TWO-SIDED ARNOLDI AND NONSYMMETRIC LANCZOS
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Abstract. We introduce new two-sided Arnoldi recursions and use them to define a model
reduction procedure for large, linear, time-invariant, multi-input/multi-output differential algebraic
systems. We prove that this procedure has desirable moment matching properties. We define a cor-
responding model reduction procedure which is based upon a band nonsymmetric Lanczos recursion
and prove that if the deflation is exact and there are no breakdowns in the recursions, that these two
model reduction procedures generate identical reduced-order systems. We prove similar equivalences
for corresponding eigenelement procedures. We concentrate on the theoretical properties of the new
algorithms.
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1. Introduction. This paper arose out of our work on model reduction algo-
rithms for large multi-input /multi-output (mi/mo), time-invariant, delay-differential-
algebraic systems of equations which occur in modeling VLSI interconnects (wires,
planes, conductors)[7] The inner loop of the outer/inner loop procedure developed in
[7] repeatedly exercises an iterative model reduction procedure for time-invariant lin-
ear systems, [10]. This inner algorithm must be able to handle systems with arbitrary
numbers of inputs and outputs.

Single-sided Arnoldi model reduction methods have been proposed which directly
use the system block input matrix in the iterative method but do not directly use
the system block output matrix. We define two-sided Arnoldi recursions with the
capability of directly incorporating both of these matrices into an iterative model
reduction procedure.

The two-sided nature of these recursions leads us to a comparison of a model
reduction procedure which is based upon the new two-sided Arnoldi recursions and a
corresponding procedure which is based upon the nonsymmetric band Lanczos re-
cursion developed in [1]. We prove that these two procedures generate identical
reduced-order models. We also prove that the iterates generated by corresponding
eigenelement procedures are identical. We focus on the theoretical properties of these
procedures.

In Section 2 we define a two-sided block Arnoldi recursion which consists of two
independent applications of a corresponding one-sided block Arnoldi recursion and a
computation which combines the quantities generated by these two applications. One
application uses the system matrix with the system block input matrix. The second
application uses the transpose of the system matrix with the system block output ma-
trix. We illustrate some properties of this basic two-sided Arnoldi recursion, including
the very interesting possibility of recovery from breakdown without any modifications
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of these recursions. This two-sided block Arnoldi recursion is an extension of work in
[16].

In Section 3 we use the recursions in Section 2 to define a two-sided block Arnoldi
model reduction procedure for generating approximations to transfer functions of
large systems of time-invariant, differential-algebraic equations. We prove that these
approximations possess desirable matrix moment matching properties [10]. The proof
is interesting because it is self-contained and uses only general properties of two-sided
Krylov recursions. For example, it does not use the orthogonality of the associated
vectors.

In Section 4, we review briefly some of the properties of the band nonsymmetric
Lanczos recursions defined in [1]. Assuming exact arithmetic and exact deflation, we
derive common properties of the band Lanczos and of the two-sided block Arnoldi
recursions. We exploit those properties within the context of corresponding model
reduction and eigenelement methods to prove that corresponding methods generate
identical approximations. These results complement the earlier work in [4], [3], com-
paring one-sided Arnoldi methods and nonsymmetric Lanczos methods for solving
Ax =bor Az = Azx.

Assumptions: Unless it is stated explicitly otherwise, in any discussion of any
Arnoldi or nonsymmetric Lanczos-based procedure, we will assume that all of the
required quantities are well-defined; no breakdowns occur; the underlying recursions
do not terminate prematurely; and the arithmetic is exact.

1.1. Notation.. We summarize the notation which is nonstandard.
si/so: single input, single output system

mi/mo: multiple input, multiple output system

r,l: subscripts (superscripts) to denote quantities associated with
right and left vectors which were generated using A and AT.

B(:,[i: j]) [B([i: j],:)] : columns[rows] ¢ through j of matrix B

I;.j: columns i through j of an identity matrix Ix where K is spec-
ified within the local context.

Ip1ast]> Ilzfirsy): denote corresponding Ij;.;) where the block [i : j]
corresponds to the indices in the last(first) block column in an
associated block structure. Setting z = r,l(v,w), indicates right
or left quantities for Arnoldi(Lanczos) recursions. .

H([¢ : j],[k : 1]) : submatrix of H consisting of the intersection of
rows ¢ through j with columns k through I.

[Q,-,@Hl} : equals [@1,...,@j,@j+1] for Q; = [@1,...,@]}

2. Arnoldi Recursions. Blocks occur naturally in multi-input/multi-output
mi/mo systems. System inputs and outputs are controlled by matrix blocks, and we
measure the quality of our proposed reduced-order model by the number of rectangu-
lar block moments of the transfer function of the original system which are matched by
corresponding moments of the transfer function of the reduced-order system. There-
fore, initially we focus on block, two-sided Arnoldi recursions.

