
1

Adaptive Forward-Backward Greedy Algorithm for
Learning Sparse Representations

Tong Zhang, Member, IEEE,

Abstract—Given a large number of basis functions that can
be potentially more than the number of samples, we consider
the problem of learning a sparse target function that can be
expressed as a linear combination of a small number of these
basis functions. We are interested in two closely related themes

• feature selection, or identifying the basis functions with non-
zero coefficients;

• estimation accuracy, or reconstructing the target function
from noisy observations.

Two heuristics that are widely used in practice are forward and
backward greedy algorithms. First, we show that neither idea
is adequate. Second, we propose a novel combination that is
based on the forward greedy algorithm but takes backward steps
adaptively whenever beneficial. For least squares regression, we
develop strong theoretical results for the new procedure showing
that it can effectively solve this problem under some assumptions.
Experimental results support our theory.

Index Terms—Estimation theory, feature selection, greedy
algorithms, statistical learning, sparse recovery

I. INTRODUCTION

Consider a set of input vectors x1, . . . ,xn ∈ Rd, with
corresponding desired output variables y1, . . . , yn. The task of
supervised learning is to estimate the functional relationship
y ≈ f(x) between the input x and the output variable
y from the training examples {(x1, y1), . . . , (xn, yn)}. The
quality of prediction is often measured through a loss func-
tion φ(f(x), y). In this paper, we consider linear prediction
model f(x) = β>x. A commonly used estimation method is
empirical risk minimization

β̂ = arg min
β∈Rd

n∑
i=1

φ(β>xi, yi). (1)

Note that in this paper, we are mainly interested in the least
squares problem where φ(β>xi, yi) = (β>xi − yi)2.

In modern machine learning applications, one is typically
interested in the scenario that d� n. That is, there are many
more features than the number of samples. In this case, a
direct application of (1) is inadequate because the solution
of β̂ may not be unique (which is often referred to as ill-
posed in the numerical computation literature). Statistically,
the solution β̂ overfits the data. The standard remedy for this
problem is to impose a regularization condition of β to obtain
a well-posed problem. For computational reasons, one often

T. Zhang is with the Statistics Department, Rutgers University, New Jersey,
USA. E-mail: tzhang@stat.rutgers.edu. The author was partially supported
by the following grants: AFOSR-10097389, NSA-AMS 081024, NSF DMS-
1007527, and NSF IIS-1016061.

employs a convex regularization condition which leads to a
convex optimization problem of the following form:

β̂ = arg min
β∈Rd

n∑
i=1

φ(β>xi, yi) + λg(β), (2)

where λ > 0 is a tuning parameter, and g(β) is a regularization
condition, such as g(β) = ‖β‖pp.

One view of this additional regularization condition is that
it constrains the target function space, which we assume can
be approximated by some β̄ with small `p-norm ‖β̄‖p. An
important target constraint is sparsity, which corresponds to
the (non-convex) L0 regularization, where we let ‖β̄‖0 = |{j :
β̄j 6= 0}| = k. If we know the sparsity parameter k, a good
learning method is L0 regularization:

β̂ = arg min
β∈Rd

1

n

n∑
i=1

φ(β>xi, yi) (3)

subject to ‖β‖0 ≤ k.

If k is not known, then one may regard k as a tuning
parameter, which can be selected through cross-validation.
Sparse learning is an essential topic in machine learning,
which has attracted considerable interests recently. Generally
speaking, one is interested in two closely related themes:
• feature selection, or identifying the basis functions with

non-zero coefficients;
• estimation accuracy, or reconstructing the target function

from noisy observations.
If we can solve the first problem, that is, if we can perform

feature selection well, then we can also solve the second
problem. This is because after feature selection, we only need
to perform empirical risk minimization (1) with the selected
features. However, it is possible to obtain good prediction
accuracy without solving the feature selection problem.

This paper focuses on the situation that approximate feature
selection is possible. Under this scenario, we obtain results
both on feature selection accuracy and on prediction accuracy
(through oracle inequalities). Our main assumption is the
restricted isometry condition (RIC) of [7], which we shall
also refer to as the sparse eigenvalue condition in this paper.
This condition says that any small number (at the order of the
desired sparsity level) of features are not highly correlated.
In fact, if a small number of features are correlated, then
it is impossible to achieve accurate feature selection because
a sparse target may be represented using more than one set
of sparse features. Therefore the effectiveness of any feature
selection algorithm requires such a condition.

2

While L0 regularization in (3) is the most obvious formula-
tion to solve the feature selection problem if the target function
can be approximated by a sparse β̄, a fundamental difficulty
with this method is the computational cost, because the num-
ber of subsets of {1, . . . , d} of cardinality k (corresponding to
the nonzero components of β) is exponential in k. There are
no efficient algorithms to solve (3) in the general case.

Due to the computational difficult, in practice, there are
several standard methods for learning sparse representations
by solving approximations of (3). Their effectiveness has been
recently analyzed under various assumptions.
• L1-regularization (Lasso): the idea is to replace the L0

regularization in (3) by L1 regularization:

β̂ = arg min
β∈Rd

1

n

n∑
i=1

φ(β>xi, yi),

subject to ‖β‖1 ≤ s,

or equivalently, solving (2) with p = 1. This is the closest
convex approximation to (3). It is known that L1 regu-
larization often leads to sparse solutions. Its performance
has been studied recently. For example, if the target is
truly sparse, then it was shown in [19], [29] that under
some restricted conditions referred to as irrepresentable
conditions, L1 regularization solves the feature selection
problem. However, such conditions are much stronger
than RIC considered here. The prediction performance
of L1 regularization has been considered in [16], [3], [5].
Performance bounds can also be obtained when the target
function is only approximately sparse (e.g., [27], [6]).
Despite its popularity, there are several problems with L1

regularization: first, the sparsity (L0 complexity) is only
implicitly controlled through L1 approximation, which
means that desirable feature selection property can only
be achieved under relatively strong assumptions; second,
in order to obtain very sparse solution, one has to use
a large regularization parameter λ in (2) that leads to
suboptimal prediction accuracy because the L1 penalty
not only shrinks irrelevant features to zero, but also
shrinks relevant features to zero. A sub-optimal remedy
is to threshold the resulting coefficients as suggested
in [27] and to use two stage procedures. However, this
approach requires additional tuning parameters, making
the resulting procedures more complex and less robust.

• Forward greedy algorithm, which we will describe in
details in Section II. The method has been widely used
by practitioners. For least squares regression, this method
is referred to as matching pursuit [18] in the signal
processing community (also see [15], [1], [2], [9]). In
machine learning, the method is often known as boosting
[4], and similar ideas have been explored in Bayesian net-
work learning [8]. The sparse regression performance of
forward greedy algorithm has been analyzed in [23], [11]
without considering stochastic noise, while its feature
selection performance with stochastic noise has recently
been studied in [26]. It was shown that the irrepresentable
condition of [29] for L1 regularization is also necessary
for the greedy algorithm to effectively select features.

• Backward greedy algorithm, which we will describe in
details in Section II. Although this method is widely used
by practitioners, there isn’t much theoretical analysis in
the literature when n� d. The reason will be discussed
in Section II. When n � d, backward greedy may be
successful under some assumptions [10].

We shall point out that if we are only interested in prediction
performance instead of feature selection, then the problem
of learning sparse representation is also related to learning a
sparse target function under many irrelevant features, which
has long been studied in the online learning literature. In
particular, exponentiated gradient descent methods such as
Winnow are also effective [17]. However, this class of methods
do not lead to sparse solutions. More recently, sparse online
learning has attracted significant attention, and various work
showed that this is possible to achieve through online L1

regularization [12], [24]. However, such analysis only implies
an oracle inequality with O(1/

√
n) convergence rate when the

performance of online L1 regression is compared to that of
an arbitrary coefficient vector β̄. However, this performance
guarantee is suboptimal in the sparse regression setting un-
der sparse eigenvalue assumptions. For example, the oracle
inequality in this paper would imply a bound of the form of
no worse than O(‖β̄‖0 ln d/n), which converges at a faster
O(1/n) rate (see Theorem 3.1). It remains an open problem
to prove faster convergence rates for these recently proposed
online algorithms in the high dimensional sparse regression
setting.

In the batch learning setting, there has been considerable
interest in learning sparse representations, and multiple algo-
rithms have been proposed to solve the problem, satisfactory
theoretical understanding (mainly for L1 regularization) has
only appeared very recently. In this paper, we are particu-
larly interested in greedy algorithms because they have been
widely used but the effectiveness has not been well analyzed.
Moreover, they do not suffer from some shortcomings of L1

regularization which we have pointed out earlier.

As we shall explain later, neither the standard forward
greedy idea nor the standard backward greedy idea is adequate
for our purpose. However, the flaws of these methods can be
fixed by a simple combination of the two ideas. This leads to
a novel adaptive forward-backward greedy algorithm which
we present in Section III. The general idea works for all loss
functions. For least squares loss, we obtain strong theoretical
results showing that the method can solve the feature selection
problem under moderate conditions.

For clarity, this paper only considers fixed design. In such
case, the expectation Ey is always conditioned on the design
matrix X . To simplify notations in our description, we will
replace the optimization problem in (1) and (3) with a more
general formulation. Instead of working with n input data
vectors xi ∈ Rd, we work with d feature vectors fj ∈ Rn

(j = 1, . . . , d), and y ∈ Rn. Each fj corresponds to the j-th
feature component of xi for i = 1, . . . , n. That is, fj,i = xi,j .
Using this notation, we can generally rewrite (3) with the

3

problem of the following form:

β̂ = arg min
β∈Rd

Q(β),

subject to ‖β‖0 ≤ k,

where β = [β1, . . . , βd] ∈ Rd is the coefficient vector, and Q
is defined below in (4).

In the following, we also let ej ∈ Rd be the vector of
zeros, except for the j-component which is one. Throughout
the paper, we consider only the least squares loss

Q(β) =
1

n

∥∥∥∥∥∥y −
d∑
j=1

βjfj

∥∥∥∥∥∥
2

2

=
1

n
‖y −Xβ‖22 , (4)

where y> = [y1, . . . , yn] ∈ Rn, and we let X = [f1, . . . , fd]
be the n× d data matrix.

For convenience, we also introduce the following notations.
Definition 1.1: Define supp(β) = {j : βj 6= 0} as the set

of nonzero coefficients of a vector β = [β1, . . . , βd] ∈ Rd.
Given g ∈ Rn and F ⊂ {1, . . . , d}, let

β̂(F,g) = arg min
β∈Rd

1

n
‖Xβ − g‖22 subject to supp(β) ⊂ F,

and let β̂(F) = β̂(F,y) be the solution of the least squares
problem using feature set F .
Note that from the definition, Xβ̂(F,g) is simply the projec-
tion of g to the subspace spanned by {fj : j ∈ F}.

II. FORWARD AND BACKWARD GREEDY ALGORITHMS

The forward greedy algorithm has been widely used in
applications. It can be used to improve an arbitrary prediction
method or select relevant features. In the former context, it is
often referred to as boosting, and in the latter context, forward
feature selection. Although a number of variations exist, they
all share the basic form of greedily picking an additional
feature at every step to aggressively reduce the squared error.
The intention is to make most significant progress at each
step in order to achieve sparsity. In this regard, the method
can be considered as an approximation algorithm for solving
(3). An example algorithm is presented in Figure 1. This
particular algorithm performs a full optimization using the
selected basis function at each step, and is often referred
to as orthogonal matching pursuit or OMP. This per-step
optimization is important in our analysis.

Input: f1, . . . , fd,y ∈ Rn and ε > 0
Output: F (k) and β(k)

let F (0) = ∅ and β(0) = 0
for k = 1, 2, . . .

let i(k) = arg mini minαQ(β(k−1) + αei)
let F (k) = {i(k)} ∪ F (k−1)

let β(k) = β̂(F (k))
if (Q(β(k−1))−Q(β(k)) ≤ ε) break

end

Fig. 1. Forward Greedy Algorithm

A major flaw of this method is that it can never correct
mistakes made in earlier steps. As an illustration, we consider
the situation plotted in Figure 2 with least squares regression.
In the figure, y can be expressed as a linear combination of f1
and f2 but f3 is closer to y. Therefore using the forward greedy
algorithm, we will find f3 first, then f1 and f2. At this point,
we have already found all good features as y can be expressed
by f1 and f2, but we are not able to remove f3 selected in the
first step.

f5

y

f1

f2

f3f4

Fig. 2. Failure of Forward Greedy Algorithm

The above argument implies that forward greedy method is
inadequate for feature selection. The method only works when
small subsets of the basis functions {fj} are near orthogonal.
For example, see [23], [11] for analysis of greedy algorithm
under such assumptions without statistical noise1. Its feature
selection performance with stochastic noise has been recently
studied in [26]. In general, Figure 2 shows that even when the
variables are not completely correlated (which is the case we
consider in this paper), forward greedy algorithm will make
errors that are not corrected later on. In fact, results in [23],
[26] showed that in addition to the sparse eigenvalue condition,
a stronger irrepresentable condition (also see [29]) is necessary
for forward greedy algorithm to be successful.

