feature maps, and assume that we have finite K actions, with F containing MF
members and G containingMG members, then d̃ = Õ(HdK), β2

t = Õ(ln(MFMG)).
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Therefore the regret of πt return by Algorithm 18.3 satisfies

E[V 1
∗ (x1

t )− V 1
πt

(x1
t )] = Õ

(
H
√
dK ln(MFMG)

)
.

Compared to that of Theorem 18.21, this result is worse by a factor of
√
HK.

The
√
H factor is due to the random ht choice, which does not efficiently use all

data in a trajectory. The
√
K factor is due to pure exploration with a nonlinear

Q function class without knowing the feature maps of the underlying Bellman
factorization.

18.5 Model-based Reinforcement Learning

In linear MDP, the version space UCB algorithm does not need to know or to learn
the transition probability P h(xh+1|xh, ah). Such an algorithm is referred to as
model free in reinforcement learning. On the other hand, if the learning algorithm
estimates and employs the transition probability P h(xh+1|xh, ah) information,
then the corresponding method is referred to as model-based. Instead of looking
at Q-function class, in model-based RL, we consider a class of MDP models and
explicitly estimate the transition probabilities.

Definition 18.35. In a model-based RL problem, we are given an MDP model
class M. Each M ∈M includes explicit transition probability

P h
M(xh+1|xh, ah),

and expected reward

Rh
M(xh, ah) = EM [rh|xh, ah].

We use EM [·] to denote the expectation with respect to model M ’s transition
dynamics PM . Given any fh+1 on X , we define the model Bellman operator

(T hMf)(xh, ah) = Rh
M(xn, ah) + EM [fh+1(xh+1)|xh, ah].

We use fM = {fhM(xh, ah)}Hh=1 to denote the Q function of model M , and use
πM = πfM to denote the corresponding optimal policy under model M .

We will also impose the following assumption for model-based RL.

Assumption 18.36. LetM be a class of MDP models. We assume that the cor-
rect model M∗ ∈M: the true transition probability is given by P h

M∗
(xh+1|xh, ah),

and the true expected reward is given by

EM∗ [rh|xh, ah] = Rh
M∗

(xh, ah).

We assume that rh + fhM(xh, ah) ∈ [0, 1] and f1
M(x1) ∈ [0, 1]. We also assume

that there is a planning oracle that solves the optimal policy πM and Q-function
fhM(xh, ah) for any given model M ∈M.
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One advantage of model-based RL is that the completeness assumption is not
required if the model Bellman operator (T hMf)(xh, ah) can be evaluated efficiently.
In this case, we may simply compare the model value to rh + fh+1(xh+1), which
is an unbiased estimate of the true Bellman operator (T hM∗f)(xh, ah). Using this
observation, one may define the following loss function

Lh(M,M ′, xh, ah, rh, xh+1) =
(
(T hMfM ′(xh, ah)− rh − fM ′(xh+1)

)2
, (18.16)

which we call value-targeted loss to be consistent with (Ayoub et al., 2020). It
is natural to require that a good model has a value targeted loss which fits well
on historic data. This allows us to define a version space for the models in M.
We can then apply the general principle of optimism as in Algorithm 17.4 and
Algorithm 18.1. The resulting algorithm is presented in Algorithm 18.4. Since we
do not need completeness, the analysis of the algorithm is a direct extension of
Algorithm 17.4.

Algorithm 18.4: Value Targeted Loss UCB Algorithm

Input: λ, T , M
1 Let F0 = {f0}
2 Let β0 = 0
3 for t = 1, 2, . . . , T do
4 Observe x1

t

5 Let

Mt ∈ arg max
M∈Mt−1

fM(x1
t ).

Let πt = πMt

6 Play policy πt and observe trajectory (xt, at, rt)
7 Let

M̂t = arg min
M∈M

H∑
h=1

t∑
s=1

Lh(M,Ms, x
h
s , a

h
s , r

h
s , x

h+1
s ).

where Lh(·) is defined according to (18.16).
8 Define

Mt =

{
M ∈M :

H∑
h=1

t∑
s=1

((T hMfMs
)(xhs , a

h
s )− (T h

M̂t
fMs

)(xhs , a
h
s ))2 ≤ β2

t

}
with appropriately chosen βt.

9 return randomly chosen πt from t = 1 to t = T

In order to analyze Algorithm 18.4, we need to introduce the concept of model-
based Bellman error for model-based RL problems.

Definition 18.37 (model-based Bellman error). For model-based RL, given a
model M and candidate Q function f , we define the corresponding model-based
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Bellman error as

Eh(M,f, xh, ah) =(T hM f)(xh, ah)− (T hM∗ f)(xh, ah)

=EM [rh + f(xh+1)|xh, ah]− EM∗ [rh + f(xh+1)|xh, ah].

We also use the following simplified notation:

Eh(M,xh, ah) = Eh(M,fM , x
h, ah).

The definition of Eh(M,xh, ah) is consistent with the corresponding model-free
Bellman error Eh(fM , x

h, ah) in Definition 18.10:

Eh(M,xh, ah) = Eh(fM , x
h, ah). (18.17)

This immediately implies the following specialization of Theorem 18.11 for model-
based RL. The proof is left to Exercise 18.6.

Theorem 18.38. Consider a model M with its value function fM and optimal
policy πM . Then we have

[fM(x1)− V 1
πM

(x1)] = E(x,a,r)∼πM |x1

H∑
h=1

Eh(M,xh, ah),

where V 1
πM

(x1) is the true value function of the true underlying MDP M∗, and
(x, a, r) ∼ πM |x1 denotes the trajectory of policy πM under the true MDP M∗.

We can now introduce the definition of Bellman eluder coefficient for model-
based RL. Instead of reducing the on-policy Bellman error Eh(Mt, x

h
t , a

h
t ) to

squared Bellman error on the historic training data as in Definition 18.19, we
can reduce it to different loss functions. Note that similar to Definition 18.19, we
define it in expectation for more generality.

Definition 18.39 (Model-based Bellman Eluder Coefficient). Consider an arbi-
trary loss function sequence L = {Lht (M,M∗) :M×M→ R+, t ∈ [T ], h ∈ [H]}
so that each loss function Lht may also depend on (Mt, x

h
t , a

h
t ). The L-loss Bellman

eluder coefficient ECL(ε,M, T ) of a model-based RL problem M is the smallest
d so that for any filtered sequence {Mt, (xt, rt, at) ∼ πMt

, Lt}Tt=1:

E
T∑
t=2

H∑
h=1

Eh(Mt, x
h
t , a

h
t ) ≤

√√√√dE
H∑
h=1

T∑
t=2

(
ε+

t−1∑
s=1

Lhs (Mt,M∗)

)
.

Definition 18.39 is generic, which can include both Q-type and V -type prob-
lems. We will only consider Q-type problems in this section. In the following, we
introduce several commonly used Q-type loss functions for model-based RL.

Definition 18.40. Consider model-based eluder coefficients in Definition 18.39
with the following Q-type loss functions.

The loss function

Lht (M,M∗) = Eh(M,fMt
, xht , a

h
t )2

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang
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is referred to as the value targeted loss, and the corresponding Bellman eluder co-
efficient, denoted by ECQ−VT, is referred to as the Q-type value targeted Bellman
eluder coefficient.

Given a Q function class F that contains {fM : M ∈ M}. Assume that rh +
fh(xh, ah) ∈ [0, 1] for all f ∈ F and h ∈ [H]. The loss function

Lht (M,M∗) = sup
f∈F
Eh(M,f, xht , a

h
t )2

is referred to as the witness loss, and the corresponding Bellman eluder coeffi-
cient, denoted by ECQ−Wit, is referred to as the Q-type witness Bellman eluder
coefficient.

The loss function

Lht (M,M∗) = H(P h
M(·|xht , aht )||P h

M∗
(·|xht , aht ))2

is referred to as the Hellinger loss, and the corresponding Bellman eluder coeffi-
cient, denoted by ECQ−Hel, is referred to as the Q-type Hellinger Bellman eluder
coefficient.

We have the following result concerning the relationship of different model-
based eluder coefficients. The proof is left as an exercise.

Proposition 18.41. We have

ECQ−Hel(ε,M, T ) ≤ECQ−Wit(ε,M, T ) ≤ ECQ−VT(ε,M, T ).

With this definition, we can now prove a regret bound for Algorithm 18.4 using
the value targeted eluder coefficient. We first state a result which is an extension
of Theorem 13.15. The proof is almost identical to that of Theorem 13.15 (with
σ = 0.5), and thus we leave it as an exercise.

Lemma 18.42. Assume that Assumption 18.36 holds. Consider function class
F = {fh(M ′, xh, ah) : M×X × A → R} that contains {Eh(M, ·, ·) : M ∈ M}.
Assume that in Algorithm 18.4, we set

β2
t ≥ inf

ε>0
[4εtH(1 + 4ε) + 3 ln(2N(ε,F , ‖ · ‖∞)/δ)] ,

where ‖f‖∞ = supM ′,h,xh,ah |fh(M ′, xh, ah)|. Then with probability at least 1− δ,
for all t ≤ T : M∗ ∈Mt.

We can now obtain the following regret bound, which is analogous to Theo-
rem 18.21, with a similar proof.

Theorem 18.43. Assume that Assumption 18.36 holds. Consider function class
F = {fh(M ′, xh, ah) :M×X ×A → R} that contains {Eh(M, ·, ·, ·) : M ∈ M}.
Assume that in Algorithm 18.4, we set

β2
t ≥ inf

ε>0
[4εtH(1 + 4ε) + 3 ln(2N(ε,F , ‖ · ‖∞)/δ)] ,
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where ‖f‖∞ = supM ′,h,xh,ah |fh(M ′, xh, ah)|. Then

E
T∑
t=2

[V 1
∗ (x1

t )− V 1
πt

(x1
t )] ≤ δHT +

√√√√d

(
εHT + δHT 2 + 4

T∑
t=2

β2
t−1

)
,

where V 1
πt

is the true value function of policy πt, and d = ECQ−VT(ε,M, T ).

Proof Let ft = fMt
. For t ≥ 2, we have

V 1
∗ (x1

t )− V 1
πt

(x1
t )

=V 1
∗ (xt)− ft(x1

t ) + ft(x
1
t )− V 1

πt
(x1
t )

≤1(M∗ /∈Mt−1) + ft(x
1
t )− V 1

πt
(x1
t )

=1(M∗ /∈Mt−1) + E(xt,at,rt)∼πt|x1
t

H∑
h=1

Eh(Mt, x
h
t , a

h
t ).

The inequality used the fact that ifM∗ ∈Mt−1, then ft(x
1
t ) = maxM∈Mt−1

f(x1
t ) ≥

V 1
∗ (x1

t ); if M∗ /∈ Mt−1, then V 1
∗ (xt)− ft(x1

t ) ≤ 1. The second equality used The-
orem 18.38.

