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Robust Matrix Decomposition with Sparse
Corruptions

Daniel Hsu, Sham M. Kakade, and Tong Zhang

Abstract—Suppose a given observation matrix can be
decomposed as the sum of a low-rank matrix and a sparse
matrix, and the goal is to recover these individual compo-
nents from the observed sum. Such additive decompositions
have applications in a variety of numerical problems
including system identification, latent variable graphical
modeling, and principal components analysis. We study
conditions under which recovering such a decomposition
is possible via a combination of `1 norm and trace norm
minimization. We are specifically interested in the question
of how many sparse corruptions are allowed so that convex
programming can still achieve accurate recovery, and we
obtain stronger recovery guarantees than previous studies.
Moreover, we do not assume that the spatial pattern of
corruptions is random, which stands in contrast to related
analyses under such assumptions via matrix completion.

Index Terms—Matrix decompositions, sparsity, low-
rank, outliers

I. INTRODUCTION

THIS work studies additive decompositions of ma-
trices into sparse and low-rank components. Such

decompositions have found applications in a variety of
numerical problems, including system identification [1],
latent variable graphical modeling [2], and principal
component analysis (PCA) [3]. In these settings, the
user has an input matrix Y ∈ Rm×n which is believed
to be the sum of a sparse matrix XS and a low-rank
matrix XL. For instance, in the application to PCA,
XL represents a matrix of m data points from a low-
dimensional subspace of Rn, and is corrupted by a sparse
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matrix XS of errors before being observed as

Y = XS + XL.
(sparse) (low-rank)

The goal is to recover the original data matrix XL

(and the error components XS) from the corrupted
observations Y . In the latent variable model application
of Chandrasekaran et al. [2], Y represents the precision
matrix over visible nodes of a Gaussian graphical model,
and XS represents the precision matrix over the visible
nodes when conditioned on the hidden nodes. In general,
Y may be dense as a result of dependencies between
visible nodes through the hidden nodes. However, XS

will be sparse when the visible nodes are mostly in-
dependent after conditioning on the hidden nodes, and
the difference XL = Y − XS will be low-rank when
the number of hidden nodes is small. The goal is then
to infer the relevant dependency structure from just the
visible nodes and measurements of their correlations.

Even if the matrix Y is exactly the sum of a sparse
matrix XS and a low-rank matrix XL, it may be im-
possible to identify these components from the sum. For
instance, the sparse matrix XS may be low-rank, or the
low-rank matrix XL may be sparse. In such cases, these
components may be confused for each other, and thus
the desired decomposition of Y may not be identifiable.
Therefore, one must impose conditions on the sparse
and low-rank components in order to guarantee their
identifiability from Y .

We present sufficient conditions under which XS and
XL are identifiable from the sum Y . Essentially, we
require that XS not be too dense in any single row
or column, and that the singular vectors of XL not be
too sparse. The level of denseness and sparseness are
considered jointly in the conditions in order to obtain the
weakest possible conditions. Under a mild strengthening
of the condition, we also show that XS and XL can be
recovered by solving certain convex programs, and that
the solution is robust under small perturbations of Y .
The first program we consider is

min λ‖XS‖vec(1) + ‖XL‖∗



(subject to certain feasibility constraints such as ‖XS +
XL−Y ‖ ≤ ε), where ‖·‖vec(1) is the entry-wise 1-norm
and ‖ · ‖∗ is the trace norm. These norms are natural
convex surrogates for the sparsity of XS and the rank of
XL [4], [5], which are generally intractable to optimize.
We also consider a regularized formulation

min
1

2µ
‖XS +XL− Y ‖2vec(2) +λ‖XS‖vec(1) + ‖XL‖∗

where ‖ · ‖vec(2) is the Frobenius norm; this formulation
may be more suitable in certain applications and enjoys
different recovery guarantees.

A. Related work

Our work closely follows that of Chandrasekaran et
al. [1], who initiated the study of rank-sparsity incoher-
ence and its application to matrix decompositions. There,
the authors identify parameters that characterize the
incoherence of XS and XL sufficient to guarantee identi-
fiability and recovery using convex programs. However,
their analysis of this characterization yields conditions
that are significantly stronger than those given in our
present work. For instance, the allowed fraction of non-
zero entries in XS is quickly vanishing as a function of
the matrix size, even under the most favorable conditions
on XL; our analysis does not have this restriction and
allows XS to have up to Ω(mn) non-zero entries when
XL is low-rank and has non-sparse singular vectors. In
terms of the PCA application, our analysis allows for
up to a constant fraction of the data matrix entries to
be corrupted by noise of arbitrary magnitude, while the
analysis of [1] requires that it decrease as a function of
the matrix dimensions. Moreover, [1] only considers ex-
act decompositions, which may be unrealistic in certain
applications; we allow for approximate decompositions,
and study the effect of perturbations on the accuracy of
the recovered components.

The application to principal component analysis with
gross sparse errors was studied by Candès et al. [3],
building on previous results and analysis techniques for
the related matrix completion problem (e.g., [6], [7]).
The sparse errors model of [3] requires that the support
of the sparse matrix XS be random, which can be
unrealistic in some settings. However, the conditions
are significantly weaker than those of [1]: for instance,
they allow for Ω(mn) non-zero entries in XS . Our
work makes no probabilistic assumption on the sparsity
pattern of XS and instead studies purely deterministic
structural conditions. The price we pay, however, is
roughly a factor of rank(XL) in what is allowed for the
support size of XS (relative to the probabilistic analysis

of [3]). Narrowing this gap with alternative deterministic
conditions is an interesting open problem. Follow-up
work to [3] studies the robustness of the recovery pro-
cedure [8], as well as quantitatively weaker conditions
on XS [9], but these works are only considered under
the random support model. Our work is therefore largely
complementary to these probabilistic analyses.

B. Outline

We describe our main results in Section II. In Sec-
tion III, we review a number of technical tools such as
matrix and operator norms that are used to characterize
the rank-sparsity incoherence properties of the desired
decomposition. Section IV analyzes these incoherence
properties in detail, giving sufficient conditions for iden-
tifiability as well as for certifying the (approximate)
optimality of a target decomposition for our optimization
formulations. The main recovery guarantees are proved
in Sections V and VI.

II. MAIN RESULTS

Fix an observation matrix Y ∈ Rm×n. Our goal is to
(approximately) decompose the matrix Y into the sum
of a sparse matrix XS and a low-rank matrix XL.

A. Optimization formulations

We consider two convex optimization problems over
(XS , XL) ∈ Rm×n×Rm×n. The first is the constrained
formulation (parametrized by λ > 0, εvec(1) ≥ 0, and
ε∗ ≥ 0)

min λ‖XS‖vec(1) + ‖XL‖∗
s.t. ‖XS +XL − Y ‖vec(1) ≤ εvec(1)

‖XS +XL − Y ‖∗ ≤ ε∗
(1)

where ‖ · ‖vec(1) is the entry-wise 1-norm, and ‖ · ‖∗ is
the trace norm (i.e., sum of singular values). The sec-
ond is the regularized formulation (with regularization
parameter µ > 0)

min
1

2µ
‖XS +XL − Y ‖2vec(2) + λ‖XS‖vec(1) + ‖XL‖∗

(2)
where ‖ · ‖vec(2) is the Frobenius norm (entry-wise 2-
norm).

We also consider adding a constraint to control
‖XL‖vec(∞), the entry-wise ∞-norm of XL. To (1), we
add the constraint

‖XL‖vec(∞) ≤ b

and to (2), we add

‖XS − Y ‖vec(∞) ≤ b
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The parameter b is intended as a natural bound for XL

and is typically known in applications. For example, in
image processing, the values of interest may lie in the
interval [0, 255] (say), and hence, we might take b = 500
as a relaxation of the box constraint [0, 255]. The core of
our analyses do not rely on these additional constraints;
we only consider them to obtain improved robustness
guarantees for recovering XL, which may be important
in some applications.

B. Identifiability conditions

Our first result is a refinement of the rank-sparsity
incoherence notion developed by [1]. We characterize
a target decomposition of Y into Y = X̄S + X̄L by
the projection operators to subspaces associated with X̄S

and X̄L. Let

Ω̄ = Ω(X̄S) := {X ∈ Rm×n : supp(X) ⊆ supp(X̄S)}

be the space of matrices whose supports are subsets of
the support of X̄S , and let PΩ̄ be the orthogonal projector
to Ω̄ under the inner product 〈A,B〉 = tr(A>B); this
projection is given by

[PΩ̄(M)]i,j =

{
Mi,j if (i, j) ∈ supp(X̄S)

0 otherwise

for all i ∈ [m] := {1, . . . ,m}, j ∈ [n] := {1, . . . , n}.
Furthermore, let

T̄ = T (X̄L) :=

{X1 +X2 ∈ Rm×n : range(X1) ⊆ range(X̄L),

range(X>2 ) ⊆ range(X̄>L )}

be the span of matrices either with row-space contained
in that of X̄L, or with column-space contained in that of
X̄L. Let PT̄ be the orthogonal projector to T̄ , again, un-
der the inner product 〈A,B〉 = tr(A>B); this projection
is given by

PT̄ (M) = Ū Ū>M +MV̄ V̄ > − Ū Ū>MV̄ V̄ >

where Ū ∈ Rm×r̄ and V̄ ∈ Rn×r̄ are, respectively,
matrices of left and right orthonormal singular vectors
corresponding to the non-zero singular values of X̄L,
and r̄ is the rank of X̄L. We will see that certain
operator norms of PΩ̄ and PT̄ can be bounded in terms
of structural properties of X̄S and X̄L.

The first property measures the maximum number of
non-zero entries in any row or column of X̄S :

α(ρ) := max
{
ρ‖ sign(X̄S)‖1→1,

ρ−1‖ sign(X̄S)‖∞→∞
}

where ‖M‖p→q := max{‖Mv‖q : v ∈ Rn, ‖v‖p ≤ 1},

sign(M)i,j =

 −1 if Mi,j < 0
0 if Mi,j = 0

+1 if Mi,j > 0
∀i ∈ [m], j ∈ [n]

and ρ > 0 is a balancing parameter to accommodate
disparity between the number of rows and columns;
a natural choice for the balancing parameter is ρ :=√
n/m. We remark that ρ is only a parameter for the

analysis; the optimization formulations do not directly
involve ρ. Note that X̄S may have Ω(mn) non-zero
entries and α(

√
n/m) = O(

√
mn) as long as the non-

zero entries of X̄S are spread out over the entire matrix.
Conversely, a sparse matrix with just O(m + n) could
have α(

√
n/m) =

√
mn by having all of its non-zero

entries in just a few rows and columns.
The second property measures the sparseness of the

singular vectors of X̄L:

β(ρ) := ρ−1‖Ū Ū>‖vec(∞) + ρ‖V̄ V̄ >‖vec(∞)

+ ‖Ū‖2→∞‖V̄ ‖2→∞.