2.1. A Block Arnoldi Recursion. Given a matrix A, a consistent starting
block of vectors X with d,. columns, and a deflation tolerance €4, we define a one-
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sided, block Arnoldi recursion [17]. At each iteration of this recursion we are working
with a block of vectors which was generated by applying A to a block of vectors
which was generated at an earlier iteration and invoking orthogonalizations. It is
possible and typical, that as the iterations proceed, that one or more vectors within
the current block become dependent or nearly dependent upon vectors which have
already been generated. In this situation, to preserve the integrity of the procedure,
the (nearly) dependent vector(s) must be deflated from the process. Deflation is
accomplished implicitly without any explicit permutations of vectors or modifications
of the recursions. Example 2.1 provides a concrete illustration of the use of deflation
in a block. For more details on deflation, see [5], [8], [1].
In the statement of Algorithm 2.1 we use ()41 to denote the Arnoldi vectors after
j block steps of the recursion, d; to denote the size of the ;" block, Cj j» Sm = Z;’;l d;
equals the number of columns in @,,, and eg is the deflation tolerance.
ALGORITHM 2.1. (Block Arnoldi Recursion)
Specify A, X, eq > 0.
Decompose X = élsr + A, where éf@l =1
and ||A.||; < /(dr — di)eq with dy = rank (Q1).
Set s=d=d;
Yi=0Q:
Q1= [Q1]-
forj=1:m
Q(:7[3_d+1 : S]) = Y;
P; = AY;.
H(1:s],[s—d+1:s])= Qij.
Pj :Pj —QJH([]. : S],[S—d+1 : SD
ifj <m
Pj = Qj+1Sj~+ A]’ where Qf+1Qj+1 =1 B
and ||AJ||F < \/d— dj+1€d with dj+1 =rank (Qj-i—l)'
H(s+1:s5+4+4d;],[s—d+1:s])=S5;.

d=dj1
s=s+d
Qi1 = [Q), Qj1]-
else
R,, =P,
Hyp, =H(1:5,),[1:58m]) -
endg
end

H,, denotes the square block upper Hessenberg matrix generated with diagonal blocks
of size dj, 1 < j < m. Ry, denotes the final n x d;;, block residual matrix. The matrix
form for these recursions is

(21) AQm = QmHm + RmI[’{ast]'

where Ijj,5 denotes I, g, 41:5,,]- We will also use I[¢;5 to denote Ij.4,. If Algo-
rithm 2.1 is applied to {4, X,.} we use { X, S, Qr, Hy, Ry, Ipigst), I firse) } - Similarly,
for {AT, X;} we use {X;, Si,Qu, Hi, Ri, Iuase); Tupirst) }-

If for some j, d; —d;41 > 0, then deflation has occurred in that block P;. Checks
for deflation are accomplished by applying modified Gram-Schmidt orthogonalization
within each block and deflating any vector with norm smaller or equal to €. Since
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every right(left) Arnoldi vector generated is explicitly orthogonalized w.r.t all exist-
ing right(left) vectors, modifications in the recursion formulas are not required when
deflation occurs.

Example 2.1 illustrates some possible deflation scenarios. In the implementations
the vectors p( ) are ignored. Vectors are considered in their natural order and in
place. For s1mplicity, in this example we assume that ||p1|| > €a-

EXAMPLE 2.1. Let P = [p1, p2,p3] be a block of 3 vectors and consider the vectors
in order. We have the following possible steps. The ;; denote the Gram-Schmidt

orthogonalization coefficients.

L g=p/lpl; 2 =ps—yma; P =ps—siqu;  go to step 2.

2. There are three cases.
a. If ||p§2)|| <e€q and ||pg2)|| > €4, set qo = pgz)/||p§2)|| and terminate.
b. I P71l > ea, set g = p57 /1Ip5” 1 p” = p5” = vs2a27 go to step 3.
c. Ifmax (|2, Ip$]]) < eq, terminate.
3. There are two cases.
a. If ||p§3)|| < €4, terminate.
b. If ||pg3)|| > €4, set g3 = pg3)/||pg3)|| and terminate.
The following combinations of steps and matriz block relationships are possible.
A. {1,2a} = [p1,p2,p3] = a1, ¢2] [ “%1” 7(2)1 7(321) ] + [0, ;0(2) 0]
llps™l
lpill 72 Y31
0 P57 e
lpill 721 Y31
C. {1,2b,3b} = [p1,p2,p3] = [01,92, q3] 0 11
0 0 B

D. {1,2¢} = [pr,po,ps] = [l Ipall 921 9 ]+ [0,p57p5”)]

Since the vectors within a candidate block P; are considered in the natural order,
and modified Gram Schmidt orthogonalization is applied successively to each of these
vectors, the first d;11 columns of the subblock below each ;" diagonal block in H,,
form an upper triangular matrix. Therefore, we can truncate this matrix interior
toa (j+ 1) block and the truncated matrix H retalns the block upper Hessenberg
structure. The corresponding block residual matrix R for H will have the same number
of columns as the residual corresponding to the H matrix with (5 + 1) complete blocks.
The indices of the columns corresponding to R are obtained by shifting the column
indices of the (j 4+ 1)* block left by the number of columns truncated from that
block. We will exercise this ability to truncate and retain structure in Section 4 in
our comparisons of methods which are based upon a two-sided block Arnoldi recursion
with corresponding methods which are based upon the nonsymmetric band Lanczos
recursion in [1].

Blﬂﬁﬂé%mm=MM[ ]+[md%

2.2. A Two-Sided Block Arnoldi Recursion. We construct a two-sided
block Arnoldi recursion by combining two independent applications of Algorithm 2.1,
to {4, X,} and to {AT, X;}, with an appropriate vector merge of the resulting left
and right Arnoldi vectors, {Q;, @, }. The merge creates a modified right(left) residual
matrix that is biorthogonal to the left(right) Arnoldi vectors. To maintain the equali-
ties, the modification to the residual matrix must also be applied to the corresponding
H matrix.

ALGORITHM 2.2. (Two-Sided Block Arnoldi Recursion)
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Speczfy A7 XTJXh €d, My, My.
Apply Algorithm 2.1 to {A, X} for m, block steps to generate Q.
Apply Algorithm 2.1 to {AT, X;} for my block steps to generate Q.
Compute Q = QT Q.
If rank (Q;) < rank(Qr)
Solve QZ = Q] R,
Set H = [H|, = H, + ZI[;, -
else
Solve Q' Z = QTR,.