For feature selection, the main problem of forward greedy
algorithm is the lack of ability to correct errors made in earlier
steps. In order to remedy the problem, the so-called backward
greedy algorithm has been widely used by practitioners. The
idea is to train a full model with all the features, and greedily
remove one feature (with the smallest increase of squared
error) at a time. The basic algorithm can be described in
Figure 3.

Although at the first sight, backward greedy method appears
to be a reasonable idea that addresses the problem of forward
greedy algorithm, it is computationally very costly because it
starts with a full model with all features. Moreover, there are
no theoretical results showing that this procedure is effective.
In fact, under our setting, the method may only work when
d � n (see, for example, [10]), which is not the case we
are interested in. In the case d � n, during the first step,
β(d) can immediately overfit the data with perfect prediction.

1Although the title in [11] claimed a treatment of noise, their definition of
noise is not random, and thus different from ours. In our terminology, their
noise only means that the target function is approximately sparse, which we
also handle. It is different from stochastic noise considered in this paper.

4

Moreover, removing any feature does not help: that is, β(d−1)

still completely overfits the data no matter which feature
(either relevant or irrelevant) is removed. Therefore the method
will completely fail when d � n, which explains why there
is no theoretical result for this method.

It should be pointed out that the fundamental problem of
backward greedy is that we cannot start with an overfitted
model. To this end, one may replace (∗) in Figure 3 by a
solution procedure that does not overfit, for example, via L1

regularization. Backward greedy combined with L1 regulariza-
tion is potentially beneficial because we can more effectively
control the sparsity of the resulting L1 regularization solution.
However, such a procedure will be computationally costly, and
its benefit is unknown. In this paper, we propose an alternative
solution by combining the strength of both forward and
backward greedy methods while avoiding their shortcomings.

Input: f1, . . . , fd,y ∈ Rn
Output: F (k) and β(k)

let F (d) = {1, . . . , d}
for k = d, d− 1, . . .

let β(k) = β̂(F (k))

let j(k) = arg minj∈F (k) Q(β̂(F (k) − {j})) (∗)
let F (k−1) = F (k) − {j(k)}

end

Fig. 3. Backward Greedy Algorithm

III. ADAPTIVE FORWARD-BACKWARD GREEDY
ALGORITHM

As we have pointed out earlier, the main strength of forward
greedy algorithm is that it always works with a sparse solution
explicitly, and thus computationally efficient. Moreover, it does
not significantly overfit the data due to the explicit sparsity.
However, a major problem is its inability to correct any error
made by the algorithm. On the other hand, backward greedy
steps can potentially correct such an error, but need to start
with a good model that does not completely overfit the data —
it can only correct errors with a small amount of overfitting.
Therefore a combination of the two can solve the fundamental
flaws of both methods. However, a key design issue is how
to implement a backward greedy strategy that is provably
effective. Some heuristics exist in the literature, although
without any effectiveness proof. For example, the standard
heuristics, described in [14] and implemented in SAS, includes
another threshold ε′ in addition to ε: a feature is deleted if
the squared error increase by performing the deletion is no
more than ε′. Unfortunately we cannot provide an effectiveness
proof for this heuristics: if the threshold ε′ is too small, then it
cannot delete any spurious features introduced in the forward
steps; if it is too large, then one cannot make progress because
good features are also deleted. In practice it can be hard to
pick a good ε′, and even the best choice may be ineffective.

This paper takes a more principled approach, where we
specifically design a forward-backward greedy procedure with
adaptive backward steps that are carried out automatically.
The procedure has provably good performance and fixes the

drawbacks of forward greedy algorithm illustrated in Figure 2.
There are two main considerations in our approach.
• We want to take reasonably aggressive backward steps to

remove any errors caused by earlier forward steps, and
to avoid maintaining a large number of basis functions.

• We want to take backward step adaptively and make
sure that any backward greedy step does not erase the
gain made in the forward steps. This ensures that we are
always making progress.

Input: f1, . . . , fd,y ∈ Rn and ε > 0
Output: F (k) and β(k)

let ν = 0.5 (it can also be any number in (0, 1))
let F (0) = ∅ and β(0) = 0
let k = 0
while (true)

// forward step
let i(k) = arg mini minαQ(β(k) + αei)
let F (k+1) = {i(k)} ∪ F (k)

let β(k+1) = β̂(F (k+1))
let δ(k+1) = Q(β(k))−Q(β(k+1))
if (δ(k+1) ≤ ε)

break
end
let k = k + 1
// backward step
while (true)

let j(k) = arg minj∈F (k) Q(β(k) − β(k)
j ej)

let d− = [Q(β(k) − β(k)

j(k)ej(k))−Q(β(k))]

let d+ = δ(k)

if (d− > νd+)
break

end
let k = k − 1
let F (k) = F (k+1) − {j(k+1)}
let β(k) = β̂(F (k))

end
end

Fig. 4. FoBa: Adaptive Forward-Backward Greedy Algorithm

Our algorithm, which we refer to as FoBa, is listed in
Figure 4. It is designed to balance the above two aspects.
Note that we only take a backward step when the squared
error increase (d−) is no more than half of the squared error
decrease in the earlier corresponding forward step (d+). This
implies that if we take ` forward steps, then no matter how
many backward steps are performed, the squared error is
decreased by at least an amount of `ε/2. It follows that if
Q(β) ≥ 0 for all β ∈ Rd, then the algorithm terminates after
no more than 2Q(0)/ε steps. This means that the procedure
is computationally efficient.

Proposition 3.1: When the FoBa procedure terminates in
Figure 4, the total number of forward steps is no more than
1 + 2Q(0)/ε. Moreover, the total number of backward steps
is no more than the total number of forward steps.

According to our theoretical results (e.g. Theorem 3.1

5

below), in order to achieve optimal performance, when the
sample size n increases, we should decrease the stopping
parameter ε as ε = O(σ2 ln d/n) (where σ2 is the variance
of the noise). This implies that in general, the algorithm takes
more steps to reach optimal performance when the sample
size n increases. However, the number of steps presented
in Proposition 3.1 is not tight. For example, in the scenario
that FoBa can select all features correctly, it is possible for
FoBa to take a constant number of steps to achieve correct
feature selection independent of the sample size. Since sharp
numerical convergence bound for FoBa is not the focus of the
current paper, we shall not include a more refined analysis
here.

Note that the claim of Proposition 3.1 (as well as the
later theoretical analysis) still holds if we employ a more
aggressive backward strategy as follows: set d− = d+ = 0
at the beginning of the backward step, and update the quan-
tities as d− = d− + [Q(β(k) − β

(k)

j(k)ej(k)) − Q(β(k))] and
d+ = d+ + δ(k). That is, d− and d+ are cumulative changes
of squared error.

Now, consider an application of FoBa to the example in
Figure 2. Again, in the first three forward steps, we will be
able to pick f3, followed by f1 and f2. After the third step, since
we are able to express y using f1 and f2 only, by removing
f3 in the backward step, we do not increase the squared error.
Therefore at this stage, we are able to successfully remove
the incorrect basis f3 while keeping the good features f1 and
f2. This simple illustration demonstrates the effectiveness of
FoBa.

In the following, we will formally characterize this intuitive
example, and prove results for the effectiveness of FoBa for
feature selection as well as prediction accuracy under the
condition that the target is either truly sparse or approximately
sparse. Since the situation in Figure 2 is covered by our
analysis, one cannot derive a similar result for the forward
greedy algorithm. That is, the condition of our results do
not exclude forward steps from making errors. Therefore it is
essential to include backward steps in our theoretical analysis.

We introduce the following definition, which characterizes
how linearly independent small subsets of {fj} of size k are.
For k � n, the number ρ(k) defined below can be bounded
away from zero even when d� n. For example, for random
basis functions fj , we may take ln d = O(n/k) and still have
ρ(k) to be bounded away from zero. This quantity is the
smallest eigenvalue of the k × k principal submatrices of the
d×d design matrix X>X = [f>i fj]i,j=1,...,d, and has appeared
in recent analysis of L1 regularization methods such as in [5],
[25], [27], etc. It was first introduced in [7], and was referred
to as the restricted isometry condition. In this paper, we shall
also call it sparse eigenvalue condition. This condition is the
least restrictive condition when compared to other conditions
in the literature such as the irrepresentable condition [29] or
the mutual coherence condition [11] (also see discussions in
[3], [25], [27]).

Definition 3.1: Define for all integer k ≥ 1:

ρ(k) = inf

{
1

n
‖Xβ‖22/‖β‖22 : ‖β‖0 ≤ k

}
.

Assumption 3.1: Assume that the basis functions are nor-
malized such that 1

n‖fj‖
2
2 = 1 for all j = 1, . . . , d, and

assume that {yi}i=1,...,n are independent (but not necessarily
identically distributed) sub-Gaussians: there exists σ ≥ 0 such
that ∀i and ∀t ∈ R,

Eyie
t(yi−Eyi) ≤ eσ

2t2/2.

Both Gaussian and bounded random variables are sub-
Gaussian using the above definition. For example, we have
the following well-known Hoeffding’s inequality.

Proposition 3.2: If a random variable ξ ∈ [a, b], then
Eξe

t(ξ−Eξ) ≤ e(b−a)2t2/8. If a random variable is Gaussian:
ξ ∼ N(0, σ2), then Eξe

tξ ≤ eσ2t2/2.
We will present a number of theoretical results for the FoBa

algorithm. For convenience in our analysis and theoretical
statements, we shall state all results with an explicitly chosen
stopping parameter ε > 0. In real applications, one can always
run the algorithm with a smaller ε and use cross-validation to
determine the optimal stopping point.

Our first result is an oracle inequality for the estimated
coefficient vector β(k), described in the following theorem.

Theorem 3.1: Consider the FoBa algorithm in Figure 4
where Assumption 3.1 holds. Consider any approximate target
vector β̄ ∈ Rd with F̄ = supp(β̄), and k̄ = |F̄ |. Let s ≤ d
be an integer that satisfies 32(k̄ + 1) ≤ (0.8s − 2k̄)ρ(s)2.
Assume that we set ε ≥ 108ρ(s)−1σ2 ln(16d)/n in the FoBa
algorithm. Then for all η ∈ (0, 1), with probability larger than
1− η, the following statements hold.

If FoBa terminates at some k ≤ s− k̄, then

‖Xβ(k) −Ey‖22 − ‖Xβ̄ −Ey‖22
≤74σ2k̄ + 27σ2 ln(2e/η) + 18nερ(s)−1∆k(ε, s),

where ∆k(ε, s) = |{j ∈ F̄ : β̄2
j < 32ερ(s)−2}|.

If FoBa terminates at some k ≥ s − k̄, then for all k0 ∈
[0.8s − k̄, s − k̄], at the start of the forward step when FoBa
reaches k = k0 for the first time, we have

‖Xβ(k) −Ey‖22
≤‖Xβ̄ −Ey‖22 − 0.7nk̄ε+ 10.8 ln(2e/η)σ2.

In order for the theorem to apply, we require a condition
32(k̄ + 1) ≤ (0.8s − 2k̄)ρ(s)2, which can be satisfied as
long as ρ(s) is lower bounded by a constant at some sparsity
level s = O(k̄). We have already mentioned earlier that this
type of condition (some times referred to as RIC [7]), while
varying in details from one analysis to another (for example,
see [3], [21]), is standard for analyzing algorithms for high
dimensional sparsity problems such as Lasso. The details are
not important for the purpose of this paper. Therefore in our
discussion, we shall simply assume it is satisfied at some s
that is O(k̄), and focus on the consequences of our theoretical
results when this condition holds.

If we choose ε = O(σ2 ln d/n), then the worst case oracle
inequality is of the form

‖Xβ(k) −Ey‖22 ≤ ‖Xβ̄ −Ey‖22 (5)

+O
(
k̄ + ln(1/η) + ∆k(ε, s) ln d

)
σ2,

6

where ∆k(ε, s) is the number of nonzero coefficients in β̄
smaller than O(σ ln d/

√
n). This bound applies when FoBa

stops at a relatively sparse solution with k ≤ s − k̄. It is
the sharpest possible bound, as the term O(k̄+ln(1/η)) is the
parametric rate. The dimensional dependent term ln d involves
the number ∆k(ε, s) that is no more than k̄, but can be much
smaller; in fact ∆k(ε, s) = 0 when we choose a vector β̄
such that all its nonzero coefficients are larger than the order
σ ln d/

√
n.

The oracle inequality (5) is useful when FoBa stops at a
solution β(k) that is sparse. This happens when Ey ≈ Xβ̄
for some sparse approximate target vector β̄, as we will
show in Theorem 3.2. The reason we can get this sharp
oracle inequality for FoBa is because FoBa has good feature
selection property, where most coefficients larger than the
order σ ln d/

√
n can be correctly identified by the algorithm.

This point will become more clear in Theorem 3.2 and
Theorem 3.3. While the sparse regression setting is what
we are mostly interested in this paper, it is worth noting
that Theorem 3.1 can be applied even when Ey cannot be
approximated very well by Xβ̄ with any sparse coefficient
vector β̄. In fact, in such case, FoBa may not stop at k < s−k̄.
However, this is the relatively easy case because the last
displayed inequality in Theorem 3.1 shows that along the FoBa
path, the first time FoBa reaches any k ∈ [0.8s− k̄, s− k̄] we
can expect an even better oracle inequality

‖Xβ(k) −Ey‖22 ≤ ‖Xβ̄ −Ey‖22 − nk̄ε/2 (6)

as long as the chosen ε also satisfies a very mild condition

nε ≥ 54σ2

k̄
ln(2e/η).