For instance, if the singular vectors of X̄L are perfectly
aligned with the coordinate axes, then β(ρ) = Ω(1). On
the other hand, if the left and right singular vectors have
entries bounded by

√
c/m and

√
c/n, respectively, for

some c ≥ 1, then β(
√
n/m) ≤ 3cr̄/

√
mn.

Our main identifiability result is the following.

Theorem 1. If infρ>0 α(ρ)β(ρ) < 1, then Ω̄∩ T̄ = {0}.

Theorem 1 is an immediate consequence of the fol-
lowing lemma (also given as Lemma 10).

Lemma 1. For all M ∈ Rm×n, ‖PΩ̄(PT̄ (M))‖vec(1) ≤
infρ>0 α(ρ)β(ρ)‖M‖vec(1).

Proof of Theorem 1: Take any M ∈ Ω̄ ∩ T̄ . By
Lemma 1, ‖PΩ̄(PT̄ (M))‖vec(1) ≤ α(ρ)β(ρ)‖M‖vec(1).
On the other hand, PΩ̄(PT̄ (M)) = M , so α(ρ)β(ρ) < 1
implies ‖M‖vec(1) = 0, i.e., M = 0.

Clearly, if Ω̄∩ T̄ contains a matrix other than 0, then
{(X̄S + M, X̄L − M) : M ∈ Ω̄ ∩ T̄} gives a family
of sparse/low-rank decompositions of Y = X̄S + X̄L

with at least the same sparsity and rank as (X̄S , X̄L).
Conversely, if Ω̄∩T̄ = {0}, then any matrix in the direct
sum Ω̄⊕ T̄ has exactly one decomposition into a matrix
A ∈ Ω̄ plus a matrix B ∈ T̄ , and in this sense (X̄S , X̄L)
is identifiable.

Note that, as we have argued above, the condition
infρ>0 α(ρ)β(ρ) < 1 may be achieved even by ma-
trices X̄S with Ω(mn) non-zero entries, provided that
the non-zero entries of X̄S are sufficiently spread out,
and that X̄L is low-rank and has singular vectors far
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from the coordinate basis. This is in contrast with the
conditions studied by [1]. Their analysis uses a different
characterization of X̄S and X̄L, which leads to a stronger
identifiability condition in certain cases. Roughly, if
X̄S has an approximately symmetric sparsity pattern
(so ‖ sign(X̄S)‖1→1 ≈ ‖ sign(X̄S)‖∞→∞), then [1]
requires α(1)

√
β(1) < 1 for square n × n matrices.1

Since β(1) = Ω(1/n) for any X̄L ∈ Rn×n, the condition
implies α(1)2 = O(n). Therefore X̄S must have at most
O(n) non-zero entries (or else α(1)2 becomes super-
linear). In other words, the fraction of non-zero entries
allowed in X̄S by the condition α(1)

√
β(1) < 1 is

quickly vanishing as a function of n.

C. Recovery guarantees

Our next results are guarantees for (approximately)
recovering the sparse/low-rank decomposition (X̄S , X̄L)
from Y = X̄S + X̄L via solving either convex optimiza-
tion problems (1) or (2). We require a mild strengthening
of the condition infρ>0 α(ρ)β(ρ) < 1, as well as
appropriate settings of λ > 0 and µ > 0 for our recovery
guarantees. Before continuing, we first define another
property of X̄L:

γ := ‖Ū V̄ >‖vec(∞)

which is approximately the same as (in fact, bounded
above by) the third term in the definition of β(ρ).
The quantities α(ρ), β(ρ), and γ are central to our
analysis. Therefore we state the following proposition for
reference, which provides a more intuitive understanding
of their behavior. We note that this is the only part in
which any explicit dimensional dependencies comes into
our analysis.

Proposition 1. Let m0 be the maximum number of non-
zero entries of X̄S per column and n0 be the maximum
number of non-zero entries of X̄S per row. Let r̄ be the
rank of Ū and V̄ . Assume further that m0 ≤ c1m/r̄ and
n0 ≤ c1n/r̄ for some c1 ∈ (0, 1), and ‖Ū‖vec(∞) ≤√
c2/m and ‖V̄ ‖vec(∞) ≤

√
c2/n for some c2 > 0.

Then with ρ =
√
n/m, we have

α(ρ) ≤ c1
r̄

√
mn, β(ρ) ≤ 3c2r̄√

mn
, γ ≤ c2r̄√

mn
.

1[1] does not explicitly work out the non-square case, but claims
that n can be replaced in their analysis by the larger matrix dimension
max{m,n}. However this does not seem possible, and the analysis
there should only lead to the quite suboptimal dimensionality depen-
dency min{m,n}. This is because a rectangular matrix X̄L will have
left and right singular vectors of different dimensions and thus different
allowable ranges of infinity norms.

We now proceed with conditions for the regularized
formulation (2). Let E := Y − (X̄S + X̄L) and

ε2→2 := ‖E‖2→2

εvec(∞) := ‖E‖vec(∞) + ‖PT̄ (E)‖vec(∞).

We require the following, for some ρ > 0 and c > 1:

α(ρ)β(ρ) < 1 (3)

λ ≤ (1− α(ρ)β(ρ))(1− c · µ−1ε2→2)

c · α(ρ)

−
α(ρ)µ−1εvec(∞) + α(ρ)γ

α(ρ)

(4)

λ ≥ c ·
γ + µ−1(2− α(ρ)β(ρ))εvec(∞)

1− α(ρ)β(ρ)− c · α(ρ)β(ρ)
> 0. (5)

For instance, if for some ρ > 0,

α(ρ)γ ≤ 1

41
and α(ρ)β(ρ) ≤ 3

41
, (6)

then the conditions are satisfied for c = 2 provided that
µ and λ are chosen to satisfy

µ ≥ max

{
4 · ε2→2,

2

15
·
εvec(∞)

λ

}
and

15

2
· γ ≤ λ ≤ 15

82
· 1

α(ρ)
. (7)

Note that (6) can be satisfied when c1 ≤ c−1
2 /41 in

Proposition 1.
For the constrained formulation (1), our analysis re-

quires the same conditions as above, except with E set
to 0. Note that our analysis still allows for approximate
decompositions; it is only the conditions that are for-
mulated with E = 0. Specifically, we require for some
ρ > 0 and c > 1:

α(ρ)β(ρ) < 1 (8)

λ ≤ 1− α(ρ)β(ρ)− c · α(ρ)γ

c · α(ρ)
(9)

λ ≥ c · γ

1− α(ρ)β(ρ)− c · α(ρ)β(ρ)
> 0. (10)

For instance, if for some ρ > 0,

α(ρ)γ ≤ 1

15
and α(ρ)β(ρ) ≤ 1

5
, (11)

then the conditions are satisfied for c = 2 provided that
λ is chosen to satisfy

5γ ≤ λ ≤ 1

3α(ρ)
. (12)

Note that (11) can be satisfied when c1 ≤ c−1
2 /15 in

Proposition 1.
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In summary, Proposition 1 shows that our results can
be applied even with m0 = Ω(m/r̄) and n0 = Ω(n/r̄)
corruptions. In contrast, the results of [1] only apply un-
der the condition max(m0, n0) = O(

√
min(m,n)/r̄),

which is significantly stronger. Moreover, unlike the
analysis of [3], we do not have to assume that supp(X̄S)
is random.

The following theorem gives our recovery guarantee
for the constrained formulation (1).

Theorem 2. Fix a target pair (X̄S , X̄L) ∈ Rm×n ×
Rm×n satisfying ‖Y − (X̄S + X̄L)‖vec(1) ≤ εvec(1) and
‖Y − (X̄S + X̄L)‖∗ ≤ ε∗. Assume the conditions (8),
(9), and (10) hold for some ρ > 0 and c > 1.
Let (X̂S , X̂L) ∈ Rm×n be the solution to the convex
optimization problem (1). We have

max
{
‖X̂S − X̄S‖vec(1), ‖X̂L − X̄L‖vec(1)

}
≤
(

1 + (1− 1/c)−1 · 2− α(ρ)β(ρ)

1− α(ρ)β(ρ)

)
· εvec(1)

+ (1− 1/c)−1 · 2− α(ρ)β(ρ)

1− α(ρ)β(ρ)
· ε∗/λ.

If, in addition for some b ≥ ‖X̄L‖vec(∞), either:
• the optimization problem (1) is augmented with the

constraint ‖XL‖vec(∞) ≤ b (and letting X̃L :=

X̂L), or
• X̂L is post-processed by replacing [X̂L]i,j with

[X̃L]i,j := min{max{[X̂L]i,j ,−b}, b} for all i, j,
then we also have

‖X̃L − X̄L‖vec(2)

≤ min

{
‖X̂L − X̄L‖vec(1),

√
2b · ‖X̂L − X̄L‖vec(1)

}
.

The proof of Theorem 2 is in Section V. It is clear that
if Y = X̄S + X̄L, then we can set εvec(1) = ε∗ = 0 and
we obtain exact recovery: X̂S = X̄S and X̂L = X̄L.
Moreover, any perturbation Y − (X̄S + X̄L) affects
the accuracy of (X̂S , X̂L) in entry-wise 1-norm by an
amount O(εvec(1) + ε∗/λ). Note that here, the parameter
λ serves to balance the entry-wise 1-norm and trace
norm of the perturbation in the same way it is used
in the objective function of (1). So, for instance, if we
have the simplified conditions (11), then we may choose
λ =

√
(5/3)γ/α(ρ) to satisfy (12), upon which the error

bound becomes

max
{
‖X̂S − X̄S‖vec(1), ‖X̂L − X̄L‖vec(1)

}
= O

(
εvec(1) +

√
α(ρ)

γ
· ε∗

)
.

It is possible to modify the constraints in (1) to use
norms other than ‖ · ‖vec(1) and ‖ · ‖∗; the analysis could
at the very least be modified by simply using standard
relationships to change between norms, although this
may introduce new slack in the bounds. Finally, the
second part of the theorem shows how the accuracy of
X̂L in Frobenius norm can be improved by adding an
additional constraint or by post-processing the solution.

Now we state our recovery guarantees for the regular-
ized formulation (2).

Theorem 3. Fix a target pair (X̄S , X̄L) ∈ Rm×n ×
Rm×n. Let E := Y − (X̄S + X̄L) and

ε2→2 := ‖E‖2→2

εvec(∞) := ‖E‖vec(∞) + ‖PT̄ (E)‖vec(∞)

ε′∗ := ‖PT̄ (E)‖∗.

Let k̄ := | supp(X̄S)| and r̄ := rank(X̄L). Assume the
conditions (3), (4), and (5) hold for some ρ > 0 and c >
1. Let (X̂S , X̂L) ∈ Rm×n be the solution to the convex
optimization problem (2) augmented with the constraint
‖XS − Y ‖vec(∞) ≤ b for some b ≥ ‖X̄S − Y ‖vec(∞)

(b =∞ is allowed). Let

r̄′ :=(
λ+

εvec(∞)

µ

)
· 2k̄

1− α(ρ)β(ρ)
·
(
λ+ γ +

εvec(∞)

µ

)
+
(
1 + 2µ−1ε2→2

)
· 2r̄

·
(

2α(ρ)

1− α(ρ)β(ρ)
·
(
λ+ γ +

εvec(∞)

µ

)
+ 1 +

2ε2→2

µ

)
.

