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Abstract

Recently, sample complexity bounds have been derived for problems involving linear func-

tions such as neural networks and support vector machines. In many of these theoretical
studies, the concept of covering numbers played an important role. It is thus useful to
study covering numbers for linear function classes. In this paper, we investigate two closely
related methods to derive upper bounds on these covering numbers. The first method,
already employed in some earlier studies, relies on the so-called Maurey’s lemma; the sec-
ond method uses techniques from the mistake bound framework in online learning. We
compare results from these two methods, as well as their consequences in some learning
formulations.

Keywords: Covering Numbers, Learning Sample Complexity, Sparse Approximation,
Mistake Bounds

1. Introduction

Assume we have a set of input vectors x1,... ,xy,, with corresponding desired output vari-
ables y1,... ,yn- The task of supervised learning is to estimate the functional relationship
y = ¢(x) between the input variable x and the output variable y from the training examples
(x1,91)5- -+ 5 (X, Yn)-

A simple and useful model of an input-output functional relationship is to assume that
the output variable can be approximately expressed as a linear combination of its input
vector components. With appropriate (nonlinear) features, linear models can be used to
approximate an arbitrary nonlinear function. One useful technique for constructing nonlin-
ear features is kernel methods, where each feature is a function of the current input and one
of the example inputs (such as their distance). If a kernel function is positive definite, then
the sample space feature representation is also equivalent to an implicit representation in
the kernel associated reproducing kernel Hilbert space, which can be infinite dimensional.
Kernel methods have been successfully employed in methods such as support vector ma-
chines and Gaussian processes (Cristianini and Shawe-Taylor, 2000). Furthermore, one can
linearize an arbitrary nonlinear model such as a neural network by using weighted averag-
ing over all possible neural networks in the model. This approach of model combination
(also called committee) has been widely used in machine learning to improve the predictive
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performance of a nonlinear model. For example, the recently proposed boosting algorithm
(see Freund and Schapire, 1997) can be considered as an implementation of this idea.

It is therefore useful to study the generalization performance of linear prediction meth-
ods. From the computational learning theory point of view, such performance measure-
ments, or sample complexity bounds, can be described by a quantity called covering number
(see Pollard, 1984, Vapnik, 1998), which measures the size of a parametric function fam-
ily. For a two-class classification problem, its covering number can be bounded by using a
combinatorial quantity called VC-dimension (Sauer, 1972, Vapnik and Chervonenkis, 1971).
More recently, researchers have discovered other combinatorial quantities (or dimensions)
that are useful for bounding covering numbers. Consequently, the concept of VC-dimension
has been generalized to more general problems (Devroye et al., 1996, Pollard, 1984, Vapnik,
1998).

In a linear prediction model, we assume that the input-output functional relationship
can be expressed as y = w - x, where w - x denotes the inner product of vectors w and x.
The prediction quality of this model can be measured by a loss function £, and our goal is
to find a linear weight w from the training data so that it minimizes the expected loss:

min Ex , L(W - X,y) (1)
s.t. g(w) < A.

Ex , denotes the expectation over an unknown distribution D on (x,y). In supervised
learning, we often assume that the training data are independent samples from D. The
constraint g(w) < A limit the size of the underlying linear hypothesis family. This condition
balances the prediction power and the learning complexity of the family, and is widely used
in many recent linear prediction methods such as Gaussian process, support vector machines
and boosting. By introducing an appropriately chosen Lagrangian multiplier A > 0 for the
constraint g(w) < A, the minimization of (1) is equivalent to minimizing

ExyL(w-x,y) + Ag(w).

This equivalent formulation occurs more frequently in practical applications. Usually Ex ,
is replaced by the empirical expectation over the training data, and the regularization
parameter A is determined by cross-validation. Similarly, if A > 0, then we can regard 1/
as a Lagrangian multiplier for the constraint Ex ,L(w - x,y) < s, which leads to the third
equivalent formulation as follows:

min g(w)
s.t. Ex L(w-x,y) < s.

For a regression problem, we often choose a squared loss function £(q,y) = (y — ¢)%.
For a binary classification problem where y = £1, the linear decision rule with w is:

( ) 1 if w-x>0,
c(w,x) =
-1 if w-x<0.

The loss function is the classification error L(w - x,y) = |y — ¢(w,x)|/2.
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Note that in the literature, one often encounters a more general type of linear functional:
w - x + b, where b is called bias. However, one can easily convert this formulation into one
in which b is zero. This is achieved by letting x = [x,1], and w = [w,b]: W-X=w-x+b.
Therefore we assume a linear form with b = 0 throughout this paper.!

Since the classification error function is non-convex which may cause computational
problems, one often employs a convex upper bound of classification error as loss function
in the training. For example, we may consider £(q,y) = logy(1 + exp(—qy)) which leads to
logistic regression.

Since the complexity regularization condition g(w) < A in (1) determines the shape
of the underlying linear function classes, it has a significant impact on the generalization
ability of (1) or its equivalent formulations. As an example, a support vector machine in
its primal formulation can be regarded as a special case of (1) with square regularization
condition g(w) = w - w. For data with bounded 2-norms, Vapnik has shown that the VC
dimension of a linear function class bounded in 2-norm (assume it separates the input data
with a positive margin) is independent of the input space dimension. He then argued that
the generalization performance of a support vector machine does not depend on the input
data dimension. This observation is significant since it means that with an appropriate
regularization on the parameter space, the input data dimension does not have an adverse
impact on the ability to learn from data. This prevents the so called curse-of-dimension in
many learning formulations. One natural question to ask is whether this property is unique
to the 2-norm regularization. For example, what is the implication of using some other
regularization conditions in (1)? The answer to this question can be of great interest since
people have already used different kinds of non 2-norm regularization terms in engineering
applications.

Related to this question, there have been a number of recent works on large margin linear
classification using non 2-norm regularization. For example, Bartlett (1998) studied the
performance of neural networks under the 1-norm regularization of the associated weights.
The same idea has also been applied by Schapire et al. (1998) to analyze the boosting
algorithm. It has later been realized that these theoretical results are directly related to
some newly obtained covering number bounds for linear function classes under appropriate
regularization conditions. Consequently, a number of studies have appeared in the last few
years on covering numbers for linear function classes (Anthony and Bartlett, 1999, Guo
et al., 1999, Gurvits, 1997, Williamson et al., 1999, 2000).