Set T = [H], = (H, + 217,

T
[llast] )

end

2.3. Properties and Breakdown. A two-sided Arnoldi recursion possesses
several important properties. It is easy to implement. Each one-sided block recursion
is well-defined for blocks of any size, and deflation can occur independently in either or
both single-sided recursions at any point in the computations. There is no requirement
that rank (@) = rank (Q;) and typically they are not equal.

The vector merge computations require Q = QF Q. to have full rank. The column
block Z which is generated in a merge is incorporated into the appropriate H matrix.
If the right recursions are used, this modified matrix equals H. If the left recursions
are used, the transpose of this modified matrix equals H. H is a representation of A
and these matrices can be used to define two-sided iterative methods involving A.

If Q = QF'Q, does not have full rank, then the merge operation cannot be ac-
complished and H cannot be generated. Breakdown in Algorithm 2.2 occurs. A
near-breakdown will exhibit itself as a nearly rank deficient . However, as illus-
trated in Example 2.2, even if breakdown occurs, there is the possibility of recovery
from breakdown without modifications of the recursions. The recursions can simply
be continued until the corresponding @ has full rank.

ExXAMPLE 2.2. Apply Algorithm 2.2 to

5 12 38 -21 1 7
3 8 24 -13 R | .| 4
A=l _2 ¢ —190 12| FX=| o T=&=] 3
-1 -4 -12 8 1 -2

After two steps of the recursion, we obtain the left and right vectors:

Q=] 1/V3, [2,1,6,-1]T/v42, [-4,19,2,23]T/v/910 ]
Qr=[ r/V78, [-4,7,-2,3]T/V78, [1,1,3,1]T/V12 ].

If we stop after one step of the recursion, and attempt a merge, we encounter break-
down. However, if we ignore the breakdown and continue the recursions one more
step, then Q has full rank.

The merge operation in Algorithm 2.2 can accept any number of left and right
vectors. As indicated earlier the H matrices generated by a one-sided band Arnoldi
recursion can be truncated and still retain the block upper Hessenberg structure
in the truncated H-matrix and the block structure for the corresponding residual.
Therefore, we can restate Algorithm 2.2 to allow for such truncation. We will use this
flexibility in Section 4 where we prove the equivalence of methods based upon the
nonsymmetric band Lanczos recursion in [1] and Algorithm 2.3 which is a truncated
version of Algorithm 2.2.
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ALGORITHM 2.3. ( Truncated Two-Sided Block Arnoldi Recursion)
Speczfy A’ XT';XI: €d, S.
Apply Algorithm 2.1 to {A, X} to generate Q, with rank (Q,) > s.
Apply Algorithm 2.1 to {AT, X;} to generate Q; with rank (Q;) > s.
Set Qr = QI(:’ [1:s]), Qi=Qi(:,[1:8]), H- = H,([1:3],[1:5]), H = H/([1:s],[1:3]).
Define Ry, R, as the residual blocks needed to preserve equality in the recursions.
Compute @ = Q7@
Solve @ZT = Q\ZTE’T

=T . P~y ~

Solve Q Z; = QT R;.
Set [H]r = ﬁT + ZTI[Tlrﬂlast]'

- -~ T
Set [H, = (H; + ZiI,.)

)|

)|

end

If we exercise Algorithm 2.3, Lemma 2.1 states that the resulting E matrices are
Petrov-Galerkin projections of A [18]. There is the implicit assumption that Q is
nonsingular. o o

LEMMA 2.1. Let Qi, Q,, [fI] and [ﬁ]l be generated by Algorithm 2.3, then

r

), =0 QrAQ
(2.2) [H], = QT 4Q.Q

= == =1

[H]l = Q[H]TQ

[E]T and [E]l are oblique projections of A onto span{@r} and along the span{@l}.
Proof. The proof is a direct consequence of the fact that QT R, = 0 and QT R; = 0.
a

2.4. Related Work. Ruhe [16] introduced the two-sided Arnoldi method specif-
ically as a method for computing approximations to left eigenvectors of a matrix A.
In [16] a one-sided Arnoldi method is applied to A to obtain converged approxima-
tions {#,z,} to an eigenvalue and right eigenvector of A. The quantities generated
are used to compute an approximation, z;, to a corresponding left eigenvector of A. A
second application of the one-sided Arnoldi method is applied to {AT, 2;} to generate
a better approximation #; to the left eigenvector. The two applications of the Arnoldi
method produce different eigenvalue approximations. To obtain a consistent triplet
for approximations to an eigenvalue and to the corresponding right and left eigen-
vector of A, additional computations are introduced which correspond to the merge
operations.

The proposed two-sided Arnoldi recursions are generalizations of the algorithm
in Ruhe [16]. The recursions in Algorithm 2.2 can handle starting blocks with any
numbers of vectors. The two applications of a one-sided Arnoldi method are exercised
independently. The merge computations can handle any numbers of left and right
vectors, as long as the corresponding matrix () has full rank, and the resulting H
matrices can be used to define a variety of iterative methods including model reduction
and eigenelement methods.

3. Two-Sided Block Arnoldi Model Reduction. We are interested in it-
erative methods for computing reduced-order models of large linear systems of time



TWO-SIDED ARNOLDI 7

invariant, differential-algebraic equations,
(3.1) Cz = Gz + Bu, y=E"z.

C and G are n x n matrices where n is the order of the system. The block input
matrix B is n X ¢ where ¢ is the number of input variables. The block output matrix
ET is 0 x n where o is the number of output variables of the system. The behavior
of such a system is encapsulated in the system transfer function function 7 (s) which
maps the Laplace transform of the input functions u to the transform of the output
functions y, [15].