This sharper bound might appear surprising at first. However,
the reason that we can do better than any sparse β̄ is only
because if Ey cannot be approximated by Xβ̄ with ‖β̄‖0 = k̄,
then we may find another coefficient vector with s nonzero-
coefficients that can approximate Ey much better than β̄ does.
Since the stopping criterion of FoBa guarantees that each
forward greedy step reduces Q(·) by at least ε (which in
the theorem is set to a number significantly larger than the
noise level), it is therefore possible for FoBa to achieve better
performance than that of β̄ as long as k is sufficiently large (but
not too large to cause significant overfitting). The result shows
that there is a wide range of values k ∈ [0.8s− k̄, s− k̄] that
can achieve this performance gain, and hence it is relatively
easy to identify such a k by cross-validation. Nevertheless, this
situation is of little interest in the current paper because if in
a practical application, the target cannot be well approximated
by a sparse vector, then sparse regression is not the best
model for the problem. Therefore although (6) may still be
interesting theoretically, it does not have much value for
practical purposes. Therefore we will focus on the true sparsity
case in the following analysis.

Theorem 3.1 shows that if FoBa reaches k ≥ s − k̄, then
we can obtain an oracle inequality with performance better
than that of any competitive β̄ at sparsity level ‖β̄‖0 = k̄.
The previous discussion indicates that this can only happen
when any sparse β̄ does not approximate the true target well,

which is of little interest in this paper. The following theorem
shows that if the target is approximately sparse, that is, Ey ≈
Xβ̄, then FoBa will terminate at some k that is not much
larger than k̄, when we choose ε appropriately. In such case,
the oracle inequality given in (5) is more meaningful, and
it represents the best possible performance one can achieve
in sparse regression. Again we would like to emphasize that
the fundamental reason behind this sharp oracle inequality for
the FoBa algorithm is due to the ability of FoBa to select
quality features, which is presented below in Theorem 3.3.
These results give better insights into the FoBa algorithm when
the target is sparse.

Theorem 3.2: Consider the FoBa algorithm in Figure 4 with
a stopping parameter ε > 0, where Assumption 3.1 holds.
Consider any approximate target vector β̄ ∈ Rd with F̄ =
supp(β̄), and k̄ = |F̄ |. Let s ≤ d be an integer that satisfies
8(k̄ + 1) ≤ (s− 2k̄)ρ(s)2. Then for all η ∈ (0, 1), if

nε >
2ρ(s)

k̄ + 1
‖Xβ̄ −Ey‖22

+ 5.4σ2[8ρ(s)−1 ln(16d) + ρ(s)(k̄ + 1)−1 ln(2e/η)],

then with probability larger than 1 − 2η, FoBa terminates at
k < s− k̄.

Moreover, if ε ≥ 108ρ(s)−1σ2 ln(16d)/n, then

‖Xβ(k) −Ey‖22 − ‖Xβ̄ −Ey‖22
≤74σ2k̄ + 27σ2 ln(2e/η) + 18nερ(s)−1∆k(ε, s),

where ∆k(ε, s) = |{j ∈ F̄ : β̄2
j < 32ερ(s)−2}|.

The above theorem shows that we may take

nε =O

(
2ρ(s)

k̄ + 1
‖Xβ̄ −Ey‖22

+5.4σ2[8ρ(s)−1 ln(16d) + ρ(s)(k̄ + 1)−1 ln(2e/η)]
)

so that FoBa stops at k < s− k̄. It implies an oracle inequality
of the form

‖Xβ(k) −Ey‖22 ≤ c‖Xβ̄ −Ey‖22
+O(k̄ + ln(1/η) + ln(d)∆k(ε, s))σ2

with c > 1. Although on surface, this oracle inequality is
slightly worse than (5), which has c = 1 (achieved at a poten-
tially smaller ε), the difference is only due to some technical
details in our analysis, as we shall note that Theorem 3.2 is
mostly useful when

‖Xβ̄ −Ey‖22
=O(σ2k̄ + σ2 ln(2e/η) + σ2 ln(16d)∆k(ε, s)),

which means that Ey can be approximated very well by
Xβ̄ with a sparse coefficient vector β̄. In this situation, the
oracle inequality in Theorem 3.2 is comparable to that of
Theorem 3.1. Note that if there is a sparse vector β̄ such that
Ey = Xβ̄, then Theorem 3.2 immediately implies that we can
recover the true parameter β̄ using FoBa. For completeness,
we include the following result as a direct consequence of
Theorem 3.2.

7

Corollary 3.1: If the assumptions of Theorem 3.2 hold, and
we further assume that Ey = Xβ̄, then

‖β(k) − β̄‖22 ≤74σ2ρ(s)−1k̄ + 27σ2ρ(s)−1 ln(2e/η)

+ 18nερ(s)−2∆k(ε, s),

where ∆k(ε, s) = |{j ∈ F̄ : β̄2
j < 32ερ(s)−2}|.

If Ey ≈ Xβ̄ with a sparse coefficient vector β̄, then
FoBa is able to correctly select feature coefficients that are
significantly differentiable from the noise level. This feature
selection property is the reason why we are able to obtain
the sharp form of oracle inequalities in Theorem 3.1 and
in Theorem 3.2. The feature selection quality of FoBa is
presented in Theorem 3.3. For simplicity, we only consider
the situation that Ey = Xβ̄ (although similar to Theorem 3.2,
we may allow a small approximation error).

Theorem 3.3: Consider the FoBa algorithm in Figure 4 with
some ε > 0, where Assumption 3.1 holds. Assume that the true
target vector is sparse: that is, there exists β̄ ∈ Rd such that
Xβ̄ = Ey, with F̄ = supp(β̄), and k̄ = |F̄ |. Let s ≤ d be an
integer that satisfies 8(k̄ + 1) ≤ (s − 2k̄)ρ(s)2. Then for all
η ∈ (0, 1), if

nε > 5.4σ2ρ(s)−1[8 ln(16d) + 2ρ(s)2 ln(2e/η)],

then with probability larger than 1 − 3η, FoBa terminates at
k < s− k̄, and

ρ(s)2|F (k) − F̄ |/32 ≤|F̄ − F (k)|
≤2|{j ∈ F̄ : β̄2

j < 32ερ(s)−2}|.

It is worth mentioning that in Theorem 3.2 and Theorem 3.3,
the specific choice of s is only used to show that FoBa stops
at s− k̄, and this specific choice can be improved with a more
refined analysis. Moreover, s can be replaced by any upper
bound of |F̄ ∪F (k)| when FoBa stops without changing either
the feature selection result or the oracle inequality when FoBa
terminates.

The proofs of the above theorems can be found in Ap-
pendix A. The high level idea, which relies on properties of
the FoBa procedure at the stopping time, is described there
before the technical details. In particular, the proofs do not
attempt to show that any particular backward step is effective.
Instead, for feature selection, we can show that if a particular
backward step deletes a good feature, then FoBa does not stop;
FoBa does not stop if many good features in F̄ are missing
from F (k); the backward step will start to delete (either bad or
good) features if F (k) contains too many features not in F̄ . By
combining these properties, we can deduce that once the FoBa
procedure stops, the feature set F (k) approximately equals
F̄ . Since our analysis does not require the effectiveness of
a specific backward step, our results do not hold for a simpler
procedure that performs a sequence of forward steps, followed
by a sequence of backward steps. Such a method is unreliable
because good features can be deleted in the backward steps.
This is why we call this procedure “adaptive”, and our adaptive
forward-backward approach does not suffer from the problem
in the simpler method.

Let
∆k(ε, s) = |{j ∈ F̄ : β̄2

j < 32ερ(s)−2}|

be the number of very small nonzero coefficients of β̄ that are
at the noise level. Therefore ∆k(ε, s) provides a nature quan-
tity of nonzero coefficients of β̄ that cannot be differentiated
from zero in the presence of noise.

Theorem 3.3 shows that when FoBa stops, we have

|F̄ − F (k)| = O(∆k(ε, s)), |F (k) − F̄ | = O(∆k(ε, s)),

which implies that the estimated feature set F (k) differs from
F̄ by no more than O(∆k(ε, s)) elements. In particular, if
∆k(ε, s) = 0, then we can reliably recover the true feature
F̄ with large probability. This is the fundamental reason why
we can obtain a sharp oracle inequality as in (5). Note that
only the last term in (5) depends on the dimension d, which
is small when ∆k(ε, s) is small: this happens when only a
small number of j ∈ F̄ have small coefficients |β̄j |2 ≤ O(ε).
In the worst case, even when all coefficients are small (and
thus reliable feature selection is impossible), the bound is still
meaningful with ∆k(ε, s) = k̄. It leads to a bound

‖Xβ(k) −Ey‖22 ≤ ‖Xβ̄ −Ey‖22 +O
(
ln(1/η) + k̄ ln d

)
σ2

that becomes similar to oracle inequality for the Lasso under
appropriate sparse eigenvalue assumptions. The result in (5)
shows that it is possible for FoBa to achieve better perfor-
mance than that of Lasso when most features can be reliably
identified (that is, when ∆k(ε, s) is small). This theoretical
benefit is real, and is confirmed with our experiments.

A useful application of Theorem 3.2 and Theorem 3.3
is when Ey = Xβ̄, and β̄ has relatively large nonzero
coefficients. That is, we can identify the correct set of features
with large probability. This particular problem has drawn
significant interests in recent years, such as [29], [27].

Corollary 3.2: Consider the FoBa algorithm in Figure 4,
where Assumption 3.1 holds. Consider a target β̄ ∈ Rd such
that Ey = Xβ̄. Let s ≤ d be an integer such that 8(k̄+ 1) ≤
(s − 2k̄)ρ(s)2, and assume that |β̄j |2 > 32ε/ρ(s)2 for all
j ∈ F̄ . Assume that for some η ∈ (0, 1/3), we have

nε > max
[
5.4σ2ρ(s)−1(8 ln(16d) + 2ρ(s)2 ln(2e/η)),

108ρ(s)−1σ2 ln(16d)
]

Then with probability larger than 1− 3η: when the algorithm
terminates, we have F̄ = F (k) and

‖X(β(k) − β̄)‖22 ≤ 74σ2k̄ + 27σ2 ln(2e/η).

The corollary says that we can identify the correct set of
features F̄ as long as the coefficients β̄j (j ∈ F̄) are larger than
the noise level at some O(σ

√
ln d/n). Such a requirement is

quite natural, and occurs in other work on the effectiveness of
feature selection [29], [27]. In fact, if any nonzero coefficient
is below the noise level, then no algorithm can distinguish it
from zero with large probability. That is, it is impossible to
reliably perform feature selection due to the noise. Therefore
FoBa is near optimal in term of its ability to perform reliable
feature selection, except for the constant hiding in O(·) (as
well as its dependency on ρ(s)).

8

The result can be applied as long as eigenvalues of small
s×s diagonal blocks of the design matrix X>X are bounded
away from zero (that is, the sparse eigenvalue condition holds).
This is the situation under which the forward greedy step can
make mistakes, but such mistakes can be corrected using FoBa.
Because the conditions of the corollary do not prevent forward
steps from making errors, the example described in Figure 2
indicates that it is not possible to prove a similar result for the
forward greedy algorithm. In fact, it was shown in [26] that
the stronger irrepresentable condition of [29] is necessary for
the forward greedy algorithm to be effective.

IV. FOBA VERSUS LASSO

Lasso can successfully select features under irrepresentable
conditions of [29] (also see [23] which considered the noise-
less case). It was shown that such a condition is necessary for
feature selection using Lasso, when zero-threshold is used. It
is known that the sparse eigenvalue condition considered in
this paper is significantly weaker [25], [20], [3].

Although under the sparse eigenvalue condition, it is not
possible to reliably select features using Lasso and zero-
threshold, it was pointed out in [27] that it is possible to
reliably select features using an appropriately chosen non-zero
threshold (that is, a post-processing step is used to remove
features with coefficients smaller than a certain threshold).
There are two problems for this approach. First, this requires
tuning two parameters: one is the L1 regularization parameter,
and the other non-zero threshold. Second, even if one can tune
the threshold parameter successfully, the result in [27] requires
that the condition minj∈F̄ |β̄j |2 ≥ ck̄σ2 ln(d/η)/n for some
c > 0 under the sparse eigenvalue condition considered here
(although the k̄-dependence can be removed under stronger
assumptions). This is due to the inclusion of L1 regularization
which introduces a “bias”. In comparison, Theorem 3.3 only
requires minj∈supp(β̄) |β̄j |2 ≥ cσ2 ln(d/η)/n for some c > 0.
The difference can be significant when k̄ is large.

There is no counterparts of Theorem 3.1, Theorem 3.2, and
Theorem 3.3 for L1 regularization under the sparse eigenvalue
conditions. The closest analogy is a parameter estimation
bound for a multi-stage procedure investigated in [28], which
solves a non-convex optimization problem by using multiple
stages of convex relaxation.