In Section 3, we derive new covering number bounds, which complement and improve
results from previous studies. In our analysis, we emphasize the importance of covering
number bounds that do not depend on the input data dimension. Based on these new
covering number results, generalization performance of formulation (1) is obtained in the
PAC learning framework. Specifically, under certain non 2-norm regularization conditions,
weight w computed with (1) can also lead to generalization performances that do not
deteriorate when the input dimension increases. Note that this property has been regarded
as a major theoretical advantage for support vector machines.

The paper is organized as follows. In Section 2, we briefly review the concept of cov-
ering numbers as well as some main results for analyzing the performance of a learning

1. The transformation may lead to a slightly different optimization problem in that b is regularized after
the transformation but may not be so beforehand. However, the practical difference is not significant.
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algorithm. In Section 3, we introduce the regularization idea. Our main goal is to construct
regularization conditions for linear function classes so that the resulting covering numbers
are independent of the input data dimension. We also introduce a new technique of using
online learning to prove covering number bounds. We show that this method leads to re-
sults that improve some previous bounds. Section 4 applies the covering number bounds to
analyze some specific examples of (1). Section 5 summarizes results obtained in this paper.

2. Covering Numbers

We formulate the statistical learning problem as to find a parameter from random observa-
tions to minimize the expected loss (risk): given a loss function £(«,x) and n observations

X1 = {x1,...,%xp} independently drawn from a fixed but unknown distribution D, we want
to find « that minimizes the true risk defined as:
R(@) = Bx Lax) = [ Llax) dPp(x), @)

where Ex denotes the expectation over the unknown distribution D. In order to make
the discussion more general, we have adopted different notations than those in (1). In
particular, y in (1) is absorbed into the input variable x in (2); the linear weight parameter
w in (1) corresponds to the general parameter « in (2).

Without any assumption of the underlying distribution D on x, a natural method for
solving (2) with a limited number of observations is the empirical risk minimization (ERM)
method (Vapnik, 1998). We choose a parameter « that minimizes the observed risk:

1
R(Oz,X{L) = EX{L‘C(O‘aX) = n Zﬁ(aaxi)a
=1

where we use Exp to denote the empirical expectation over the observed data.

The learning behavior of this method with a finite sample size can be studied under the
VC theory, which relies on the uniform convergence of the empirical risk to the true risk
(also called the uniform law of large numbers). Such a uniform convergence bound can be
obtained from quantities that measure the size of a Glivenko-Cantelli class. For a function
class containing a finite number of indices, its size is simply measured by its cardinality. For
a general function class, a well known quantity to measure its size, which determines the
degree of uniform convergence, is the covering number. The covering number concept can
be dated back to Pontriagin and Schnirelmann (1932), Kolmogorov (1956), Kolmogorov and
Tihomirov (1961): one discretizes (the discretization process can depend on the observation
X7) the parameter space into N values a1, ... ,ay so that each £(«, ) can be approximated
by L(«;,-) for some i. We shall only describe a simplified version relevant to our purpose.

Definition 1 Let B be a metric space with metric p. Given observations X' = [X1,... ,Xyp),
and vectors f(a, XT') = [f(a,x1),..., f(a,xn)] € B"™ parameterized by «, the covering
number in p-norm, denoted as Np(f,€,XT), is the minimum number m of a collection of
vectors vi,... , vy € B", such that Vo, 3v;:

n 1/p
lo(f (e, XT),v5)llp = [Zp(f(a,xz'),V§)p] < nl/Pe,

=1
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where vé- is the i-th component of vector vj. We also define Np(f,€e,n) = Sup yp Np(f, e, XT).

Note that from the definition and Jensen’s inequality, we have N, < N, for p < ¢g. We
implicitly assume that the metric on the real line R is |z; — z2| unless otherwise specified.

The following theorem, which bounds the rate of uniform convergence of a function class
in terms of its covering number, is due to Pollard (1984):

Theorem 1 (Pollard 1984) Ve > 0, and distribution D,

_ 2
P |sup |R(a, X7) — R(e)] > ¢| < 8BEINL(L,¢/8, XT)] exp (ﬁ)

where M = sup,, x L(a,x)—inf, x L(a, %), and XT = {x1,... ,X,} are independently drawn
from D.

Constants in the above theorem can be improved for certain problems (Dudley, 1984,
Haussler, 1989, Vapnik, 1998). However, they yield similar bounds. A result that is more
relevant to our purpose is a lemma by Bartlett (1998), where the 1-norm covering number
of the function class in Theorem 1 is replaced by an co-norm covering number. The latter
quantity can be bounded by a scale-sensitive combinatorial dimension (Alon et al., 1997,
Gurvits, 1997). Under certain circumstances, these results can replace Theorem 1 to give
better estimates.

However, Bartlett’s lemma, is only for binary-valued function classes. We will thus extend
the result into a form that becomes comparable to Theorem 1. In the following theorem,
we replace the “margin” concept for classification problems by a notion of separation for
general problems. We also avoid introducing the concept of “fat-shattering” dimension
which leads to some complicated technical manipulations (Bartlett, 1998). There are two
major differences between the following theorem and Theorem 1: 1. with the existence
of a ~-separating function, we are able to use different accuracies v and € respectively in
the covering number estimate and in the Chernoff bound; 2. the covering number used in
Theorem 2 does not directly correspond to that of the overall loss function.

Theorem 2 Let f1 and fa be two functions: R™ — [0, 1] such that |y1 — yo| < v implies
fity1) < fs(y2) < fa(y1) where fs3: R™ — [0,1] is a reference separating function, then

2

P |sup[Bx f1(£L(@, %)) = Bxp [2(L(e, )] > €| < 4B[Noo(L,7, XT)] exp<_$ )

Proof See Appendix A. [ |

We say that functions f; : R — R and f2 : R — R have a -y separator if there exists a
function f3 : R — R, such that |y; — y2| <y implies f1(y1) < f3(y2) < fa(y1)-

Given an arbitrary function f; and v > 0, one can easily construct fo and f3 such that
f1 and f, have a y-separator f3. To see this, observe that for a function f(y) : R™ — [0, 1], if
we define f7(y) = sup|,_y|<o, f(2), then fi(y) = f(y) and fa(y) = f7(y) have a v separator
f3(y) = f7?(y). Therefore Theorem 2 upper bounds the true expected error of a function
f:R™—[0,1] in terms of the empirical expected error of f7. For classification problems,
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one usually chooses a formulation with a function f that is non-increasing. In this case we
have f7(y) = sup|,_y <o, f(2) = f(y —27). If f is the step function such that f(z) =1
when z < 0 and f(z) = 0 otherwise (corresponding to the classification error function),
then f7 corresponds to the classification error with a positive margin 2y. In this special
case, Theorem 2 yields the lemma of Bartlett (1998).