(3.2) y(s) = T(s)u(s) = ET(sC — G) "' Bu(s).

If ¢ = 0 = 1, then the system is (si/so) and T'(s) is a rational function of s. In general,
a system is (mi/mo) and T(s) is an o X ¢ matrix of rational functions. Each entry in
T(s) is a si/so transfer function for one of the possible input/output combinations.

Typically C is not invertible, and the matrix (C's — G)_lB is replaced by a matrix
(I+0F)™'R = where F = (Cso—G)™'C, R = (Csg —G)™'B, s, is some well-
chosen expansion point and o0 = s — sg. An iterative model reduction method can
then be applied to the system

(3.3) Fi=-z+Ru, y=EFE"z,

defined by {F, R, E} to obtain smaller systems {F, R, E}. The original and the re-
duced systems have the same number of inputs and outputs. The approximation
of the smaller system to the larger system is expressed as relationships between the
transfer function of the original system and the transfer function of the smaller sys-
tem. We have used R as the input block for a system and also as the residual matrix
in a recursion. The reader should be able to deduce which use is intended from the
local context.

We use Algorithm 2.2 to define a model reduction algorithm, Algorithm 3.1, for
Equations(3.3). Formally, we can expand the transfer function T'(s) of the original
system in terms of the moments, ET F/R.

(3.4) T(s)=E"(I+0F)'R= i (-1YETFiRoI.

The performance of a model reduction procedure is typically measured by the number
of moments of the transfer function of the reduced-order system which match the cor-
responding moments of the transfer function of the original system. See for example,

[9, 10]. For some 0 < k < M, the moments of the reduced-order system {F, R, E}
satisfy

(3.5) E'F'R=E"F'R.

ALGORITHM 3.1. (Two-Sided Block Arnoldi Model Reduction)
Specify F, R, E, €4 > 0.
Apply Algorithm 2.2 to {F, R, E} for m,, m; steps to generate Q,,Q;, H.
Set F=H, Q=Q7Q.
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If rank (Q)) < rank (Q,
R= I[Tfirst]ST7 E= QTI[lfirst]Sl-
else
k= QI[rf'irst]ST‘a E = I[lfirst]sl'
end
There is an implicit assumption in Algorithm 3.1 that the corresponding @ has full
rank. The following theorem states that if the deflation tolerance e¢; = 0, then the
transfer function of a reduced order system, {F, R, E}, obtained using Algorithm 3.1
achieves the maximum number of block moment matches to the transfer function of
the original system {F, R, E}.

THEOREM 3.1. Apply Algorithm 3.1 with g = 0 to the system {F,R,E} to
generate a reduced-order system {F,R,E}. Then the first 0 < k < m; +m, — 1 block
moments of the reduced system match the corresponding block moments of the original
system:

(3.6) E'F'R=ETF*R for 0<k<my+m, —1.

The proof of Theorem 3.1 uses only the basic form of the recursions, for example,
AQ, = Q.H + R?‘I[::lastp the relationship between the modified residual matrix in

one recursion and the vectors generated in the other, Q7 R, = 0, and the block upper
Hessenberg shape of the projection matrices H. The proof invokes Lemmas 3.2, 3.3,
and 3.6.

Lemma 3.2 states that for small €5 > 0, deflation introduces correspondingly small
perturbations in the one-sided Arnoldi recursions. This lemma is a direct consequence
of the constructions in Algorithm 2.1. The proof of Equation(3.7) is by induction.
Equation(3.8) is an immediate consequence of the fact that for any block upper Hes-
senberg matrix H with diagonal block sizes di,...,d,, that for any 0 < k < m — 1,

span{H} Is;rs } is contained in span{ey, ...ex} where K = ZHI d; and e; denotes

j=1
the I** coordinate vector.
LEMMA 3.2. After m steps of Algorithm 2.1,

AQm = QmHpm + Rln‘[[:fast] + A,

X = QmI[first]S + A,

where |Al|p < v/dy —diea, and || Ay < i — dmea. For 0 <k <m—1.
(3.8) I[?ast] H} I pirst) = 0.

(3.7)

Lemma 3.3 relates the action of powers of a matrix A as applied to a starting
block X to powers of a corresponding reduced-order matrix H operating on the cor-
responding reduced starting block. The proof is by induction and uses Lemma 3.2.
This relationship will be used to prove that block moments of the transfer functions
of the reduced-order systems approximate block moments of the transfer function of
the original system.

LEMMA 3.3. Let {Qm, Hm, R, S} be generated by applying m steps of Algorithm
2.1to {A,X}. For0<k <m,

ARX = QuHE Ti1irsnS + (AFA + Y070 AN HE ' 144054 S),  and
(3-9) ATX = QmHR [7irs S + RTI[lTasﬂHrT “ifirsy S+
(AmA + ZT:?) AZAmHTTnn_l_eI[first]S)'
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©

COROLLARY 3.4. Apply Algorithm 2.2 to {A, X, AT X;}. Assume rank (Q,)
rank (Q;). By construction H is block upper Hessenberg. If e = 0, then for 0 < k
my,

2
<

-k
AFX, = QrH I[rfirst]sr and )
A™ Xy = QrH  ipgirs)S + BelliaugH' Tivgirst) Sr-

rlast]

(3.10)

Corollary 3.4 follows directly from Lemma 3.3 and the fact that H retains the
block upper Hessenberg form of H,. We now consider the two-sided block Arnoldi
recursion, Algorithm 2.2 with €5 = 0. [H], and [H]; denote, respectively, H matrices
which correspond to Q7 R, = 0 and QT R; = 0.