Lemma 18.42 implies that Pr(M∗ ∈Mt−1) ≥ 1− δ. We have

E[M1
∗ (x

1
t )− V 1

πt
(x1
t )] ≤ δ + E

H∑
h=1

Eh(Mt, x
h
t , a

h
t ).

We can now obtain

E
T∑
t=2

[V 1
∗ (x1

t )− V 1
πt

(x1
t )]

≤E
T∑
t=2

H∑
h=1

Eh(Mt, x
h
t , a

h
t ) + δT

≤δbT +

√√√√ECQ−VT(ε,M, T )E
T∑
t=2

H∑
h=1

(
ε+

t−1∑
s=1

Eh(Mt, fMs
, xhs , a

h
s )2

)

≤δT +

√√√√ECQ−VT(ε,M, T )

(
εHT + δHT 2 + 4

T∑
t=2

β2
t−1

)
.

The second inequality used Definition 18.39. The last inequality used the fact that
when Pr(M∗ /∈Mt−1) ≤ δ, and in this case Eh(ft, x

h
s , a

h
s )2 ≤ 1; when M∗ ∈Mt−1,
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we have

H∑
h=1

t−1∑
s=1

Eh(Mt, fMs
, xhs , a

h
s )2

=
H∑
h=1

t−1∑
s=1

((T hMt
fMs

)(xhs , a
h
s )− (T hM∗fMs

)(xhs , a
h
s ))2

≤2
H∑
h=1

t−1∑
s=1

[
((T hMt

fMs
)(xhs , a

h
s )− (T h

M̂t−1
fMs

)(xhs , a
h
s ))2

+(T hM∗fMs
)(xhs , a

h
s )− (T h

M̂t−1
fMs

)(xhs , a
h
s ))2

]
≤ 4β2

t−1.

The last inequality used Mt ∈Mt−1 and M∗ ∈Mt−1.

One advantage of model-based approach is that one can use other types of
Bellman eluder coefficients in Proposition 18.41 that are weaker than value tar-
geted Bellman eluder coefficients. We may consider the Hellinger Bellman eluder
coefficient, which reduces the on policy Bellman error to the Hellinger loss on the
historic training data. The latter can be bounded using a log-likelihood (KL) loss
and posterior sampling, as shown in Corollary 10.26. Therefore a more general
approach (with the weaker Bellman eluder coefficient) to model-based RL is to
use log-likelihood loss to directly estimate the model parameter M . Given tra-
jectories St−1 = {(xhs , ahs , rhs ) : h = 1, . . . ,H, s = 1, . . . , t − 1}, we may define a
posterior with optimistic Feel-Good terms as follows

pt(M |xt1, St−1) ∝ p0(M) exp

(
λ
t−1∑
s=1

fM(x1
s) +

H∑
h=1

t−1∑
s=1

Lhs (M)

)
, (18.18)

where

Lhs (M) = −η̃(Rh
M(xhs , a

h
s )− rhs )2 + η lnP h

M(xh+1
s | xhs , ahs ).

We can then employ posterior sampling as in Algorithm 18.5, which only requires
the value f1

M(x1) to be calculated. Compared to the value targeted approach,
Algorithm 18.5 replaces the integration of fh+1

Ms
(xh+1
s ) for h ≥ 1 by log-likelihood,

which is simpler for many problems. Since the algorithm relies on the weaker
Hellinger Bellman eluder coefficient, it can be more effective in exploration. For
example, it applies to problems such as model-based linear MDP (which we will
discuss later) that cannot be handled by the value targeted approach.

Although one can derive a general regret analysis for Algorithm 18.18 (see
Agarwal and Zhang, 2022a, for example), the general analysis needs to deal with
the reward term and the Feel-Good term f1

M(x1
s) in addition to the log-likelihood

term. In the following, we want to focus on the analysis of the log-likelihood
term, and thus we will consider a simplified version as follows. We assume that
the expected reward is known, so that Rh

M(xh, ah) = Rh
M∗

(xh, ah) for all M ∈M.
Moreover, we assume that the distribution of x1

t is known, so that fM = Ex1f1(x1)
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Algorithm 18.5: Q-type Model-Based Posterior Sampling Algorithm

Input: λ, η, η̃, T , p0, M
1 for t = 1, 2, . . . , T do
2 Observe x1

t

3 Draw

Mt ∼ pt(M |x1
t , St−1)

according to pt(M |xt1, St−1) defined in (18.18)
4 Let πt = πMt

5 Play policy πt and observe trajectory (xt, at, rt)

is also given. With these modifications, we can simplify (18.18) as

pt(M |St−1) ∝ p0(M) exp

(
λfM +

H∑
h=1

t−1∑
s=1

0.5 lnP h
M(xh+1

s | xhs , ahs )

)
. (18.19)

We introduce the following definition, which plays a role similar to the concept
of covering (see Example 17.32).

Definition 18.44. Given a model class M and true model M∗, we define the
KL ball and Hellinger ball around the true model M∗ as

MKL(ε) =

{
M ∈M : sup

xh,ah
KL(P h

M∗
(·|xh, ah)||P h

M(·|xhs , ahs )) ≤ ε2
}

MH(ε) =

{
M ∈M : sup

xh,ah
H
(
P h
M∗

(·|xh, ah)||P h
M(·|xhs , ahs )

)2 ≤ ε2} .
We have the following result, which shows that as long as one avoids negative-

infinity model log-likelihood, Hellinger-ball and KL-ball are equivalent up to a
log-factor specified by ρ.

Lemma 18.45. Let

ρ = sup
M∈M

sup
h∈[H]

sup
xh,ah,xh+1

ln
dPM∗(x

h+1|xh, ah)

dP h
M(xh+1|xh, ah)

.

We have

MH

(
ε/
√

3 + ρ
)
⊂MKL(ε) ⊂MH(ε).

Moreover, for any M ∈MH(ε), we have

|fM∗ − fM | ≤ Hε.

Proof The first two inequalities used H(P ||Q)2 ≤ KL(P ||Q) ≤ ρH(P ||Q)2 in

This material will be published by Cambridge University Press as “Mathematical Analysis of Machine
Learning Algorithms” by Tong Zhang. This unedited prepublication version is free to view and download for
personal use only. Not for redistribution or commercial use. ©2021-2023 Tong Zhang
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Proposition B.11. For the last desired inequality, due to the symmetry between
M∗ and M , we can assume that fM∗ ≤ fM without loss of generality. In this case,

|fM∗ − fM | ≤Ex1 [f1
M(x1)− V 1

πM
(x1)]

=E(x,a,r)∼πM

H∑
h=1

Eh(M,xh, ah)

≤E(x,a,r)∼πM

H∑
h=1

‖P h
M∗

(·|xh, ah)− P h
M(·|xhs , ahs )‖TV ≤ Hε.

The first inequality used f1
M∗

(x1) ≥ V 1
πM

(x1). The next equality used Theo-
rem 18.38. The second inequality used the definition of TV-norm and the model-
based Bellman error. The last inequality used Theorem B.9.

Similar to Corollary 10.26, we have the following lemma.

Lemma 18.46. The posterior distribution of (18.19) satisfies

ESt−1
EM∼pt

[
λ(fM∗ − fM) +

t−1∑
s=1

H∑
h=1

H(P h
M∗

(·|xhs , ahs )||P h
M(·|xhs , ahs ))2

]
≤κ(λ,H, t,M),

where

κ(L(λ,H, t,M) = inf
ε>0

[2(λ+ ε)Htε− 2 ln p0(MKL(ε))] .

Proof We introduce the short notation zhs = (xhs , a
h
s ), and consider any loss

function φh(M, zhs , z
h+1
s ). Let

φhs (M) = φh(M, zhs , z
h+1
s )− lnEzh+1

s |zhs
exp[φh(M, zhs , z

h+1
s )].

The same proof of Theorem 10.18 implies that

ESt−1
exp

[
EM∼pt(M |St−1)

t−1∑
s=1

H∑
h=1

φhs (M)−KL(pt||p0)

]

≤ESt−1
EM∼p0 exp

[
t−1∑
s=1

H∑
h=1

φhs (M)

]
=1.

The first inequality used Proposition 7.16. The last equation used Lemma 13.1.
Using Jensen’s inequality, we obtain

ESt−1

[
EM∼pt(M |St−1)

t−1∑
s=1

H∑
h=1

φhs (M)−KL(pt||p0)

]
≤ 0. (18.20)
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Now, we can set

φh(M, zhs , z
h+1
s ) =− 0.5 ln

P h
M∗

(xh+1
s |xhs , ahs )

P h
M(xh+1

s |xhs , ahs )
,

∆L̂t(M) =λ[fM∗ − fM ] + 0.5
t−1∑
s=1

H∑
h=1

ln
P h
M∗

(xh+1
s |xhs , ahs )

P h
M(xh+1

s |xhs , ahs )
,

∆L̄t(M) =λ[fM∗ − fM ] + 0.5
t−1∑
s=1

H∑
h=1

KL(P h
M∗

(·|xhs , ahs )||P h
M(·|xhs , ahs )),

and obtain

ESt−1
EM∼pt

[
2λ[fM∗ − fM ] +

t−1∑
s=1

H∑
h=1

H(P h
M∗

(·|xhs , ahs )||P h
M(·|xhs , ahs ))2

]
≤ESt−1

EM∼pt [2λ[fM∗ − fM ]

−2
t−1∑
s=1

H∑
h=1

lnExh+1|xhs ,ahs exp

(
−0.5 ln

P h
M∗

(xh+1|xhs , ahs )

P h
M(xh+1

s |xhs , ahs )

)]
≤2ESt−1

[
EM∼pt(M |St−1)∆L̂t(M) + KL(pt||p0)

]
=2ESt−1

inf
p

[
EM∼p∆L̂t(M) + KL(p||p0)

]
≤2 inf

p
ESt−1

[
EM∼p∆L̄t(M) + KL(p||p0)

]
.

The first inequality used the definition of Hellinger distance and 2−2u ≤ −2 lnu.
The second inequality used (18.20). The next equation used Proposition 7.16 and

the fact that pt(M) ∝ p0(M) exp(−∆L̂t(M)). The last inequality can be obtained
by moving ESt−1

inside inf, and then taking conditional probability xh+1
s |xhs , ahs .

By taking p(M) ∝ p̃0(M)1(M ∈MKL(ε)), we obtain

Epλ[fM∗ − fM ] ≤ λHtε,

where the inequality follows from Lemma 18.45. This implies the result.

We are now ready to prove a regret bound for Algorithm 18.5 using the sim-
plified posterior (18.19).

Theorem 18.47. Consider Algorithm 18.5 with the simplified posterior (18.19).
We have

E
T∑
t=2

[V 1
∗ (x1

t )− V 1
πt

(x1
t )] ≤

T

λ
κ(λ,H, T,M),+

λ

4
ECQ−Hel(ε,M, T )

+
√
εHTECQ−Hel(ε,M, T ).