Finally, we shall point out that the forward-backward greedy
procedure is closely related to the path-following algorithm for
solving Lasso, such as the LARS algorithm for solving Lasso
in [13], where one starts with a very large (infinity) regulariza-
tion parameter, which is gradually decreased. Similar to FoBa,
LARS also has forward and backward steps. However, unlike
FoBa, which tracks the insertion and deletion with unbiased
least squares error, LARS tracks the path through L1 penalized
least squares error, by gradually decreasing the regularization
parameter. Initially, to obtain a very sparse set of features,
one has to set a very large L1 regularizaton parameter, which
causes a significant bias. The added bias implies that LARS
deviates significant from subset selection at least initially.
When the algorithm progresses, the regularization parameter is
reduced, and thus the extra L1 bias becomes smaller. Since the

theory of L1 regularization requires a regularization parameter
larger than the noise level, the resulting bias is not negligible.
Similar to FoBa, some mistakes made in earlier steps can be
potentially removed later on.

It follows from the above discussion that FoBa is related
to the path-following view of L1 regularization. However,
unlike Lasso, FoBa does not introduces a bias. Instead, it
generates the path by directly keeping track of the objective
function. Therefore FoBa is closer to subset selection than
L1 regularization, especially when a highly sparse solution is
desired (as far as training error is concerned). This claim is
confirmed by our experiments.

V. EXPERIMENTS

We compare FoBa to forward-greedy and L1-regularization
on artificial and real data. They show that in practice, FoBa
is closer to subset selection than the other two approaches,
in the sense that FoBa achieves smaller training error given
any sparsity level. In order to compare with Lasso, we use the
LARS [13] package in R, which generates a path of actions
for adding and deleting features, along the L1 solution path.
For example, a path of {1, 3, 5,−3, . . .} means that in the fist
three steps, feature 1, 3, 5 are added; and the next step removes
feature 3.

Using such a solution path, we can compare Lasso to
Forward-greedy and FoBa under the same framework. Similar
to the Lasso path, FoBa also generates a path with both addi-
tion and deletion operations, while forward-greedy algorithm
only adds features without deletion.

Our experiments compare the performance of the three
algorithms using the corresponding feature addition/deletion
paths. We are interested in features selected by the three
algorithms at any sparsity level k, where k is the desired
number of features presented in the final solution. Given a
path, we can keep an active feature set by adding or deleting
features along the path. For example, for path {1, 3, 5,−3},
we have two potential active feature sets of size k = 2:
{1, 3} (after two steps) and {1, 5} (after four steps). We then
define the k best features as the active feature set of size k
with the smallest least squares error because this is the best
approximation to subset selection (along the path generated by
the algorithm). For the forward-greedy algorithm, this is just
the first k features in the path. For FoBa, it is the last time
when the active set contains k features, because the squared
error is always reduced in later stages. For Lasso, it is also
likely to be the last time when the active set contains k features
— this is because it corresponds to the smallest regularization
parameter (thus smallest bias). However, to be safe, for Lasso,
we compute the least squares solutions for all active feature
sets of size k, and then select the one with the smallest squared
error.

From the above discussion, we do not have to set ε explicitly
in the FoBa procedure. Instead, we just generate a solution
path which is five times as long as the maximum desired
sparsity k, and then generate the best k features for any
sparsity level using the above described procedure.

9

A. Simulation Data

Since for real data, we do not know the true feature set F̄ ,
simulation is needed to compare feature selection performance.
We generate n = 100 data points of dimension d = 500. The
target vector β̄ is truly sparse with k̄ = 5 nonzero coefficients
generated uniformly from 0 to 10. The noise level is σ2 = 0.1.
The basis functions fj are randomly generated with moderate
correlation: that is, some basis functions are correlated to
the basis functions spanning the true target. However, the
correlation is relatively small, and thus does not violate the
RIC condition. Note that if there is no correlation (i.e.,
fj are independent random vectors), then all three methods
work well (this is the well-known case considered in the
compressed sensing literature). If the correlation among fj is
very strong, then it is not surprising that all three methods
will fail. Therefore in this experiment, we generate moderate
correlation so that the performance of the three methods can
be differentiated. Such moderate correlation does not violate
the sparse eigenvalue condition in our analysis, but violates
the more restrictive conditions for forward-greedy method and
Lasso.

Table I shows the performance of the three methods, where
we repeat the experiments 50 times, and report the average ±
standard-deviation. We use the three methods to select five best
features, using the procedure described above. We report three
metrics. Training error is the squared error of the least squares
solution with the selected five features. Parameter estimation
error is the 2-norm of the estimated parameter (with the five
features) minus the true parameter. Feature selection error is
the number of incorrectly selected features. It is clear from the
table that for this data, FoBa achieves significantly smaller
training error than the other two methods, which implies
that it is closest to subset selection. Moreover, the parameter
estimation performance and feature selection performance are
also better. Note that in this example, the noise level σ/

√
n is

relatively small compared to the range of nonzero coefficients
of the ground truth, which ensures that feature selection can
be performed relatively reliably. If feature selection becomes
unreliable (that is, when we increase σ significantly), then L1

regularization may achieve better performance because it is
inherently more stable.

B. Real Data

Instead of listing results for many datasets, we consider two
data sets that reflect typical behaviors of the algorithms. A
careful analysis of the two datasets leads to better insights
than a list of performance numbers for many data. The
experiments show that FoBa does what it is designed to do
well: that is, it gives a better approximation to subset selection
than either forward-greedy or L1 regularization. However, as
well shall see, better sparsity does not always lead to better
generalization on real data. This is because sparsity alone is
not necessarily always the best complexity measure for real
problems.

1) Boston Housing data: The first dataset we consider
is the Boston Housing data, which is the housing data for

506 census tracts of Boston from the 1970 census, avail-
able from the UCI Machine Learning Database Repository:
http://archive.ics.uci.edu/ml/. Each census tract is a data-point,
with 13 features (we add a constant offset one as the 14th
feature), and the desired output is the housing price. In the ex-
periment, we randomly partition the data into 50 training plus
456 test points. We perform the experiments 50 times, and for
each sparsity level from 1 to 10, we report the average training
and test squared error. The results are plotted in Figure 5. From
the results, we can see that FoBa achieves better training error
for any given sparsity, which is consistent with the theory
and the design goal of FoBa. Moreover, it achieves better test
accuracy with small sparsity level (corresponding to a more
sparse solution). With large sparsity level (corresponding to
a less sparse solution), the test error increase more quickly
with FoBa. This is because it searches a larger space by more
aggressively mimicking subset selection, which makes it more
prone to overfitting. However, at the best sparsity level of 3,
FoBa achieves significantly better test error. Moreover, we can
observe with small sparsity level (a more sparse solution), L1

regularization performs poorly, due to the bias caused by using
a large L1-penalty.

For completeness, we also compare FoBa to the backward-
greedy algorithm and the classical heuristic forward-backward
greedy algorithm as implemented in SAS (see its description at
the beginning of Section III). We still use the Boston Housing
data, but plot the results separately, in order to avoid cluttering.
As we have pointed out, there is no theory for the SAS version
of forward-backward greedy algorithm. It is difficult to select
an appropriate backward threshold ε′: a too small value leads
to few backward steps, and a too large value leads to overly
aggressive deletion, and the procedure terminates very early.
In this experiment, we pick a value of 10, because it is a
reasonably large quantity that does not lead to an extremely
quick termination of the procedure. The performance of the
algorithms are reported in Figure 6. From the results, we can
see that backward greedy algorithm performs reasonably well
on this problem. Note that for this data, d � n, which is
the scenario that backward does not start with a completely
overfitted full model. Still, it is inferior to FoBa at small
sparsity level, which means that some degree of overfitting
still occurs. Note that backward-greedy algorithm cannot be
applied in our simulation data experiment, because d � n
which causes immediate overfitting. From the graph, we also
see that FoBa is more effective than the SAS implementation
of forward-backward greedy algorithm. The latter does not
perform significant better than the forward-greedy algorithm
with our choice of ε′. Unfortunately, using a larger backward
threshold ε′ will lead to an undesirable early termination of the
algorithm. This intuition is why the provably effective adaptive
backward strategy introduced in this paper is superior.

2) Ionosphere data: The second dataset we consider is
the Ionosphere data, also available from the UCI Machine
Learning Database Repository. It contains 351 data points,
with 34 features (we add a constant offset one as the 35th
feature), and the desired output is binary valued {0,1}. Al-
though this is a classification problem, we treat it as regression.
In the experiment, we randomly partition the data into 50

10

FoBa Forward-greedy L1

least squares training error 0.093± 0.02 0.16± 0.089 0.25± 0.14
parameter estimation error 0.057± 0.2 0.52± 0.82 1.1± 1

feature selection error 0.76± 0.98 1.8± 1.1 3.2± 0.77

TABLE I
PERFORMANCE COMPARISON ON SIMULATION DATA AT SPARSITY LEVEL k = 5

●

●

●

●

●

●

●

●

●
●

2 4 6 8 10

20
30

40
50

60

sparsity

tr
ai

ni
ng

 e
rr

or

● FoBa
forward−greedy
L1

●

●

● ● ●

●

●

● ● ●

2 4 6 8 10
35

40
45

50
55

60
65

70

sparsity

te
st

 e
rr

or

● FoBa
forward−greedy
L1

Fig. 5. Performance of the algorithms on Boston Housing data Left: average training squared error versus sparsity; Right: average test squared error versus
sparsity

training plus 301 test points. We perform the experiments
50 times, and for each sparsity from 1 to 10, we report the
average training and test squared error. The results are plotted
in Figure 7. From the results, we can see that FoBa again
achieves better training error for any given sparsity, which
is consistent with the theory and the design goal of FoBa.
However, it does not achieve better test accuracy. This suggests
that sparsity alone is not the correct complexity measure
for this data. Indeed by examining the results closely, we
observe that the coefficients of Lasso solution tend to be much
smaller (due to the added L1 constraints) than those from
FoBa or the forward-greedy algorithm (which do not favor
small coefficients in their designs). From Figure 7, we can
see that even with smaller coefficients, Lasso achieves similar
training error at small sparsity level. This means that Lasso
effectively searches a smaller space, and thus more stable
and less prone to overfitting. Therefore, for this dataset, the
added prior knowledge of small coefficients (in addition to
sparsity) in L1 regularization gives it an edge over the greedy
approaches, which do not take the size of coefficients into
consideration. For simplicity, we do not include a comparison
with the backward greedy method.

VI. DISCUSSION

This paper investigates the problem of learning sparse rep-
resentations using greedy algorithms. We showed that neither
forward greedy nor backward greedy algorithms are adequate
by themselves. However, through a novel combination of the

two ideas, we proved that an adaptive forward-back greedy
algorithm, referred to as FoBa, can effectively solve the
problem under reasonable conditions.

FoBa is designed to be a better approximation to subset se-
lection. In fact, backward step naturally appears in solving L0

regularized optimization problems. Consider the penalization
version of (3):

β̂ = arg min
β∈Rd

[
1

n

n∑
i=1

φ(β>xi, yi) + λ‖β‖0

]
.

If we remove one nonzero component (backward step) from
a tentative solution β, then the term λ‖β‖0 is decreased by
λ; in the mean time, if 1

n

∑n
i=1 φ(β>xi, yi) is increased by

an amount less than λ, then the overall regularized objective
function is decreased. In this case, the backward step should
be taken because it decreases the overall regularized objective
value. However, a main problem of using a fixed λ is when λ
is small (which is required to achieve good statistical perfor-
mance), the backward step is ineffective because it can only
occur after a significant number of forward steps, which have
already overfitted the data. This problem is similar to that of
the standard backward greedy algorithm. The FoBa algorithm,
which chooses the λ threshold adaptively, fixes the problem.
If we pick ν → 1, then the algorithm can be regarded as
an approximate path-following scheme (similar to the LARS
method for Lasso) with gradually decreasing λ. Moreover,
the algorithm is also theoretically justified. Under the sparse
eigenvalue condition, we obtained strong performance bounds

11

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

20
30

40
50

sparsity

tr
ai

ni
ng

 e
rr

or
●

●

●

●

●

●

●
●

●
●

●

●

FoBa
Forward−Backward (SAS)
forward−greedy
backward−greedy

●

●

● ● ●

●

●

● ● ●

2 4 6 8 10

40
50

60
70

sparsity

te
st

 e
rr

or

●

●

●

●
●

●

●

●
●

●

●

●

FoBa
Forward−Backward (SAS)
forward−greedy
backward−greedy

Fig. 6. Performance of greedy algorithms on Boston Housing data. Left: average training squared error versus sparsity; Right: average test squared error
versus sparsity

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
05

0.
10

0.
15

0.
20

sparsity

tr
ai

ni
ng

 e
rr

or

● FoBa
forward−greedy
L1

●

● ●
●

●

●

●

●

●

●

2 4 6 8 10

0.
15

0.
20

0.
25

0.
30

0.
35

sparsity

te
st

 e
rr

or

● FoBa
forward−greedy
L1

Fig. 7. Performance of the algorithms on Ionosphere data. Left: average training squared error versus sparsity; Right: average test squared error versus
sparsity

for FoBa for feature selection and oracle inequalities. In fact,
to the author’s knowledge, in terms of sparsity, the bounds
developed for FoBa in this paper are superior to earlier results
in the literature for other methods.