LEMMA 3.5. Assume that Q,,[H),,R,,Q:, H, R, satisfy

AQT = QT[H]T =+ RTIT

rlast]
ATQr = QuHi + Ril

QTR =0.
For any Y] such that I[lq;ast]Y} =0,
(3.11) Y H Q[ Q. =Y,"Q{ Q.[H],.

A similar statement is valid if the roles of the right and the left Arnoldi vectors are

reversed. For any Y, such that I[f last]YT =0,

(3.12) VIHTQYQ, = Y, QT Q,[H],.

Proof. We prove Equation(3.11).
Y H QL Qr =Y (QiH)" Q:
=Y, (ATQ1 — Riljjjo5) " Qr
=y (ATQn"Q,
=Y Q/ (4Q,)
=Y Qi Q. [H],.

|

LEMMA 3.6. Let the hypotheses of Lemma 3.5 corresponding to [H], be satisfied.
Assume that for some Xy that

—k _

(313) AkQTI[rfz'rst] = QT[H]TI[’I‘fi’I‘St] + RT‘Xk (0 S k S mr)
k

(3.14) (ATY QuIygirsy) = QuH Tigirsy (0<k<my).

and that I[?fi”t] (HlT)kI[llast] =0for0<k<my—1. Then for 0 < k < m;+m,,

—k
(315) (QlI[lfiTst])TAk (QT‘I[rfirst]) = Igfirst]Q’ITQT[H]TI[T‘f’iT'St]'
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A similar statement is valid if the roles of the right and the left Arnoldi vectors are
reversed. Assume that for some X that

k —. Tk —
(3.16) (AT) QuIugirsy) = QuH], ) Inpirsy + RiXe (0 <k <my)

(317) AkQTI[rfz'rst] = QTHqIfI[’r'fz'rst] (0 <k< mr)-

and that I[szrst](Hf)kI[Tlast] =0 for0<k<m,—1, then for 0 < k < my; +m,,
—~=k

(318) (Qll[lfirst])TAk (QTI[TfiTSt]) = Igfirst] [H]l QlTQrI[rfirst]-

Proof. We prove Equation(3.15). By construction for 0 < k < m,
—k —
(319) (QlI[lfirst])TAk(QTI[rfirst]) = (leI[lfirst])T(QT[H]TI[rfirst] + Rer)
= QT QuIysirst) "[H], Iir pirst)-

For m, <k <m; +m,, let k =m, + k;. Clearly, 0 < k; < m; and

(QiTusirs) " A" ( QeI pirsy) = (A ) Qulusirst) " (A™ QrIir firsy)
= (QuH Iy pirst) ™ ( H] "Tiirst) + Rr Xm,)
= (QuHf Ilfzrst])T( L] Tingira)
= I o (H) ™ (QF QAL Ty vty
For any p < ki, define Y;” = H[Iy;;0). By assumption, I[ljgast] Y? = 0. If we
apply Lemma 3.5 recursively for p =0, ...,k — 1, we obtain I[lf"st]( ) "QrQ,) =
I[fﬁmt] QFQ,) [F]fl . Therefore,

k —= My
(QlI[lfirst])TAk (QTI[rfz'rst]) = I[:{first] (HlT) I(QZTQT)[H]T I[rfz'rst]
—= K1 5 M
= I[%’first] ( lTQT') [H]rl [H]r I[T‘f’iTSt]
—k
= (QZQII[lfirst])T[H]T-I[rfirst]'

a
Proof. (Theorem 3.1). We consider the case H = [H],. An analogous proof
applies when H = [H],. By construction, FQ, = Q.H + R, I[ and QT R, = 0.

rlast]’
Therefore, from Lemma 3.3,

_k _
FerI[rfz'rst] =Q-H I[rfirst] + R X, (0 <k< mr)'
4
(FT) Qulugirsn = QuH{ Tngirsg, (0 <L <my),

for some consistent X. From Lemma 3.2, Igf"st] (H ¥ Iyiasn = 0for 0 <k < my—1.
From Lemma 3.6, for 0 < k < my; +m, — 1,

Tk
(320) (QlI[lfirst])TFk(QTI[TfiTst]) = (QTTQZI[le.TSt]) H I[rfirst]-
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EUta E = QlI[lfz'rst]Sla R = QT‘I[TfiTSt]ST‘J E = Q?Qll[lfirst]sla R = I[rfirst]ST and

F = H. Therefore, for 0 <k <m;+m, —1,

(321) ETFkR = (QlI[lfirst]Sl)Tfi(kCQrI[rfirst]Sr)_ZT_k_
(QZQII[lfirst]Sl) H I[rfirst]sr =E F R.
a

Reference [12] also uses a two-sided Arnoldi method to obtain approximations to
transfer functions of control systems. The focus in [12] is on si/so systems, and the
emphasis is on approximating Lyapunov functions [15]. Moment matching connec-
tions, as presented in this Section are not discussed. Connections with nonsymmetric
Lanczos methods are mentioned but not developed. The statement is made that the
results extend to block methods but deflation is not discussed and the infeasibility of
a nonsymmetric block Lanczos recursion is not acknowledged.

4. Lanczos Recursions. Reference [4] focuses on relationships between non-
symmetric Lanczos and one-sided Arnoldi methods for solving Az = b. In [4] it is
proved that any residual norm behavior resulting from the application of the Lanczos-
based biconjugate gradient method (BiCG) [18] to Az = b can be replicated by the
application of the one-sided Arnoldi-based, full orthogonal method (FOM), but to a
different problem Cy = d. The applications {BiCG, Az = b} and {FOM,Cy = d}
generate identical residual norms. Reference [3] focuses on relationships between cor-
responding eigenelement methods.