Proof Let

L̂hs (M) = H(P h
M∗

(·|xhs , ahs )||P h
M(·|xhs , ahs ))2.
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We have

E
T∑
t=2

[V 1
∗ (x1

t )− V 1
πt

(x1
t )]

=E
T∑
t=2

[fM∗ − fMt
] + E

T∑
t=2

H∑
h=1

Eh(Mt, x
h
t , a

h
t )

≤E
T∑
t=2

[fM∗ − fMt
] +

√√√√ECQ−Hel(ε,M, T )
T∑
t=2

(
εH + E

t−1∑
s=1

H∑
h=1

L̂hs (Mt)

)

≤E
T∑
t=2

[fM∗ − fMt
] +

1

λ
E

t−1∑
s=1

H∑
h=1

L̂hs (Mt) +
λ

4
ECQ−Hel(ε,M, T )

+
√
εHTECQ−Hel(ε,M, T )

≤T
λ
κ(λ,H, T,M) +

λ

4
ECQ−Hel(ε,M, T ) +

√
εHT 2ECQ−Hel(ε,M, T ).

The first equality used Theorem 18.38. The first inequality follows from the def-
inition of Bellman eluder coefficient in Definition 18.39. The second inequality
follows from simple algebra. The last inequality follows from Lemma 18.46.

We note that in Theorem 18.47, κ behaves like the sample complexity caused
by covering numbers. By optimizing λ, the resulting regret bound becomes

O

(√
T ECQ−Hel(·) · κ(·)

)
.

This is comparable to the result for the value-targeted approach. However, as we
have pointed out, the Hellinger Bellman eluder coefficient is never larger than
value-targeted Hellinger Bellman eluder coefficient. Therefore it can be applied
to more general settings. We also observe from Lemma 18.45 that instead of using
the KL-ball to define κ(·), we may also use the Hellinger ball, with a logarithmic
penalty in terms of ρ. To achieve this in the general setting, we may simply add
a small constant to each conditional probability model to avoid negative infinity
model log-likelihood, so that ρ is not large.

18.6 Linear Mixture MDP

As a simple example of model-based reinforcement learning problem, we consider
the linear mixture MDP model.

Definition 18.48. LetH = {Hh} and H̃ = {H̃h} be inner product vector spaces.
An MDP M = MDP(X , cA, P ) is a linear MDP with respect to feature maps φ =
{φh(xh, ah, xh+1) : X ×A×X → Hh}Hh=1 and φ̃ = {φ̃h(xh, ah) : X ×A → H̃h}Hh=1,
if for all h ∈ [H], there is a model independent measure dµh+1 on X , and a model
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dependent parameter θh ∈ H and θ̃h ∈ H̃ such that

dP h
M(xh+1|xh, ah) = 〈θh(M), φh(xh, ah, xh+1)〉dµh+1(xh+1),

Rh
M(xh, ah) = 〈θ̃h(M), φ̃h(xh, ah)〉.

Note that a linear mixture MDP is not necessarily a linear MDP because the
transition matrix may not be low rank. The following are examples of linear
mixture MDP.

Example 18.49 (Tabular MDP). In a Tabular MDP, we assume that |A| = A
and |X | = S. Let d = AS2 which encodes the space of X×A×X with components
indexed by (x, a, x′). Then we can take φh(x, a, x′) = e(x,a,x′) and wh be a d
dimensional vector so that its (x, a, x′) component is P h(xh+1 = x′|xh = x, ah =
a). Similarly, let φ̃h(x, a) = e(x,a) be d′ = AS dimensional vector. We can take θh

as a d′ = AS dimensional vector so that φ̃h(x, a) = e(x,a), and its (x, a) component
is E[rh|xh = x, ah = a]. Therefore a Tabular MDP is a linear mixture MDP.

Example 18.50 (Mixture of known MDPs). Consider d base MDPs M1, . . . ,Md,
where each MDP Mj corresponds to a transition distribution P h

Mj
(xh+1|xh, ah)

and an expected reward Rh
Mj

(xh, ah). Consider a model familyM, where M ∈M
is represented by w1, . . . , wd ≥ 0 and

∑d
j=1wj = 1. Then we can express

P h
M(xh+1|xh, ah) =

d∑
j=1

wjP
h
Mj

(xh+1|xh, ah).

One can similarly define Rh
M(xh, ah) =

∑d
j=1wjR

h
Mj

(xh, ah).

Similar to Proposition 18.18, we have the following structural result for linear
mixture MDP.

Proposition 18.51. Consider linear mixture MDP in Definition 18.48. There
exist wh(M) ∈ Hh ⊕ H̃h and ψh(M ′, xh, ah) ∈ Hh ⊕ H̃h such that

(T hMfM ′(xh+1))(xh, ah) = 〈wh(M), ψh(M ′, xh, ah)〉.

It implies that

Eh(M,fM ′ , x
h, ah) = 〈wh(M)− wh(M∗), ψ

h(M ′, xh, ah)〉.

For linear mixture MDP, one can employ Proposition 17.20 (and Proposi-
tion 15.8) to obtain an estimate of the Q-type Value Targeted eluder coefficient
in Definition 18.39.

Proposition 18.52. Consider a linear mixture MDP with representation in
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Proposition 18.51. Assume that supM∈M ‖wh(M)− wh(M∗)‖Hh⊕H̃h ≤ B, then

ECQ−VT(1,M, T ) ≤ 2
H∑
h=1

entro(1/(B2T ), ψh(M×X ×A)).

In particular, if Hh ⊕ H̃h are finite for all h, then we have

ECQ−VT(1,M, T ) ≤ 2
H∑
h=1

dim(Hh ⊕ H̃h) ln(1 + T (BB′)2),

where B′ = suph supM,xh,ah ‖ψh(M,xh, ah)‖Hh⊕H̃h.

We can apply Algorithm 18.4 to solve the linear mixture MDP problem. Assume
that dim(Hh⊕H̃h) = d for all h, then EC(1,M, T ) = Õ(Hd). If different h-steps
do not share feature maps and model coefficients, then we know that the entropy
in Theorem 18.43 can be bounded as Õ(Hd). This implies that β2

t = Õ(Hd). We
thus obtain the following regret bound

E
T∑
t=2

[V 1
∗ (x1

t )− V 1
πt

(x1
t )] = Õ(dH

√
T ). (18.21)

We note that this regret bound is similar to that for linear MDP of (18.8).
The dependency in d is not improvable because it matches the lower bound for
bandit problems. However, the dependency on H can be improved using weighted
regression (see Zhou et al., 2021; Zhou and Gu, 2022).

18.7 Q-type Model-Based Linear MDP

Consider linear MDP in Definition 18.15. In a model based approach, we may
assume that that νh(xh+1) is parametrized as νh(M,xh+1), so that we have a full
model for transition probability and for the expected reward.

Definition 18.53. Let {Hh : h ∈ [H]} be inner product spaces. In Q-type
model-based linear MDP, we assume that there exists maps νh :M×X → Hh,
θh :M→ Hh, and φh : X ×A → Hh, so that model dynamics can be expressed
as

dP h
M(xh+1|xh, ah) = 〈νh(M,xh+1), φh(xh, ah)〉dµh+1(xh+1),

Rh
M(xh, ah) = 〈θh(M), φh(xh, ah)〉.

Note that although we work with linear MDP, the model for PM and RM do not
have to be linear functions. However, for the Q-type approaches, we assume that
they can be embedded into a linear function space with respect to the true feature
map φh(xh, ah) of the underlying linear MDP. Proposition 18.18 implies that for
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CHAPTER 18. REINFORCEMENT LEARNING 420

model-based linear MDP in Definition 18.53, there exists maps wh :M×F → Hh
for h ∈ [H] so that

Eh(M,f, xh, ah) = 〈wh(M,f), φh(xh, ah)〉. (18.22)

This implies that unlike linear mixture MDP, value targeted Bellman eluder
coefficient (see Definition 18.40) cannot be directly used in model-based linear
MDP because the weight vector w(Mt, fMs

) (for s < t) depends on Ms in the
decomposition of (18.22). If we use w(Mt, fMt

) instead of w(Mt, fMs
), then the

resulting method is equivalent to model-free linear MDP, as

Eh(Mt, ft, x
h, ah) = Eh(ft, x

h, ah)

based on (18.17). This decomposition leads to the same eluder coefficient for
model-free linear MDP in Proposition 18.20. However, for model-based problems,
we can also replace Lhs (Mt,M∗) on the right hand side of Definition 18.39 by any
upper bound. Therefore we can use the witness loss upper bound

Eh(Mt, ft, x
h, ah)2 ≤ sup

f∈F
Eh(Mt, f, x

h, ah)2,

to obtain the following result from Proposition 18.20. The proof is left as an
exercise.

Proposition 18.54. Consider the model-based linear MDP in Definition 18.53.
Assume that ‖wh(M,fM)−wh(M∗, fM∗)‖Hh ≤ B, where wh(M,fM) is defined in
(18.22), then

ECQ−Hel(1,M, T ) ≤ ECQ−Wit(1,M, T ) ≤ 2
H∑
h=1

entro(1/(B2T ), ψh(X ×A)).

Proposition 18.54 implies that we can apply Algorithm 18.5 to solve the model-
based linear MDP problem. Assume that each Hh is d dimensional, then

ECQ−Hel(1,M, T ) = Õ(Hd),

and we obtain the following regret bound from Theorem 18.47 with optimal λ:

O

(√
T Hdκ(·)

)
.

We note that κ(·) behaves like entropy number. For a finite function class of M
members, κ(·) ≤ lnM . For function class with infinite members, similar results
can be obtained by choosing a small Hellinger ball for the model class, with a
small constant added to each conditional probability model to avoid negative
infinity model log-likelihood.
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18.8 Model-Based V -type Bellman Eluder Coefficient

We have shown in Section 18.4 that in the model-free setting, it is possible to
learn an MDP which has an unknown Bellman factorization with a nonlinear
Q-function class that is linearly embeddable. If we assume that the transition
probability is known, then it is also possible to learn similar models using a
model-based approach. To motivate this approach, we may consider the model-
based approach to linear MDP. In the Q-type approach, we have to assume that
the model can be represented linearly with the true linear map of the underlying
MDP. In the V -type approach, this is not necessary. Similar to the model free
approach in Definition 18.27, we can introduce the following definition.

Definition 18.55 (Model-Based V -type Bellman Eluder Coefficient). Consider
loss functions {Lh(M,M∗, x

h, ah) : M×M×X × A → R+, h ∈ [H]}. For each
h ∈ [H], the corresponding V -type L-loss Bellman eluder coefficient ECh

L(ε,M, T )
of a model-based RL problemM is the smallest d so that for any filtered sequence
{Mt, (xt, rt, at) ∼ πMt

}Tt=1:

E
T∑
t=2

Eh(ft, x
h
t , a

h
t ) ≤

√√√√dE
T∑
t=2

(
ε+

t−1∑
s=1

Ex̃h∼πMsLh(Mt,M∗, x̃h, πMt
(x̃h))

)
.