Our experiments also showed that FoBa achieves its design
goal: that is, it gives smaller training error than either forward-
greedy or L1 regularization for any given level of sparsity.
Therefore the experiments are consistent with our theory. In
simulation, better sparsity leads to better parameter estimation
accuracy. In real data, better sparsity helps on some data (e.g.
Boston Housing) but not always. This implies that sparsity may
not be the best complexity measure for any given problem. In
particular, as shown in the Ionosphere experiment, the prior
knowledge of using small coefficients, which is encoded in the

L1 regularization formulation, can lead to better generalization
performance (when such a prior is appropriate for the prob-
lem). The so called “bias” of L1 regularization, which leads to
suboptimal sparsity on the training data, can be advantageous
on the test data.

The experiments also indicate that in order to design
learning methods with the best possible generalization per-
formance, one should consider factors beyond sparsity. In
fact, for some data, features cannot be reliably selected due
to the high correlation among some key variables or the
small signal to noise ratio. In this scenario, any algorithm
(including FoBa) that mimics L0-regularization is unstable
(that is, it often selects incorrect features), which hurts the
prediction performance. Additional prior knowledge, such as

12

small coefficients in certain norm, can be very important. We
believe such a prior knowledge can be incorporated into FoBa
by adding a suitable regularization into the objective function.
In particular, it should be possible to design a FoBa like path-
following algorithm that simultaneously achieves sparsity and
small coefficients. This important extension of FoBa will be
studied in a future work.

APPENDIX A
PROOFS OF THEOREMS

Throughout the proofs, we denote by vF the restriction of
a vector v ∈ Rd to coefficients in a set F ⊂ {1, . . . , d}.

Before going into the technical details, we shall first de-
scribe the high-level ideas behind the proofs.

First, we outline the properties of FoBa under the assump-
tion that Xβ̄ = Ey for some sparse β̄. It can be shown that the
forward greedy step makes significant progress unless the ob-
jective value Q(β(k)) is not much larger than that of Q(β̄); the
bound is given in Lemma B.1. Since at termination, forward
step makes small progress, we can show that most features
in supp(β̄) have to belong to F (k) when FoBa terminates.
Moreover, backward steps ensure that the coefficients of β(k)

at the start of any forward iteration cannot be too large; the
bound is given in Lemma B.2. This fact means that if we set
the threshold ε in the FoBa algorithm sufficiently larger than
the noise level, then the nonzero coefficients of β(k) should
contain more signal than noise on average. The combination
of the above two ideas means that when FoBa terminates,
large nonzero coefficients of β̄ have to belong to supp(β(k)),
and moreover, β(k) doesn’t contain many nonzero coefficients
that are purely noise (which doesn’t belong to supp(β̄)).
This observation leads to the feature selection statement in
Lemma B.4 (and Theorem 3.3). A similar reasoning shows
the FoBa iteration cannot reach k that is significantly larger
than ‖β̄‖0, as in Theorem 3.2.

If Ey cannot be approximated by Xβ̄ for any sparse β̄,
then we cannot prove meaningful feature selection results.
However, the above mentioned bounds for forward and back-
ward steps still imply that each increase of k will introduce
more signal than noise. That is, when k is sufficiently large
compared to k̄, Q(β(k)) is significantly smaller than Q(β̄),
which leads to the oracle style inequalities in Lemma B.3
(which applies during the FoBa iterations) and in Lemma B.4
(which applies when FoBa terminates). While in such case,
we cannot prove feature selection results, we can still obtain
a good oracle inequality when we compare β(k) to any sparse
β̄ simply because we can reduce the risk Q(β(k)) sufficiently
quickly in this case, which allows us to employ a non-sparse
β(k) to compete with a sparse β̄. Since the true target is non-
sparse, this comparison is to our advantage, and hence as long
as k is not too large (to avoid overfitting), it is possible to
achieve an oracle inequality ‖Xβ(k) −Ey‖2 ≤ ‖Xβ̄ −Ey‖2
as shown in Theorem 3.1.

In order to handle the effect of noise appropriately, our
analysis also requires carefully derived concentration results
for sub-Gaussian noise, which are given in Appendix C.
In particular, to obtain a general oracle inequality (as in

Theorem 3.1), we need uniform concentration bounds for
sparse least squares regression stated in Lemma C.3. In order
to show that the final solution is sparse as in Theorem 3.2 and
Theorem 3.3 (under the assumption that ‖Xβ̂(F̄ ,Ey)−Ey‖2
is small), we need more subtle noise concentration estimates
in Lemma C.4 and Lemma C.5.

A. Proof of Theorem 3.1

For convenience, we first state the following simple alge-
braic result.

Proposition A.1: Given a, b, c > 0. If a2 ≥ 20c, then
−a2/2 + 2a

√
b+ c ≤ 10b.

Proof: If b ≥ c/4, then −a2/2 + 2a
√
b+ c ≤ −a2/2 +

2a
√

5b ≤ 10b, where the second inequality is obtained by
taking maximum over a achieved at a = 2

√
5b. Otherwise,

we have b < c/4, and thus −a2/2 + 2a
√
b+ c ≤ −a2/2 +

2a
√

(5/4)c ≤ −a2/2 + 2a
√

(5/4)a2/20 = 0, where the
assumption a2 ≥ 20c is used.

Now we are ready to prove the theorem. With probability
1− η, the event in Lemma C.3 holds. That is, for all k:

‖Xβ(k) −Ey‖22 − ‖Xβ̄ −Ey‖22 (7)

≤n[Q(β(k))−Q(β̄)] + 2‖Xβ(k) −Xβ̄‖2

·
√

7.4|F̄ |+ 2.7|F (k) − F̄ | ln(16d) + 2.7 ln(2e/η)σ.

We first consider the situation that k ≤ s− k̄. In this situa-
tion, we may consider the two cases indicated in Lemma B.4.
In the first case, the second inequality of Lemma B.4 holds,
and in the second case, the third displayed inequality of
Lemma B.4 holds. In both cases, we have the following
inequality

n[Q(β(k))−Q(β̄)]+‖Xβ̄−Xβ(k)‖22/2 ≤ 18nερ(s)−1∆k(ε, s).
(8)

Now by adding this inequality to (7), we obtain

‖Xβ(k) −Ey‖22 − ‖Xβ̄ −Ey‖22 − 18nερ(s)−1∆k(ε, s)

≤− ‖Xβ̄ −Xβ(k)‖22/2 + 2‖Xβ(k) −Xβ̄‖2

·
√

7.4|F̄ |+ 2.7|F (k) − F̄ | ln(16d) + 2.7 ln(2e/η)σ.

Let a = ‖Xβ̄ − Xβ(k)‖2, b = 7.4σ2|F̄ | + 2.7σ2 ln(2e/η),
and c = 2.7|F (k)− F̄ |σ2 ln(16d). From the first inequality of
Lemma B.4, we obtain a2 ≥ nρ(s)|F (k)− F̄ |ε/2 ≥ 54|F (k)−
F̄ |σ2 ln(16d) = 20c, where the condition on ε in the theorem
statement is used. Therefore we obtain from Proposition A.1

‖Xβ(k) −Ey‖22 − ‖Xβ̄ −Ey‖22
≤74σ2|F̄ |+ 27σ2 ln(2e/η) + 18nερ(s)−1∆k(ε, s).

That is, the first displayed inequality of the theorem holds.
Next, we consider the situation that when FoBa terminates,

k ≥ s − k̄. For each k0 ∈ [0.8s − k̄, s − k̄], when FoBa first
reaches k = k0, the immediate previous iteration does not
have backward step, and the assumption of the theorem on s
implies that

2γ2|(F̄ ∪ F (k))− F (k−1)| (9)

≤32(k̄ + 1) ≤ (0.8s− 2k̄)ρ(s)2 ≤ |F (k) − F̄ |ρ(s)2

13

with γ = 4. Therefore Lemma B.3 applies, and it implies that
(note that s ≥ |F̄ ∪ F (k)|):

n[Q(β(k))−Q(β̄)] ≤− 0.5‖Xβ̄ −Xβ(k)‖22, (10)

n−1‖X(β̄ − β(k))‖22 ≥ρ(s)|F (k) − F̄ |ε/2 (11)

≥54|F (k) − F̄ |σ2 ln(16d)/n.

The last inequality uses the condition of ε in the theorem. We
thus have (note that ρ(s) ≤ 1 for all s since the basis functions
are all normalized in Assumption 3.1):

‖Xβ(k) −Ey‖22 − ‖Xβ̄ −Ey‖22
≤− ‖Xβ̄ −Xβ(k)‖22/2 + 2‖Xβ(k) −Xβ̄‖2

·
√

7.4|F̄ |+ 2.7|F (k) − F̄ | ln(16d) + 2.7 ln(2e/η)σ

≤− ‖Xβ̄ −Xβ(k)‖22/2 + 2‖Xβ(k) −Xβ̄‖2

·
√

(2.7/32 + 2.7)|F (k) − F̄ | ln(16d) + 2.7 ln(2e/η)σ

≤− ‖Xβ̄ −Xβ(k)‖22/2 + 2‖Xβ(k) −Xβ̄‖2

·
√

(1.65/32)‖X(β̄ − β(k))‖22 + 2.7 ln(2e/η)σ2

≤− ‖Xβ̄ −Xβ(k)‖22/2 + ‖Xβ(k) −Xβ̄‖22/4

+ 4
[
(1.65/32)‖X(β̄ − β(k))‖22 + 2.7 ln(2e/η)σ2

]
≤− (0.35/8)‖Xβ̄ −Xβ(k)‖22 + 10.8 ln(2e/η)σ2

≤− (0.35/16)nρ(s)|F (k) − F̄ |ε+ 10.8 ln(2e/η)σ2

≤− 0.7nρ(s)−1|F̄ |ε+ 10.8 ln(2e/η)σ2,

where the first inequality is obtained by adding (10) to (7).
The second inequality uses 7.4|F̄ | = 7.4k̄ ≤ 2.7k̄ ln(16d) ≤
2.7ρ(s)2|F (k) − F̄ | ln(16d)/32 according to (9), and ρ(s) ≤
1. The third inequality uses (11). The fourth inequality uses
2ab ≤ a2/4 + 4b2. The fifth inequality is simple algebra. The
sixth inequality uses (11). The last inequality uses (9), which
implies that ρ(s)|F (k) − F̄ | ≥ 32ρ(s)−1|F̄ |. This implies the
theorem by noticing that ρ(s) ≤ 1.

B. Proof of Theorem 3.2

With probability 1 − 2η, we assume that both probability
events in Lemma C.3 and in Lemma C.4 hold.

First we show that at any time during the FoBa algorithm,
we must have k < s−k̄. Assume this is not true, then consider
the first time we reach k + k̄ = s. In this case, we know that
there is no backward step in the immediate previous iteration,
and with γ = 2, we have from the assumption of the theorem
on s:

2γ2|(F̄ ∪ F (k))− F (k−1)|
≤8(k̄ + 1) ≤ (s− 2k̄)ρ(s)2 ≤ |F (k) − F̄ |ρ(s)2.

Therefore Lemma B.3 applies with γ = 2. It means that (here
we take β̄ in Lemma B.3 as β̂(F̄)):

Q(β̂(F (k) ∪ F̄)) (12)

≤Q(β̂(F̄))− (1− 0.5)2ρ(s)|F (k) − F̄ |ε/2.

Moreover, Lemma C.4 implies that√
n[Q(β̂(F̄))−Q(β̂(F (k) ∪ F̄))] ≤ ‖Xβ̂(F̄ ,Ey)−Ey‖2

+ σ
√

2.7|F (k) − F̄ | ln(16d) + 2.7 ln(2e/η).

It implies that

n[Q(β̂(F̄))−Q(β̂(F (k) ∪ F̄))] ≤ 2‖Xβ̂(F̄ ,Ey)−Ey‖22
+ 5.4σ2[|F (k) − F̄ | ln(16d) + ln(2e/η)]. (13)

By adding (13) to n times (12), we obtain

nρ(s)|F (k) − F̄ |ε/8 ≤ 2‖Xβ̂(F̄ ,Ey)−Ey‖22
+5.4σ2[|F (k) − F̄ | ln(16d) + ln(2e/η)].

This inequality can be rewritten as

nε ≤ 8ρ(s)−1

|F (k) − F̄ |

[
2‖Xβ̂(F̄ ,Ey)−Ey‖22

+5.4σ2[|F (k) − F̄ | ln(16d) + ln(2e/η)]
]

≤
[

2ρ(s)

k̄ + 1
‖Xβ̂(F̄ ,Ey)−Ey‖22

+5.4σ2[8ρ(s)−1 ln(16d) + ρ(s)(k̄ + 1)−1 ln(2e/η)]
]
.

The second inequality uses the assumption k̄ + 1 ≤ (s −
2k̄)ρ(s)2/8 ≤ |F (k) − F̄ |ρ(s)2/8. However, the above dis-
played inequality is a contradiction to the assumption of ε.
Therefore the FoBa algorithm cannot reach k = s− k̄.

The proof of the oracle inequality, under the condition ε ≥
108ρ(s)−1σ2 ln(16d)/n, is identical to the derivation of the
same oracle inequality in Theorem 3.1.

