Solving Large Scale Linear Prediction Problems Using Stochastic
Gradient Descent Algorithms

Tong Zhang

TZHANGQWATSON.IBM.COM

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

Abstract

Linear prediction methods, such as least
squares for regression, logistic regression and
support vector machines for classification,
have been extensively used in statistics and
machine learning. In this paper, we study
stochastic gradient descent (SGD) algorithms
on regularized forms of linear prediction
methods. This class of methods, related
to online algorithms such as perceptron, are
both efficient and very simple to implement.
We obtain numerical rate of convergence for
such algorithms, and discuss its implications.
Experiments on text data will be provided to
demonstrate numerical and statistical conse-
quences of our theoretical findings.

1. Introduction

Consider the problem of predicting an unobserved out-
put value y based on an observed input vector x. We
assume that the quality of a predictor p(z) is measured
by a loss function ¢(p(z),y), and the data (X,Y) are
drawn from an unknown underlying distribution D.
Our goal is to find p(x) so that the expected true loss
of p given below is as small as possible:

Q(p(")) = Ex,y¢(p(X),Y), (1)

where we use Exy to denote the expectation with
respect to the true (but considered to be unknown
for learning problems) underlying distribution D.
Throughout the paper, we assume that the loss func-
tion ¢(p,y) is a convex function of p.

In this paper, we focus on linear predictors which take
the form p(z) = wTz. We are interested in analyzing
the behavior of some simple stochastic gradient de-
scent algorithms. This class of methods, also referred

Appearing in Proceedings of the 21°* International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the first author.

to as stochastic approximation algorithms (Kushner
& Yin, 1997), have been extensively applied to learn-
ing problems such as neural networks. Similar to the
perceptron method (Rosenblatt, 1962), stochastic gra-
dient descent algorithms update the weight vector w
in the online setting. We assume that training samples
(X1,Y1),..., are given one at a time. The algorithms
examine the current data-point, and then update the
weight vector accordingly. They are particularly suit-
able for large scale applications, where the number of
data points and the problem dimensionality are both
very large. Moreover, as we shall see later, the opti-
mal prediction performance can be achieved with only
a small number of iterations over the training data.
Therefore SGD methods can be very efficient.

This paper focuses on the numerical aspect of SGD and
its statistical consequences. In statistical learning, we
want to find a predictor with small true risk in (1) us-
ing a finite number of training samples drawn from the
underlying distribution D. Therefore the purpose of
our analysis is to understand the convergence behavior
of SGD when we apply it to the random training sam-
ples. In practice, it is helpful to run the method over
the training data multiple times. The reason, based
on a relationship of early-stopping and regularization,
will become clear later. Another issue we investigate is
the effect of predictor averaging. In the stochastic ap-
proximation literature, the averaging technique comes
with great theoretical promises (Polyak & Juditsky,
1992). Our consideration mainly follows the point of
view from the online learning literature, where aver-
aging is a technical tool to derive non-asymptotic con-
vergence bounds. In this context, we shall discuss the
effect of averaging based on statistical implications of
our bounds and an experimental study.

2. Stochastic Gradient Descent Method

One issue of equation (1) is that the solution may not
be unique, or may not even exist (when the minimum
is achieved at infinity). Practitioners often use a reg-

ularized form such as the generalization below, which
always has a unique and numerically stable solution:

A
Qa(w) = Bx,y ¢(w" X,Y) + S lwl, (2)
where ||w||2 = wTw and X is a non-negative regulariza-
tion parameter. If A = 0, the problem is unregularized.

We solve (2) using stochastic gradient descent. At
each step ¢, we observe (X;,Y;), and update the
current, weight vector w;—; using the formula w; =
Wy_1 — nt5{1%L¢(1ﬁt_1,Xt,Y2), where 7; > 0 is an
appropriately chosen learning rate parameter, S; is a
symmetric positive definite matrix, and Lg(w,z,y) =
#(wTz,y) + 3|lw||3. The matrix S; can be regarded
as a preconditioner, which accelerates the convergence
rate if chosen appropriately. In practice, one can sim-
ply let S; be the identity matrix. For simplicity, we
assume that S; is a constant matrix. The correspond-
ing stochastic gradient descent update rule becomes

Wy = W1 — NS~ (M1 + ¢1 (w1 X, Y1) Xy), (3)

where ¢} (p,y) = a%gb(p,y). The algorithm, which
solves (2), can be summarized below.