The two-sided nature of Algorithm 2.2 leads us to ask whether or not we can
prove much stronger relationships between iterative methods which are based upon
it and corresponding methods which are based upon the nonsymmetric band Lanczos
recursion in [1]. In this section we explore that question. We prove that corresponding
two-sided iterative methods generate identical iterates. Therefore, they are simply
different implementations of the same iterative methods.

The nonsymmetric band Lanczos recursions in [1] generate sets of right vectors,
Vs, and left vectors, Wy, which are biorthogonal. For each s, WST Vs = D, with D,
a diagonal matrix. The vectors V,; and W, are bases for corresponding right and left
subspaces spanned by sets of Krylov vectors. Typically, as the recursion accumulates
information about the original problem, global biorthogonality is lost [2].

Procedures based upon nonsymmetric Lanczos recursions have been used suc-
cessfully in a variety of applications. See for example, [9, 6, 13]. However, the basic
nonsymmetric Lanczos recursions may breakdown. If there is no mismatch in the left
and the right starting Lanczos vectors [14], breakdown can be circumvented by invok-
ing look-ahead ideas [14, 11]. Incorporating lookahead requires modifications in the
basic Lanczos recursions.

Attempts have been made to construct nonsymmetric block Lanczos algorithms.
However, it is now recognized that it is not feasible to construct nonsymmetric Lanczos
recursions which are based upon explicit blocks of vectors. This difficulty is a conse-
quence of the facts that the left and the right Lanczos vectors are biorthogonal (not
independently orthogonal) so at each stage must be generated in pairs, and that as the
recursions proceed, vectors within a w-block or a v-block can become dependent upon
vectors generated earlier and must be deflated. Deflation does not, however, have to
occur in (v,w) pairs. There can be deflations in the left(right) vector block without
similar deflations in the right(left) block. If at some point in the recursions, the sizes
of the left and of the right blocks are not equal, then the corresponding equations
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which determine the biorthogonalization coefficients are overdetermined, and the re-
cursions cannot be continued. This problem does not occur in the two-sided block
Arnoldi recursion because the left and the right vectors are generated independently.

In the band nonsymmetric Lanczos recursion in [1], this problem is resolved by
generating individual pairs of (v, w) vectors, one vector at a time by alternating back
and forth between the generation of a v—vector and the generation of a w—wvector. One
complete iteration corresponds to the generation of one v—vector and one w—vector.
Therefore, at the completion of each iteration there are equal numbers of left and
right Lanczos vectors.

At each iteration possible candidates for the next v—vector are drawn from an
implicit block of vectors. The first implicit v—block is V; obtained from the starting
block X, = V1S,+A, and similarly, for W; from X, where the S,, Sy, are constructed
so that V4 and W, are biorthogonal. The second implicit v—block consists of those
v—vectors which were generated from the v—candidate vectors obtained by applying
A to V4 and invoking appropriate Gram-Schmidt biorthogonalizations with respect to
w—vectors. The j** implicit block consists of those v—vectors which were generated
from the v—candidate vectors which were obtained by applying A to 17]-_1 and invoking
biorthogonalizations. If deflation occurs during the construction of some implicit block
V; then rank (V;) < rank(V;_;). If no suitable candidates are found for some such
block then the recursions terminate. Analogous statements hold for the w—vector
implicit blocks with A replaced by AT.

We use df(d}’) to denote the number of vectors in the current implicit Vi, W;
blocks. Since deflation occurs independently in the right and the left vectors, df need
not equal df. If the deflation tolerance, e; > 0, and deflation occurs, then the recur-
sions must be modified to include explicit biorthogonalization of each new v—vector
(w—vector) with respect to the parents of deflated w—candidates(v—candidates). For
example, if a v—candidate vector which was generated from some Av; is deflated,
then the left recursions must be modified to include explicit biorthogonalization of
each new w—vector with respect to the parent of this candidate, v;. If ¢4 = 0, the
equalities are unaffected by any deflation and no modifications are needed.

Thus, the nonsymmetric band Lanczos algorithm is analogous to a corresponding
block algorithm where the vectors within a given block are constructed one by one and
this one by one construction alternates between the construction of a v—vector and
a w—vector. The alternation is required to maintain the feasibility of the biorthogo-
nalization.

In our comparisons of Lanczos-based and Arnoldi-based methods, we will assume
that the deflation is exact (eq = 0), that no breakdown occurs, and that the ranks of
the biorthogonal left and right starting blocks are equal. If these ranks differ, then the
initial phase of the band Lanczos recursions has to be modified to generate enough
right or left vectors to make the number of left and right vectors equal. See [1] for
details.

The banded nonsymmetric Lanczos recursion has the following matrix form.

AV = VT, + RUI[T

vlast

(41) ATWS — WsTw + RwI(

[wlast])

vlast =[s —d, + 1: s] and wlast =[s —d,, + 1 : s] and d,(d,,) denote the number of
columns in the final implicit v—block(w—block). R, and R,, are respectively, residual
blocks of vectors with d, and d,, columns. A merge operation is not necessary since the
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block residuals generated satisfy WI R, = 0 and V. R,, = 0. The Lanczos matrices
T, (Ty,) are s x s banded matrices with maximum upper bandwidth of d{’(d}) and
maximum lower bandwidth of d}(d}’). Typically, the bandwidths decrease as the
iterations proceed.

We develop relationships between methods based upon the band nonsymmetric
Lanczos recursion, and methods based upon the (truncated) two-sided block Arnoldi
recursion, Algorithm 2.3.