C. Proof of Theorem 3.3

With probability 1−3η, all probability events in Lemma C.5,
Lemma C.3, and Lemma C.4 hold. The proof of Theorem 3.2
implies that the FoBa algorithm terminates at k < s− k̄.

At the end of FoBa algorithm, we can apply Lemma B.4,
which implies two situations, where we take β̄ in the statement
of the lemma as β̂(F̄).

The first situation is when

nQ(β̂(F̄ ∪ F (k)) ≤nQ(β(k)) (14)

≤nQ(β̂(F̄))− ‖Xβ̂(F̄)−Xβ(k)‖22/2
≤nQ(β̂(F̄))− nρ(s)|F (k) − F̄ |ε/2.

Note that Xβ̂(F̄ ,Ey) = Ey by the assumption of the
theorem. We thus obtain from Lemma C.4

n[Q(β̂(F̄))−Q(β̂(F (k) ∪ F̄))] (15)

≤σ2[2.7|F (k) − F̄ | ln(16d) + 2.7 ln(2e/η)].

Adding this inequality to (14), we obtain

0 ≤− nρ(s)|F (k) − F̄ |ε/2
+ 2.7σ2[|F (k) − F̄ | ln(16d) + ln(2e/η)].

14

Using the assumption of ε in the theorem, we obtain (note that
ρ(s) ≤ 1 for all s since the basis functions are all normalized
in Assumption 3.1):

2.7|F (k) − F̄ |σ2[8 ln(16d) + 2 ln(2e/η)]

<2.7σ2[|F (k) − F̄ | ln(16d) + ln(2e/η)].

This inequality can only be satisfied when

|F (k) − F̄ | = 0.

Moreover, we also have

n−1‖Xβ̂(F̄)−Xβ(k)‖22 (16)

≥ρ(s)‖β̂(F̄)− β(k)‖22 ≥ ρ(s)‖β̂(F̄)F̄−F (k)‖22
≥ρ(s)[0.5‖β̄F̄−F (k)‖22 − ‖(β̄ − β̂(F̄))F̄−F (k)‖22]

≥0.5ρ(s)‖β̄F̄−F (k)‖22 − ρ(s)|F̄ − F (k)|‖β̄ − β̂(F̄)‖2∞,

where the first inequality uses the definition of ρ(s) in Defi-
nition 3.1. The second inequality uses the fact that β(k)

j = 0

when j ∈ F̄ − F (k). The third inequality uses the algebraic
inequality ‖a‖22 ≥ 0.5‖b‖22 − ‖a − b‖22. The fourth inequality
uses the upper bound of a vector’s 2-norm by its ∞-norm.

Since we have already proved that |F (k) − F̄ | = 0, we can
also add (14) to (15) and obtain

n−1‖Xβ̂(F̄)−Xβ(k)‖22
≤(2n−1)2.7σ2[|F (k) − F̄ | ln(16d) + ln(2e/η)]

=5.4σ2 ln(2e/η)/n.

If |F̄ − F (k)| = 0, then the claim of the theorem holds
automatically since we have already shown |F (k) − F̄ | = 0.
Otherwise, by subtracting (16) from the above inequality, we
obtain

0.5ρ(s)‖β̄F̄−F (k)‖22
≤ρ(s)|F̄ − F (k)|‖β̄ − β̂(F̄)‖2∞ + 5.4σ2 ln(2e/η)/n

≤2ρ(s)|F̄ − F (k)|σ2 ln(2k̄/η))/(nρ(k̄)) + 5.4σ2 ln(2e/η)/n

≤5.4|F̄ − F (k)|ε.

In the above derivation, the second inequality uses Lemma C.5
and β̄ = β̂(F̄ ,Ey) (which follows from Ey = Xβ̄). The third
inequality uses |F̄ −F (k)| ≥ 1, ρ(s) ≤ 1, and the assumption
of ε in the theorem. This inequality implies that

0.5ρ(s)
∣∣∣{j ∈ F̄ − F (k) : β̄2

j ≥ 32ερ(s)−2}
∣∣∣ 32ερ(s)−2

≤0.5ρ(s)‖β̄F̄−F (k)‖22 ≤ 5.4|F̄ − F (k)|ε.

Therefore we have

|{j ∈ F̄ − F (k) : β̄2
j ≥ 32ερ(s)−2}| ≤ |F̄ − F (k)|/2,

and thus∣∣∣F̄ − F (k)| ≤ 2|{j ∈ F̄ − F (k) : β̄2
j < 32ερ(s)−2}

∣∣∣
≤2
∣∣{j ∈ F̄ : β̄2

j < 32ερ(s)−2}
∣∣ .

This shows that in the first situation (where (14) holds), the
conclusion of the theorem is valid.

In the second situation, we assume that (14) does not hold.
In this case, we may simply apply the second conclusion of
Lemma B.4 that implies

ρ(s)|F (k) − F̄ |ε/2 ≤n−1‖X(β̄ − β(k))‖22
≤16ερ(s)−1|F̄ − F (k)|
≤32ερ(s)−1

∣∣{j ∈ F̄ : β̄2
j < 32ερ(s)−2}

∣∣ .
This automatically implies the desired bound.

APPENDIX B
PROPERTIES OF FOBA

For convenience, we state a simple fact of least squares
solution.

Proposition B.1: Let F ⊂ {1, . . . , d}, g ∈ Rn, and let β =
β̂(F,g). Then for all β′ ∈ Rd:

‖Xβ′ − g‖22 − ‖Xβ − g‖22
=‖X(β′ − β)‖22 + 2(Xβ − g)>

∑
j∈supp(β′)−F

(β′j − βj)fj .

In particular, if supp(β′) ⊂ F , then

‖Xβ′ − g‖22 − ‖Xβ − g‖22 = ‖X(β′ − β)‖22.

Proof: The optimality of β = β̂(F,g) as the least squares
solution in F implies that for all j ∈ F :

f>j (Xβ − g) = 0.

Therefore if we let F ′ = supp(β′), then

2(Xβ − g)>
∑

j∈F ′−F
(β′j − βj)fj

=2(Xβ − g)>
∑

j∈F ′∪F
(β′j − βj)fj

=2(Xβ − g)>(Xβ′ −Xβ)

=− ‖Xβ′ −Xβ‖22 + ‖Xβ′ − g‖22 − ‖Xβ − g‖22.

This implies the proposition.
The following lemma provides a lower bound on the squared

error reduction of one forward greedy step.
Lemma B.1: Let Assumption 3.1 hold. Consider any β′ ∈

Rd. Consider F ′ = supp(β′) and F ⊂ {1, . . . , d}. Let s =
|F ′ ∪ F |. Let β = β̂(F). If for some α ≥ −1, we have

Q(β)−Q(β′) =
α

n
‖X(β − β′)‖22,

then

inf
α∈R,j∈F ′−F

Q(β + αej) ≤ Q(β)

− ρ(s)(1 + α)

4|F ′ − F |

(
1

n
‖X(β − β′)‖22 +Q(β)−Q(β′)

)
.

Proof: We have from Proposition B.1 (with g = y):

2(Xβ − y)>
∑

j∈F ′−F
(β′j − βj)fj

=− ‖X(β′ − β)‖22 + n[Q(β′)−Q(β)]. (17)

15

This leads to the following derivation for an arbitrary fixed
η > 0 (which we will pick to optimize the bound later on):

|F ′ − F | inf
j∈F ′−F

Q(β + η(β′j − βj)ej)

≤
∑

j∈F ′−F
Q(β + η(β′j − βj)ej)

=|F ′ − F |Q(β) +
η2

n

∑
j∈F ′−F

(β′j − βj)2‖fj‖22

+
2η

n
(Xβ − y)>

∑
j∈F ′−F

(β′j − βj)fj

=|F ′ − F |Q(β) + η2
∑

j∈F ′−F
(β′j − βj)2

− η
[

1

n
‖X(β′ − β)‖22 +Q(β)−Q(β′)

]
. (18)

In the above derivation, the first inequality is simple algebra.
The first equality uses the definition of Q(·) as squared loss
and simple algebra. The second equality uses ‖fj‖22 = n in
Assumption 3.1, as well as (17). Let ∆Q = 1

n‖X(β′−β)‖22 +
Q(β)−Q(β′). Then by optimizing over η, we obtain

|F ′ − F | inf
η

inf
j∈F ′−F

Q(β + η(β′j − βj)ej)

≤|F ′ − F |Q(β)−
[1
n‖X(β′ − β)‖22 +Q(β)−Q(β′)]2

4
∑
j∈F ′(β′j − βj)2

=|F ′ − F |Q(β)− (1 + α)n−1‖X(β′ − β)‖22
4
∑
j∈F ′(β′j − βj)2

∆Q

≤|F ′ − F |Q(β)− (1 + α)ρ(s)‖β′ − β‖22
4
∑
j∈F ′(β′j − βj)2

∆Q

≤|F ′ − F |Q(β)− ρ(s)(1 + α)

4
∆Q.

The first inequality is obtained by optimizing η from (18). The
first equality uses the definition of α in the lemma. The second
inequality uses the definition of ρ(s) in Definition 3.1. The last
inequality uses the fact that ‖β′ − β‖22 ≥

∑
j∈F ′(β′j − βj)2.

This leads to the lemma.

The following lemma provides an upper bound on the
squared error increase of one backward greedy step.

Lemma B.2: Let Assumption 3.1 hold. Consider β′ ∈ Rd
and let F̄ = supp(β′). Consider F ⊂ {1, . . . , d} and let β =
β̂(F). Let s = |F ∪ F̄ |. Then

inf
j∈F

Q(β − βjej) ≤Q(β) +
1

|F − F̄ |
∑

j∈F−F̄

β2
j .

Proof: For all j ∈ F , we have Q(β + αej) achieves
minimum at α = 0. This implies that (Xβ − y)>fj = 0 for

j ∈ F . We thus have

|F − F̄ | inf
j∈F

nQ(β − βjej)

≤
∑

j∈F−F̄

nQ(β − βjej)

=
∑

j∈F−F̄

‖Xβ − y − βjfj‖22

=|F − F̄ |‖Xβ − y‖22 +
∑

j∈F−F̄

β2
j ‖fj‖22

=|F − F̄ |nQ(β) + n
∑

j∈F−F̄

β2
j .

The first inequality and the first equality use simple algebra.
The second equality uses simple algebra and the fact that
(Xβ − y)>fj = 0 for j ∈ F − F̄ . The third equality uses
‖fj‖22 = n in Assumption 3.1. This leads to the lemma.

The following bound means that during the FoBa iterations,
if the vector β(k) becomes significantly less sparse than a
competing target β̄, then Q(β(k)) is significantly smaller than
Q(β̄). This fact implies an oracle inequality (see Theorem 3.1).
Moreover, if Ey can be approximated by a sparse target, which
means that Q(β(k)) cannot be too smaller than Q(β̄), the result
implies that FoBa will terminate at a point k that is not much
larger than k̄ (see Theorem 3.2).

Lemma B.3: Consider any β̄ ∈ Rd and let F̄ = supp(β̄).
In Figure 4, assume that at the start of an iteration’s forward
step, the immediate previous iteration had taken no backward
steps. If with s = |F (k) ∪ F̄ | the following inequality holds
for some γ ≥ 2:

2γ2|(F̄ ∪ F (k))− F (k−1)| ≤ |F (k) − F̄ |ρ(s)2,

then

n−1‖X(β̄ − β(k))‖22 ≥ ρ(s)|F (k) − F̄ |ε/2

and

Q(β(k)) ≤ Q(β̄)− (1− 2γ−1)n−1‖Xβ̄ −Xβ(k)‖22

and

Q(β̂(F (k) ∪ F̄)) ≤ Q(β̄)− (1− γ−1)2ρ(s)|F (k) − F̄ |ε/2.

Proof: Let F ′ = F̄ ∪ F (k). Since no backward step
was taken in the immediate previous iteration, we must have
(from the previous forward step) supp(β(k−1)) ⊂ F (k−1) ⊂
{i(k−1)}∪F (k−1) = F (k) ⊂ F ′ by the design of the algorithm.

If we let β′ = β̂(F ′), then Proposition B.1 implies that

Q(β(k−1))−Q(β′) =n−1‖X(β′ − β(k−1))‖22,
Q(β(k))−Q(β′) =n−1‖X(β′ − β(k−1))‖22.

By definition, we have mini minαQ(β(k−1) + αei) =
Q(β(k−1))−δ(k). Therefore by Lemma B.1 (apply the lemma
with α = 1, β = β(k−1), and F = F (k−1)), we obtain for the

16

immediate previous forward iteration:

δ(k) ≥ ρ(s)

|F ′ − F (k−1)|
[Q(β(k−1))−Q(β′)]

≥ ρ(s)

|F ′ − F (k−1)|
[Q(β(k))−Q(β′)]

=
ρ(s)

n|F ′ − F (k−1)|
‖Xβ(k) −Xβ′‖22, (19)

where we have used Q(β(k)) ≤ Q(β(k−1)) in the second
inequality, and Q(β(k)) − Q(β′) = n−1‖Xβ′ − Xβ(k)‖22 in
the last equality.