Although the generic definition in Definition 18.39 can handle V -type prob-
lems, we rewrite it in Definition 18.55 to focus on the special structure of V -type
problems (and to separate different h instead of taking the sum over h). Specifi-
cally, Q-type problems considered in Definition 18.40 assume that the Q-type loss
function Lhs (Mt,M∗) depends on (Mt,Ms, x

h
s , a

h
s ). The dependency is replaced by

dependency on (Mt,Ms, x̃
h, ãh = πMt

(x̃h)), with x̃h ∼ πMs
in the V -type defini-

tion of Definition 18.55. Similar to model-free RL in Definition 18.27, we require
the loss to depend on the action ãh = πMt

(x̃h) using the current model Mt. We
may still consider loss functions in Definition 18.40 for V -type problems.

Definition 18.56. Consider model-based V -type eluder coefficients in Defini-
tion 18.55. Given a Q function class F that contains {fM : M ∈ M}. Assume
that rh + fh(xh, ah) ∈ [0, 1] for all f ∈ F and h ∈ [H]. The Bellman eluder
coefficient corresponding to the following loss

Lh(M,M∗, x
h, ah) = sup

f∈F
Eh(M,f, xh, ah)2,

denoted by ECV−Wit(ε,M,F , T ), is referred to as the V -type witness Bellman
eluder coefficient.

The Bellman eluder coefficient corresponding to the loss function

Lh(M,M∗, x
h, ah) = H(P h

M(·|xh, ah)||P h
M∗

(·|xh, ah))2,

denoted by ECV−Hel(ε,M, T ), is referred to as the V -type Hellinger Bellman
eluder coefficient.

The following result is a counterpart of Proposition 18.41.
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Proposition 18.57. We have

ECV−Hel(ε,M, T ) ≤ ECV−Wit(ε,M,F , T ).

It was shown in Proposition 18.29 that Bellman factorization in Definition 18.28
can be used to bound the V -type Bellman eluder coefficient for model-free RL. For
model-based RL, we can introduce a weaker form of Bellman factorization using
the witness loss. To motivate it, we note that the model-free Bellman factorization
and (18.17) implies that∣∣〈uh−1(fM), φh−1(π′)〉

∣∣ =
∣∣Ex̃h∼π′Eh(M,fM , x̃

h, πM(x̃h))
∣∣

≤1 · Ex̃h∼π′ sup
f∈F
|Eh(M,f, x̃h, πM(x̃h))|.

We can thus employ an easier to satisfy inequality for witness loss to define
a factorization assumption. This leads to an inequality based definition called
witness Bellman factorization, which is weaker than Bellman factorization in
Definition 18.28 for model-free RL.

Definition 18.58 (Witness Bellman Factorization). LetH = {Hh} be a sequence
of inner product vector spaces for h = 1, . . . ,H. An MDP has a witness Bellman
factorization with respect to H if the following condition holds. For all h ≥ 2
and model M ∈ M, there exists uh−1(M) ∈ Hh−1, for all policy π′, there exists
φ(π′) ∈ Hh−1, such that the following factorization holds:∣∣Ex̃h∼π′Eh(M, x̃h, πM(x̃h))

∣∣ ≤ ∣∣〈uh−1(M), φh−1(π′)〉
∣∣

≤κEx̃h∼π′ sup
f∈F
|Eh(M,f, x̃h, πM(x̃h)|,

where κ ≥ 1 is some constant.

Similar to Proposition 18.29, we have the following result for the witness Bell-
man eluder coefficient. The proof is left as an exercise.

Proposition 18.59. Consider an MDP with a witness Bellman factorization in
Definition 18.58. Assume that x1

t are iid samples drawn from the same underlying
distribution, and for h ≥ 2, supf∈F ‖uh−1(M)‖Hh−1 ≤ B. Assume that rh +
fh+1(xh, ah) ∈ [0, 1], then

EC1
V−Wit(0,M,F , T ) ≤1 + lnT,

ECh
V−Wit(1,M,F , T ) ≤2κ2entro(1/(κ2B2T ), φh−1(·)), (h ≥ 2),

where entro(·) is defined in Proposition 15.8.

Proposition 18.57 and Proposition 18.59 imply that the V -type Hellinger Bell-
man eluder coefficient can be bounded using witness Bellman factorization. There-
fore a general approach for model-based RL is to employ the Hellinger eluder co-
efficient, which reduces on-policy Bellman error to Hellinger loss on the training
data. The latter can be bounded using the standard likelihood based criterion.
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The resulting procedure is given in Algorithm 18.6, which has been analyzed in
(Agarwal and Zhang, 2022a) using decoupling coefficients. One can also derive a
regret bound for this algorithm comparable to that of Theorem 18.34 by using
techniques for analyzing Algorithm 18.5 via Bellman eluder coefficients.

Algorithm 18.6: V -type Model-Based Posterior Sampling Algorithm

Input: λ, η, η̃, π̃, T , p0, M
1 for t = 1, 2, . . . , T do
2 Observe x1

t

3 Draw

Mt ∼ pt(M |x1
t , St−1)

according to

pt(M |xt1, St−1) ∝ p0(M) exp

(
λ

t∑
s=1

fM(x1
s) +

t−1∑
s=1

Lhss (M)

)
,

with Lhs (M) = −η̃(Rh
M(xhs , a

h
s )− rhs )2 + η lnP h

M(xh+1
s | xhs , ahs ).

4 Draw Let πt = πMt

5 Play policy πt and observe trajectory (xt, at, rt) up to xhtt with
uniformly random ht

6 Play random policy ahtt ∼ π̃ht(·|xhtt ), and observe (rhtt , x
ht+1
t )

7 return randomly chosen πt from t = 1 to t = T

One benefit of model-based approach over model-free approach is that explo-
ration is generally easier in model-based approach. This is a direct implication of
the fact that model-based witness eluder coefficients are smaller than model-free
eluder coefficients. In fact, it is easy to check that the following result holds.

Proposition 18.60. Consider model class M and a candidate Q function class
F so that {fM : M ∈M} ⊂ F . Then

ECQ−Wit(ε,M,F , T ) ≤ECQ(ε,F , T ),

ECh
V−Wit(ε,M,F , T ) ≤ECh

V (ε,F , T ) (h ≥ 2).

Proposition 18.60 shows that in general model-based RL problems can be easier
to solve than model free problems. In fact, there can be a significant separation
between model free method and model-based method for certain problems such
as factored MDPs.

Example 18.61 (Factored MDP (Kearns and Koller, 1999)). Let d ≥ 1 and
let Ω be a small finite set. Define the context space X = Ωd, with the natural
partition by time. For a state xh ∈ X we use xh[i] ⊂ Ω for i ∈ [d] to denote
i-th component of xh, and for a subset of state variables. For each i ∈ [d], the
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parent of i, pai ⊂ [d] are the subset of state variables that directly influence i. In
factored MDPs, the transition probability P factorizes according to

P h(xh+1|xh, ah) =
d∏
i=1

P h
(i)[x

h+1[i]|xh[pai], a
h].

It is known that factored MDPs are learnable using model-based approach in
polynomial time, with well-behaved witness Bellman factorization. However any
model free method has a complexity exponential in H (Sun et al., 2019).

18.9 Historical and Bibliographical Remarks

Reinforcement learning (Sutton and Barto, 2018) has a long history, and impor-
tant algorithms such as Q-learning (Watkins and Dayan, 1992) for value function
based approach, and policy gradient (REINFORCE) (Williams, 1992) for pol-
icy based approach were developed in the earlier 1990s. The theoretical analysis
considered in this chapter only covers the value function approach. The mathe-
matical foundation of reinforcement learning is closely related to dynamic pro-
gramming and optimal control (Bertsekas, 2012). While the convergence analy-
sis of Q-learning appeared shortly after the algorithm was introduced (Jaakkola
et al., 1993), the earlier theoretical results did not consider exploration, and they
studied the simpler tabular setting.

Theoretical analysis of reinforcement learning with exploration has been stud-
ied much more recently, and main results have been developed using value func-
tion based approaches. This chapter introduced the main technical tools to ana-
lyze reinforcement learning which has been developed in recent years. We mainly
considered statistical behavior of various algorithms, and did not consider their
computational complexity. In fact, many algorithms studied in the chapter may
not necessarily be computationally efficient. Earlier results on reinforcement learn-
ing that takes exploration into consideration studied the tabular case (Kearns and
Singh, 2002; Auer et al., 2008; Bartlett and Tewari, 2009; Dann and Brunskill,
2015). In particular, a sharp result matching minimax rate was obtained by Azar
et al. (2017).

A Q-learning style model free algorithm for tabular problems was considered
by Jin et al. (2018), and its extension to linear MDP, referred to as least squares
value iteration with UCB (LSVI-UCB), was analyzed in (Jin et al., 2020). Algo-
rithm 18.2 can be considered as a variant of LSVI-UCB in (Jin et al., 2020). This
algorithm is quite similar to practically used Q learning, but with an extra bonus
term added into the regression target. The regret bound for this algorithm has a
slight suboptimal dependence on d. It is possible to improve the dependency on
both H and d in the leading order by using weighted regression, similar to that
of (Zhou and Gu, 2022). While Algorithm 18.2 can handle some nonlinearity, it
is more complex than Algorithm 18.1 due to the requirement to explicitly incor-
porate the bonus function bht (·) in the regression target. This complication can
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be seen in other variants such as (Wang et al., 2020), which proposed a generic
procedure for bonus function design.

For linear MDP, a different approach was proposed by Zanette et al. (2020)
which improved the d dependency of (Jin et al., 2020). The minimax objective
used in (Zanette et al., 2020) was introduced by Antos et al. (2008). This ap-
proach, when generalized to nonlinearQ-function classes, becomes Algorithm 18.1.
An advantage of this method over LSVI-UCB is that the nonlinear generaliza-
tion only requires the Q-function class F to be complete with respect to another
function class G, which is relatively easy to satisfy. The extension presented here
using the concept of Bellman eluder coefficient has also been considered by Jin
et al. (2021), which employed a similar notion of Bellman eluder dimension. A
posterior sampling approach was studied by Dann et al. (2021), in which the
concept of Bellman eluder coefficient was introduced.

The idea of Bellman decomposition (and Bellman rank) was introduced by
Jiang et al. (2017), and the paper presented a V -type algorithm OLIVE to solve
this problems with low Bellman rank. The regret decomposition in Theorem 18.11
was also presented there. An advantage of OLIVE over Algorithm 18.3 is that
it does not require the completeness assumption. However, it only works for the
case with finite actions (there is no easy way to generalize OLIVE to handle
infinite actions), and the resulting bound is inferior in terms of its dependency
on various MDP parameters such as d and H. A more generic framework for
model-free MDP was considered in (Du et al., 2021), which can handle many
cases discussed in this chapter. However, their regret bounds may be suboptimal
for specific problems. The generalization of V -type results to infinite actions when
the linear embedding feature is unknown was obtained by Agarwal and Zhang
(2022b), where the idea of employing linear G-optimal design was studied under
the assumption that the embedding feature is known.