We have

‖X̂S − X̄S‖vec(1)

≤
r̄′·µ

(1−1/c)λ + λk̄ · µ+ 2
√
k̄r̄ · µ+ k̄ · εvec(∞)

1− α(ρ)β(ρ)

‖X̂S − X̄S‖vec(2)

≤ min

{
‖X̂S − X̄S‖vec(1),

√
2b · ‖X̂S − X̄S‖vec(1)

}
‖X̂L − X̄L‖∗ ≤

√
2r̄ · ‖X̂S − X̄S‖vec(2) + ε′∗

+

(
r̄′ · (1− 1/c)−1

2
+ 2r̄

)
· µ.

The proof of Theorem 3 is in Section VI. As before,
if Y = X̄S + X̄L so E = 0, then we can set µ→ 0 and
obtain exact recovery with X̂S = X̄S and X̂L = X̄L.
When the perturbation E is non-zero, we control the
accuracy of X̄S in entry-wise 1-norm and 2-norm, and
the accuracy of X̄L in trace norm. Under the simplified
conditions (6), we can choose λ = (15/82)/α(ρ) and
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µ = max{4ε2→2, 2εvec(∞)/(15λ)} to satisfy (7); this
leads to the error bounds

‖X̂S − X̄S‖vec(1) = O
(
r̄α(ρ) max{ε2→2, α(ρ)εvec(∞)}

)
‖X̂L − X̄L‖∗ =

O

(√
r̄min

{√
b · ‖X̂S − X̄S‖vec(1), ‖X̂S − X̄S‖vec(1)

}
+ ε′∗ + r̄ ·max

{
ε2→2, α(ρ)εvec(∞)

})
(here, we have used the facts k̄ ≤ α(ρ)2, α(ρ)λ = Θ(1),
and r̄′ = O(r̄), which also implies that k̄ · εvec(∞) =
O(α(ρ)·α(ρ)εvec(∞))). Finally, note that if the constraint
‖XS − Y ‖vec(∞) ≤ b is added (i.e., b < ∞), then the
requirement b ≥ ‖X̄S − Y ‖vec(∞) can be satisfied with
b := ‖X̄S‖vec(∞) + εvec(∞). This allows for a possibly
improved bound on ‖X̂L − X̄L‖∗.

Our analysis centers around the construction of a dual
certificate using a least-squares method similar to that
in related works [1], [3]. The construction requires the
invertibility of PΩ̄ ◦ PT̄ (a composition of projection
operators), which is established in our analysis by study-
ing certain operator norms of PΩ̄ and PT̄ (in previous
works, invertibility is established only under probabilis-
tic assumptions [3] or stricter sparsity conditions [1]).
The rest of the analysis then relates the accuracy of the
solutions to (1) and (2) to properties of the constructed
dual certificate.

D. Examples

We illustrate our main results with some simple ex-
amples.

1) Random models: We first consider a random model
for the matrices X̄S and X̄L [1]. Let the support of X̄S

be chosen uniformly at random k̃ times over the [m]×[n]
matrix entries (so that one entry can be selected multiple
times). The value of the entries in the chosen support can
be arbitrary. With high probability, we have

‖ sign(X̄S)‖1→1 = O

(
k̃ log n

n

)
and

‖ sign(X̄S)‖∞→∞ = O

(
k̃ logm

m

)
so for ρ :=

√
(n logm)/(m log n), we have

α(ρ) = O

(
k̃

√
(logm)(log n)

mn

)
.

The logarithmic factors are due to collisions in the
random process. Now let Ū and V̄ be chosen uniformly

at random over all families of r̄ orthonormal vectors in
Rm and Rn, respectively. Using arguments similar to
those in [6], one can show that with high probability,

‖Ū Ū>‖vec(∞) = O

(
r̄ logm

m

)
‖V̄ V̄ >‖vec(∞) = O

(
r̄ log n

n

)
‖Ū‖2→∞ = O

(√
r̄ logm

m

)

‖V̄ ‖2→∞ = O

(√
r̄ log n

n

)
,

so for the previously chosen ρ, we have

β(ρ) = O

(
r̄

√
(logm)(log n)

mn

)
and

γ = O

(
r̄

√
(logm)(log n)

mn

)
.

Therefore

α(ρ)β(ρ) = O

(
k̃r̄(logm)(log n)

mn

)
and

α(ρ)γ = O

(
k̃r̄(logm)(log n)

mn

)
,

both of which are � 1 provided that

k̃ ≤ δ · mn

r̄(logm)(log n)

for a small enough constant δ ∈ (0, 1). In other words,
when X̄L is low-rank, the matrix X̄S can have nearly
a constant fraction of its entries be non-zero while still
allowing for exact decomposition of Y = X̄S+X̄L. Our
guarantee improves over that of [1] by roughly a factor of
Ω((mn)1/4), but is worse by a factor of r̄(logm)(log n)
relative to the guarantees of [3] for the random model.
Therefore there is a gap between our generic determin-
istic analysis and a direct probabilistic analysis of this
random model, and this gap seems unavoidable with
sparsity conditions based on α(ρ). This is because X̄L

could be an n×n (for simplicity) block diagonal matrix
with r blocks of n/r × n/r rank-1 matrices; such a
matrix guarantees β(1) = O(r/n) but has just n2/r
non-zero entries. It is an interesting open problem to
find alternative characterizations of supp(X̄S) that can
narrow or close this gap.
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2) Principal component analysis with sparse corrup-
tions: Suppose X̄L is matrix of m data points lying in a
low-dimensional subspace of Rn, and Z is a random
matrix with independent Gaussian noise entries with
variance σ2. Then Y ′ = X̄L + Z is the standard
model for principal component analysis. We augment
the model with a sparse noise component X̄S to obtain
Y = X̄S + X̄L +Z; here, we allow the non-zero entries
of X̄S to possibly approach infinity.

According to Theorem 3, we need to estimate
‖Z‖2→2, ‖Z‖vec(∞), ‖PT̄ (Z)‖vec(∞), and ‖PT̄ (Z)‖∗.
We have the following with high probability [10],

‖Z‖2→2 ≤ σ
√
m+ σ

√
n+O(σ).

Using standard arguments with the rotational invariance
of the Gaussian distribution, we also have

‖Z‖vec(∞) ≤ O(σ log(mn)) and
‖PT̄ (Z)‖vec(∞) ≤ O(σ log(mn))

with high probability. Finally, by Lemma 5, we have

‖PT̄ (Z)‖∗ ≤ 2r̄‖Z‖2→2 ≤ 2r̄σ
√
m+ 2r̄σ

√
n+O(r̄σ).

Suppose (X̄S , X̄L) has α(ρ) ≤ c1(
√
mn/r̄), β(ρ) =

Θ(r̄/
√
mn), and γ = Θ(r̄/

√
mn) and satisfies the

simplified condition (6). This can be achieved with
c1c2 ≤ 1/41 in Proposition 1. Also assume λ and µ are
chosen to satisfy (7), and that b ≥ ‖X̄L‖vec(∞)+εvec(∞).
Then we note that k̄ = O(c21mn/r̄

2), and thus have from
Theorem 3 (see the discussion thereafter):

‖X̂S − X̄S‖vec(1)

= O
(
c1
√
mnmax{σ

√
m+ σ

√
n, σ
√
mn log(mn)/r̄}

)
= O (σc1mn log(mn)/r̄)

‖X̂L − X̄L‖∗ = O
(√

bσc1mn log(mn)/r̄

+ r̄σ(
√
m+

√
n)) + c1

√
mn
)
,

where we may take b = O(σ log(mn) + ‖XL‖vec(∞))).
Now consider the situation where both m,n →

∞, and assume that ‖X̄L‖vec(∞) remains bounded. If
c1(log(mn))2 = o(1)—which means that the number
of corruptions per column is o(m/(log(mn))2) and
the number of deterministic corruptions per row is
o(n/(log(mn))2)—then

‖X̂L − X̄L‖∗ = O(r̄σ(
√
m+

√
n))

so the normalized trace norm error of X̂L tends to zero
1√
mn
‖X̂L − X̄L‖∗ → 0.

This means that we can correctly recover the principal
components of X̄L with both deterministic corruptions
and random noise, when both m and n are large and
c1(log(mn))2 = o(1) in Proposition 1.

III. TECHNICAL PRELIMINARIES

A. Norms, inner products, and projections

Our analysis involves a variety of norms of vectors,
matrices (viewed as elements of a vector space as well
as linear operators of vectors), and linear operators of
matrices; we define these and related notions in this
section.

1) Entry-wise norms: For any p ∈ [1,∞], define
‖v‖p := (

∑
i |vi|p)1/p be the p-norm of a vector v

(with ‖v‖∞ := maxi |vi|). Also, define ‖M‖vec(p) :=
(
∑
i,j |Mi,j |p)1/p to be the entry-wise p-norm of a

matrix M (again, with ‖M‖vec(∞) := maxi,j |Mi,j |).
Note that ‖ · ‖vec(2) corresponds to the Frobenius norm.

2) Inner products, linear operators, and orthogonal
projections: We endow Rm×n with the inner product
〈·, ·〉 between matrices that induces the Frobenius norm
‖ · ‖vec(2); this is given by 〈M,N〉 = tr(M>N).

For a linear operator T : Rm×n → Rm×n, we denote
its adjoint by T ∗; this is the unique linear operator that
satisfies 〈T ∗(M), N〉 = 〈M, T (N)〉 for all M ∈ Rm×n
and N ∈ Rm×n (in this work, we only consider bounded
linear operators). For any two linear operators T1 and
T2, we let T1 ◦ T2 denote their composition as defined
by (T1 ◦ T2)(M) := T1(T2(M)).

Given a subspace W ⊆ Rm×n, we let W⊥ denote its
orthogonal complement, and let PW : Rm×n → Rm×n
denote the orthogonal projector to W with respect to
〈·, ·〉, i.e., the unique linear operator with range W and
satisfying PW ∗ = PW and PW ◦ PW = PW .

3) Induced norms: For any two vector norms ‖ · ‖p
and ‖ · ‖q , define ‖M‖p→q := maxx 6=0 ‖Mx‖q/‖x‖p to
be the corresponding induced operator norm of a matrix
M . Our analysis uses the following special cases which
have alternative definitions:
• ‖M‖1→1 = maxj ‖Mej‖1,
• ‖M‖1→2 = maxj ‖Mej‖2,
• ‖M‖2→2 = spectral norm of M

(i.e., largest singular value of M ),
• ‖M‖2→∞ = maxi ‖M>ei‖2, and
• ‖M‖∞→∞ = maxi ‖M>ei‖1.