Theorem 2 leads to the following PAC style generalization error bound for 7-separable
functions f; and fo: Vn > 0, with probability of at least 1 — 7 over the observed data X7,
for all a:

Exfl(ﬁ(a’x)) < EX{‘f2(£(a’x)) + \/% (IHWOO(‘C"Y”"’) + In %) . (3)

If we consider a sequence of functions fy parameterized by v, so that f; and fJ have a v
separator, then the above PAC bound is valid with fo replaced by f; under the assumption
that - is fixed a priori (data independent). However, using an idea described by Shawe-
Taylor et al. (1998), it is not difficult to give a bound that is uniformly valid for all v, even
if 7y is chosen according to the observed data:

Corollary 1 Let f1 be a function R — R. Consider a family of functions fy : R — R,
parameterized by vy, such that 0 < f1 < f] < 1. Assume that for all v, f1 and fJ has a ~y
separator. Assume also that fJ (y) > f;l (y) when vy >~". Lety1 > v > -+ be a decreasing
sequence of parameters, and p; be a sequence of positive numbers such that > oy p; = 1,
then for all n > 0, with probability of at least 1 — n over data:

i7]

32 1
Ex fi1(L(a,x)) < Exr fi (L(a,x)) + \/; (1n4./\/’oo(£,'yi,X{L) +In —)
for all a and v, where for each fized vy, we use i to denote the smallest index such that
Vi < -

Proof The result follows from Theorem 2 and basic probability arguments presented by
Shawe-Taylor et al. (1998). Vi > 0, with probability at most p;n over X7, we have

Ex fi(L(a,x)) > Exp f)* (L(e, x)) + \/% (lnwoo(ﬁ,’yi,X{L) +1n pin)

Summing up over ¢, with probability at most n over X7,

B fi(£(a,%)) > Bxp /3 (Lo, %)) + \/ o (st +n L),

for at least one 4, which implies the corollary. |

We can further extend the above corollary which is useful for analyzing the generalization
performance of (1).
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Corollary 2 Under the assumptions of Corollary 1. We further assume that there is a
sequence of functions L1(a,x), Lo(a,X),... with a respectively defined on the parametric
spaces I'1,T'g,.... Let g; be a sequence of positive numbers such that Y .o, gi = 1, then for
all n > 0, with probability of at least 1 — n over data:

2 1
B (Lj(c,x)) < Bxe £ (Lj(ax)) + \/ 32 (lnwoowm,xm fn )
n pig;n

for all j, o € T, and v € [0,1], where for each fized v, we use i to denote the smallest
index such that v; < 7.

Proof Similar to the proof of Corollary 1. Vj > 0, with probability at most g;n over X7,
we can find a and « such that
)
pigin)’

Summing the probability over j, we obtain the corollary. |

32

n

Exfi(Lj(a,x)) > Exp f)" (Lj(a, x)) +\/ (1114/\/00(51"%)(?) +1In

If close to perfect generalization can be achieved, i.e. Exn f)(L(a,x)) = 0, we can obtain
better bounds by using a refined version of the Chernoff bound where the quantity —2ne?
on the exponent can be replaced by —ne?/2(Ef + ¢) if the empirical mean is larger than
the true mean; and by —ne?/Ef if the empirical mean is smaller than the true mean. In
the extreme case that there is always a choice of « that achieves the perfect generalization:
Ex fj (L(a,x)) = 0, we can assume that our choice of a(XT) satisfies Exn fy (L(a,x)) = 0.
Under this assumption, bounds in this section can be improved substantially if we replace the
standard Chernoff bound by the refined Chernoff bound. Specifically, a PAC bound in the

order of O (% log NOO) can be obtained, rather than a bound in the order of O (w / % log Noo)

as in the standard case (3).

3. Covering Number Bounds for Linear Function Classes

Theorems in Section 2 indicate that covering numbers of a function class play crucial roles
in the uniform convergence behavior of its members’ empirical risks to their corresponding
true risks. A bound on the rate of uniform convergence directly implies a bound on the
generalization ability of an empirical risk minimization algorithm.

In this section, we derive some new covering number results for real valued linear function
classes of the following form:

d
L(w,x):w-x:ijwj. (4)
j=1

We use x/ to denote the j-th component of the observation vector x. We also use w to
denote the linear weight, and w7 to denote its j-th component. d is the dimension of the
system.
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Results in this section complement related results in many previous studies such as
those by Bartlett (1998), Guo et al. (1999), Mendelson (2001), Shawe-Taylor et al. (1998),
Williamson et al. (1999, 2000). From theorems in Section 2, we see that covering number
bounds for (4) are relevant to the learning behavior of (1). However, keep in mind that in
this Section, notation L in (4) is used to denote a linear function class. This should not be
confused with £ in (1), which is used to denote a specific loss function in a specific learning
formulation.

Covering number results of a linear function class such as those we derive in this section
can also be used to derive covering numbers for certain nonlinear function classes. For
example, if we can write a loss function as L(w,z,y) = p(f(w, z),y) where p is a Lipschitz
function, then covering number bounds of £ can be obtained using covering numbers of f(-)
(see Lemma 17.6 of Anthony and Bartlett, 1999). Using this result, it is clear that bounds
derived in this section can also be used to obtain covering numbers for more complicated
functions such as neural networks and support vector machines.

We start with covering number results for Theorem 1. Because N7 < Ns, therefore in
order to apply Theorem 1, it is sufficient to estimate Na(L,€,n) for € > 0. It is clear that
N3 (L, €,n) is not finite if no restrictions on x or w are imposed. Therefore in the following,
we assume the condition that ||x;||, is bounded for observed data. We then focus on the
form of regularization conditions on |w/||4, so that log N'(f, €, n) is independent (or weakly
dependent) of d.

We start our analysis with a lemma that is attributed to Maurey (also see Barron, 1993,
Jones, 1992).

Lemma 1 (Maurey) In a Hilbert space, let f = Z?:l w;g’, where each ||g?|| < b, w; >0
and a = Z?:l wj < 1, then for everyn > 1, there exist non-negative integers kq,... ,kq > 0,
such that Z?Zl kj <n and

2
d
1 : ab® — || f]?
~ SN gl < WD
f n; 78 = n

Our first result generalizes a theorem of Bartlett (1998). The original result was with
p = oo and g = 1; some related techniques have also been used by Lee et al. (1996) and
Schapire et al. (1998). We would like to mention that it is possible to prove a better bound
(when p < 00) using machineries from the geometric theory of Banach spaces. However, the
technique presented here is more elementary and self-contained. It is directly comparable to
the idea of using online mistake bounds to obtain co-norm covering number bounds which
we shall investigate later. This comparison provides useful insights.