Algorithm 2.1 (standard SGD)
Initialize wq
fort=1,2,...
Draw (X4,Y;) randomly from D.
Update w;_1 as:
Wy = w1 — ST (M1 + ¢ (wi Xy, V) Xy)
end

The online stochastic gradient method can be com-
pared to batch learning, which approximately solves
(2) by replacing the true expectation with empirical
samples (X1,Y7),...,(Xn,Yn):

" 1S T A
- -3 X, Vi) + 2 .«
W = argmin | — 2 d(w i) + 2 [lwl|3 (4)

Both online stochastic gradient algorithm (3) and
batch learning algorithm (4) approximately solve (2).
The stochastic gradient method is clearly more effi-
cient if we run the algorithm only once over the data.
As we shall see later, its generalization behavior is also
simple to analyze. Even if we apply the stochastic gra-
dient method to the unregularized formulation (1) di-
rectly, it achieves an implicit regularization effect. It
is worth mentioning that one can use Algorithm 2.1 to
solve the batch learning system (4) by drawing samples
from the empirical distribution instead, or simply run
the algorithm over the empirical data multiple times.

In the following, we focus on the finite-sample conver-
gence analysis of stochastic gradient descent, as well
as its statistical consequences.

3. A One-step Difference Inequality

Although the convergence of general stochastic gradi-
ent algorithms has been well studied in the literature
(for example, see (Kushner & Yin, 1997)), the existing
studies are only concerned with the asymptotic con-
vergence behavior for parametric problems. Although
such analysis is very useful, it does not apply to prob-
lems where the underlying dimensionality is large com-
pared with the number of training examples. We note
that most modern learning methods (such as kernel
methods or boosting) fit linear prediction models in
very high dimensional spaces.

Our goal is to investigate the finite sample convergence
behavior of stochastic gradient rule (3), suitable for
large scale linear prediction problems. Traditionally
finite sample convergence behavior has been studied in
the online learning literature. In this paper, we use an
idea that generalizes the proof of perceptron mistake
bound to gradient descent formulation (3) as follows.
Let w be an arbitrary weight vector, we consider the
quantity Ry = |l — wl|z = (@& — w)"S(; — w).
The basic idea of our analysis is to show that on aver-
age, R, + decreases with sufficiently small 7; when the
true risk Qx(wy) in (2) is larger than Q) (w). Since
Ry > 0, we can only decrease it by a finite amount.
A convergence bound can then be obtained.

Elements of our proof have also been used in the stan-
dard proof of the perceptron mistake bound, as well
as more recent extensions such as (Cesa-Bianchi, 1999;
Kivinen & Warmuth, 2001; Kivinen et al., 2002). How-
ever, analysis presented here is more compact, and we
apply the idea directly to the more general stochastic
gradient descent rule (3).

Our analysis is based on the following decomposition:

|y — wl|%
=[|(@e—1 — w) =S Qwes + ¢ (wi 1 X, Vi) Xo) |5
=[Jiy—1 — wl|§ + 17 [| M1 + ¢ (W] 1 X, Vi) X5
= 2n (M1 + @ (02 X, ¥3) X) T (-1 — w)
=[lds—1 — wllz + 7 [IMde—1 + @7 (W1 Xe, Vo) X |51
= 20y (Lg (g1, X4, Yy) — Lg(w, X3, Y3))
— (2dg (D) Xp, w" X5 Y3) + Allide—1 — w]|3),

where in the last equation, we have used the notation

de(p,zy) = 8(a,y) — ¢, y) — ¢1(p,y)(a — p). The
quantity dy(p, ¢;y) is often referred to as the Bregman

divergence of ¢(p,y) (with respect to p). It is well
known (and easy to check) that for a convex function,
its Bregman divergence is always non-negative. That
is, d¢(-) > 0. Therefore the above decomposition can
be simplified as the following inequality, which is the
main result of this section:

[y —wl = [lde—1 —wll§ (5)
< (M1 ls-1 + (161 (@71 Xi, Y2) Xi) || 5-1)?
- 2nt(L¢(uA}tfl;Xt7 th) - L¢(1.U,Xt, Y;f))

4. Assumption on Loss Functions

For reference purpose, we make the following assump-
tion on the loss function:

Assumption 4.1 Consider a loss function ¢(p,y).
We assume that there exists non-negative constants A
and B such that (¢} (p,v))? < Ad(p,y) + B.

The purpose of this assumption is to simplify our anal-
ysis. Most interesting loss functions satisfy Assump-
tion 4.1. A notable exception is the exponential loss
used in AdaBoost. The following are some common
loss functions with corresponding choices of parame-
ters A and B (which are not unique):

e Logistic: ¢(p,y) = In(1 + exp(—py)); A = 0 and
B = 1. This loss is for binary classification prob-
lems with y € {£1}.

e SVM (hinge loss): ¢(p,y) = max(0,1—py); A=0
and B = 1. This loss is for binary classification
problems with y € {£1}. Note that the deriva-
tive ¢} (p,y) at py = 1 is not deterministic. Equa-
tion (5), thus our analysis, still holds at the point
py = 1 with any subgradient defined as ¢ (p,y) =
—uy (u € [0,1]). However, algorithmically, it is
still useful to avoid this non-deterministic prob-
lem. We thus consider a smoothed versions of
SVM as alternative.