Here, ei is the ith coordinate vector which has a 1 in the
ith position and 0 elsewhere.

Finally, we also consider induced operator norms
of linear matrix operators T : Rm×n → Rm×n (in
particular, projection operators with respect to 〈·, ·〉).
For any two matrix norms ‖ · ‖♦ and ‖ · ‖♥, define
‖T ‖♦→♥ := maxM 6=0 ‖T (M)‖♥/‖M‖♦.

4) Other norms: The trace norm (or nuclear norm)
‖M‖∗ of a matrix M is the sum of the singular values
of M . We will also make use of a hybrid matrix norm
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‖ · ‖](ρ), parametrized by ρ > 0, which we define by

‖M‖](ρ) := max{ρ‖M‖1→1, ρ
−1‖M‖∞→∞}.

Also define ‖M‖[(ρ) := sup‖N‖](ρ)≤1〈M,N〉, i.e., the
dual of ‖ · ‖](ρ) (see below).

5) Dual pairs: The matrix norm ‖ · ‖♥ is said to
be dual to ‖ · ‖♠ if, for all M ∈ Rm×n, ‖M‖♥ =
sup‖N‖♠≤1〈M,N〉.

Proposition 2. Fix any matrix norm ‖·‖♠, and let ‖·‖♥
be its dual. For all M ∈ Rm×n and N ∈ Rm×n, we have

〈M,N〉 ≤ ‖M‖♠‖N‖♥.

Proposition 3. Fix any any linear matrix operator T :
Rm×n → Rm×n and any pair of matrix norms ‖ · ‖♠
and ‖ · ‖♣. We have

‖T ‖♠→♣ = ‖T ∗‖♦→♥,

where ‖ ·‖♥ is dual to ‖ ·‖♠, and ‖ ·‖♦ is dual to ‖ ·‖♣.

The following pairs of matrix norms are dual to each
other:

1) ‖ · ‖vec(p) and ‖ · ‖vec(q) where 1/p+ 1/q = 1;
2) ‖ · ‖∗ and ‖ · ‖2→2;
3) ‖ · ‖](ρ) and ‖ · ‖[(ρ) (by definition).
6) Some lemmas: First we show that the ‖·‖](ρ) norm

(for any ρ > 0) bounds the spectral norm ‖ · ‖2→2.

Lemma 2. For any M ∈ Rm×n, we have for all ρ > 0,

‖M‖2→2 ≤ ‖M‖](ρ).

Proof: Let σ be the largest singular value of M ,
and let u ∈ Rm and v ∈ Rn be, respectively, associated
left and right singular vectors. Then∥∥∥∥[ 0 ρM

ρ−1M> 0

] [
ρ1/2u
ρ−1/2v

]∥∥∥∥
1

=

∥∥∥∥[ ρ1/2Mv
ρ−1/2M>u

]∥∥∥∥
1

= σ

∥∥∥∥[ ρ1/2u
ρ−1/2v

]∥∥∥∥
1

.

Moreover, by definition of ‖ · ‖1→1,∥∥∥∥[ 0 ρM
ρ−1/2M> 0

] [
ρ1/2u
ρ−1/2v

]∥∥∥∥
1

≤
∥∥∥∥[ 0 ρM

ρ−1M> 0

]∥∥∥∥
1→1

∥∥∥∥[ ρ1/2u
ρ−1/2v

]∥∥∥∥
1

.

Therefore

‖M‖2→2 = σ ≤
∥∥∥∥[ 0 ρM

ρ−1M> 0

]∥∥∥∥
1→1

= max{‖ρ−1M>‖1→1, ‖ρM‖1→1}
= max{ρ−1‖M‖∞→∞, ρ‖M‖1→1}
= ‖M‖](ρ).

The following lemma is the dual of Lemma 2.

Lemma 3. For any M ∈ Rm×n, we have for all ρ > 0,

‖M‖[(ρ) ≤ ‖M‖∗.

Proof: We know that ‖M‖[(ρ) = 〈M,N〉 for some
matrix N such that ‖N‖](ρ) = 1. Therefore ‖N‖2→2 ≤
1 from Lemma 2, and thus using Proposition 2,

‖M‖[(ρ) = 〈M,N〉 ≤ ‖M‖∗‖N‖2→2 ≤ ‖M‖∗.

Finally we state a lemma concerning the invertibility
of a certain block-form operator used in our analysis.

Lemma 4. Fix any matrix norm ‖ · ‖♠ on Rm×n
and linear operators T1 : Rm×n → Rm×n and T2 :
Rm×n → Rm×n. Let I : Rm×n → Rm×n be the identity
operator, and suppose ‖T1 ◦ T2‖♠→♠ < 1.

1) I − T1 ◦ T2 is invertible and satisfies

‖(I − T1 ◦ T2)−1‖♠→♠ ≤
1

1− ‖T1 ◦ T2‖♠→♠
.

2) The linear operator on Rm×n × Rm×n[
I T1

T2 I

]
is invertible, and its inverse is given by[

I T1

T2 I

]−1

=

[
(I − T1 ◦ T2)−1 −(I − T1 ◦ T2)−1 ◦ T1

−(I − T2 ◦ T1)−1 ◦ T2 (I − T2 ◦ T1)−1

]
.

Proof: The first claim is a standard application
of Taylor expansions. The second claim then follows
from formulae of block matrix inverses using Schur
complements.

B. Projection operators and subdifferential sets

Recall the definitions of the following subspaces

Ω(XS) := {X ∈ Rm×n : supp(X) ⊆ supp(XS)}

and

T (XL) := {X1 +X2 ∈ Rm×n :

range(X1) ⊆ range(XL),

range(X>2 ) ⊆ range(X>L )}.

The orthogonal projectors to these spaces are given in
the following proposition.
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Proposition 4. Fix any XS ∈ Rm×n and XL ∈ Rm×n.
For any matrix M ∈ Rm×n,

[PΩ(XS)(M)]i,j =

{
Mi,j if (i, j) ∈ supp(XS)

0 otherwise

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, and

PT (XL)(M) = UU>M +MV V > − UU>MV V >

where U and V are the matrices of left and right singular
vectors of XL.

Lemma 5. Under the setting of Proposition 4, with k :=
| supp(XS)|,

‖PΩ(XS)(M)‖vec(1) ≤
√
k‖PΩ(XS)(M)‖vec(2)

≤
√
k‖M‖vec(2)

‖PΩ(XS)(M)‖vec(1) ≤ k‖PΩ(XS)(M)‖vec(∞)

≤ k‖M‖vec(∞)

‖PT (XL)(M)‖2→2 ≤ 2‖M‖2→2

‖PT (XL)(M)‖∗ ≤ 2 rank(XL)‖M‖2→2

‖PT (XL)(M)‖vec(2) ≤ 2
√

rank(XL)‖M‖2→2.

Proof: The first and second claims rely on the fact
that | supp(PΩ(XS)(M))| ≤ | supp(XS)|, as well as the
fact that PΩ(XS) is an orthonormal projector with respect
to the inner product that induces the ‖·‖vec(2) norm. For
the third claim, note that

‖PT (XL)(M)‖2→2

≤ ‖UU>M‖2→2 + ‖(I − UU>)MV V >‖2→2

≤ 2‖M‖2→2.

The remaining claims use a similar decomposition as
the third claim as well as the fact that rank(UU>M) ≤
rank(XL) and rank((I−UU>)MV V >)} ≤ rank(XL).

Define

sign(XS) ∈ {−1, 0,+1}m×n

to be the matrix whose (i, j)th entry is sign([XS ]i,j),
and define

orth(XL) := UV >,

where U and V , respectively, are matrices of the left and
right orthonormal singular vectors of XL corresponding
to non-zero singular values. The following proposition
characterizes the subdifferential sets for the non-smooth
norms ‖ · ‖vec(1) and ‖ · ‖∗ [11].

Proposition 5. The subdifferential set of XS 7→
‖XS‖vec(1) is

∂XS (‖XS‖vec(1))

= {G ∈ Rm×n : ‖G‖vec(∞) ≤ 1,PΩ(XS)(G)

= sign(XS)};

the subdifferential set of XL 7→ ‖XL‖∗ is

∂XL(‖XL‖∗) = {G ∈ Rm×n :

‖G‖2→2 ≤ 1,PT (XL)(G) = orth(XL)}.

The following lemma is a simple consequence of
subgradient properties.

Lemma 6. Fix λ > 0 and define the function
g(XS , XL) := λ‖XS‖vec(1) + ‖XL‖∗. Consider any
(X̄S , X̄L) in Rm×n ×Rm×n. If there exists Q ∈ Rm×n
such that: Q is a subgradient of λ‖XS‖vec(1) at XS =
X̄S , Q is a subgradient of ‖XL‖∗ at XL = X̄L, and
‖PΩ(X̄S)⊥(Q)‖vec(∞) ≤ λ/c and ‖PT (X̄L)⊥(Q)‖2→2 ≤
1/c for some c > 1, then

g(XS , XL)− g(X̄S , X̄L)

≥ 〈Q,XS +XL − X̄S − X̄L〉
+ (1− 1/c)λ‖PΩ̄⊥(XS − X̄S)‖vec(1)

+ (1− 1/c)‖PT̄⊥(XL − X̄L)‖∗

for all (XS , XL) ∈ Rm×n × Rm×n.

Proof: Let Ω̄ := Ω(X̄S), T̄ := T (X̄L), ∆S :=
XS − X̄S , and ∆L : XL − X̄L. For any subgradient
G ∈ ∂XS (λ‖X̄S‖vec(1)), we have G − Q = PΩ̄(G) +
PΩ̄⊥(G) − PΩ̄(Q) − PΩ̄⊥(Q) = PΩ̄⊥(G) − PΩ̄⊥(Q).
Therefore

λ‖X̄S + ∆S‖vec(1) − λ‖X̄S‖vec(1) − 〈Q,∆S〉
≥ sup{〈G,∆S〉 − 〈Q,∆S〉 : G ∈ ∂XS (λ‖X̄S‖vec(1))}
≥ sup{〈G−Q,∆S〉 : G ∈ ∂XS (λ‖X̄S‖vec(1))}
= sup{〈PΩ̄⊥(G)− PΩ̄⊥(Q),∆S〉 :

G ∈ ∂XS (λ‖X̄S‖vec(1))}
= sup{〈PΩ̄⊥(G)− PΩ̄⊥(Q),PΩ̄⊥(∆S)〉 :

G ∈ ∂XS (λ‖X̄S‖vec(1))}
= sup{〈PΩ̄⊥(G),PΩ̄⊥(∆S)〉
− 〈PΩ̄⊥(Q),PΩ̄⊥(∆S)〉 : G ∈ ∂XS (λ‖X̄S‖vec(1))}

= λ‖PΩ̄⊥(∆S)‖vec(1) − 〈PΩ̄⊥(Q),PΩ̄⊥(∆S)〉
≥ λ‖PΩ̄⊥(∆S)‖vec(1)

− ‖PΩ̄⊥(Q)‖vec(∞)‖PΩ̄⊥(∆S)‖vec(1)

≥ λ(1− 1/c)‖PΩ̄⊥(∆S)‖vec(1)
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where the second-to-last inequality uses the duality of
‖ · ‖vec(1) and ‖ · ‖vec(∞) and Proposition 3. Similarly,

‖X̄L −∆L‖∗ − ‖X̄L‖∗ − 〈Q,∆L〉
≥ (1− 1/c)‖PT̄⊥(∆L)‖∗

by noting the duality of ‖ · ‖∗ and ‖ · ‖2→2. Combining
these gives the desired inequality.