Theorem 3 If ||x||, < b, and ||w||; < a, where 1/p+1/¢ =1 and 2 < p < oo, then

2b2
logy No(L,e,n) < [GG—Z-‘ log,(2d + 1).
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Proof Consider matrix X = [xy,...,x,]7, where each x; is a column vector and T is the
matrix transpose operator. Denote the columns of X by y!,... ,y% Let
nPab . Iyl )
gl =By wh = W llp
Iy7llp ™ 7 nl/rab

where w/ is the j-th component of vector w. By Holder’s inequality, it is easy to check that

j=1 ! =1 n'/Pab

. d e /4 1/q
< ~1/rah Z 1y 115 Z (w7
j=1 j=1
1 l/p, —
< nl/i”ab(nbp) a=1.

Since the function zP/2 is convex, thus by Jensen’s inequality, we obtain n~1/2|y7|l, <
n=YP|lyJ |, for all j. This implies that ||g7|l> < n'/2ab. Therefore by Lemma 1, if we let
k > (ab/e)?, then Vz = Z?Zl wiyl = 2?21 |w;-|(sgn(w;)gj), we can find integers ki, ... ,kq
such that Z;l:l |kj| <k and

d
1 . nab?

Jj=1 9

< nez.

This means that the covering number N3(L,€,n) is no larger than the number of integer
solutions of Z?Zl |k;| < k, which is less than or equal to (2d + 1)*. [ |

In the above proof, a more careful analysis of the number of possible solutions of
Z?Zl |kj| < k can lead to a bound of (W)k. Although when £ is large this bound
is tighter than the bound (2d 4 1)* used in Theorem 3, the difference is relatively minor
since the dominant contribution is the exponent k. We have thus chosen the more compact
expression (2d + 1)*.

The above bound on the (logarithmic) covering number depends logarithmically on d,
which is already quite weak (compared to the linear d-dependency in the standard situation
without regularization). However, it is also possible to remove the dimensional dependency.
We demonstrate for the case of p = 2 in the following corollary.

Corollary 3 If ||x||2 < b and ||w||2 < a, then

262
logy No(L, €,n) < ’VGE—Q-‘ logs(2n + 1).
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Proof For a sequence of data x3, ... ,x,, denote by S the subspace spanned by x3,... ,X,.
Denote by Pg(w) the orthonormal projection operator that projects w onto the subspace
S. Clearly, Pg(w)-x; = w-x; for all i = 1,... ,n. This means that a data-dependent cover
of L(Ps(w),x) also gives a data-dependent cover of L(w,x) in (4). To bound the 2-norm
covering number of L(Ps(w),x), we simply observe that || Ps(w)||2 < ||w|l2 < a and that S
is of dimension at most n. We thus obtain the corollary from Theorem 3. |

Intuitively, the reason that we can remove the dimensional dependency of the 2-norm
covering number in Corollary 3 is based on the observation that (in the case of p = 2)
the effective dimension of w, acted on n data xi,...,Xy, is at most n. Using the same
underlying idea, it is also possible to obtain dimension independent covering number results
for the case 2 < p < oo. In general, for regularization condition g(w) < a, one needs to
cover w with weights in the form of Vg_l(z:?:1 @;X;), where Vg~! is the inverse function
of the gradient Vg. This changes the dimension d of w to the dimension n of a.

Naturally the above discussion leads to the idea of using the mistake bound framework
in online learning to obtain covering number bounds. In online learning, one represents the
weight vector as Vg ' (3% | a;x;), where the function Vg~ is called a transfer function
(Grove et al., 2001, Gentile and Warmuth, 1998, Kivinen and Warmuth, 1997). An online
mistake bound can be regarded as an approximation bound for this representation. At each
step, we look at a data point x;, and check the prediction (such as classification) associated
with the current weight representation. We add x; into the representation only when a
mistake is made. The mistake bound analysis by Grove et al. (2001) shows that for certain
classification problems, there exists a quantity M so that after M components are added
in the representation, no more mistakes will be made (thus no more components will be
added). In this regard, the sparse representation in Maurey’s lemma (Lemma 1) corresponds
to the sparse representation in the mistake bound framework (Grove et al., 2001). We can
thus use the latter to upper bound the sparsity k£ in the representation ngl(zle nXi;)
such that |Vg*1(2§:1 nxi;) — W+ X;| < e for all i with any specified ¢ > 0. This idea is
rigorously carried out in the proof of Theorem 4 below.

Also note that using online learning, we are able to directly obtain bounds for co-norm
covering numbers, which are not only useful for Theorem 1 (since N7 < N), but also
useful for Theorem 2. Therefore we shall not further consider the idea of using Maurey’s
lemma and restrict the effective dimension to remove the d-dependency as in Corollary 3.
We will only focus on using online learning techniques to directly obtain oo-norm covering
numbers.

We shall mention that traditionally, co-norm covering numbers are obtained through the
so-called “fat-shattering” dimension (Alon et al., 1997). The latter can be bounded using
various methods (Bartlett, 1998, Gurvits, 1997, Shawe-Taylor et al., 1998). However, due to
the extra stage of estimating the “fat-shattering” dimension, this approach leads to bounds
that are worse than our bounds that are directly obtained. For example, the “fat-shattering”
approach would have led to a bound of the order logy Noo(L, €,n) = O(“ié’2 logy(n/e +1)%)
for p = 2 in Theorem 4. Since covering numbers (rather than fat-shattering dimensions)
have more direct learning consequences, our results can lead to better learning bounds than

what can be obtained from these earlier studies (see Section 4).
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In the proof of Theorem 4, we need the following mistake bound result that was proved
by Grove et al. (2001). The bound indicates that we can approximate a target vector w
(that satisfies a margin property) using no more than M data points, so that the inner
product of the approximation vector and any data point z; has the same sign as that of
W - X;.

Proposition 1 Consider 2 < p < co. Let w be a target vector, and {x;} be a countable set
of example vectors. Assume that § = inf; w - x; > 0, and let

(p — 1)lIwllg supi |Ixill,
(52

M =

Then there exists an integer sequence i1,... .1, where k < M, and a vector w defined as
W= fp(zl,;l X;,) so that W-x; > 0 for all i. fy(x) is a component-wise function that maps
each component x/ of x to p - sign(x’)|x7|P~1.

Theorem 4 If ||x||, < b and ||w|; < a, where 2 <p < oo and 1/p+1/q =1, then Ve > 0,

2b2
logo Noo(L,€,n) < 36(p — 1)a6_2 logy[2[4ab/e + 2]n + 1].