e Quadratically smoothed SVM: ¢(p,y) =
%max(o,l — py)? when py > 1 — v and
o(p,y) = 1 — v/2 — py otherwise; A = 0 and
B =1 (another choice is A = 2/y and B = 0).
This loss is for binary classification problems
with y € {£1}. The parameter v is a positive
constant. When v — 0, it becomes the SVM loss.

o Least Squares: ¢(p,y) = (p —y)?; A = 4 and
B = 0. This loss is for regression problems.

e Modified Least Squares: ¢(p,y) = max(0,1—py)?;
A =4 and B = 0. This loss is for binary classifica-
tion problems with y € {£1}, some times referred
to as quadratic SVM in the literature.

e Huber loss: ¢(p,y) = (p —y)? when [p—y| < 1
and ¢(p,y) = 2|p — y| — 1 otherwise; A = 0 and
B = 4. This loss is for regression problems.

e Modified Huber: ¢(p,y) = max(0,1 — py)? when
py > —1 and ¢(p,y) = —4py otherwise; A = 0
and B = 16. This loss is for binary classifica-
tion problems with y € {£1}. It is equivalent to
quadratically smoothed SVM with v = 2.

5. Convergence Analysis of
Unregularized Formulation

For the unregularized formulation, we choose A = 0.

Although (2) may not have a finite solution, @) (w;) can
still convergence to the minimum risk as ¢ — oo.

Under Assumption 4.1, and in addition we assume that
sup || X¢||s-1 < M. From (5), we obtain

e — wlls — l[de— — wl§ < 0§ (Ap(w_y X¢, Vi) + B)M?

— 2 (P X1, Y7) — p(w” X3, Y7)). (6)

5.1. Online Regret Bound

The following bound is a direct consequence of (6). Re-
lated results can be found in online learning works such
as (Cesa-Bianchi, 1999; Kivinen & Warmuth, 2001).

Theorem 5.1 Under Assumption 4.1, and in addi-
tion we assume that sup || X¢||s-1 < M. If we pick
wo =0, A=0, andn, =n >0, then

T
n 2y 1 AT
1--AM?*)= E X, Y
(2)T 2 Py X, Ye)
1 & 1 n
i - T 2 i 2
Slrul)f T tE:1 o(w' X3, V) + 27)T”w”s + 2BM .
Proof. Summing (6) overt = 1,...,T and rearranging,

we obtain the desired bound. O

The above bound shows that by picking 7 such that
7 is small (but 5T is large), the average loss suffered
from the online update is almost as small as that of
the best regularized loss of any weight vector which is
picked a priori. This applies to all loss functions that
satisfy Assumption 4.1.

In the near-separable case, gradient descent with cer-
tain loss functions listed in Section 4 behave similarly
as the perceptron algorithm (as far as mistake bound is
concerned). We consider the quadratically smoothed
SVM loss with v = 1, and take the choice of A = 2

and B = 0. Now Theorem 5.1 implies that

T

1 .
(1- an’)T Z P(i{_1 X1, V)
=1

T
) 1 T 1 2
<inf T tE:1 d(w" X4, Yy) + 277T||w||5] .

Now under the large margin assumption (required by
the perceptron mistake bound), there is a weight vec-
tor w, such that w! XY > 1 with probability one. Let
n =1/2M? and 1wy = 0, we obtain

T
23 " p(i] 4 Xy, Ys) < 4AMP||w, |3
t=1

Note that the left hand side is an upper bound of the
mistakes the update rule makes. The right hand side
is similar to the perceptron mistake bound. Therefore
in the separable case, stochastic update with quadrati-
cally smoothed SVM behaves similar to the perceptron
algorithm. Our bound also applies directly to the non-
separable case. The corresponding result is stronger
than the corresponding mistake bound for voted per-
ceptron method in (Freund & Schapire, 1999) since in
our case the convergence is with respect to the min-
imization of the loss function, which has important
statistical consequences such as the consistency of the
resulting estimator.

5.2. Convergence of Averaged Stochastic
Gradient Descent

Although mistake bounds are useful by themselves,
they are not the most relevant quantities to investi-
gate if we are interested in the convergence behavior of
the stochastic gradient descent rule (3) for solving the
optimization problem (2). The regret bound analysis
suggests us to consider the following averaged version
of stochastic gradient descent algorithm. Note that
we assume that we pick 7; > 0 such that AM 2, < 2,
where M > sup || X¢||g-1:

Algorithm 5.1 (Averaged SGD)
Initialize wq
Let 99 =0and ro =0
fort=1,2,...
Draw (X4,Y;) randomly from D.
Update w;—1 as:
Wy = gy — S (M1 + ¢ (w1 Xy, V1) Xy)

AM2?
TE=T¢ 1+ — —5t
N Ti—1 o T —Ti—1 ,~
Up = = V-1t~ W1
end

In practical implementations of the algorithm, we
choose small learning rate n; so that 7, AM? < 1. In
this case we can simply update r; as ry = ri—1 + 7.
If we pick a constant learning rate 1, = 7, then these
update rules are equivalent.