IV. RANK-SPARSITY INCOHERENCE

Throughout this section, we fix a target (X̄S , X̄L) ∈
Rm×n ×Rm×n, and let Ω̄ := Ω(X̄S) and T̄ := T (X̄L).
Also let Ū and V̄ be, respectively, matrices of the left and
right singular vectors of X̄L corresponding to non-zero
singular values. Recall the following structural properties
of X̄S and X̄L:

α(ρ) := ‖ sign(X̄S)‖](ρ)
= max{ρ‖ sign(X̄S)‖1→1, ρ

−1‖ sign(X̄S)‖∞→∞};
β(ρ) := ρ−1‖Ū Ū>‖vec(∞) + ρ‖V̄ V̄ >‖vec(∞)

+ ‖Ū‖2→∞‖V̄ ‖2→∞;

γ := ‖ orth(X̄L)‖vec(∞) = ‖Ū V̄ >‖vec(∞).

The parameter ρ is a balancing parameter to handle
disparity between row and column dimensions. The
quantity α(ρ) is the maximum number of non-zero
entries in any single row or column. The quantities β(ρ)
and γ measure the coherence of the singular vectors of
X̄L, that is, the alignment of the singular vectors with
the coordinate basis. For instance, under the conditions
of Proposition 1, we have (with ρ =

√
n/m)

α(ρ) ≤ c1
√
mn,

β (ρ) ≤ 3c2 rank(X̄L)√
mn

and γ ≤ c2 rank(X̄L)√
mn

for some constants c1 and c2.

A. Operator norms of projection operators

We show that under the condition infρ>0 α(ρ)β(ρ) <
1, the pair (X̄S , X̄L) is identifiable from its sum X̄S +
X̄L (Theorem 1). This is achieved by proving that the
composition of projection operators PΩ̄ and PT̄ is a
contraction as per Lemma 1, which in turn implies that
Ω̄ ∩ T̄ = {0}.

The following two lemmas bound the projection op-
erators PΩ̄ and PT̄ in complementary norms.

Lemma 7. For any M ∈ Rm×n and p ∈ {1,∞}, we
have

‖PΩ̄(M)‖p→p ≤ ‖ sign(X̄S)‖p→p‖M‖vec(∞).

This implies, for all ρ > 0,

‖PΩ̄‖vec(∞)→](ρ) ≤ α(ρ).

Proof: Define s(XS) ∈ {0, 1}m×n to be the entry-
wise absolute value of sign(XS). We have

‖PΩ̄(M)‖p→p = max{‖PΩ̄(M)v‖p : ‖v‖p ≤ 1}
≤ ‖PΩ̄(M)‖vec(∞)

max{‖s(PΩ̄(M))v‖p : ‖v‖p ≤ 1}
≤ ‖M‖vec(∞)

max{‖s(X̄S)v‖p : ‖v‖p ≤ 1}
= ‖M‖vec(∞)‖ sign(X̄S)‖p→p.

The second part follows from the definitions of ‖ · ‖](ρ)
and α(ρ).

Lemma 8. For any M ∈ Rm×n, we have

‖PT̄ (M)‖vec(∞)

≤ ‖Ū Ū>‖vec(∞)‖M‖1→1 + ‖V̄ V̄ >‖vec(∞)‖M‖∞→∞
+ ‖Ū‖2→∞‖V̄ ‖2→∞‖M‖2→2.

This implies, for all ρ > 0,

‖PT̄ ‖](ρ)→vec(∞) ≤ β(ρ).

Proof: We have ‖PT̄ (M)‖vec(∞) = ‖Ū Ū>M +
MV̄ V̄ > − Ū Ū>MV̄ V̄ >‖vec(∞) ≤ ‖Ū Ū>M‖vec(∞) +
‖MV̄ V̄ >‖vec(∞) + ‖Ū Ū>MV̄ V̄ >‖vec(∞) by the trian-
gle inequality. The bounds for each term now follow
from the definitions:

‖Ū Ū>M‖vec(∞) = max
i
‖M>Ū Ū>ei‖∞

≤ ‖M>‖∞→∞max
i
‖Ū Ū>ei‖∞

= ‖M‖1→1‖Ū Ū>‖vec(∞);

‖MV̄ V̄ >‖vec(∞) = max
j
‖MV̄ V̄ >ej‖∞

≤ ‖M‖∞→∞max
j
‖V̄ V̄ >ej‖∞

= ‖M‖∞→∞‖V̄ V̄ ‖vec(∞);

and

‖Ū Ū>MV̄ V̄ >‖vec(∞)

= max
i,j
|e>i Ū(Ū>MV̄ )V̄ >ej |

≤ max
i,j
‖Ū>ei‖2‖Ū>MV̄ ‖2→2‖V̄ >ej‖2

≤ ‖M‖2→2‖Ū‖2→∞‖V̄ ‖2→∞
≤ ‖M‖](ρ)‖Ū‖2→∞‖V̄ ‖2→∞

where the second step follows by Cauchy-Schwarz, and
the fourth step follows from Lemma 2. The second part
now follows the definition of β(ρ).
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Now we show that the composition of PΩ̄ and PT̄
gives a contraction under the certain norms and their
duals.

Lemma 9. For all ρ > 0,
1) ‖PΩ̄ ◦ PT̄ ‖](ρ)→](ρ) ≤ α(ρ)β(ρ);
2) ‖PT̄ ◦ PΩ̄‖vec(∞)→vec(∞) ≤ α(ρ)β(ρ);

Proof: Immediate from Lemma 7 and Lemma 8.

Lemma 10. For all ρ > 0,
1) ‖PT̄ ◦ PΩ̄‖[(ρ)→[(ρ) ≤ α(ρ)β(ρ);
2) ‖PΩ̄ ◦ PT̄ ‖vec(1)→vec(1) ≤ α(ρ)β(ρ).

Proof: First note that (PT̄ ◦ PΩ̄)∗ = P∗
Ω̄
◦ P∗

T̄
=

PΩ̄ ◦ PT̄ because PΩ̄ and PT̄ are self-adjoint, and
similarly (PΩ̄ ◦PT̄ )∗ = PT̄ ◦PΩ̄. Now the claim follows
by Proposition 3 and Lemma 9, using the facts that
‖ · ‖[(ρ) is dual to ‖ · ‖](ρ) and that ‖ · ‖vec(1) is dual
to ‖ · ‖vec(∞).

Note that Lemma 1 is encompassed by Lemma 10.
Another consequence of these contraction properties is
the following uncertainty principle, analogous to one
stated by [1], which effectively states that a matrix X
cannot have both ‖ sign(X)‖](ρ) and ‖ orth(X)‖vec(∞)

simultaneously small.

Theorem 4. If X = X̄S = X̄L 6= 0, then
infρ>0 α(ρ)β(ρ) ≥ 1.

Proof: Note that the non-zero element X lives in
Ω̄∩ T̄ , so we get the conclusion by the contrapositive of
Theorem 1.

B. Dual certificate

The incoherence properties allow us to construct an
approximate dual certificate (QΩ̄, QT̄ ) ∈ Ω̄ × T̄ that is
central to the analysis of the optimization problems (1)
and (2).

The certificate is constructed as the solution to the
linear system{

PΩ̄(QΩ̄ +QT̄ + µ−1E) = λ sign(X̄S)
PT̄ (QΩ̄ +QT̄ + µ−1E) = orth(X̄L)

for some matrix E ∈ Rm×n; this can be equivalently
written as[
I PΩ̄

PT̄ I

][
QΩ̄

QT̄

]
=

[
λ sign(X̄S)− µ−1PΩ̄(E)

orth(X̄L)− µ−1PT̄ (E)

]
.

We show the existence of the dual certificate (QΩ̄, QT̄ )
under the conditions (3), (4), and (5) relative to an
arbitrary matrix E. Recall that the recovery guarantees
for the constrained formulation requires the conditions

with E = 0, while the guarantees for the regularized
formulation takes E = Y − (X̄S + X̄L).

Theorem 5. Pick any c > 1, ρ > 0, and E ∈ Rm×n.
Let k̄ := | supp(X̄S)| and r̄ := rank(X̄L). Let

ε2→2 := ‖E‖2→2

εvec(∞) := ‖E‖vec(∞) + ‖PT̄ (E)‖vec(∞).

If the following conditions hold:

α(ρ)β(ρ) < 1 (13)

λ ≤ (1− α(ρ)β(ρ))(1− c · µ−1ε2→2)

c · α(ρ)

−
α(ρ)µ−1εvec(∞) + α(ρ)γ

α(ρ)
(14)

λ ≥ c ·
γ + µ−1(2− α(ρ)β(ρ))εvec(∞)

1− α(ρ)β(ρ)− c · α(ρ)β(ρ)
> 0 (15)

(these are a restatement of (3), (4), and (5)), then

QΩ̄ := (I − PΩ̄ ◦ PT̄ )−1
(
λ sign(X̄S)− PΩ̄(orth(X̄L))

− µ−1(PΩ̄ ◦ PT̄⊥)(E)
)
∈ Ω̄ and

QT̄ := (I − PT̄ ◦ PΩ̄)−1
(
orth(X̄L)− λPT̄ (sign(X̄S))

− µ−1(PT̄ ◦ PΩ̄⊥)(E)
)
∈ T̄

are well-defined and satisfy

PΩ̄(QΩ̄ +QT̄ + µ−1E) = λ sign(X̄S)
PT̄ (QΩ̄ +QT̄ + µ−1E) = orth(X̄L)

and

‖PΩ̄⊥(QΩ̄ +QT̄ + µ−1E)‖vec(∞) ≤ λ/c
‖PT̄⊥(QΩ̄ +QT̄ + µ−1E)‖2→2 ≤ 1/c.

Moreover,

‖QΩ̄‖2→2 ≤
α(ρ)

1− α(ρ)β(ρ)
·
(
λ+ γ + µ−1εvec(∞)

)
‖QT̄ ‖2→2 ≤

2α(ρ)

1− α(ρ)β(ρ)
·
(
λ+ γ + µ−1εvec(∞)

)
+ 1 + 2µ−1ε2→2

‖QT̄ ‖∗ ≤ 2r̄‖QT̄ ‖2→2

‖QT̄ ‖vec(∞) ≤
1

1− α(ρ)β(ρ)
·
(
λ+ γ + µ−1εvec(∞)

)
‖QΩ̄‖vec(∞) ≤

2

1− α(ρ)β(ρ)
·
(
λ+ γ + µ−1εvec(∞)

)
‖QΩ̄‖vec(1) ≤ k̄‖QΩ̄‖vec(∞)

‖QΩ̄ +QT̄ ‖2vec(2) ≤ λ‖QΩ̄‖vec(1)

(
1 + µ−1λ−1εvec(∞)

)
+ ‖QT̄ ‖∗

(
1 + 2µ−1ε2→2

)
.