Proof If € > ab, then since |w - x;| < ab for all 4, we can choose 0 as a cover and the
theorem follows trivially. In the following we assume that ¢ < ab.

We divide the interval [—ab — €/2,ab + €¢/2] into m = [4ab/e + 2] sub-intervals, each of
size no larger than €/2. Let —ab —¢€/2 =0y < 6; < -+ < 0,,, = ab+ €/2 be the boundaries
of the intervals so that 6; —6;_; < €/2 for all j. For a sample X' = {x1,... ,%,}, consider
the sets S1 = {(x;,—0;/a) :i =1,... ,n;5 =0,... ,m — 1} and Sy = {(—x;,0;/a) : i =
1L,...,nm;j=1,... ,m}.

For all w such that ||w|l; < a, consider the set of values w - x; — 6, (; w) and —w -
x; + 0j,,w) for all i. We use ji(i,w) to denote the maximum index of 6; such that
w - X; — 0j,5,w) > €/2; and use ja(i,w) to denote the minimum index of #; such that
wex; — 06wy < —€/2.

Now, we consider (y,z) such that Vi: y - x; — 20, ;w) > 0 and —y - x; + 28,,; w) > 0.
Since 8, i, w) < 0j,¢,w), it follows that z > 0 and Vi : y - x;/2 € (0;,(i,w),0j,¢i,w))- This
implies that |y - x;/z — w - x;| < € for all 3.

Next we show how to construct such a pair of (y, 2). Let f,(2) = p - sign(2)|z|P~!, and

a’® _ (p-1)
2 7 (2

Using Proposition 1, we know that V|wl|, < a, there exist non-negative integer sequences
a; and B; where Y " (o + ;) < M, with the following property: if we let

(y,az) (Z% Xi, =0j,,w) /) +Zﬂz =i, 0o (i, w /a))’

M =36(p —1)

(w2 + a®)* @ sup(|[xil[} + (b + €/2a)?)*/.
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then y - x; — 20;,;,w) > 0 and —y - x; + 20;,;.w) > 0 for all 4.

It follows from the above discussion that |y-x;/z — w-x;| < € for all i. This implies that
the infinity-norm covering number N (L, €, n) is no more than the number of possible (y, z)
constructed above. It is clear that this number is no more than the number of non-negative
integer solutions of

> nij+ Y mij <M,
i i

where (7,7) goes through the index of S; for n;; and the index of Sy for m; ;. Since the
number of solutions is no more than (|S;| + |S2| + 1), we obtain

2b2
logy Noo(L,€,n) < 36(p — l)ae—2 logy[2[4ab/e + 2]n + 1].

The bound given in Theorem 1 is comparable to related results by Williamson et al.
(2000), which were obtained by using a different technique relying on the operator theory
of Banach spaces. However, in certain cases, our method may yield results that are dif-
ficult to obtain from the Banach space approach considered by Williamson et al. (2000).
For example, it is difficult to obtain the entropy regularization result in Theorem 5 using
their method. One reason is that a topological structure is necessary for the argument of
Williamson et al. (2000) to go through. As we shall see later, our analysis only involves
some analytical structures of an appropriately defined pair of dual convex functions on the
linear weight space and the sample space. On one hand, the norm of a Banach space natu-
rally leads to a convex function on the underlying space; on the other hand, the concept of
convex function can be defined on any linear vector space that does not necessarily have a
norm or topological structure.

Note that we have made no attempt to optimize the constants in the proof of Theorem 4.
For example, since §) = —ab—¢€/2 and 0,,, = ab+€/2 are quite artificially introduced for the
mere purpose of consistent indexing, we can easily obtain an improved version of Theorem 4
by simply ignoring them. Also note that Ny < Ny, therefore Theorem 4 implies dimension
independent 2-norm covering number bounds for 2 < p < oo, which gives better results
than Theorem 3 in the sense of dimensional dependency. The bound in Theorem 4 diverges
as p — o0o. In the case of p = oo, we show that an entropy condition can be used to
obtain dimension independent covering number bounds. This entropy condition is related
to multiplicative update methods widely studied in online learning. To our knowledge, there
are no previous covering number results for entropy regularization. We first introduce the
following definition:

Definition 2 Let pn = [p14] be a vector with positive entries such that ||u||1 =1 (in this case,
we call i a distribution vector). Let x = [x7] # 0 be a vector of the same dimension, then
we define the weighted relative entropy of x with respect to u as:

||

pllxll

entro, (x) = Z |x7|In
J
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It is a well-known fact that the relative entropy defined above is always non-negative,
and entro,(x) = 0 only when |x| = ||x[|; - u. Before the main theorem, we need a lemma
that refines and generalizes the analysis of Grove et al. (2001, Section 6). Note that for our
purpose, their result is not directly applicable. Related techniques have also been used by
Gentile and Warmuth (1998), Kivinen and Warmuth (1997). In the following lemma, x]
indicates the j-th component of vector x;.

Lemma 2 Let u be a distribution vector and w be a vector with non-negative entries such
that ||wlj1 < W. Assume that {x;} is a countable set of example vectors such that inf; w-x; >
0. V6 € (0, min; w - x;], let

_ 2sup; [|x;||A W - entro,(w)

m(6) 5

Then there ezists an integer sequence i1, ... ,ix where k < m(d), and a vector W with its
j-th component defined as W’ = p;exp(n Zif:l xgz), where n = 6 /(W sup; ||xi|%), so that
w-x; > 0 for all 1.

Proof Without loss of generality, we assume that |[w|; = 1. Let z be a vector, and
consider the convex dual of 2?21 w/ In ‘Lv—j

d d .

. . J

anujeZ]: sup w-z—Z:wjlnl

= [wili=1 = Hi

The definition of this duality implies that the quantity

d ] d ' WJ
M(z) = anujez] —W-z+Zw71n—

i=1 i=1 Hi

is always non-negative.

Assume now that the theorem is not true, then there exists a sequence of integers
i1,... 9% where k > m(d) such that if we define a sequence of vectors z; as z; = zy_1 +1x;,
with zg = 0, then 2?21 W exp(z%_l)xgl <0forl=1,2,... k.