EXAMPLE 4.1. Apply the nonsymmetric Lanczos recursion to the triplet {A,r,1}
defined in Example 2.2. The first two {v,w} Lanczos pairs are

v = r/\/ﬁ wy = l/\/g
vy = [4,3,-2,-1]T/\/30 wy = [0,1,2,—1]//6.

Since wL,T va = 0, breakdown occurs at step 2. This coincides with the observed break-

down in Example 2.2 in the two-sided Arnoldi recursion.

For the two-sided block Arnoldi recursion, breakdown did not result in modifi-
cations in the Arnoldi recursions. Those recursions were simply continued until the
merge matrix @} Q, had full rank. For the Lanczos recursions, however, breakdown
does necessitate modifications in the recursions. See [1]. Breakdown is a function of
the starting blocks and the associated Krylov subspaces. In Lemma 4.3 we prove that
if breakdown occurs in either the Lanczos or the two-sided block Arnoldi recursions,
it must occur at corresponding points in these recursions.

Lemma 4.1 states that, until deflation occurs, the band nonsymmetric Lanczos
recursion and the two-sided block Arnoldi recursion are generating bases for the same
subspaces. Lemma 4.1 can be proved using mathematical induction with the fact that
within each block of the one-sided Arnoldi recursions in the two-sided block Arnoldi
recursion, candidate vectors are considered in order and one vector at a time. As
defined by Algorithm 2.3, the Arnoldi recursions can be truncated at any intermediate
vectors.

LeMMA 4.1. For some s, apply the band nonsymmetric Lanczos recursion and the
truncated two-sided block Arnoldi recursion, Algorithm 2.3, to {A, X,, X;} to generate
Vs, Ws, @l,@T. Assume no breakdown, no deflation, and exact arithmetic. Then
span(Q;) = span(V;) and span(Q;) = span(W;).

Deflation occurs only if a candidate vector is dependent upon previously-generated
vectors. Since at each stage, each recursion is generating vectors which span the
same subspaces, if the deflation is exact, ¢4 = 0, then any deflation must occur
simultaneously in both recursions.

LEMMA 4.2. Under the hypotheses of Lemma 4.1 allow exact deflation, e = 0.
Assume no breakdown. If deflation of some right(left) candidate vector corresponding
to some Av;(ATw;) occurs in the band Lanczos recursion, then the corresponding
right(left) candidate vector corresponding to Aqy;(ATq;) in the right(left) one-sided
block Arnoldi recursion must also be deflated and vice-versa.

Thus, with exact deflation, the corresponding subspaces generated using either
the band nonsymmetric Lanczos recursion or the two-sided block Arnoldi recursion
are identical. Therefore, breakdown, if it occurs, must occur simultaneously in both
recursions.

LEMMA 4.3. Under the hypotheses of Lemma 4.2, if breakdown occurs at step
s+ 1 in the nonsymmetric band Lanczos recursion, wsT+1v3+1 =0, and we extend the

truncated two-sided block Arnoldi recursion to s+ 1 vectors, the corresponding @f@T
1s singular. Similarly, if we extend the truncated two-sided block Arnoldi recursion to
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s+1 vectors and the corresponding Q\IT@T is singular, then extending the nonsymmetric
band Lanczos recursion yields wX, jvs41 = 0.

Proof. If wX, jvs41 = 0, then the diagonal matrix W7,V is singular and the
Lanczos recursions cannot be continued. By Lemmas 4.1 and 4.2, the two recursions
generate bases for the same subspaces. Therefore, there exist nonsingular matrices B
and C such that W, = Q,C and Vis1 = Q. B, and Q r=C WL, V,11B must
be singular. The argument is easily reversed. |

We can use either recursion, nonsymmetric band Lanczos or the truncated two-
sided block Arnoldi, to construct oblique projections of the matrix A. Lemma 4.4
relates the oblique projection matrices generated by these two recursions. The corre-
sponding matrix recursions are Equations(4.1) and the Arnoldi recursions,

AQ, = Q.[], + R, IT—

(42) — — [rla st]
ATQr = QA + Rl

[rﬁa;t] and [lﬁzgt] denote the indices of the columns which contain the residual matrix
correspondmg to the truncated right and left block Arnoldi recursions. By construc-
tion, QlR =0, QTRl—O WIR, =0, and VIR, = 0.

LEMMA 4.4. Apply the nonsymmetric band Lanczos recursion and the truncated
two-sided block Arnoldi recursion to {A,XTﬁfl} using ezact deflation. Define cor-

responding projection matrices T,,T,, and {[I;T]T, [ﬁ]l} as defined in Equations(4.2).
Then there exists nonsingular matrices B,C such that T, = B_I[INI]TB and T,,* =
CTIH|,CT.

Iterative methods based upon these recursions compute approximations to quanti-
ties associated with the original problem by solving reduced-order problems associated
with these projection matrices. We use Lemma 4.4 to prove that eigenelement and

model reduction methods defined using these recursions generate identical iterates.
Therefore, they are different implementations of the same methods.

4. 1 Computing Eigenvalues/Eigenvectors:. We will use [6L,2L,2}] and
[HA, 250, 2 ] to denote approximations to eigenvalues, and to correspondlng rlght and
left eigenvectors of A generated by a Lanczos or an Arnoldi procedure. The two-sided
block Arnoldi methods can be defined using either Algorithm 2.2 or Algorithm 2.3.
In the comparisons we need to work with the same numbers of left and right vectors
in the Lanczos and in the Arnoldi methods so we use Algorithm 2.3.