Remark 1. The dual certificate constitutes an approxi-
mate subgradient in the sense that QΩ̄ + QT̄ + µ−1E
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is a subgradient of both λ‖XS‖vec(1) at XS = X̄S , and
‖XL‖∗ at XL = X̄L.

Proof: Under the condition (13), we have
α(ρ)β(ρ) < 1, and therefore Lemma 9 and Lemma 4
imply that the operators I −PΩ̄ ◦ PT̄ and I −PT̄ ◦ PΩ̄

are invertible and satisfy

‖(I − PΩ̄ ◦ PT̄ )−1‖](ρ)→](ρ) ≤
1

1− α(ρ)β(ρ)
,

‖(I − PT̄ ◦ PΩ̄)−1‖vec(∞)→vec(∞) ≤
1

1− α(ρ)β(ρ)
.

Thus QΩ̄ and QT̄ are well-defined. We can bound
‖QΩ̄‖2→2 as

‖QΩ̄‖2→2 ≤ ‖QΩ̄‖](ρ) (Lemma 2)

=
∥∥(I − PΩ̄ ◦ PT̄ )−1

(
λ sign(X̄S)− PΩ̄(orth(X̄L))

− µ−1(PΩ̄ ◦ PT̄⊥)(E)
)∥∥
](ρ)

≤ 1

1− α(ρ)β(ρ)
·
∥∥λ sign(X̄S)− PΩ̄(orth(X̄L))

− µ−1(PΩ̄ ◦ PT̄⊥)(E)
∥∥
](ρ)

≤ 1

1− α(ρ)β(ρ)
·
(
λ‖ sign(X̄S)‖](ρ)

+ ‖PΩ̄(orth(X̄L))‖](ρ) + µ−1‖(PΩ̄ ◦ PT̄⊥)(E)‖](ρ)
)

≤ α(ρ)

1− α(ρ)β(ρ)
·
(
λ+ γ + µ−1‖PT̄⊥(E)‖vec(∞)

)
(Lemma 7)

≤ α(ρ)

1− α(ρ)β(ρ)
·
(
λ+ γ + µ−1εvec(∞)

)
.

Above, we have used the bound ‖PT̄⊥(E)‖vec(∞) =
‖E − PT̄ (E)‖vec(∞) ≤ εvec(∞). Therefore,

‖PT̄⊥(QΩ̄ + µ−1E)‖2→2

≤ ‖(I − Ū Ū>)QΩ̄(I − V̄ V̄ >)‖2→2 +
‖PT̄⊥(E)‖2→2

µ

≤ ‖QΩ̄‖2→2 + µ−1ε2→2

≤ α(ρ)

1− α(ρ)β(ρ)
· (λ+ γ + µ−1εvec(∞)) + µ−1ε2→2.

The condition (14) now implies that this quantity is at
most 1/c.

Now we bound ‖QT̄ ‖vec(∞) as

‖QT̄ ‖vec(∞)

=
∥∥(I − PT̄ ◦ PΩ̄)−1

(
orth(X̄L)− λPT̄ (sign(X̄S)

− µ−1(PT̄ ◦ PΩ̄⊥)(E)
)∥∥

vec(∞)

≤ 1

1− α(ρ)β(ρ)
·
∥∥orth(X̄L)− λPT̄ (sign(X̄S)

− µ−1(PT̄ ◦ PΩ̄⊥)(E)
∥∥

vec(∞)

≤ 1

1− α(ρ)β(ρ)
·
(
‖ orth(X̄L)‖vec(∞)

+ λ‖PT̄ (sign(X̄S))‖vec(∞)

+ µ−1‖(PT̄ ◦ PΩ̄⊥)(E)‖vec(∞)

)
≤ 1

1− α(ρ)β(ρ)
·
(
γ + λα(ρ)β(ρ) + µ−1εvec(∞)

)
(Lemma 9).

Above, we have used the bound ‖(PT̄ ◦
PΩ̄⊥)(E)‖vec(∞) = ‖PT̄ (E)− (PT̄ ◦ PΩ̄)(E)‖vec(∞) ≤
‖PT̄ (E)‖vec(∞) + α(ρ)β(ρ)‖E‖vec(∞) ≤ εvec(∞).
Therefore,

‖PΩ̄⊥(QT̄ + µ−1E)‖vec(∞)

≤ ‖QT̄ ‖vec(∞) + µ−1‖PΩ̄⊥(E)‖vec(∞)

≤ 1

1− α(ρ)β(ρ)
·
(
γ + λα(ρ)β(ρ) + µ−1εvec(∞)

)
+ µ−1εvec(∞).

The condition (15) now implies that this quantity is at
most λ/c.

We also have

‖QT̄ ‖2→2 = ‖PT̄ (QΩ̄ + µ−1E)− orth(X̄L)‖2→2

≤ 2α(ρ)

1− α(ρ)β(ρ)
·
(
λ+ γ + µ−1εvec(∞)

)
+ 1 + 2µ−1ε2→2

since ‖PT̄ (QΩ̄)‖2→2 ≤ 2‖QΩ̄‖2→2 and ‖PT̄ (E)‖2→2 ≤
2ε2→2 by Lemma 5, and

‖QΩ̄‖vec(∞) = ‖PΩ̄(QT̄ + µ−1E)− λ sign(X̄S)‖vec(∞)

≤ 1

1− α(ρ)β(ρ)
·
(
λ+ γ + µ−1εvec(∞)

)
+ λ+ µ−1εvec(∞).

The bounds on ‖QT̄ ‖∗ and ‖QΩ̄‖vec(1) follow from
the facts that rank(QT̄ ) ≤ 2r̄ and ‖ supp(QΩ̄)‖ ≤ k̄.
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Finally,

‖QΩ̄ +QT̄ ‖2vec(2)

= 〈QΩ̄,PΩ̄(QΩ̄ +QT̄ )〉+ 〈QT̄ ,PT̄ (QΩ̄ +QT̄ )〉
= 〈QΩ̄, λPΩ̄(sign(X̄S))− µ−1PΩ̄(E)〉

+ 〈QT̄ ,PT̄ (orth(X̄L))− µ−1PT̄ (E)〉
≤ λ‖QΩ̄‖vec(1)

(
1 + µ−1λ−1‖PΩ̄(E)‖vec(∞)

)
+ ‖QT̄ ‖∗

(
1 + µ−1‖PT̄ (E)‖2→2

)
≤ λ‖QΩ̄‖vec(1)

(
1 + µ−1λ−1εvec(∞)

)
+ ‖QT̄ ‖∗

(
1 + 2µ−1ε2→2

)
.

V. ANALYSIS OF CONSTRAINED FORMULATION

Throughout this section, we fix a target decomposition
(X̄S , X̄L) that satisfies the constraints of (1), and let
(X̂S , X̂L) be the optimal solution to (1). Let ∆S :=
X̂S − X̄S and ∆L := X̂L − X̄L. We show that under
the conditions of Theorem 5 with E = 0 (recall that
this does not mean we assume Y − X̄S − X̄L = 0) and
appropriately chosen λ, solving (1) accurately recovers
the target decomposition (X̄S , X̄L).

We decompose the errors into symmetric and anti-
symmetric parts ∆avg := (∆S + ∆L)/2 and ∆mid :=
(∆S −∆L)/2. The constraints allow us to easily bound
∆avg, so most of the analysis involves bounding ∆mid

in terms of ∆avg.

Lemma 11. ‖∆avg‖vec(1) ≤ εvec(1) and ‖∆avg‖∗ ≤ ε∗.

Proof: Since both (X̂S , X̂L) and (X̄S , X̄L) are
feasible solutions to (1), we have for ♦ ∈ {vec(1), ∗},

‖∆avg‖♦ = 1/2‖∆S + ∆L‖♦
= 1/2‖(X̂S + X̂L − Y )− (X̄S + X̄L − Y )‖♦
≤ 1/2

(
‖X̂S + X̂L − Y ‖♦ + ‖X̄S + X̄L − Y ‖♦

)
≤ ε♦.

Lemma 12. Assume the conditions of Theorem 5 hold
with E = 0. We have

λ‖PΩ̄⊥(∆mid)‖vec(1) + ‖PT̄⊥(∆mid)‖∗
≤ (1− 1/c)−1

(
λ‖∆avg‖vec(1) + ‖∆avg‖∗

)
.

Proof: Let Q := QΩ̄ + QT̄ be the dual certificate
guaranteed by Theorem 5. Note that Q satisfies the
conditions of Lemma 6, so we have

λ‖X̄S + ∆mid‖vec(1) + ‖X̄L −∆mid‖∗
− λ‖X̄S‖vec(1) − ‖X̄L‖∗
≥ (1− 1/c)

(
λ‖PΩ̄⊥(∆mid)‖vec(1) + ‖PT̄⊥(∆mid)‖∗

)
.

Using the triangle inequality, we have

λ‖X̂S‖vec(1) + ‖X̂L‖∗
= λ‖X̄S + ∆S‖vec(1) + ‖X̄L + ∆L‖∗
= λ‖X̄S + ∆mid + ∆avg‖vec(1)

+ ‖X̄L −∆mid + ∆avg‖∗
≥ λ‖X̄S + ∆mid‖vec(1) − λ‖∆avg‖vec(1)

+ ‖X̄L −∆mid‖∗ − ‖∆avg‖∗.

Now using the fact that λ‖X̂S‖vec(1) + ‖X̂L‖∗ ≤
λ‖X̄S‖vec(1) + ‖X̄L‖∗ gives the claim.

Lemma 13. Let k̄ := | supp(X̄S)|. Assume the condi-
tions of Theorem 5 hold with E = 0. We have

‖PΩ̄(∆mid)‖vec(1)

≤ (1− 1/c)−1

1− α(ρ)β(ρ)
· (‖∆avg‖vec(1) + ‖∆avg‖∗/λ).

Proof: Because ∆mid = PΩ̄(∆mid) +
PΩ̄⊥(∆mid) = PT̄ (∆mid) + PT̄⊥(∆mid), we have
the equation

PΩ̄(∆mid)−PT̄ (∆mid) = −PΩ̄⊥(∆mid)+PT̄⊥(∆mid).

Separately applying PΩ̄ and PT̄ to both sides gives

[
I PΩ̄

PT̄ I

] [
PΩ̄(∆mid)
−PT̄ (∆mid)

]
=

[
(PΩ̄ ◦ PT̄⊥)(∆mid)
−(PT̄ ◦ PΩ̄⊥)(∆mid)

]
.