Note that for all pairs of vectors (v, Av):

Z?:1 /Jjevﬂ +AVIt AyJ

a  VILAVIt _
dt anu]e o Zd LVIi+AVIt
j=1 j=1Hj€

and

VI+AVIE A 52

d
d Z Jravit o Daj=1 K€
— In Mjev +AVIt S J i ]
dt? > ujeVI HAVIt
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Therefore by Taylor expansion, we know that there exists ¢ € [0, 1] such that

d 7 ; o x~d oz 4xit 2
o1 el L], 77_2;‘:1/@‘3 X,

d j d i
lnz ;zjezl < lnz ujezl—l +
=1 =1

d T 2 d z_ +nx] t
g1 Mje Do et
d ; D Mjezi—ﬁ”xgztx’f 2
<In E ujezl—l + L == : _te
j=1 2 Ed M-ezi—ﬁnxglt
J= j=1r
d ) 2
z’ n 2
<In ) pgefer + o |1l
i-1

Note that we have used the assumption that Z?Zl i exp(zz_l)xgl < 0 in the above deriva-
tion. We now obtain

d zj
el
M(z¢) — M(zg_1) :1HM

d z’)
D g1 Hje

772 2
<l 1% = né.

- WX,

Summing the above inequality over ¢, and note that W > ||w||; = 1:

2

M () <M (z0) + m(8) (g sup xillZ — n9)

2
—entro, (W) + m(5)(% sup [[x;|2, — 1) <0,
2

which is a contradiction since M (zx) is always non-negative. [ |

Theorem 5 Given a distribution vector p, if ||X||co < b and ||w|1 < a and entro,(w) < ¢,
where we assume that w has non-negative entries, then Ye > 0,

36b%(a? + ac
logo Noo (L, €,m) < # logy[2[4ab/e + 2]n + 1].

Proof The proof follows the same steps of Theorem 4. We let u’ = [p,1]/2 and w' = [w, a].
We have |w'||1 < 2a, and entro,s(w') < entro,(w)+aln2 < a+c. Similarly, the expansion
x; of x; (by appending a component 0/a) satisfies ||x}||c < 1.5b (again, we assume that
e/a <b).

We now apply the mistake bound in Lemma 2, where we set § = ¢/2 and W = 2a. We
can define M as

36(a + c)ab® _ 2

2
M = 2 > 52 sgp |x5||5W - entro, (w').
The remaining part of the proof is the same as that of Theorem 4. |
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Corollary 4 Given a distribution vector p, if ||x||cc < b and |w||; < a and entro,(w) <,
then Ye > 0,

288b%(2a2 + ac)

logy Noo(L, €,n) < 5 log,[2[8ab/e + 2]n + 1].
€

Proof Define vector u component-wise as max(w,0), and similarly define v = max(—w,0).
By definition, w = u—v and ||u||1,||v||1 < ||w]]1. For all L = L;— Ly, we have Noo(L,€,n) <
Noo(L1,€/2,n)-Noo(Lz, €/2,n). Therefore we only need to show that entro,(u) < entro,(w)+
||w]||1. To prove this, we shall assume that ||w||; = 1 without loss of generality, and u,v # 0
Since |[ul|; + [|v]1 =1,

1 1 J
lulli In —— + || v||1 In 7+—— <ln2<ln2—i—Zv In—
[[ulfx [[v]lx = VR
The above inequality can be rewritten as
Zujln <ln2+Zqun—+Zv71n—.
= /JJ”qu
That is, entro,(u) < entro,(w) 4+ In2. [ |

Note that we don’t require the dimension to be finite. However, assume that the dimen-
sion d is finite, and we let p; = 1/d. Then it is easy to check that Vw, entro,(w) < ||w||; Ind.
Therefore by Corollary 4, we obtain the following result which gives a better bound than a
similar result of Bartlett (1998) by a logarithmic factor of n.

Corollary 5 If ||x]|ec < b and ||W||1 < a, then Ve > 0,

288a%b%(2 +1
88a’b (2 +Ind) logy[2[8ab/e + 2]n + 1].

logo Neo(Ly€,m) < .

We now discuss the relationship among different covering number bounds obtained in
this section. Theorem 3 uses a reduction technique to generalize a result of Bartlett (1998).
The derivation employs Maurey’s Lemma. By observing that the effective dimension is no
larger than n, it is possible to remove the inherent logarithmic dependency on dimension d
for certain regularization conditions, as demonstrated in Corollary 3.

Using online learning, this idea can be more systematically developed. For example,
Theorem 4 (note that Mo < N) employs the online mistake bound framework, which
leads to a bound with the logd dependency replaced by a logn dependency. This trade-
off of logd and logn is very natural from the computational point of view since Maurey’s
Lemma achieves an approximation by selecting columns (relevant features) of the data while
an online algorithm achieves an approximation by selecting rows (related to support vectors)
of the data.
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It follows that if d < n, then Theorem 4 gives a better bound; and if n < d, then
Theorem 3 gives a better bound. However, if we use these covering number results in a
PAC style generalization analysis, then a logn dependency on the sample size usually does
not cause any substantial problem.

In the proof of Corollary 3 the effective dimension of the problem is reduced by a
compactification of part of the dimensions. To a certain extent, all dimension independent
covering number results obtained in this section implicitly rely on the (weak) compactness
of the effective parameter family in one way or another. Theorem 5 achieves this through
the entropy regularization condition. If we regard p; as a prior measure and w as a posterior
measure, then the entropy condition in Theorem 5 corresponds to the maximum entropy
principle in density estimation, which can be regarded as entropy regularization. Therefore
the dimension independent covering number result justifies the maximum entropy method
from the PAC learning point of view.

If we let p — oo, then the covering number bound given in Theorem 4 diverges. It has
been pointed out by Grove et al. (2001) that this divergence is a consequence of regularizing
the weight parameter w around the origin. As a comparison, Theorem 5 gives a finite
covering number for p = oo with entropy regularization. It is also possible to construct
a regularization condition around a non-zero vector so that when p — oo, the bound in
Theorem 4 approaches the limiting case of Theorem 5. Because of Theorem 5 and its relation
to the well-established maximum entropy principle, it is reasonable to use entropy (instead of
1-norm) as the regularization condition for infinity-norm bounded data. For example, such
a condition has recently been employed by Jaakkola et al. (2000). Entropy regularization
has also been implicitly employed in the Winnow family of multiplicative update algorithms
(Littlestone, 1988), and its continuous version of EG (and EGU) algorithms (Kivinen and
Warmuth, 1997). In addition, Zhang (2002) used explicit entropy regularization conditions
to convert EG online algorithms into batch learning algorithms.