Algorithm 18.4 is similar to the method of Ayoub et al. (2020). For linear mix-
ture MDP, the H dependency is suboptimal, and was subsequently improved in
(Zhou et al., 2021; Zhou and Gu, 2022) using variance (and uncertainty) weighted
regression, as well as law of total variance used by Azar et al. (2017) to achieve
minimax regret for tabular MDPs. The concept of witness rank for V -type prob-
lems, and the decomposition in Theorem 18.38 were both introduced by Sun et al.
(2019). Other V -type algorithms for learning the underlying representation of the
MDP such as Flambe have also been developed (Agarwal et al., 2020). The gen-
eral approach to model-based reinforcement learning presented in Algorithm 18.6
using log-likelihood function was presented and analyzed in (Agarwal and Zhang,
2022a) using the decoupling coefficient approach of Section 17.4. One may also
employ Bellman eluder coefficients as shown in Theorem 18.47.
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Exercises

18.1 Prove Proposition 18.7.

18.2 Prove Theorem 18.9.

18.3 Prove a high probability version of Theorem 18.21, with a modified Bellman eluder coef-

ficient in Definition 18.19 without the expectation.

18.4 Derive a high probability version of Theorem 18.25.

• Show that with probability at least 1− δ:

E
T∑
t=1

H∑
h=1

Eh(ft, x
h
t , a

h
t ) ≤

T∑
t=1

H∑
h=1

Eh(ft, x
h
t , a

h
t ) + εT (δ)

for some εT (δ) using an appropriate martingale tail inequality from Chapter 13.

• Show that
∑T
t=1

∑H
h=1 E

h(ft, x
h
t , a

h
t ) can be bounded with large probability under the

assumptions of Lemma 18.24.

• Derive a high probability version of Theorem 18.25.

18.5 Fill in details in the proof of Theorem 18.34.

18.6 Show that (18.17) holds, and use this to prove Theorem 18.38.

18.7 Prove Lemma 18.42 using Theorem 13.15.

18.8 Prove Proposition 18.41 and Proposition 18.59.

18.9 Prove Proposition 18.51 and compare the result to Proposition 18.18.

18.10 Prove Proposition 18.54 by using a similar argument as that of Proposition 17.20.

18.11 Prove Proposition 18.59 by using a similar argument as that of Proposition 18.29.

18.12 Prove Proposition 18.60.
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Appendix A

Basics of Convex Analysis

We informally review some basic concepts of convex functions used in this book.
For readability, we avoid non-essential technical conditions that may be needed
for mathematical rigor. A more formal and rigorous treatment of convex analysis
can be found in (Rockafellar, 2015).

A.1 Definitions

Definition A.1. A set Ω in a vector space is a convex set if for all w,w′ ∈ Ω
and α ∈ [0, 1], αw+ (1− α)w′ ∈ Ω. A real-valued function φ(w) of w is a convex
function on a convex set Ω if its epigraph {(w, t) ∈ Ω×R : t ≥ φ(w)} is a convex
set.

We also say that a function φ(w) is concave if −φ(w) is convex.

Proposition A.2. φ(w) is a convex function on Ω if and only if for all α ∈ (0, 1),
and w,w′ ∈ Ω

φ(αw + (1− α)w′) ≤ αφ(w) + (1− α)φ(w′).

Proposition A.3. A function φ(w) is convex on Ω if for all w ∈ Ω, there exists
vector g so that for all w′ ∈ Ω:

φ(w′) ≥ φ(w) + g>(w′ − w).

Here g is referred to as a sub-gradient in convex analysis, which may not neces-
sarily be unique.

If a convex function φ(w) is differentiable at an interior point w ∈ Ω, then
g = ∇φ(w) is unique.

Without causing confusion, we will use ∇φ(w) to denote an arbitrary sub-
gradient of a convex function φ(w) in this book. An example of non-unique sub-
gradient is given by the one-dimensional convex function φ(w) = |w|, for which
any g ∈ [−1, 1] is a sub-gradient at w = 0.

Definition A.4. Given λ > 0. A function φ(w) is λ-strongly convex in w if for
all w,w′ ∈ Ω:

φ(w′) ≥ φ(w) +∇φ(w)>(w′ − w) +
λ

2
‖w − w′‖22.
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A strongly convex function may not be differentiable. An example is one di-
mensional function φ(w) = |w|+ 0.5w2, which is λ = 1 strongly convex, but not
differentiable at w = 0. The following definitions are frequently used in theoretical
analysis. It can be applied even for nonconvex functions.

Definition A.5. A function φ(w) (which may not necessarily be convex) on Ω
is L-smooth if it is differentiable and for all w,w′ ∈ Ω:

‖∇φ(w′)−∇φ(w)‖2 ≤ L‖w − w′‖2.

We say φ(w) is G-Lipschitz if for all w ∈ Ω:

‖∇φ(w)‖2 ≤ G.

Proposition A.6. If φ(w) is L-smooth, then for any w,w′ ∈ Ω:

∇φ(w′) ≤ φ(w) +∇φ(w)>(w′ − w) +
L

2
‖w − w′‖22,

and ‖∇2φ(w)‖2 ≤ L.
If φ is G-Lipschitz, then for any w,w′ ∈ Ω:

|φ(w)− φ(w′)| ≤ G‖w − w′‖2.

A.2 Basic Properties

We list some results for convex functions that are useful in the analysis of this
book.

Proposition A.7. If φ(w) is L-smooth on Rd, then for all w,w′ ∈ Rd:

‖∇φ(w′)−∇φ(w)‖22 ≤ 2L
[
φ(w)− φ(w′)−∇φ(w′)>(w − w′)

]
.

Proof Let

φ̃(w) = φ(w)− φ(w′)−∇φ(w′)>(w − w′).

Then φ̃(w) is L-smooth, and φ̃(w) ≥ 0 due to convexity. Let η = 1/L, then

0 ≤φ̃(w − η∇φ̃(w))

≤φ̃(w)− η∇φ̃(w)>∇φ̃(w) +
η2L

2
‖∇φ̃(w)‖22

=φ̃(w)− 1

2L
∇φ̃(w)>∇φ̃(w).

The second inequality used Proposition A.6. This implies the desired bound.
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Proposition A.8. If φ(w) is convex on a closed convex set Ω and

w∗ = arg min
w∈Ω

φ(w).

Then there exists a subgradient ∇φ(w∗) such that for all w ∈ Ω:

∇φ(w∗)
>(w − w∗) ≥ 0.

Moreover, if φ(w) is λ-strongly convex, and there exists a real number g ≥ 0 such
that

∇φ(w)>(w∗ − w) ≥ −g‖w − w∗‖2,

then ‖w∗ − w‖2 ≤ g/λ.

Proof The first result follows from the theory of convex optimization (Boyd and
Vandenberghe, 2004; Rockafellar, 2015), which says that w∗ is a minimizer of
φ(w) on Ω if there exists a sub-gradient ∇φ(w∗) such that

∀w ∈ Ω : ∇φ(w∗)
>(w − w∗) ≥ 0.

Using the definition of strong convexity, we obtain

φ(w∗) ≥φ(w) +∇φ(w)>(w∗ − w) +
λ

2
‖w∗ − w‖22

φ(w) ≥φ(w∗) +∇φ(w∗)
>(w − w∗) +

λ

2
‖w∗ − w‖22 ≥ φ(w∗) +

λ

2
‖w∗ − w‖22.

Summing up the two inequalities, we obtain

0 ≥ ∇φ(w)>(w∗ − w) + λ‖w − w∗‖22 ≥ −g‖w − w∗‖2 + λ‖w − w∗‖22.

This implies the second bound.

We also use the following result regularly in the book.

Proposition A.9 (Jensen’s inequality). Assume that φ(w) is a convex function
on Ω. Consider w1, . . . , wm ∈ Ω, and non-negative numbers α1, . . . , αm ∈ R so
that

∑m
i=1 αi = 1. Then

φ

(
m∑
i=1

αiwi

)
≤

m∑
i=1

αiφ(wi).

More generally, let p be a probability measure on Ω, then φ (Ew∼pw) ≤ Ew∼pφ(w).

Proof Let w =
∑m

i=1 αiwi. Using convexity, we know that for each i:

φ(wi) ≥ φ(w) +∇φ(w)>(wi − w),

where ∇φ(w) is a sub-gradient of φ. Multiply by αi and sum over i, we obtain

m∑
i=1

αiφ(wi) ≥ φ(w) +∇φ(w)>
m∑
i=1

αi(wi − w) = φ(w).
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This finishes the proof. The more general inequality can be proved similarly.

Proposition A.10 (Cauchy Schwartz inequality). Let 〈·, ·〉 be an inner product,
and ‖u‖ =

√
〈u, u〉, then

〈u, v〉 ≤ ‖u‖‖v‖ ≤ 1

2
‖u‖2 +

1

2
‖v‖2.

Proposition A.11 (Hölder’s inequality). Let p, q ≥ 1 such that 1/p + 1/q = 1.
Then for any u, v ∈ Rd:

|u>v| ≤ ‖u‖p‖v‖q ≤
1

p
‖u‖pp +

1

q
‖v‖qq.

A.3 Common Convex Functions

The following functions are convex.

• φ(w) = |w|p : R→ R for p ≥ 1.
• φ(w) = −wp : R+ → R for p ∈ (0, 1).
• φ(w) = wp : R+ → R for p < 0.
• φ(w) = − lnw : R+ → R.
• φ(w) = w lnw : R+ → R.
• φ(w) = ln(1 + exp(w)) : R→ R
• φ(w) = ‖w‖ : Rd → R, where ‖ · ‖ is any norm.

• φ(w) = ln
∑d

i=1 pi exp(wi) : Rd → R (pi ≥ 0).
• φ(w) = lnEξ∼p exp(w(ξ)) as a function of w(·), where p is a probability distri-

bution of ξ.

The following results are useful for constructing convex functions.

Proposition A.12. Let φ1(w) and φ2(w) be two convex functions, and a1, a2 ≥ 0,
then

a1φ1(w) + a2φ2(w)

is a convex function.

Proposition A.13. If φ1(z) is a non-decreasing convex function on R and φ2(w)
is a convex function on Rd, then

φ1(φ2(w))

is a convex function on Rd.

Proposition A.14. Assume that for each θ ∈ Θ, φ(θ, w) is a convex function of
w, then

sup
θ∈Θ

φ(θ, w)

is a convex function of w.
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The above result implies that the hinge loss

φ(w) = sup
y

max[0, by − x>y w]

is convex on Rd, where (xy, by) ∈ Rd × R.

Proposition A.15. Let φ(z) be a convex function on Rq, and let A be a q × d
matrix. Then

φ(Aw)

is a convex function on Rd.

Proposition A.16. If φ(z) is convex on Ω, then tφ(z/t) is convex on {(z/t, t) ∈
Ω× R+}.