Moreover, the backward step termination condition requires
Q(β(k) − β(k)

j ej) − Q(β(k)) > 0.5δ(k). We thus have from
Lemma B.2 (apply the lemma with F = F (k), β = β(k), and
β′ = β̄):

1

|F (k) − F̄ |
‖β(k)

F (k)−F̄ ‖
2
2

=
1

|F (k) − F̄ |
∑

j∈F (k)−F̄

(β
(k)
j)2 ≥ δ(k)/2. (20)

Now we can derive the first desired bound of the lemma as
follows:

n−1‖Xβ̄ −Xβ(k)‖22 ≥ρ(s)‖β̄ − β(k)‖22
≥ρ(s)‖β(k)

F (k)−F̄ ‖
2
2

≥ρ(s)|F (k) − F̄ |ε/2,

where the first inequality uses the definition of ρ(s) in Def-
inition 3.1. The second inequality uses the fact that β̄j = 0
when j ∈ F (k) − F̄ . The third inequality is due to (20) and
δ(k) ≥ ε. This proves the first desired bound of the lemma.

In order to prove the second and the third desired bounds
of the lemma, we consider

ρ(s)‖β(k)

F ′−F̄ ‖
2
2 ≥ρ(s)|F (k) − F̄ |δ(k)/2

≥ ρ(s)2|F (k) − F̄ |
2n|(F ∪ F (k))− F (k−1)|

‖Xβ(k) −Xβ′‖22

≥γ2n−1‖Xβ(k) −Xβ′‖22 (21)

≥γ2ρ(s)‖β(k) − β′‖22.

The first inequality uses (20) and F ′ − F̄ = F (k) − F̄ ;
the second inequality uses (19); the third inequality uses the
assumption involving γ in the lemma; the fourth inequality
uses the definition of ρ(s) in Definition 3.1.

Therefore we have from the last inequality above

‖β(k)

F ′−F̄ ‖2 ≥γ‖β
(k) − β′‖2

≥γ‖(β(k) − β′)F ′−F̄ ‖2,
≥γ‖β(k)

F ′−F̄ ‖2 − γ‖β
′
F ′−F̄ ‖2.

By rearranging this inequality, we obtain

‖β′F ′−F̄ ‖2 ≥(1− γ−1)‖β(k)

F ′−F̄ ‖2
≥(γ − 1)ρ(s)−1/2n−1/2‖Xβ(k) −Xβ′‖2, (22)

where the second inequality uses (21). Therefore

n−1‖Xβ̄ −Xβ′‖22 ≥ρ(s)‖β̄ − β′‖22 ≥ ρ(s)‖β′F ′−F̄ ‖
2
2

≥(γ − 1)2n−1‖Xβ(k) −Xβ′‖22,

The first inequality uses the definition of ρ(s) in Definition 3.1;
the second inequality uses the fact that β̄j = 0 when j ∈
F ′ − F̄ ; the third inequality uses (22).

The above displayed inequality can be simplified to

(γ − 1)−1‖Xβ̄ −Xβ′‖2 ≥ ‖Xβ(k) −Xβ′‖2, (23)

which implies that

[1 + (γ − 1)−1]‖Xβ̄ −Xβ′‖2 (24)

≥‖Xβ̄ −Xβ′‖2 + ‖Xβ(k) −Xβ′‖2
≥‖Xβ̄ −Xβ(k)‖2.

Therefore we obtain

(γ − 1)2[(Q(β̄)−Q(β′))− (Q(β(k))−Q(β′))]

=(γ − 1)2n−1[‖Xβ̄ −Xβ′‖22 − ‖Xβ(k) −Xβ′‖22]

≥(γ − 1)2n−1[‖Xβ̄ −Xβ′‖22 − (γ − 1)−2‖Xβ̄ −Xβ′‖22]

=[(γ − 1)2 − 1]n−1‖Xβ̄ −Xβ′‖22
≥[(γ − 1)2 − 1][1 + (γ − 1)−1]−2n−1‖Xβ̄ −Xβ(k)‖22
=(γ − 1)2[1− 2γ−1]n−1‖Xβ̄ −Xβ(k)‖22.

The first equality follows from the fact that β′ is the least
squares solution that minimizes Q(·) in F ′ and Proposi-
tion B.1. The first inequality uses (23). The second inequality
uses (24).

By simplifying the above equation, we obtain the second
desired bound of the lemma.

The third desired bound of the lemma follows from the
following derivation:

Q(β̄)−Q(β′) =n−1‖Xβ̄ −Xβ′‖22
≥ρ(s)‖β̄ − β′‖22 ≥ ρ(s)‖β′F ′−F̄ ‖

2
2

≥ρ(s)(1− γ−1)2‖β(k)

F ′−F̄ ‖
2
2

≥ρ(s)(1− γ−1)2|F (k) − F̄ |ε/2.

The first equality follows from Proposition B.1, where we note
that β′ is the least squares solution that minimizes Q(·) in F ′

and supp(β̄) ∈ F ′. The first inequality uses the definition of
ρ(s) in Definition 3.1. The second inequality uses the fact
that β̄j = 0 when j ∈ F ′ − F̄ . The third inequality uses (22).
The fourth inequality uses (20), F ′ − F̄ = F (k) − F̄ , and the
fact that ε ≤ δ(k). This proves the third desired bound of the
lemma.

The following result, which holds when FoBa terminates,
is analogous to Lemma B.3.

Lemma B.4: Consider any F̄ ⊂ {1, . . . , d}, and any β̄ ∈
Rd such that supp(β̄) ⊂ F̄ . At the end of FoBa algorithm in
Figure 4, let s = |F (k) ∪ F̄ |. We have

n−1‖X(β̄ − β(k))‖22 ≥ ρ(s)|F (k) − F̄ |ε/2.

In addition, we have either

Q(β(k)) ≤ Q(β̄)− n−1‖Xβ̄ −Xβ(k)‖22/2

17

or

max
[
n−1‖X(β̄ − β(k))‖22, 16[Q(β(k))−Q(β̄)]

]
≤16ερ(s)−1|F̄ − F (k)|
≤32ερ(s)−1|{j ∈ F̄ : β̄2

j < 32ερ(s)−2}|.

Proof: Let F ′ = F̄ ∪ F (k), and β′ = β̂(F ′), we have
from the optimality of β′ in F ′ and Proposition B.1 that
Q(β(k)) − Q(β′) = n−1‖X(β′ − β(k)‖22. Therefore similar
to the derivation of (19), we can obtain by Lemma B.1
(apply the lemma with α = 1, F = F (k), and β = β(k))
and the termination condition of FoBa (which requires that
mini minαQ(β(k) + αei) ≥ Q(β(k))− ε):

ε ≥ ρ(s)

|F ′ − F (k)|
[Q(β(k))−Q(β′)] (25)

=
ρ(s)

n|F ′ − F (k)|
‖Xβ(k) −Xβ′‖22.

Moreover, since β(k) is the solution when the backward
step terminates in the immediate previous iteration, the back-
ward step termination condition requires Q(β(k) − β(k)

j ej)−
Q(β(k)) > 0.5δ(k) ≥ 0.5ε for all j ∈ F (k). Therefore similar
to the derivation of (20), we obtain from Lemma B.2 (apply
the lemma with F = F (k), β = β(k), and β′ = β̄):

1

|F (k) − F̄ |
‖β(k)

F (k)−F̄ ‖
2
2 ≥ ε/2. (26)

Now the first desired bound of the Lemma follows from
(26) using the same derivation as that of the first bound in
Lemma B.3.

In the following, we consider two situations. In the first
case, we assume that the following inequality holds:

‖Xβ̄ −Xβ′‖2 ≥ 3‖Xβ(k) −Xβ′‖2. (27)

This inequality is the same as (23) with γ = 4 in the proof of
Lemma B.3. Using the same algebraic derivation below (23)
leading to the second bound of Lemma B.3, we obtain

Q(β(k)) ≤ Q(β̄)− (1− 2/4)n−1‖Xβ̄ −Xβ(k)‖22.

This means that in this situation the second desired bound of
the current Lemma holds.

In the second case, we assume that (27) does not hold. That
is,

‖Xβ̄ −Xβ′‖2 < 3‖Xβ(k) −Xβ′‖2.

It follows that

‖Xβ̄ −Xβ(k)‖22 ≤[‖Xβ̄ −Xβ′‖2 + ‖Xβ(k) −Xβ′‖2]2

<16‖Xβ(k) −Xβ′‖22
≤16nερ(s)−1|F̄ − F (k)|. (28)

The first inequality is the triangle inequality. The second in-
equality uses the assumption that (27) does not hold. The third
inequality uses (25) and the fact that F ′ − F (k) = F̄ − F (k).

Note that (25) also implies that

[Q(β(k))−Q(β̄)] ≤ [Q(β(k))−Q(β′)] ≤ ερ(s)−1|F̄ −F (k)|.

This result, combined with (28), leads to the first part of the
third displayed inequality of the lemma.

Moreover, we have

32ερ(s)−1|{j ∈ F̄ − F (k) : β̄2
j ≥ 32ερ(s)−2}|

≤ρ(s)
∑

j∈F̄−F (k)

(β̄j)
2 ≤ ρ(s)‖β̄ − β(k)‖22

≤n−1‖X(β̄ − β(k))‖22 < 16ερ(s)−1|F̄ − F (k)|.

The first inequality is simple algebra. The second inequality
uses β(k)

j = 0 when j ∈ F̄ − F (k). The third inequality uses
the definition of ρ(s) in Definition 3.1. The fourth inequality
uses (28). Hence

2|{j ∈ F̄ − F (k) : β̄2
j ≥ 32ερ(s)−2}| ≤ |F̄ − F (k)|,

which implies that

2|{j ∈ F̄ − F (k) : β̄2
j < 32ερ(s)−2}| ≥ |F̄ − F (k)|.

This implies the second part of the third displayed inequality
of the lemma.

APPENDIX C
PROPERTIES OF SUB-GAUSSIAN NOISE

The following lemma is a standard empirical processes
bound for sub-Gaussian random variables. The bound is used
to derive probability estimates in our analysis.

Lemma C.1: Consider n independent random variables ξ =
[ξ1, . . . , ξn] such that Eet(ξi−Eξi) ≤ eσ

2t2/2 for all t and i.
Consider vectors gj = [gi,1, . . . , gi,n] ∈ Rn for j = 1, . . . ,m,
we have for all η ∈ (0, 1), with probability larger than 1− η:

sup
j
|g>j (ξ −Eξ)| ≤ a

√
2 ln(2m/η),

where a = σ supj ‖gj‖2.
Proof: For a fixed j, we let sj = g>j (ξ − Eξ) =∑n

i=1 gi,j(ξi − Eξi); then by assumption, E(etsj + e−tsj) ≤
2ea

2t2/2, which implies that for all ε > 0: Pr(|sj | ≥ ε)etε ≤
2ea

2t2/2. Now let t = ε/a2, we obtain:

Pr
(∣∣g>j (ξ −Eξ)

∣∣ ≥ ε) ≤ 2e−ε
2/2a2 .

This implies that

Pr

[
sup
j

∣∣g>j (ξ −Eξ)
∣∣ ≥ ε]

≤m sup
j

Pr
[∣∣g>j (ξ −Eξ)

∣∣ ≥ ε] ≤ 2me−ε
2/(2a2).

This implies the lemma.
Next we would like to obtain a bound on the 2-norm

between the estimated parameter and the true parameter. The
proof requires the following simple covering number estimate
taken from [22].

Proposition C.1: Consider the unit sphere Sk−1 = {x :
‖x‖2 = 1} in Rk (k ≥ 1). Given any ε > 0, there exists an
ε-cover Q ⊂ Sk−1 such that minq∈Q ‖x − q‖2 ≤ ε for all
‖x‖2 = 1, with |Q| ≤ (1 + 2/ε)k.

The following result provides a concentration bound for
any fixed k-dimensional projection of a sub-Gaussian random
vector.

18

Lemma C.2: Let Assumption 3.1 hold. Let P̃ be any fixed
n × n projection matrix of rank k. Then for all η ∈ (0, 1),
with probability larger than 1− η:

‖P̃ (y −Ey)‖22 ≤ σ2[7.4k + 2.7 ln(2/η)].

Proof: According to Proposition C.1, given ε1 > 0, there
exists a finite set Q = {qj} with |Q| ≤ (1 + 2/ε1)k such that
‖P̃ qj‖2 = 1 for all j, and mini ‖P̃ β − P̃ qj‖2 ≤ ε1 for all
‖P̃ β‖2 = 1 (since P̃ β is in a k dimensional space).

Lemma C.1 (with m = |Q|, and a = σ supj ‖q>j P̃‖2 = σ)
implies that with probability 1− η:

sup
j

∣∣∣q>j P̃ (y −Ey)
∣∣∣2

≤2σ2 ln(2|Q|/η) ≤ ε22 = 2σ2[k ln(1 + 2/ε1) + ln(2/η)].