Under the condition α(ρ)β(ρ) < 1, Lemma 10 and
Lemma 4 imply that

‖(I − PΩ̄ ◦ PT̄ )−1‖vec(1)→vec(1) ≤
1

1− α(ρ)β(ρ)

and that

PΩ̄(∆mid) = (I − PΩ̄ ◦ PT̄ )−1
(
(PΩ̄ ◦ PT̄⊥)(∆mid)

+ (PΩ̄ ◦ PT̄ ◦ PΩ̄⊥)(∆mid)
)
.

13



Therefore

‖PΩ̄(∆mid)‖vec(1)

≤ 1

1− α(ρ)β(ρ)
·
(
‖(PΩ̄ ◦ PT̄⊥)(∆mid)‖vec(1)

+ ‖(PΩ̄ ◦ PT̄ ◦ PΩ̄⊥)(∆mid)‖vec(1)

)
≤ 1

1− α(ρ)β(ρ)
·
(√

k̄ · ‖PT̄⊥(∆mid)‖vec(2)

+ α(ρ)β(ρ) · ‖PΩ̄⊥(∆mid)‖vec(1)

)
(Lemma 10)

≤ 1

1− α(ρ)β(ρ)
·
(√

k̄ · ‖PT̄⊥(∆mid)‖∗

+ α(ρ)β(ρ) · ‖PΩ̄⊥(∆mid)‖vec(1)

)
≤ (1− 1/c)−1

1− α(ρ)β(ρ)
·max

{√
k̄, α(ρ)β(ρ)/λ

}
· (λ‖∆avg‖vec(1) + ‖∆avg‖∗) (Lemma 12)

≤ (1− 1/c)−1

1− α(ρ)β(ρ)
· (‖∆avg‖vec(1) + ‖∆avg‖∗/λ)

where the last inequality uses the facts k̄ ≤ α(ρ)2,
α(ρ)β(ρ) < 1, and λα(ρ) ≤ 1 (this last inequality uses
the condition in (14)).

We now prove Theorem 2, which we restate here for
convenience.

Theorem 6 (Theorem 2 restated). Assume the conditions
of Theorem 5 hold with E = 0. We have

max{‖∆S‖vec(1), ‖∆L‖vec(1)}

≤
(

1 + (1− 1/c)−1 · 2− α(ρ)β(ρ)

1− α(ρ)β(ρ)

)
· εvec(1)

+ (1− 1/c)−1 · 2− α(ρ)β(ρ)

1− α(ρ)β(ρ)
· ε∗/λ.

If, in addition for some b ≥ ‖X̄L‖vec(∞), either:
• the optimization problem (1) is augmented with the

constraint ‖XL‖vec(∞) ≤ b (and letting X̃L :=

X̂L), or
• X̂L is post-processed by replacing [X̂L]i,j with

[X̃L]i,j := min{max{[X̂L]i,j ,−b}, b} for all i, j,
then we also have

‖X̃L−X̄L‖vec(2) ≤ min
{
‖∆L‖vec(1),

√
2b‖∆L‖vec(1)

}
.

Proof: First note that since ∆S = ∆avg + ∆mid

and ∆L = ∆avg − ∆mid, we have
max{‖∆S‖vec(1), ‖∆L‖vec(1)} ≤ ‖∆avg‖vec(1) +
‖∆mid‖vec(1). We can bound ‖∆mid‖vec(1) as

‖∆mid‖vec(1) ≤ ‖PΩ̄⊥(∆mid)‖vec(1) + ‖PΩ̄(∆mid)‖vec(1)

≤ (1− 1/c)−1 ·
(

1 +
1

1− α(ρ)β(ρ)

)
· (‖∆avg‖vec(1) + ‖∆avg‖∗/λ)

by Lemma 12 and Lemma 13. The bounds on
‖∆S‖vec(1) and ‖∆L‖vec(1) follow from the bounds
on ‖∆mid‖vec(1), ‖∆avg‖vec(1), and ‖∆avg‖∗ (from
Lemma 11).

If the constraint ‖XL‖vec(∞) ≤ b is added, then we
can use the facts

‖∆L‖vec(∞) ≤ ‖X̂L‖vec(∞) + ‖X̄L‖vec(∞)

≤ 2b

and

‖∆L‖vec(2) ≤
√
‖∆L‖vec(∞)‖∆L‖vec(1)

≤
√

2b‖∆L‖vec(1).

If X̂L is post-processed, then (letting clip(X̂L) be the
result of the post-processing)

|[X̃L]i,j − [X̄L]i,j | ≤ |[X̂L]i,j − [X̄L]i,j |

for all i, j, so

‖X̃L − X̄L‖vec(1) ≤ ‖∆L‖vec(1)

and

‖X̃L − X̄L‖vec(2) ≤
√

2b‖X̃L − X̄L‖vec(1)

≤
√

2b‖∆L‖vec(1).

VI. ANALYSIS OF REGULARIZED FORMULATION

Throughout this section, we fix a target decomposition
(X̄S , X̄L) that satisfies ‖X̄S − Y ‖vec(∞) ≤ b, and let
(X̂S , X̂L) be the optimal solution to (2) augmented with
the constraint ‖XS−Y ‖vec(∞) ≤ b for some b ≥ ‖X̄S−
Y ‖vec(∞) (b =∞ is allowed). Let ∆S := X̂S− X̄S and
∆L := X̂L− X̄L. We show that under the conditions of
Theorem 5 with E = Y − (X̄S + X̄L) and appropriately
chosen λ and µ, solving (2) accurately recovers the target
decomposition (X̄S , X̄L).

Lemma 14. There exists GS , GL, HS ∈ Rm×n such that
1) µ−1(X̂S + X̂L − Y ) + λGS + HS = 0;
‖GS‖vec(∞) ≤ 1;

2) µ−1(X̂S + X̂L − Y ) +GL = 0; ‖GL‖2→2 ≤ 1;
3) [HS ]i,j [∆S ]i,j ≥ 0 ∀i, j .

Proof: We express the constraint ‖XS−Y ‖vec(∞) ≤
b in (2) as 2mn constraints [XS ]i,j − Yi,j − b ≤ 0
and −[XS ]i,j + Yi,j − b ≤ 0 for all i, j. Now the
corresponding Lagrangian is

1

2µ
‖XS +XL − Y ‖2vec(2) + λ‖XS‖vec(1) + ‖XL‖∗

+ 〈Λ+, XS −Y − b1m,n〉+ 〈Λ−,−XS +Y − b1m,n〉
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where Λ+,Λ− ≥ 0 and 1m,n is the all-ones m × n
matrix. First-order optimality conditions imply that there
exists a subgradient GS of ‖XS‖vec(1) at XS = X̂S and
a subgradient GL of ‖XL‖∗ at XL = X̂L such that

µ−1(X̂S + X̂L − Y ) + λGS + (Λ+ − Λ−) = 0

and
µ−1(X̂S + X̂L − Y ) +GL = 0.

Now since ‖X̄S − Y ‖vec(∞) ≤ b, we have [X̄S ]i,j ≤
Yi,j + b and −[X̄S ]i,j ≤ −Yi,j + b. By complementary
slackness, if Λ+

i,j > 0, then [X̂S ]i,j−Yi,j−b = 0, which
means [X̂S ]i,j − [X̄S ]i,j ≥ [X̂S ]i,j − (Yi,j + b) = 0. So
Λ+
i,j [∆S ]i,j ≥ 0. Similarly, if Λ−i,j > 0, then [X̂S ]i,j −

[X̄S ]i,j ≤ 0. So Λ−i,j [∆S ]i,j ≤ 0. Therefore H := Λ+ −
Λ− satisfies Hi,j [∆S ]i,j ≥ 0.

Lemma 15. Assume the conditions of Theorem 5 hold
with E = Y − (X̄S + X̄L), and let (QΩ̄, QT̄ ) be the
dual certificate from the conclusion. We have

λ‖PΩ̄⊥(∆S)‖vec(1) + ‖PT̄⊥(∆L)‖∗
≤ (1− 1/c)−1‖QΩ̄ +QT̄ ‖2vec(2)µ/2.

Proof: Let Q := QΩ̄ + QT̄ and ∆ := ∆S + ∆L.
Since Q+ µ−1E satisfies the conditions of Lemma 6,

(1− 1/c)
(
λ‖PΩ̄⊥(∆S)‖vec(1) + ‖PT̄⊥(∆L)‖∗

)
≤ (λ‖X̂S‖vec(1) + ‖X̂L‖∗)− (λ‖X̄S‖vec(1) + ‖X̄L‖∗)
− 〈Q+ µ−1E,∆S + ∆L〉.

Furthermore, by the optimality of (X̂S , X̂L),

(λ‖X̂S‖vec(1) + ‖X̂L‖∗)− (λ‖X̄S‖vec(1) + ‖X̄L‖∗)

≤ 1

2µ
‖X̄S + X̄L − Y ‖2vec(2) −

1

2µ
‖X̂S + X̂L − Y ‖2vec(2)

=
1

2µ
‖E‖2vec(2) −

1

2µ
‖∆S + ∆L − E‖2vec(2)

=
1

2µ
(2〈E,∆〉 − 〈∆,∆〉).

Combining the inequalities gives

(1− 1/c)
(
λ‖PΩ̄⊥(∆S)‖vec(1) + ‖PT̄⊥(∆L)‖∗

)
≤ −〈Q,∆〉 − 1

2µ
〈∆,∆〉 ≤ ‖Q‖2vec(2)µ/2

where the last inequality follows by taking the maximum
value over ∆ at ∆ = −µQ.

Now we prove Theorem 3, restated below (with an
additional result for ‖∆L‖[(ρ)).

Theorem 7 (Theorem 3 restated). Let k̄ := | supp(X̄S)|
and r̄ := rank(X̄L). Assume the conditions of Theorem 5

hold with E = Y − (X̄S + X̄L), and let (QΩ̄, QT̄ ) be
the dual certificate from the conclusion. We have

(1− α(ρ)β(ρ)) · ‖∆S‖vec(1)

≤ λ−1(1− 1/c)−1‖QΩ̄ +QT̄ ‖2vec(2)µ

+ λk̄µ+ 2
√
k̄r̄µ+ k̄‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(∞),

‖∆S‖vec(2) ≤ min
{
‖∆S‖vec(1),

√
2b‖∆S‖vec(1)

}
,

‖∆L‖[(ρ) ≤ (1− 1/c)−1‖QΩ̄ +QT̄ ‖2vec(2)µ/2

+ min
{
β(ρ)‖∆S‖vec(1),

√
2r̄‖∆S‖vec(2)

}
+ ‖PT̄ (E)‖∗ + 2r̄µ,

and

‖∆L‖∗ ≤ (1− 1/c)−1‖QΩ̄ +QT̄ ‖2vec(2)µ/2

+
√

2r̄‖∆S‖vec(2) + ‖PT̄ (E)‖∗ + 2r̄µ.