In addition to the Maurey’s lemma approach used in this paper, 2-norm covering number
bounds can also be obtained by using an inequality from the theory of Gaussian processes,
often referred to as Sudakov’s minoration (see Ledoux and Talagrand, 1991, chapter 12).
This inequality bounds the 2-norm covering number of a function class by the expectation
of a Gaussian process indexed by the function class. The latter can be estimated, which
some time leads to quite tight bounds. However we shall not include results obtained by this
approach in this paper. There are also other methods to obtain p-norm covering number
bounds, for example, by using the fat-shattering dimension of a function class (Mendelson,
2001).

We have shown in this section that infinity-norm covering number bounds can be derived
from online mistake bounds. From the construction of M(z) in the proof of Lemma 2, we
see that weight w and data z are Legendre dual variables with respect to the regularization
condition g (as well as its convex dual function). The representation of z as a linear com-
bination of data x; leads to a dual representation of w. This Legendre duality transforms
the learning problem from the original d-dimensional space (where w is represented by its
components) into the n-dimensional dual space (where z is represented by a linear combi-
nation of the data). This is why the logarithmic dimension factor logd in Maurey’s Lemma
(in the original space) can be replaced by logn in the dual (online learning) approach. The
basic idea of reducing the effective dimension of w by using a linear combination in the
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sample space has also appeared in the derivation of “fat-shattering” dimensions by Gurvits
(1997), although an entirely different approach was employed there. However, the online
learning approach used here that utilizes convex duality is more general. For example,
we are able to derive covering number bounds for entropy regularization, which cannot be
handled by previous techniques. Furthermore, this convex duality can be easily generalized
so that given any convex potential on x, we can obtain covering number bounds with the
corresponding dual regularization condition on w. We would also like to mention that if
formulation (1) is convex, then we can study the dual representation of this formulation
directly (Zhang, 2002). Such a dual representation is closely related to the online learning
duality employed in this paper.

Finally, it is interesting to observe that the technique used in the proof of Lemma 2 is
closely related to the potential-reduction method for linear programming (Todd, 1997, and
references therein), where a variant of M(z) with a flipped sign for the second term can be
used to show the polynomial convergence of certain interior point algorithms. Similar to
the proof of Lemma 2, the technique of bounding the number of steps is also based on a
constant reduction of the potential function at each step, which is achieved by choosing an
appropriate n from the first and the second order terms in a Taylor expansion. However,
since Newton steps are often taken, the techniques required for bounding such terms are
more complicated.

4. Some Consequences of Covering Number Bounds

In this section, we illustrate some simple consequences of our covering number bounds on
some specific learning formulations. There are a number of books that describe how to use
covering numbers to analyze learning algorithms (Anthony and Bartlett, 1999, Cristianini
and Shawe-Taylor, 2000, Vapnik, 1998). Together with our covering number results for
regularized linear function classes, machineries developed there can be used to study the
generalization behavior of linear learning formulations such as (1).

For simplicity, we only include some direct consequences in this section. As an example,
we can easily obtain the following bound from Theorem 4, which improves a related result
of Bartlett and Shawe-Taylor (1999), and Cristianini and Shawe-Taylor (2000).

Theorem 6 If the data is 2-norm bounded as ||x|2 < b, then consider the family T of
hyperplanes w such that |w|2 < a. Denote by err(w) the misclassification error of w with
the true distribution. Then there is a constant C' such that with probability 1 —n over n > 1
random samples, for all v > 0 and w € I' we have

252
+ ¢ (%ln(n)—i—lnl),
n\7 Ui

yt < v} is the number of samples with margin less than .

k

<
err(w) < p”

where ky = |{i : wlz*

Proof Using the covering number result in Theorem 4. Let v; = ab/2 and p; = 1/2! =
i/ (ab) in Corollary 1. We have the bound:

25,2
err(w) < k—7—|—0 (\/1 (%ln((a—b—l-l)n)—l-lna—b—i-lnl)) )
n Y Y v n

n
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Now using the fact that with an appropriate constant in the O notation, the above
bound is trivial when v > ab or yn < ab, it is easy to see that the above bound is equivalent
to the claim of the theorem. |

Note that the corresponding bound given by Cristianini and Shawe-Taylor (2000) was
their Theorem 4.19. A similar theorem was also stated by Bartlett and Shawe-Taylor (1999).
However in both cases, the Inn factor in our bound were replaced by In? n. The underlying
technique leading to such a result came originally from Bartlett (1998), and fat-shattering
dimension results by Anthony and Bartlett (1999), Shawe-Taylor et al. (1998). The reason
why we can obtain a better bound in this paper is that the L., covering number bound
in Theorem 4 improves the corresponding bounds used previously, which were obtained
through “fat-shattering” dimension estimates.

As another example, we consider the following bound:

Theorem 7 If the data is infinity-norm bounded as ||x||oc < b, then consider the family T
of hyperplanes w such that ||wl||1 < a. Let i be a fized non-negative prior vector. Denote by
err(w) the misclassification error of w with the true distribution. Then there is a constant
C such that with probability 1 —n over n > 1 random samples, for all v and w € T', we have

n \/g (b2(a2 + a:ll;troﬂ(w)) In(n) + In %>’

k.

<
err(w) < p”

where ky = |{i : wT 2%y’ < v}| is the number of samples with margin less than ~.

Proof Consider the restriction of parameter win I'; C ', where I'y = {w € I : entro,(w) <
a} and Tj = {w € T : entro,(w) € (2/71a,27a]} for j > 1. For each j, using Corollary 4
and essentially the same proof as that of Theorem 6, we obtain the following bound for the
parameter family {w € I';}:

k 1 [ b?(a? + aentro,(w)) 1
err(w) < ;7 +0 <\/— ( v Hn In(n) +ln5>> ,

n

Now let g; = 1/2/, which implies that ¢; = O(a/(a + entro,(w))). Using Corollary 2, we
obtain the following bound for the parameter family {w € I'}:

2,2
err(w) < k—W—i—O(\/l <a chn(n)—l—lnc—l—lnl)),
n n\ v n

where ¢ = (a + entro,(w))/a. It is now easy to see that the above bound leads to the
theorem. m

The above theorem is similar to a recent result of Langford and Seeger (2001) which
was obtained by specialized techniques for PAC-Bayes analysis originally developed by
McAllester (1999). If we let u be the uniform prior, then the above bound easily leads
to the following result of Schapire et al. (1998), which was used to explain the effectiveness
of boosting.
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Theorem 8 (Schapire et al. 1998) If the data has dimension d > 1 and is infinity-
norm bounded as ||x||oo < 1, then consider the family T’ of hyperplanes w with non-negative
weights such that ||w|l; < 1. Denote by err(w) the misclassification error of w with the true
distribution. Then there is a constant C with probability 1 —n over n > 1 random samples,
for all v and w € T, we have

err(w) < k_7+\/g (W—FIDE),

n n
where ky = |{i : wla'y’ < v}| is the number of samples with margin less than ~.