ALGORITHM 4.1. (Two-sided Block Arnoldi Eigenelement Algorithm )

Spec"fy A XTaXl) €d; S
Apply Algorithm 2.3 to {A, Xr,Xl}
Compute [H] uy = bu, and [H]l uy = Quy.
Compute z, = Qrur: 2 = Qlul
Compute error estimates €, = }/%Tur([rmt]). and € = ﬁlul([rl/a;t])
— =T

Lemma 4.4 tells us that the eigenvalues computed using [H], and [H], are iden-
tical. We define a corresponding band Lanczos eigenelement algorithm.

ALGORITHM 4.2. (Two-sided Band Lanczos Figenelement Algorithm )

Speczfy A’ XT;Xl: €d; S
Apply the nonsymmetric band Lanczos recursions to {A, X, X;} .
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Compute Tyu, = Ou, and Tyu; = Ouy.
Compute z, = Vu,, z; = Wuy.
Compute unnormalized error estimates €, = Ryu,([vlast]), ¢ = Ryu([wlast]).

4.2. Model Reduction. Similarly, we can define methods for model reduction
of linear systems. See Equations(3.1). Algorithm 3.1 specifies a two sided block
Arnoldi model reduction method. This definition maps directly onto a corresponding
model reduction method which is based upon Algorithm 2.3.

ALGORITHM 4.3. (Band Nonsymmetric Lanczos Model Reduction)

Specify F', R, E, €4 > 0, s.
Apply the nonsymmetric band Lanczos recursions to generate Vs, Wy, Ty, T, .
Set F = Ty, R= I[vfzrst]sv ) (V W, )I[wfzrst]SL

4.3. Equivalences between Two-Sided Arnoldi and Lanczos Methods.
THEOREM 4.5. Set eq = 0. Apply Algorithm 4.2 to {A, X, X;} to generate eigenele-
ment approzimations {GJ , M,zlj} Apply Algorithm 4.1 to {A,X,,X;} to generate
eigenelement approrimations {0;‘, ;‘},zl’;‘} Then the eigenvalue approximations and
the corresponding left and right Ritz vectors generated by these two algorithms are
identical.

Proof. By Lemma 4.1 there exist nonsingular B, C such that V; = @TB and W, =
~ = =T
Q,C. By Lemma 4.4, T, = B*I[H]TB and T, = Cil[H]l C. Furthermore, T =
WIV)T,WIvy) '. Therefore, these two procedures generate identical eigenvalue
approximations. Moreover, each ufj = Buf'j. Therefore, z v = QTuT] = QTBum
= Voul; = 2k, and similarly, for zf}, 2/;. 0

Theorem 4.6 states that corresponding Lanczos and Arnoldi model reduction
algorithms generate identical approximations to the transfer function of the original
system.

THEOREM 4.6. Let {F,R,E} be a mi/mo system defined by Equations(3.3).
Apply the band nonsymmetric Lanczos model reduction procedure, Algorithm 4.3, to
{F,R,EY} to obtain the reduced-order system {F" B, E"} where F* =T =T, .
Apply the truncated two-sided block Arnoldi model reduction procedure to {F, R, E} to

—A —A —A 4 =4
obtain the reduced-order system {F' ,R ,E '} of the same size where ' = H =

[IAI |- The transfer functions of the Arnoldi and of the Lanczos reduced-order systems
are equal to

~ _ —A —1_
(4.3) o) =[BY U+0B ) B
(4.4) Tho) = [B"] (1+0T") R
For all complex o,
(4.5) T4(0) = T" (o).
Proof. By construction,

= AT =47 A

(4.6) TA0) = () Ty TQU 4 0B ) T = 5P
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From Lemmas 4.1 and 4.4, there exist nonsingular, upper triangular matrices B,C
such that

~ ~ —=<A _
(4.7) V,=0.B, W,=0(Q,C, H =BT B
= — = TA — 1 i -
Let C; = I[lfwst] CI[l First] and B; I[Tfirst]BI[T Forst] Since C' and B are upper trian

gular, C;' = (C™1), and By' = (B71),. Therefore, by Equations(4.7),

r_Q .= w.c-)TV,B-! =
(4.8) w7 @ = U QD0 = [ A Hr
1 T T 1
Wl OT) v C 17 WIViB .
By construction,
(4.9) X QT szrst]S =Vs I[vfzrst]SL
= Qi [ifirs t] = Wsljwfirst)Sw
Therefore,
"= L
(4'10) ST ~ [Tmt Q Vo Ivfzmt]s [T‘fzrst]BI[Uftrst]S = BlS
S - Ilf rst]Ql w. I[waSt S - CIS

Using Equations(4.8,4.10) in Equation(4.6 ), we obtain

~ _ 1
Talo) = (SN CTIT — WIV,B- (I—I—oBTLB*l) I — SA=
(411) [lf st] [rfirst]
' yr - L
(SIy'I s ]W V(I+0’T ) I[ fmt =T (o).

5. Summary. We have proposed new two-sided block Arnoldi recursions which
are extensions of the work in [16] for use in iterative methods. Iterative methods which
are based upon these recursions have the advantage that any breakdown is centered
in a vector merge matrix, and that breakdown can be handled without requiring
modifications to the recursions. We used these two-sided block Arnoldi recursions to
define a model reduction procedure which was proved to have maximum block moment
matching properties. In comparisons of eigenelement and model reduction algorithms
based upon these two-sided Arnoldi recursions and the band nonsymmetric Lanczos
recursion in [1], we proved that the corresponding methods produce identical iterates,
Therefore, they are different implementations of the same method.

6. Acknowledgements. The authors would like to thank the referees and the
editor for their helpful comments.
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