Proof We have

(αt+ (1− α)t′)φ

(
αz + (1− α)z′

αt+ (1− α)t′

)
=(αt+ (1− α)t′)φ

(
αt(z/t) + (1− α)t′(z′/t′)

αt+ (1− α)t′

)
≤αtφ(z/t) + (1− α)t′φ(z′/t′). (Jensen’s inequality)

This proves the convexity of tφ(z/t).

A.4 Matrix Trace Functions

We can also directly form convex functions for symmetric matrices.

Definition A.17. Let f(z) be a real-valued function. For a symmetric matrix
W with decomposition W = U>ΛU , where Λ = diag(λ1, . . . , λd) is a diagonal
matrix, and U orthogonal matrix, we define

f(W ) = U>f(Λ)U,

where f(Λ) = diag(f(λ1), . . . , f(λd)).

If f(z) is differentiable with derivative f ′(z), then it is not difficult to check
that

d

dt
trace(f(W + t∆W ))

∣∣∣∣
t=0

= trace(f ′(W )∆W ).

The following result is useful in some of the theoretical analysis in the book.

Theorem A.18. Let Sd[a,b] be the set of d×d symmetric matrices with eigenvalues
in [a, b]. If f(z) : [a, b]→ R is a convex function, then

trace(f(W ))

is a convex function on Sd[a,b]. This implies that for W,W ′ ∈ Sd[a,b]:

trace(f(W ′)) ≥ trace(f(W )) + trace(f ′(W )(W ′ −W )),
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where f ′(z) is the derivative of f(z).

Proof Consider α ∈ (0, 1) and W = αW ′ + (1 − α)W ′′, with W ′,W ′′ ∈ Sd[a,b].
Let u1, . . . , ud be an orthonormal basis corresponding to eigenvalues of W . Let
u′1, . . . , u

′
d be an orthonormal basis corresponding to eigenvalues ofW ′, with eigen-

values λ′i = u′>i W
′u′i, then

d∑
j=1

f(u>j W
′uj) =

d∑
j=1

f

(
d∑
i=1

λ′i(u
>
j u
′
i)

2

)
(a)

≤
d∑
j=1

d∑
i=1

(u>j u
′
i)

2f(λ′i)

(b)
=

d∑
i=1

f(λ′i) = trace(f(W ′)).

The inequality in (a) used Jensen’s inequality, with
∑d

i=1(u>j u
′
i)

2 = ‖uj‖22 = 1.

The equation in (b) used
∑d

j=1(u>j u
′
i)

2 = ‖u′i‖22 = 1. Similarly, we have

d∑
j=1

f(u>j W
′′uj) ≤ trace(f(W ′′)).

It follows that

trace(f(W )) =
d∑
j=1

f(u>j Wuj)

≤α
d∑
j=1

f(u>j W
′uj) + (1− α)

d∑
j=1

f(u>j W
′′uj)

≤αtrace(f(W ′)) + (1− α)trace(f(W ′′)).

The first inequality used the fact that f(z) is a convex function on [a, b]. This
proves the convexity.

Theorem A.18 implies that both

ln |W | = trace(lnW )

and

trace(W p)

for p ∈ (0, 1) are concave functions of a symmetric positive definite matrix W .
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Appendix B

f-divergence of Probability Measures

Consider a probability space Ω, with a properly defined σ-algebra. Consider two
probability measures P and Q that are absolutely continuous with respect to a
reference measure µ with density p and q:

dP = pdµ, dQ = qdµ.

We have the following definition of f -divergence.

Definition B.1. Given a convex function f(t) defined on R+ such that f(1) = 0,
the f -divergence of P and Q is defined as

Df (P ||Q) =

∫
Ω

f

(
p(z)

q(z)

)
q(z)dµ(z) = Ez∼Qf

(
p(z)

q(z)

)
.

Let W and Z be two random variables, with probability measures P and Q
respectively. We also write

Df (W ||Z) = Df (P ||Q).

Note that the condition of absolute continuity is stated for notation conve-
nience. For certain f divergence that are always bounded, absolute continuity is
not required.

B.1 Basic Properties of f-divergence

Due to the convexity of f , f -divergence is always non-negative.

Proposition B.2. We have

Df (P ||Q) ≥ 0.

Moreover, if f(t) is strictly convex at 1, that is, there exists sub-gradient g of f
at 1 so that

f(t) > f(1) + g(t− 1),

then Df (P ||Q) = 0 only when P = Q.

Proof Using Jensen’s inequality, we obtain

Df (P ||Q) = Ez∼Qf(p(z)/q(z)) ≥ f
(
Ez∼Q

p(z)

q(z)

)
= f(1) = 0.
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This proves the first desired result. For the second result, we note that

Df (P ||Q) = Ez∼Q
[
f

(
p(z)

q(z)

)
− f(1)− g

(
p(z)

q(z)
− 1

)]
,

which is zero only when p(z)/q(z) = 1 almost everywhere.

The following result shows that f -divergence is jointly convex in P and Q.

Proposition B.3. Given any α ∈ [0, 1], probability measures P , P ′, Q, Q′, we
have

Df (αP + (1− α)P ′||αQ+ (1− α)Q′) ≤ αDf (P ||Q) + (1− α)Df (P ′||Q′).

Proof This is a direct consequence of the fact that the function qf(p/q) is jointly
convex in [p, q] ∈ R+ × R+ (see Proposition A.16).

The following data-processing inequality of f -divergence is very useful for es-
tablishing lower bounds for statistical estimation.

Theorem B.4 (Data Processing Inequality). Let W and Z be two random vari-
ables on Ω. Let h : Ω → Ω′ be a data processing map which can be a random
function. Then

Df (h(W )||h(Z)) ≤ Df (W ||Z).

Proof Let W and Z be distributed according to probability measures P (W )dµ
and Q(Z)dµ respectively. Let W ′ = h(W ) and Z ′ = h(Z). Let P (W,W ′) and
Q(Z,Z ′) be the joint distributions of [W,W ′] and [Z,Z ′]. By the definition of
data processing, the conditional distribution satisfies

Q(Z ′ = x′|Z = x) = P (W ′ = x′|W = x).

Therefore

P (X)

Q(X)
=
P (X ′|X)P (X)

Q(X ′|X)Q(X)
=
P (X,X ′)

Q(X,X ′)
. (B.1)

Moreover, we have

P (X ′)

Q(X ′)
=EX∼P (X|X′)

P (X ′)

Q(X ′)
= EX∼Q(·|X′)

P (X|X ′)P (X ′)

Q(X|X ′)Q(X ′)

=EX∼Q(·|X′)
P (X,X ′)

Q(X,X ′)
. (B.2)
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It follows that

Df (h(W )||h(Z)) =EX′∼Qf
(
P (X ′)

Q(X ′)

)
(a)
=EX′∼Qf

(
EX∼Q(·|X′)

P (X,X ′)

Q(X,X ′)

)
(b)

≤EX′∼QEX∼Q(·|X′)f

(
P (X,X ′)

Q(X,X ′)

)
(c)
=EX′∼QEX∼Q(·|X′)f

(
P (X)

Q(X)

)
=E[X,X′]∼Qf

(
P (X)

Q(X)

)
= Df (W ||Z).

Note that (B.2) implies (a); (b) follows from Jensen’s inequality, and (c) can be
obtained from (B.1).

B.2 Examples of f-divergence

In the following, we list useful examples of f divergence encountered in the main
text. However, it is worth noting that different f(t) can lead to the same diver-
gence, as shown by the following simple fact.

Proposition B.5. The f -divergence with f(t) is the same as the f -divergence
with f̃(t) = f(t) + β(1− t) for any β ∈ R.

We will choose only one f(t) for each divergence in the example, although one
can choose different f(t) for convenience. The examples are all strictly convex at
z = 1, and thus Df (P ||Q) = 0 if and only if P = Q.

KL-divergence

With f(t) = t ln t, we obtain the KL-divergence (Kullback–Leibler divergence) as
follows

KL(P ||Q) =

∫
Ω

ln

(
p(z)

q(z)

)
p(z)dµ(z).

KL-divergence can be unbounded.
Given random variables [X,X ′], with probability measure P , their mutual in-

formation is defined as

I(X,X ′) = KL(P (X,X ′)||P (X)P (X ′)).

Mutual information is often used to measure the independence of the random
variables X and X ′. If the random variables are independent, then the mutual
information is zero. In the general case, mutual information can be unbounded.
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χ2-divergence

With f(t) = (t− 1)2, we obtain χ2-divergence as follows

χ2(P ||Q) =

∫
Ω

(
p(z)− q(z)

q(z)

)2

q(z)dµ(z) =

∫
Ω

(
p(z)

q(z)

)2

q(z)dµ(z)− 1.

The χ2-divergence can be unbounded.

Squared Hellinger distance

With f(t) = (1−
√
t)2, we obtain squared Hellinger distance as follows

H(P ||Q)2 =

∫
Ω

(√
p(z)−

√
q(z)

)2

dµ(z) = 2− 2

∫
Ω

√
p(z)q(z)dµ(z).

Hellinger distance is always between [0, 2].

α-divergence

KL-divergence, χ2 divergence, and Hellinger divergence all belong to the more
general family of α-divergence for α ≥ 0. It is defined with f(t) = (1−α)−1(t−tα)
for α > 0:

Dα(P ||Q) =
1

1− α

(
1−

∫
Ω

(
p(z)

q(z)

)α
q(z)dµ(z)

)
. (B.3)

We have

• D1(P ||Q) = KL(P ||Q): when α→ 1, we have f(t)→ t ln t.
• D2(P ||Q) = χ2(P ||Q).
• D0.5(P ||Q) = H(P ||Q)2.

When α < 1, α-divergence is bounded, and when α ≥ 1, α divergence is un-
bounded.

We can also write α-divergence differently as follows:

DRé
α (P ||Q) =

1

α− 1
ln[1 + (α− 1)Dα(P ||Q)]

=
1

α− 1
ln

∫
Ω

(
p(z)

q(z)

)α−1

p(z)dµ(z).

The quantity DRé
α (·) is often referred to as Rényi entropy, which is also non-

negative. When α = 1, we use the convention that

DRé
1 (P ||Q) = lim

α→1
DRé
α (P ||Q) = KL(P ||Q). (B.4)

One important property of α-divergence is that it is convenient to estimate the
α-divergence of product distributions. This property can be used to obtain lower
bounds for statistical estimation.
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Theorem B.6. Let P n and Qn be the product distribution of n iid samples from
P and Q respectively. Then

DRé
α (P n||Qn) = n ·DRé

α (P ||Q).

For α = 1, this becomes

KL(P n||Qn)) = n ·KL(P ||Q)).

L1 norm and TV-norm

With f(t) = |z − 1|, we obtain the L1 norm between two measures as

‖P −Q‖1 =

∫
Ω

|p(z)− q(z)|dµ(z).

The quantity is always bounded between [0, 2]. We can also define the TV-norm
between two measures as

‖P −Q‖TV =
1

2
‖P −Q‖1 = 1−

∫
Ω

min(p(z), q(z))dµ(z),

which is always between [0, 1].
The TV-norm can also be defined equivalently as follows.