Let β = P̃ (y − Ey)/‖P̃ (y − Ey)‖2, then there exists j
such that ‖P̃ β − P̃ qj‖2 ≤ ε1. We have

‖P̃ (y −Ey)‖2 = β>(y −Ey)

≤‖P̃ β − P̃ qj‖2‖P̃ (y −Ey)‖2 + |q>j P̃ (y −Ey)|
≤ε1‖P̃ (y −Ey)‖2 + ε2,

where the first inequality is simple algebra, and the second in-
equality uses the definitions of ε1 and ε2. Now by rearranging
the above inequality, we obtain

‖P̃ (y −Ey)‖2 ≤ε2/(1− ε1)

≤σ
√

2[k ln(1 + 2/ε1) + ln(2/η)]/(1− ε1).

Let ε1 = 2/15, we obtain the desired bound.
The following result uses Lemma C.2 to derive an oracle-

inequality like bound that holds uniformly for all sparse
estimators.

Lemma C.3: Given a fixed set F̄ ⊂ {1, . . . , d}, with prob-
ability larger than 1− η, we have for all F ⊂ {1, . . . , d} and
all vectors β̄ such that supp(β̄) ⊂ F̄ , the following statement
holds:

‖Xβ̂(F)−Ey‖22 − p‖Xβ̄ −Ey‖22
≤n[Q(β̂(F))−Q(β̄)] + 2‖Xβ̂(F)−Xβ̄‖2

·
√

7.4|F̄ |+ 2.7|F − F̄ | ln(16d) + 2.7 ln(2e/η)σ.

Proof: For each F ⊂ {1, . . . , d}, we define ηF∪F̄ =
d−|F−F̄ |η/e. Since F ∪ F̄ is uniquely determined by the set
F − F̄ that contains |F − F̄ | elements, there are at most
Cjd (d choose j) choices of F ∪ F̄ such that |F − F̄ | = j
(j = 0, 1, . . . , d). It follows that∑
F−F̄⊂{1,...,d}

ηF∪F̄ ≤
∑
j≥0

Cjdd
−jη/e ≤

∑
j≥0

dj

j!
d−jη/e ≤ η.

Therefore by taking union bound of Lemma C.2 for all
F ⊂ {1, . . . , d}, we obtain that with probability at least
1−

∑
F−F̄ ηF∪F̄ ≥ 1− η: for all F ⊂ {1, . . . , d},

‖PF∪F̄ (y −Ey)‖22 (29)

≤σ2[7.4|F ∪ F̄ |+ 2.7 ln(2/ηF∪F̄)]

=σ2[7.4|F ∪ F̄ |+ 2.7|F − F̄ | ln d+ 2.7 ln(2e/η)]

≤σ2[7.4|F̄ |+ 2.7|F − F̄ | ln(16d) + 2.7 ln(2e/η)],

where PF∪F̄ is the projection matrix to the subspace spanned
by columns fj (j ∈ F∪F̄), and hence has rank at most |F∪F̄ |.
Note that the last inequality uses 7.4|F∪F̄ | ≤ 7.4|F̄ |+2.7|F−
F̄ | ln 16.

The above inequality implies that

‖Xβ̂(F)−Ey‖22 − ‖Xβ̄ −Ey‖22
=‖Xβ̂(F)− y‖22 − ‖Xβ̄ − y‖22 + 2(Xβ̂(F)−Xβ̄)>(y −Ey)

=n[Q(β̂(F))−Q(β̄)] + 2(Xβ̂(F)−Xβ̄)>PF∪F̄ (y −Ey)

≤n[Q(β̂(F))−Q(β̄)] + 2‖Xβ̂(F)−Xβ̄‖2‖PF∪F̄ (y −Ey)‖2
≤n[Q(β̂(F))−Q(β̄)] + 2σ‖Xβ̂(F)−Xβ̄‖2

·
√

7.4|F̄ |+ 2.7|F − F̄ | ln(16d) + 2.7 ln(2e/η).

The first equality can be obtained from simple algebra. The
second equality uses the fact that supp(β̂ − β̄) ⊂ F ∪ F̄ , and
thus (β̂(F) − β̄)>X> = (β̂(F) − β̄)>X>PF∪F̄ . The first
inequality follows from the Cauchy-Schwarz inequality. The
last inequality uses (29).

The following result is similar to Lemma C.3 (which is
useful for proving oracle inequalities), but it is more suitable
for feature selection, where it is useful when ‖Xβ̂(F̄ ,Ey)−
Ey‖2 is small.

Lemma C.4: Given a fixed set F̄ ⊂ {1, . . . , d}, with proba-
bility larger than 1−η, we have for all F ⊂ {1, . . . , d} and all
vector β̄ such that supp(β̄) ⊂ F̄ , the following two statements
holds√

n[Q(β̂(F̄))−Q(β̂(F ∪ F̄))]

≤
√
‖Xβ̂(F̄ ,Ey)−Ey‖22 − ‖Xβ̂(F ∪ F̄ ,Ey)−Ey‖22

+ σ
√

2.7|F − F̄ | ln(16d) + 2.7 ln(2e/η).

Proof: We define ηF∪F̄ as in the proof of Lemma C.3.
However, instead of using the rank-|F ∪ F̄ | projection matrix
PF∪F̄ to derive (29), we use the rank-|F−F̄ | projection matrix
(PF∪F̄ −PF̄) to obtain from Lemma C.2 that with probability
1− η, we have for all F ⊂ {1, . . . , d}:

‖(PF∪F̄ − PF̄)(y −Ey)‖2

≤σ
√

7.4|F − F̄ |+ 2.7 ln(2/ηF∪F̄)

≤σ
√

2.7|F − F̄ | ln(16d) + 2.7 ln(2e/η).

Moreover, using properties of projection operators and the
closed form of least squares solution, we obtain

‖(PF∪F̄ − PF̄)(y −Ey)‖2
≥‖(PF∪F̄ − PF̄)y‖2 − ‖(PF∪F̄ − PF̄)Ey‖2

=
√
‖PF∪F̄y‖22 − ‖PF̄y‖22 −

√
‖PF∪F̄Ey‖22 − ‖PF̄Ey‖22

=
√
‖(I − PF̄)y‖22 − ‖(I − PF∪F̄)y‖22

−
√
‖(I − PF̄)Ey‖22 − ‖(I − PF∪F̄)Ey‖22

=

√
n[Q(β̂(F̄))−Q(β̂(F ∪ F̄))]

−
√
‖Xβ̂(F̄ ,Ey)−Ey‖22 − ‖Xβ̂(F ∪ F̄ ,Ey)−Ey‖22.

19

In the above derivation, the first inequality is the triangle
inequality. The first two equalities use properties of projection
operators (Pythagorean equation). The third equality uses the
fact that PFg = Xβ̂(F,g) for all F ⊂ {1, . . . , 2} and g ∈ Rn
(which follows from the closed form solution of least squares
problem).

Now, by comparing the previous two displayed inequalities,
we obtain the lemma.

The following lemma gives a bound on the infinity-norm
of the difference between the estimated parameter β̂(F̄) and
the true parameter β̄ when the set of features F̄ is known in
advance.

Lemma C.5: Let Assumption 3.1 hold. Consider any fixed
F̄ ⊂ {1, . . . , d} with |F̄ | = k̄, and Let β̄ = β̂(F̄ ,Ey). For all
η ∈ (0, 1), with probability larger than 1− η, we have

‖β̂(F̄)− β̄‖∞ ≤ σ
√

(2 ln(2k̄/η))/(nρ(k̄)).

Proof: For simplicity, let G ∈ Rn×k̄ be the matrix with
columns fj for j ∈ F̄ . Let β̂′ ∈ Rk̄ and β̄′ ∈ Rk̄ be the
restrictions of β̂(F̄) ∈ Rd to F̄ and β̄ ∈ Rd to F̄ respectively.
By definition of β̂ as least squares solutions, and apply the
closed form solution of least squares problems, we have β̂′ =
(G>G)−1G>y and β̄′ = (G>G)−1G>Ey. It follows that

β̂′ − β̄′ = (G>G)−1G>(y −Ey).

Therefore for j = 1, . . . , k̄:

|β̂′j − β̄′j | = |e>j (G>G)−1G>(y −Ey)|.

Lemma C.1 (with a2 = supj ‖ej(G>G)−1G>‖22σ2) implies
that with probability larger than 1− η, for all j = 1, . . . , k̄:

|e>j (G>G)−1G>(y −Ey)|

≤σ sup
j
‖e>j (G>G)−1G>‖2

√
2 ln(2k̄/η).

According to Definition 3.1, ρ(k̄)n is no larger than the
smallest eigenvalue of G>G. Therefore the desired inequality
follows from the estimate

‖e>j (G>G)−1G>‖22 = e>j (G>G)−1ej ≤ 1/(nρ(k̄)).

Tong Zhang Tong Zhang received a B.A. in mathematics and computer
science from Cornell University in 1994 and a Ph.D. in Computer Science
from Stanford University in 1998. After graduation, he worked at IBM T.J.
Watson Research Center in Yorktown Heights, New York, and Yahoo Research
in New York city. He is currently a professor of statistics at Rutgers University.
His research interests include machine learning, algorithms for statistical
computation, their mathematical analysis and applications.

REFERENCES

[1] A. Barron. Universal approximation bounds for superpositions of a sig-
moidal function. IEEE Transactions on Information Theory, 39(3):930–
945, 1993.

[2] A. Barron, A. Cohen, W. Dahmen, and R. DeVore. Approximation and
learning by greedy algorithms. Annals of Statistics, 36:64–94, 2008.

[3] P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso
and Dantzig selector. Annals of Statistics, 37(4):1705–1732, 2009.

[4] P. Bühlmann. Boosting for high-dimensional linear models. Annals of
Statistics, 34:559–583, 2006.

[5] F. Bunea, A. Tsybakov, and M. H. Wegkamp. Sparsity oracle inequalities
for the Lasso. Electronic Journal of Statistics, 1:169–194, 2007.

[6] F. Bunea, A. B. Tsybakov, and M. H. Wegkamp. Aggregation for
Gaussian regression. Annals of Statistics, 35:1674–1697, 2007.

[7] E. J. Candes and T. Tao. Decoding by linear programming. IEEE Trans.
on Information Theory, 51:4203–4215, 2005.

[8] D. M. Chickering. Optimal structure identification with greedy search.
Journal of Machine Learning Research, 3:507–554, 2003.

[9] G. C. Cong Huang and A. Barron. Risk of penalized least squares,
greedy selection and L1 penalization for flexible function libraries. Yale
Tech Report, 2008.

[10] C. Couvreur and Y. Bresler. On the optimality of the backward greedy
algorithm for the subset selection problem. SIAM J. Matrix Anal. Appl.,
21(3):797–808, 2000.

[11] D. L. Donoho, M. Elad, and V. N. Temlyakov. Stable recovery of sparse
overcomplete representations in the presence of noise. IEEE Trans. Info.
Theory, 52(1):6–18, 2006.

[12] J. Duchi, S. Shalev-shwartz, Y. Singer, and A. Tewari. Composite
objective mirror descent. In COLT’ 10, 2010.

[13] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle
regression. Annals of Statistics, 32(2):407–499, 2004.

[14] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer, 2001.

[15] L. Jones. A simple lemma on greedy approximation in Hilbert space and
convergence rates for projection pursuit regression and neural network
training. Ann. Statist., 20(1):608–613, 1992.

[16] V. Koltchinskii. Sparsity in penalized empirical risk minimization.
Annales de l’Institut Henri Poincaré, 2008.

[17] N. Littlestone. Learning quickly when irrelevant attributes abound: a
new linear-threshold algorithm. Machine Learning, 2:285–318, 1988.

[18] S. Mallat and Z. Zhang. Matching pursuits with time-frequency
dictionaries. IEEE Transactions on Signal Processing, 41(12):3397–
3415, 1993.

[19] N. Meinshausen and P. Buhlmann. High-dimensional graphs and
variable selection with the Lasso. The Annals of Statistics, 34:1436–
1462, 2006.

[20] N. Meinshausen and B. Yu. Lasso-type recovery of sparse representa-
tions for high-dimensional data. Annals of Statistics, 37:246–270, 2009.

[21] S. Negahban, P. Ravikumar, M. Wainwright, and B. Yu. A unified frame-
work for high-dimensional analysis of M-estimators with decomposable
regularizers. In NIPS’ 09, 2009.

[22] G. Pisier. The volume of convex bodies and Banach space geometry.
1989. Cambridge University Press.

[23] J. A. Tropp. Greed is good: Algorithmic results for sparse approxima-
tion. IEEE Trans. Info. Theory, 50(10):2231–2242, 2004.

[24] L. Xiao. Dual averaging methods for regularized stochastic learning and
online optimization. Journal of Machine Learning Research, 11:2543–
2596, 2010.

[25] C.-H. Zhang and J. Huang. Model-selection consistency of the Lasso in
high-dimensional linear regression. Technical report, Rutgers University,
2006.

[26] T. Zhang. On the consistency of feature selection using greedy least
squares regression. Journal of Machine Learning Research, 10:555–
568, 2009.

[27] T. Zhang. Some sharp performance bounds for least squares regression
with L1 regularization. Ann. Statist., 37(5A):2109–2144, 2009.

[28] T. Zhang. Analysis of multi-stage convex relaxation for sparse regular-
ization. Journal of Machine Learning Research, 11:1087–1107, 2010.

[29] P. Zhao and B. Yu. On model selection consistency of Lasso. Journal
of Machine Learning Research, 7:2541–2567, 2006.