It can be seen that our bound in Theorem 7 can be significantly better if one can guess
a good prior y so that entro, (W) is small for a parameter w which has a good classification
performance. If entro, (W) is small, then unlike Theorem 8, our bound can be dimension
independent. This implies that it may be possible to vote an infinite number of classifiers
so that the generalization performance is still good.

5. Discussion

In this paper, we have studied some theoretical aspects of using the regularization in linear
learning formulations such as (1). We show that with appropriate regularization conditions,
we can achieve the same dimension independent generalization performance enjoyed by
support vector machines.

The separation concept introduced in Theorem 2 implies that the “margin” idea de-
veloped for linear classification can be naturally extended to general learning problems.
Compared with Theorem 1, Theorem 2 is more suitable for problems with non-smooth loss
functions since it does not directly employ the covering number of the overall loss function
itself. Note that in general, the covering number of a function class depends on certain
smoothness conditions of the family. Such smoothness requirement can lead to difficulties
when we try to directly apply Theorem 1 to problems with non-smooth loss functions.

In Section 3, we have obtained some new covering number bounds for linear function
classes under certain regularization conditions. These bounds have complemented and im-
proved various previous results. We compared two different approaches for deriving covering
number bounds. The first approach employs Maurey’s lemma for sparsification. This ap-
proach has also been used in many previous studies of covering numbers (Anthony and
Bartlett, 1999), and leads to bounds that have logarithmic dependencies on dimension.
However, by observing that the effective dimension can be bounded by the sample size (as
in Corollary 3), it is possible to remove this dimensional dependency for certain regulariza-
tion conditions. This observation naturally leads to a new approach of using online learning
to derive covering number bounds, as outlined in Section 3. Compared with earlier methods
that have relied on the concept of “fat-shattering” dimension, our approach directly yields
oo-norm covering number bounds that improve previous results by a logn factor. Some
specific consequences are discussed in Section 4.

Furthermore, the convex duality technique used in deriving online mistake bound (see
Grove et al., 2001) is very general. It can be used to study general convex regularization
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conditions. As an example, we are able to derive entropy covering number bounds that are
difficult to obtained using previous techniques.

Also we shall mention that related to these covering number results, there have been
some recent studies on randomized algorithms that select posterior distributions under
certain regularization conditions (McAllester, 1999, Zhang, 1999). The generalization per-
formance of these methods can be independent of the underlying dimension. Since these
algorithms can be considered as special linear models, the dimension independent covering
number bounds in Section 3 give intuitive explanations for the generalization ability of those
algorithms within the traditional PAC analysis framework.
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Appendix A. Proof of Theorem 2

For simplicity, we assume all quantities appearing in the proof are measurable. We follow
the standard techniques (Pollard, 1984, Vapnik and Chervonenkis, 1971).

Step 1 (symmetrization by a replicate sample). For all ne? > 2, and consider i.i.d.
random sample Y}, independent of X7,

P [suplBseu(£ (0, ) - By u(L(a, )] >
<2P [sgp[EXimfl([,(a,x)) — Eyp fa(L(a,y))] > 6/2] .

To see this, consider a function o* such that o*(Y}") is a parameter that satisfies Fx f1(L(a*,x))—
Eyn fa(L(a*,y)) > € if such a parameter exists; and let o*(Y}") be an arbitrary parame-

ter if no such parameter exists. Note that for any Y, by the Chebyshev’s inequality, the
conditional probability

P [Exfi(L(e”,x)) — Exp fi(L(e",x)) < ¢/2]Y]"] (5)

>1— ﬁExfl(c(a*,x))u _ B fi(L(a", %)) > 1/2.

We thus have
%P [sgp[Exfl (L(e,x)) — Eyp fo(L(,y))] > 6]

:% P [Exfi(L(a*, %)) — Eyp fo(L(0”,y)) > €]
<P [Exfi(L(a*,x)) — Eyp fo(L(e*,y)) > €, Ex fi1(L(*,x)) = Exp fi(L(e",y)) < €/2]
<P [Exp f1(£(a%,%)) — Byp fo(L(a",y)) > €/2]

<P [sup B (£(0,%) - g foLlay) > <f2).
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In the above derivation, the first inequality is a direct consequence of (5). The second and
the third inequalities follow from simple algebra.

Step 2 (symmetrization by random signs). Consider i.i.d. sign variables o1,... , 0y,
independent of X7 and Y7, with P(o; = —1) = P(0; = 1) = 1/2. Define

9o (e, %) = (f1(£(a; x)) = f2(L(e, x))) /2 + o (f1(L(e, %)) + fo(L(e,%))) /2,

and

ho(a,y) = = (fi(£la,y)) — f2(£(e,¥))) /2 + o(f1 (L, y)) + fo(L(e,¥)))/2-

It is easy to check that

Z [go'i (aa xi) - hU’i (aa yZ)]
_Z .fl a XZ ,yz ]+ Z [.fl ayz fQ(L(a,xi))]'

0'1—1 o;=—

This implies that the distribution of

supZ [f1(£(a, %)) = fao(L(, y,))]
is the same as that of
sgpzn; (90 (t,%i) — hg, (0, ;)] -
Therefore _
P [sup B 1(£(00) ~ By (L) > /2

=P

sgp % Z(go‘i(aa X;) — ho; (o, y;)) > 6/2]

<2P

sup ng a,x;) > 6/4]

=1

Step 3 (derandomizing data). To estimate P[sup, + Y7 | g, (,%;) > €/4], we fix X7
and estimate the conditional probability

P

sup Zggz a,x;) > 6/4\X1] .

=1

Let {(z{,zgl) :j = 1,...,m} be an infinity-norm ~-covering of L(a, XT'), where m =
Noo(L, 7y, XT). By definition, for all a, there exists j such that |z] — L£(c,x;)| < 7y for all 7.

547



ZHANG

Therefore gy (, %) = fi(L(e,xi)) < f3(z]) and g 1 (o, x;) = — fa(L(e, xi)) < —f3(2]); that
i8, 9o, (@, %;) < 0if3(z]). We thus obtain

P

1 n
supﬁ E 9o, (o, x;) > 6/4|X{‘]
« i=1

sup Zozfg ) > e/4|X1]

SN (‘C ’YaXl SllpP

ZUZf?’ >e/4|X1]
<Noo(L, 7y, XT)e /32,

The last inequality follows from the Hoeffding’s inequality (Hoeffding, 1963). This proves
the theorem.
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