Proposition B.7.

‖P −Q‖TV = sup
A
|P (A)−Q(A)| = 1

2
sup

g:‖g‖∞≤1

[EZ∼P g(Z)− EZ∼Qg(Z)] ,

where A is over all measurable sets, and g is over all measurable functions with
bounded L∞ norm.

B.3 Basic Inequalities

Many f -divergence inequalities can be found in (Sason and Verdú, 2016). In the
following, we will only present some of the inequalities that are used in the book.

In many applications, it is useful to bound the TV-norm of two distributions
in terms of other divergences. The following inequality is a straight-forward ap-
plication of data-processing inequality.

Lemma B.8. We have

‖P −Q‖2TV ≤
1

cf
Df (P ||Q),

where cf is defined below with p(s) = (1− s)q + sp:

cf = min
p,q∈[0,1]

∫ 1

0

[
1

q
f ′′
(
p(s)

q

)
+

1

1− q
f ′′
(

1− p(s)
1− q

)]
(1− s)ds.
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Proof Given any measurable set A, let p = P (A) and q = Q(A). By the data
processing inequality, with h(z) = 1(z ∈ A), we have

Df (P ||Q) ≥qf
(
p

q

)
+ (1− q)f

(
1− p
1− q

)
= qf

(
1 + s

p− q
q

)
+ (1− q)f

(
1 + s

q − p
1− q

)
︸ ︷︷ ︸

g(s)

∣∣∣∣
s=1

=g(0) + g′(0) +

∫ 1

0

g′′(s)(1− s)ds

=(p− q)2

∫ 1

0

[
1

q
f ′′
(
p(s)

q

)
+

1

1− q
f ′′
(

1− p(s)
1− q

)]
(1− s)ds

≥cf (p− q)2,

where we have used Taylor expansion, and g(0) = g′(0) = 0. Therefore

1

cf
Df (P ||Q) ≥ sup

A
(P (A)−Q(A))2 = ‖P −Q‖2TV.

This proves the desired bound.

The above result implies the following inequalities. The bound of TV-norm in
KL-divergence is often referred to as Pinsker’s inequality.

Theorem B.9. We have

‖P −Q‖2TV ≤
1

4
χ2(P ||Q),

‖P −Q‖2TV ≤
1

2
KL(P ||Q),

‖P −Q‖2TV ≤H(P ||Q)2.

Proof Consider α divergence with α = 1, 2. Let f(t) = (1 − α)−1(t − tα), and
f ′′(t) = αtα−2. Let

c(p, q) =

∫ 1

0

[q1−αp(s)α−2 + (1− q)1−α(1− p(s))α−2](1− s)ds.

There exists p0 ∈ (0, 1) such that (for α = 1, 2):

c(p, q) =
1

2

[
q1−αpα−2

0 + (1− q)1−α(1− p0)α−2
]
≥ 2.

We can now apply Lemma B.8 with cf = αminp,q c(p, q) ≥ 2α to obtain the
result. This implies the first two inequalities of the theorem. For the third in-
equality, we may still estimate a lower bound of c(p, q) defined above. However,
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the following derivation is more direct.

‖P −Q‖2TV =

[
1

2

∫ ∣∣∣∣p(z)− q(z)∣∣∣∣dµ(z)

]2

=
1

4

[∫ ∣∣∣∣√p(z)−√q(z)∣∣∣∣ · ∣∣∣∣√p(z) +
√
q(z)

∣∣∣∣dµ(z)

]2

≤ 1

4

∫ ∣∣∣∣√p(z)−√q(z)∣∣∣∣2dµ(z) ·
∫ ∣∣∣∣√p(z) +

√
q(z)

∣∣∣∣2dµ(z)

≤ 1

4

∫ ∣∣∣∣√p(z)−√q(z)∣∣∣∣2dµ(z) ·
∫

2 [p(z) + q(z)] dµ(z)

=

∫ ∣∣∣∣√p(z)−√q(z)∣∣∣∣2dµ(z) = H(P ||Q)2.

The first inequality used the Cauchy Schwartz inequality. The second inequality
used (

√
a+
√
b)2 ≤ 2(a+b). The last two equations used the definition of Hellinger

distance and the fact that each density p(z) and q(z) integrates to 1.

We can also derive an upper bound of Hellinger distance by the square root of
TV norm. However, in general this bound is not tight when the norms are small.

Proposition B.10. We have

H(P ||Q)2 ≤ 2‖P −Q‖TV.

Proof We note that

H(P ||Q)2 =

∫
Ω

∣∣∣∣√p(z)−√q(z)∣∣∣∣2 dµ(z)

≤
∫

Ω

∣∣∣∣√p(z)−√q(z)∣∣∣∣ · ∣∣∣∣√p(z) +
√
q(z)

∣∣∣∣ dµ(z)

=

∫
Ω

|p(z)− q(z)| dµ(z).

This implies the result.

The following result is also useful.

Proposition B.11. Let ρ = supz ln(p(z)/q(z)). Then

H(P ||Q)2 ≤ KL(P ||Q) ≤ (3 + ρ)H(P ||Q)2.

Proof The first desired inequality used Proposition B.12 and −2 ln z ≥ 2(1− z):

H(P ||Q)2 ≤ DRé
0.5(P ||Q) ≤ DRé

1 (P ||Q) = KL(P ||Q).

Now let fKL(t) = t ln t− t+ 1 and fH(t) = (
√
t− 1)2. Let

κ = sup
0≤t≤exp(ρ)

fKL(t)

fH(t)
,
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then by using the fact that fKL(t)/fH(t) is an increasing function of t ∈ [0,∞),
we obtain κ ≤ fKL(exp(ρ))/fH(exp(ρ)).

Moreover we know that for ratio of distributions ρ ≥ 0, and when ρ ∈ (0,∞),
we have κ ≤ fKL(exp(ρ))/fH(exp(ρ)) ≤ 2.5 + ρ. We now have

KL(P ||Q) =EZ∼QfKL(p(z)/q(z)) ≤ κEZ∼QfH(p(z)/q(z)) = κH(P ||Q)2,

which implies the desired bounds.

It is also relatively easy to obtain bounds of α-divergences for different values
of α. In general, if α < α′, then we can bound α-divergence by α′-divergence as
follows. It is a direct consequence of Jensen’s inequality.

Proposition B.12. if 0 < α < α′, then

DRé
α (P ||Q) ≤ DRé

α′ (P ||Q),

where the convention of (B.4) is adopted for α = 1 or α′ = 1.

Proof We consider the case of 1 < α ≤ α′. Then Jensen’s inequality implies that[∫
Ω

(
p(z)

q(z)

)α−1

p(z)dµ(z)

](α′−1)/(α−1)

≤
∫

Ω

(
p(z)

q(z)

)α′−1

p(z)dµ(z).

By taking logarithm and divide each side by α′−1, we obtain the desired bound.
Similarly we can prove the case of 0 < α ≤ α′ < 1. By combining the two cases,
and taking limit at α → 1 or α′ → 1, we obtain the desired inequality for all
0 < α ≤ α′.

Theorem B.9 is useful to bound the product distributions for TV-norm via
α-divergence. Due to Proposition B.12, it is beneficial to use α < 1. In particular,
we have the following result using Hellinger distance.

Theorem B.13. Let P n and Qn be the product distribution of n iid samples from
P and Q respectively. We have

‖P n −Qn‖2TV ≤ H(P n||Qn)2 = 2− 2(1− 0.5H(P ||Q)2)n.

Proof From Theorem B.6 with α = 0.5, we obtain

ln(1− 0.5H(P n||Qn)2) = n ln(1− 0.5H(P ||Q)2).

It follows that

H(P n||Qn)2 = 2− 2(1− 0.5H(P ||Q)2)n.

Together with Theorem B.9, we obtain the desired bound.
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l’Académie des sciences. Série 1, Mathématique, 296(23), 1021–1024.
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G-optimal design, 182–184, 187, 380, 405, 425
greedy algorithm, 184, 186
nonlinear, 185

Gaussian complexity, 254, 256, 272
comparison lemma, 255
lower bound, 255

Gaussian process, 164, 186
generalization bound, 3
generalization error, 1, 6
generic chaining, 256
Gibbs algorithm, 130, 140, 206, 273

generalization bound, 206
stability analysis, 130, 132

Gibbs distribution, 130, 311
optimization formulation, 130
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Glivenko–Cantelli class, 50
gradient boosting, 212, 223

fully corrective, 214
greedy algorithm, 187, 208, 209, 223
G-optimal design, 184
Adaboost, 209

Hölder’s inequality, 430
Hedge algorithm, 311, 350
Hellinger distance, 208, 436
high dimensional statistical analysis, 216, 223
Hoeffding’s inequality, see Chernoff bound
hyperparameter optimization, 6
hyperparameter tuning, 187
hypothesis space, 29

iid, 9
implicit bias, 7, 250, 252
improper online learning, 299, 317
irrepresentable condition, 219, 223

Jensen’s inequality, 429

kernel, 161
kernel Gram matrix, 160
kernel methods, 158

feature representation, 158, 162
oracle inequality, 170, 172
Rademacher complexity, 168, 169, 177
representer theorem, 163
semisupervised learning, 164
uniform convergence, 170, 172

kernel smoothing, 187
kernel trick, 187
KKT conditions, 216
KL divergence, 130
KL-divergence, 207, 435
kriging, 186

L0 regularization, 191–193
L1 regularization, 194, 222, 244, 245

Rademacher complexity, 196–198
support recovery, 218

L2 regularization, 158, 190
large deviation, 10
Lasso, 194, 222

parameter recovery, 216
sign consistency, 216
support recovery, 216, 218

law of large numbers, 9
lazy training, 251
least squares, 44
least squares regression, 113

convex function class, 48
local Rademacher complexity, 113
lower bound, 263, 264
martingale, 285
nonconvex function class, 48
upper bound, 265

linear bandit, 347, 382
linear bandits

arm elimination, 347
regret bound, 347

linear contextual bandit, 361
linear model, 158

Rademacher complexity, 168, 169
linear UCB, see UCB, 382
linearly embeddable function class, 373
Lipschitz, 428
local Rademacher complexity, 103–113

rate function, 105, 112
log-determinant function, 322
logarithmic moment generating function, 12,

15, 277
logarithmic Soblev inequality, 240

MAB, 289, 335, 353
adversarial bandit, 336
asymptotic lower bound, 345
EXP3 algorithm, 350
finite sample lower bound, 346
gap dependent regret analysis, 341, 344
gap independent regret analysis, 338
lower bound, 353
stochastic bandit, 336

MAB regret bound
Thompson sampling, 350

machine learning, 1, 7
majorizing measure, 256
margin analysis, 68, 69, 82
Markov Decision Process, see MDP
Markov’s inequality, 11, 94
martingale, 275, 294
martingale difference sequence, 275, 294
martingale inequality