Proof: From Lemma 14, we obtain GS , GL, HS ∈
Rm×n and the following equations:

λPΩ̄(GS) = −µ−1(PΩ̄(∆S) + PΩ̄(∆L)− PΩ̄(E))

− PΩ̄(HS) (16)

PT̄ (GL) = −µ−1(PT̄ (∆S) + PT̄ (∆L)− PT̄ (E))
(17)

(PΩ̄ ◦ PT̄ )(GL) = −µ−1
(
(PΩ̄ ◦ PT̄ )(∆S)

+ (PΩ̄ ◦ PT̄ )(∆L)− (PΩ̄ ◦ PT̄ )(E)
)
. (18)

Subtracting (18) from (16) gives

µ−1
(
PΩ̄(∆S)− (PΩ̄ ◦ PT̄ ◦ PΩ̄)(∆S)

− (PΩ̄ ◦ PT̄ ◦ PΩ̄⊥)(∆S) + (PΩ̄ ◦ PT̄⊥)(∆L)
)

+ PΩ̄(HS)

= −λPΩ̄(GS) + (PΩ̄ ◦ PT̄ )(GL)

+ µ−1(PΩ̄ ◦ PT̄⊥)(E).

Moreover, we have 〈sign(∆S),PΩ̄(∆S)〉 =
‖PΩ̄(∆S)‖vec(1) and 〈sign(∆S),PΩ̄(HS)〉 =
‖PΩ̄(HS)‖vec(1), so taking inner products with
sign(∆S) on both sides of the equation gives the
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following chain of inequalities:

µ−1‖PΩ̄(∆S)‖vec(1) + ‖PΩ̄(HS)‖vec(1)

≤ µ−1‖(PΩ̄ ◦ PT̄ ◦ PΩ̄)(∆S)‖vec(1)

+ µ−1‖(PΩ̄ ◦ PT̄ ◦ PΩ̄⊥)(∆S)‖vec(1)

+ µ−1‖(PΩ̄ ◦ PT̄⊥)(∆L)‖vec(1)

+ λ‖PΩ̄(GS)‖vec(1) + ‖(PΩ̄ ◦ PT̄ )(GL)‖vec(1)

+ µ−1‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(1)

≤ µ−1α(ρ)β(ρ)‖PΩ̄(∆S)‖vec(1)

+ µ−1α(ρ)β(ρ)‖PΩ̄⊥(∆S)‖vec(1) + λk̄

+ µ−1
√
k̄‖PT̄⊥(∆L)‖vec(2) +

√
k̄‖PT̄ (GL)‖vec(2)

+ µ−1k̄‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(∞)

≤ µ−1α(ρ)β(ρ)‖PΩ̄(∆S)‖vec(1)

+ µ−1α(ρ)β(ρ)‖PΩ̄⊥(∆S)‖vec(1)

+ µ−1
√
k̄‖PT̄⊥(∆L)‖vec(2)

+ λk̄ + 2
√
k̄r̄‖GL‖2→2

+ µ−1k̄‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(∞)

≤ µ−1α(ρ)β(ρ)‖PΩ̄(∆S)‖vec(1)

+ µ−1α(ρ)β(ρ)‖PΩ̄⊥(∆S)‖vec(1)

+ µ−1
√
k̄‖PT̄⊥(∆L)‖vec(2)

+ λk̄ + 2
√
k̄r̄ + µ−1k̄‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(∞).

The second and third inequalities above follow from
Lemma 5 and Lemma 10, and the fourth inequality uses
the fact that ‖GL‖2→2 ≤ 1. Rearranging the inequality
and applying Lemma 15 gives

(1− α(ρ)β(ρ)) · ‖PΩ̄(∆S)‖vec(1)

≤ α(ρ)β(ρ)‖PΩ̄⊥(∆S)‖vec(1) +
√
k̄‖PT̄⊥(∆L)‖vec(2)

+ λk̄µ+ 2
√
k̄r̄µ+ k̄‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(∞)

≤ max
{
α(ρ)β(ρ)/λ,

√
k̄
}

· (1− 1/c)−1‖QΩ̄ +QT̄ ‖2vec(2)µ/2

+ λk̄µ+ 2
√
k̄r̄µ+ k̄‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(∞)

≤ λ−1(1− 1/c)−1‖QΩ̄ +QT̄ ‖2vec(2)µ/2

+ λk̄µ+ 2
√
k̄r̄µ+ k̄‖(PΩ̄ ◦ PT̄⊥)(E)‖vec(∞)

since k̄ ≤ α(ρ)2, α(ρ)β(ρ) < 1, and λα(ρ) ≤ 1. Now
we combine this with ‖∆S‖vec(1) ≤ ‖PΩ̄⊥(∆S)‖vec(1)+
‖PΩ̄(∆S)‖vec(1) and Lemma 15 to get the first bound.

For the second bound, we use the facts
‖∆S‖vec(∞) ≤ ‖X̂S−Y ‖vec(∞)+‖X̄S−Y ‖vec(∞) ≤ 2b
and ‖∆S‖vec(2) ≤

√
‖∆S‖vec(1)‖∆S‖vec(∞) ≤√

2b‖∆S‖vec(1).

For the third and fourth bounds, we obtain from (17)

‖PT̄ (∆L)‖[(ρ)
≤ ‖PT̄ (∆S)‖[(ρ) + ‖PT̄ (E)‖[(ρ) + µ‖PT̄ (GL)‖[(ρ)
≤ ‖PT̄ ‖vec(1)→[(ρ)‖∆S‖vec(1) + ‖PT̄ (E)‖∗

+ µ‖PT̄ (GL)‖∗ (Lemma 3)
= ‖P∗T̄ ‖](ρ)→vec(∞)‖∆S‖vec(1) + ‖PT̄ (E)‖∗

+ µ‖PT̄ (GL)‖∗ (Proposition 3)
≤ β(ρ)‖∆S‖vec(1) + ‖PT̄ (E)‖∗ + µ‖PT̄ (GL)‖∗

(Lemma 8)
≤ β(ρ)‖∆S‖vec(1) + ‖PT̄ (E)‖∗ + 2r̄µ

(Lemma 5 and ‖GL‖2→2 ≤ 1)

and

‖PT̄ (∆L)‖∗
≤ ‖PT̄ (∆S)‖∗ + ‖PT̄ (E)‖∗ + µ‖PT̄ (GL)‖∗
≤
√

2r̄‖∆S‖vec(2) + ‖PT̄ (E)‖∗ + 2r̄µ

(Lemma 5 and ‖GL‖2→2 ≤ 1).

Now we combine these with

‖∆L‖[(ρ) ≤ ‖PT̄⊥(∆L)‖[(ρ) + ‖PT̄ (∆L)‖[(ρ)
≤ ‖PT̄⊥(∆L)‖∗

+ min{‖PT̄ (∆L)‖∗, ‖PT̄ (∆L)‖[(ρ)}
(Lemma 3)

‖∆L‖∗ ≤ ‖PT̄⊥(∆L)‖∗ + ‖PT̄ (∆L)‖∗
and Lemma 15.

Note that we have an error bound for ∆L in ‖ · ‖[(ρ)
norm, which can be significantly smaller than the bound
for the trace norm of ∆L.

ACKNOWLEDGMENT

We thank Emmanuel Candès for clarifications about
the results in [3].

REFERENCES

[1] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky,
“Rank-Sparsity Incoherence for Matrix Decomposition,” ArXiv e-
prints, Jun. 2009.

[2] V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky, “Latent
Variable Graphical Model Selection via Convex Optimization,”
ArXiv e-prints, Aug. 2010.

[3] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust Principal
Component Analysis?” ArXiv e-prints, Dec. 2009.

[4] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
J. Royal. Statist. Soc B., vol. 58, no. 1, pp. 267–288, 1996.

[5] M. Fazel, “Matrix rank minimization with applications,” Ph.D.
dissertation, Department of Electrical Engineering, Stanford Uni-
versity, 2002.

[6] E. Candès and R. Recht, “Exact matrix completion via convex op-
timization,” Foundations of Computational Mathematics, vol. 9,
pp. 717–772, 2009.

16



[7] D. Gross, “Recovering low-rank matrices from few coefficients
in any basis,” ArXiv e-prints, Oct. 2009.

[8] Z. Zhou, X. Li, J. Wright, E. J. Candès, and Y. Ma, “Stable
principal component pursuit,” in Proceedings of International
Symposium on Information Theory, 2010.

[9] A. Ganesh, J. Wright, X. Li, E. J. Candès, and Y. Ma., “Dense
error correction for low-rank matrices via principal component
pursuit,” in Proceedings of International Symposium on Informa-
tion Theory, 2010.

[10] K. R. Davidson and S. J. Szarek, “Local operator theory, random
matrices and banach spaces,” in Handbook of the geometry of
Banach spaces, Vol. I, 2001, pp. 317–366.

[11] G. A. Watson, “Characterization of the subdifferential of some
matrix norms,” Linear Algebra and Applications, vol. 170, pp.
1039–1053, 1992.

Daniel Hsu received a B.S. in Computer Science and Engineering from
the University of California, Berkeley in 2004 and a Ph.D. in Computer
Science from the University of California, San Diego in 2010. He is
currently a postdoctoral scholar at Rutgers University and a visiting
scholar at the Wharton School of the University of Pennsylvania. His
research interests are in algorithmic statistics and machine learning.

Sham M. Kakade is currently an associate professor of statistics at
the Wharton School at the University of Pennsylvania. He received
his B.A. in Physics from the California Institute of Technology and
his Ph.D. from the Gatsby Computational Neuroscience Unit affiliated
with University College London. He spent the following two years
as a Postdoctoral Researcher at the Department of Computer and
Information Science at the University of Pennsylvania. Subsequently,
he joined the Toyota Technological Institute, where he was an assistant
professor for four years. He is now an associate professor at the
Wharton Statistics Department at UPenn. His research focuses on
artificial intelligence and machine learning, and their connections to
other areas such as game theory and economics.

Tong Zhang received a B.A. in Mathematics and Computer Science
from Cornell University in 1994 and a Ph.D. in Computer Science from
Stanford University in 1998. After graduation, he worked at IBM T.J.
Watson Research Center in Yorktown Heights, New York, and Yahoo
Research in New York city. He is currently a professor of statistics
at Rutgers University. His research interests include machine learning,
algorithms for statistical computation, their mathematical analysis and
applications.

17


	Introduction
	Related work
	Outline

	Main results
	Optimization formulations
	Identifiability conditions
	Recovery guarantees
	Examples
	Random models
	Principal component analysis with sparse corruptions


	Technical preliminaries
	Norms, inner products, and projections
	Entry-wise norms
	Inner products, linear operators, and orthogonal projections
	Induced norms
	Other norms
	Dual pairs
	Some lemmas

	Projection operators and subdifferential sets

	Rank-sparsity incoherence
	Operator norms of projection operators
	Dual certificate

	Analysis of constrained formulation
	Analysis of regularized formulation
	References
	Biographies
	Daniel Hsu
	Sham M. Kakade
	Tong Zhang