Azuma’s inequality, 278
Freedman’s inequality, 279
multiplicative Chernoff, 278
self normalizing inequality, 282
self-normalizing inequality, 280
sub-Gaussian, 278

matching pursuit, 223
Maurey’s lemma, 194
MDP, see RL
mean field analysis, 252

regularization, 252
mean field formulation of neural network,

238–244
Mercer’s theorem, 161
method of sieves, 273
minimax analysis, 257, 258, 272, 332

conditional density estimation , 268–269
least squares , 262–268

minimax lower bound, 261, 271, 291, 292
KL-divergence, 261, 290
normal mean, 262
sequential estimation, 290

minimax rate, 258
sequential estimation, 289
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minimax risk, 258
conditional density estimation, 318

misspecified model, 30, 48, 154, 273, 327
model aggregation, 155, 268, 273, 325, 333

least squares, 327
model averaging, 143, 154

Bayesian, 154, 155
model complexity, 6
model selection, 143, 144, 146–151, 153, 154

AIC, 155
Bayesian, 153, 155
BIC, 155, 193
data dependent bound, 147–151, 153
ERM, 146
Gibbs algorithm, 153
MDL, 155
structural risk minimization, 155

multi-armed bandit, see MAB
multi-layer neural network, 227
multilayer perceptron, 251
mutual incoherence condition, 219
mutual information, 259, 261
mutual information generalization analysis,

222
mutual information generalization bound, 206

neural network, 226
convexity, 252
infinity width, 251
NTK, 251

neural network initialization, 234
neural network feature representation, 252
neural tangent kernel, see NTK
nonconvex problem, 5
nonlinear G-optimal design, 185
nonlinear contextual bandit, 367

regret bound, 369
regret lower bound, 378

nonparametric model, 74, 82
NTK, 233–238, 251

approximation, 237
initialization, 234
Rademacher complexity, 238
regime, 237, 252
regularization, 252

online convex optimization, 304–310, 328
online learning, 1, 4, 288, 298–299

AdaGrad, 330
online nonconvex optimization, 310–313
online regret

Hedge algorithm, 311, 312
variance condition, 312

online regret analysis, 299
online regret bound, 300, 301

Bayesian posterior averaging, 317
AdaGrad, 331
model aggregation, 327
online Newton step, 328

ridge regression, 320, 321
online strongly convex optimization, 308, 309
online to batch conversation, 302–304
online Newton step, 328
optimal design, 182, 187
optimal policy, 387
optimal value function, 387
optimism in the face of uncertainty, 361, 367,

393
oracle inequality, 3, 37, 41, 42, 46, 60, 62, 64,

89, 91, 109
L1 regularization, 199, 200
expected, 86
local Rademacher analysis, 109, 111
McDiarmid’s inequality, 96
model selection, 144, 146, 148–151, 153
Rademacher complexity, 91
uniform L2, 64, 109
uniform L2 covering, 64, 109
variance condition, 64, 109, 111

overfitting, 6

PAC learning, 29–35, 50
PAC-Bayes analysis, 203, 222
packing number, 72, 73
parametric model, 73, 74
partial differential equation, 240
PDE, 240
peeling, 47, 108
perceptron, 251
perceptron algorithm, 299

mistake bound, 300, 301
multiclass, 300, 301

permutation analysis, 69
Pinsker’s inequality, 438
policy, 288

contextual bandit, 355
RL, 384

policy gradient, 424
positive definite kernel, 161
posterior distribution, 130, 201, 311
posterior sampling, 349

RL, 413, 423
prior distribution, 201
Probably Approximately Correct , see PAC

learning
projection pursuit, 223
proper online learning, 299
pseudo-dimension, 76, 83
pure exploration, 379, 381

Q learning, 398, 424

Rademacher complexity, 52, 86, 87, 90,
97–103, 114, 190, 254, 272

L1 regularization, 196–198
chaining, 98
comparison, 175
comparison lemma, 100
concentration, 151
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entropy regularization, 202
kernel methods, 168, 177
linear model, 168
local, 114
model selection, 150, 151, 153
offset, 87, 90, 114
two layer neural network, 198

radial basis function, 162
random feature, 230–233
L1 regularization, 232, 233
L2 regularization, 232
kernel, 231, 232
Rademacher complexity, 232, 233
random Fourier feature, 231, 251

random feature method, see random feature
random kitchen sinks, see random feature
random variable
χ2, 25
bounded, 17
normal, 10, 25

rate function, 12, 15, 20, 105, 106
local Rademacher complexity, 105
nonparametric, 112
parametric, 112
uniform covering number, 106

RBF kernel, 162, 324
realizable, 30
realizable assumption, 388
rectified linear unit, 226
regret

nonlinear contextual bandit, 376
regret analysis, 299
regret bound, 4

MAB, 336
EXP4, 358
linear MDP, 395
linear mixture MDP, 419
linear UCB, 363
nonlinear contextual bandit, 369, 370
RL, 406
RL (model-based), 412

REINFORCE, 424
reinforcement learning, see RL
ReLU, 226, 229
representation learning, 230
representer theorem, 159, 160
reproducing kernel Hilbert space, see RKHS
restricted isometry property, 220
restrictive eigenvalue condition, 220
ridge regression, 163, 180, 181, 319

online oracle inequality, 324
RKHS, 161, 186
RL, 384, 424

Bellman eluder coefficient, 423
Bellman eluder coefficient (V -type), 421
factored MDP, 424
witness Bellman factorization, 422
witness rank, 422

Bellman completeness, 389, 397
Bellman decomposition, 425
Bellman eluder coefficient, 397
Bellman eluder coefficient (Q-type), 394
Bellman eluder coefficient (V -type), 402,

403, 422
Bellman eluder coefficient for linear MDP,

395
Bellman eluder coefficient for linear

mixture MDP, 419
Bellman rank, 425
bonus function, 397
completeness, 389
computational complexity, 424
episodic, 384, 385
fitted Q iteration, 398, 399
G-optimal design, 405
least squares value iteration, 398, 399
likelihood algorithm, 413
linear MDP, 392, 393, 396, 398
linear mixture MDP, 418
low Bellman rank, 402
LQR, 386
LSVI-UCB, 399
minimax loss, 389
model free, 425
model-based, 423, 425
model-based Q-type Bellman eluder

coefficient, 411
model-based V -type Bellman eluder

coefficient, 421
model-based Bellman eluder coefficient,

410, 411, 421
model-based MDP, 408
model-based regret bound, 412
model-based UCB, 409
one step exploration, 405
optimal Q function, 386
optimal value function, 386
policy, 384–386
policy gradient, 424
posterior sampling, 413, 423
Q function, 386
Q learning, 424
realizable assumption, 388
regret bound (V -type), 406
regret bound for linear MDP, 395, 396
regret bound for low Bellman-rank MDP,

406
regret bound of linear mixture MDP, 419
REINFORCE, 424
reward, 384
tabular MDP, 385, 392, 418, 424
Thompson sampling, 413, 423
transition probability, 384
UCB for linear MDP, 394, 399
uniform convergence, 389
V -type Bellman error, 406
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V -type UCB algorithm, 404
V -type one step exploration, 405
value function, 386
value function approach, 424
value function decomposition, 388, 410
value iteration, 425
value targeted loss, 409
variance weighted regression, 425
weighted regression, 425
witness Bellman loss, 410

roll-in policy, 402
Rényi entropy, 436

sample complexity, 30
Sauer’s lemma, 61, 87, 91
SDE, 240
sequential statistical estimation, 288, 289
SGD, 126, 127, 140, 310

AdaGrad, 330
contraction, 126
convergence, 310
stability analysis, 127
strongly convex optimization, 310

SGLD, 133, 134, 140
stability analysis, 134

sieve method, 265
sigmoid function, 226
Slepian’s Lemma, 272
Slepian’s lemma, 255
smoothing splines, 187
smoothness, 428
sparse recovery, 215–221, 223
L1 regularization, 223
greedy algorithm, 221
irrepresentable condition, 219
mutual incoherence condition, 219
nonconvex regularization, 223
parameter estimation, 221, 223
RE, 220, 221
restricted isometry property, 220
restrictive eigenvalue condition, 220
RIP, 220, 221, 223
support recovery, 223

sparsity
L0 regularization, 191–193
L1 regularization, 194
basis pursuit, 194
Lasso, 194
sparse regularization, 192
subset selection, 192

stability analysis, 117, 118, 121, 123, 126,
127, 132, 134, 177

concentration inequality, 135, 136
convex optimization, 121, 123
Gibbs algorithm, 130, 132
high probability bound, 118
leave one out, 140
parametric model, 133

SGD, 127
SGLD, 134

statistical complexity, 5
statistical estimation, 257

minimax analysis, 258
statistical learning, 50
stochastic gradient descent, see SGD
stochastic gradient Langevin dynamics, see

SGLD
stochastic partial differential equation, 240
Stone-Weierstrass theorem, 166
strong convexity, 427
structured SVM, 176

Rademacher complexity, 177
stability analysis, 177

sub-Gaussian random variable, 16
subset selection, 191–193
Cp, 222
AIC, 222
BIC, 222

Sudakov minoration, 82, 255, 272
supervised learning, 1
support vector machine, 123, 158, 163
SVM, 158, 186, 308

oracle inequality, 173
symmetrization, 52, 55, 68

tail inequality, 9
χ2 random variable, 25
normal random variable, 10

test error, 1, 6
Thompson sampling, 349–350, 353, 366, 372,

382
Feel-Good, 372, 382
MAB, 349
nonlinear contextual bandit, 374
RL, 413

training error, 1, 6
Tsybakov’s noise condition, 44, 50
TV-norm, 437

product distribution, 440
two layer neural network, 81, 222, 226, 230,

235, 238, 251

UCB, 353, 382
linear, 362
linear confidence bound, 362
MAB, 336–345
nonlinear, 367

uniform convergence, 31, 33, 36, 37, 39, 43,
45, 50, 55, 57, 58, 65, 94, 104, 284

L1 regularization, 199, 200
Bernstein’s inequality, 104
entropy regularization, 203
Freedman’s inequality, 284
local Rademacher complexity, 104
martingale, 284
McDiarmid’s inequality, 94
oracle inequality, 102, 208
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Rademacher complexity, 94, 96, 102
variance condition, 284

uniform convergence complexity, 85, 88
uniform law of large numbers, see uniform

convergence
union bound, 32
universal approximation, 165, 187, 222, 251

kernel Gram matrix, 167
kernel methods, 165–167
neural networks, 228

upper confidence bound, see UCB

validation, 55, 57
validation data, 144, 146
value function, 386
variable selection, 191–194
Cp, 222
AIC, 222
BIC, 222

variance condition, 43, 45, 46, 50, 109, 205,
206

online regret, 312
VC class, 74–76, 87, 91

offset Rademacher complexity, 91
Rademacher complexity, 87

VC dimension, 52, 61–63, 74–77, 83, 92, 146
model selection, 151

VC theory, 50, 52, 68, 83
VC-hull class, 79, 80
VC-subgraph class, 76–77

weak learner, 208
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