Theorem 5.2 Under Assumption 4.1, and in addi-
tion we assume that sup || X¢||s-1 < M. Let o = 0
and A =0, then

T
BQUir) < 37 Qi 1)
t=1

02 AM?

1 2 o 2
Q w BM

<inf [(1 +

T
where o3 = ¥7, 7.

Proof. The first inequality is due to the Jensen’s in-
equality and the convexity of (). The proof of the
second inequality is similar to that of Theorem 5.1.
Summing (6) over t =1,...,T, we obtain Vw:

T
—llwllz <> ni(Ad(b] X, Vi) + B)M?
=1
T
- Zznt(¢(w£1Xt;Yt) — ¢p(w" Xy, Yy)).
t=1

Rearranging, we get

T

2 —nZA
Z Mﬁé(wtlet;Y;f)
—1 2rr

T T
Nt 1 n
S22 Eqﬁ(wTXt,Y}) + EHWH% + Z ﬁBM?
t=1 t=1

By taking expectation with respect to the random se-
lection of data (X,Y;), and noticing that 2 Zle e =
2r7 + 02 AM?, we obtain the desired bound. O

This gives a bound for the averaged predictor o;. It
shows that as long as we pick ; — 0 such that r; — oo,
then limy_, oo E Q(07) — inf,, Q(w). Moreover, if we
pick 7; = n € (0,2/AM?) to be a constant sequence,
then as T — oo,

2

EQ(ir) < (1+ "Aéw)ing(w)+gBM2. (7)

An important practical issue is how to pick a learning
rate sequence {7; } which leads to fast convergence. Al-
though in order to achieve asymptotic convergence, it
is useful to pick 7, which converges to zero, some prac-
titioners favor the simpler method of using a constant

learning rate. Based on (7), such a method approxi-
mately solves the optimization problem, up to an ac-
curacy of the order O(n). A more relevant question is
that if we want to solve the optimization problem up
to a pre-determined accuracy €, what is the minimum
number of steps T' we have to take.

Interestingly, based on the bound in Theorem 5.2, one
can show that T-! = O(e?). Since with constant
learning rate n = O(e), we only need T = O(e 2)
steps to achieve an accuracy of O(e), we know that
we cannot speed up the convergence much by us-
ing more complicated learning rate schemes (at least
according to the bound in Theorem 5.2). Consider
the convergence bound in Theorem 5.2. If after T
steps, averaged SGD solves the optimization problem
up to an accuracy of O(e), then we have the condi-
tions 0% /rr = O(€) and 1/ry = O(e) (assume either
Q(w) or B is not zero). For an arbitrary learning
rate sequence {7}, the first inequality implies that
SF . n? = 0(e)), n. Using the Schwartz inequal-
ity, we have Y1, n? > (X,—,7)%/T. This implies
1T = O(Ei_y 3/ (X =1)?) = O(e/rr) = O(€2).

The above observation essentially suggests that in-
stead of considering complicated schemes for choos-
ing learning rate 7;, we may simply fix 7; to a pre-
determined small constant, and then run the SGD
method until satisfactory convergence is achieved.

Another important aspect of SGD is how to choose
the stopping point T'. In practice, we employ SGD to
solve the empirical version (4) of (2). If we go through
the data only once, then based on Theorem 5.2, even
without regularization, the resulting weight vector ap-
proximately solves a regularized problem with respect
to the true distribution. This regularization implies
that the variance of the estimator is relatively small.
However, going through the data only once is likely to
over-regularize the system so that the bias as indicated
by the right hand side of Theorem 5.2 is unnecessarily
large. If we go through the data multiple times, then
the resulting weight vector approximately solves (4).
Since we fit the observed data better, the bias becomes
smaller. However, the variance is increased due to the
additional randomness introduced from going through
the data multiple times.

This analysis suggests that going through the data
multiple times can be regarded as a form of bias-
variance trade-off, which serves as an implicit method
of regularization. Therefore choosing the stopping
point T has the effect of choosing appropriate trade-
off between bias and variance for optimal generaliza-
tion. This phenomenon will be demonstrated by an

experiment. Statistically, we have an implicit regular-
ization scheme that is conveniently parameterized by
the stopping point 7', as compared with the explicit
regularization scheme which parameterize the degree
of regularization by A\. Numerically, this analysis sug-
gests that it is preferable to run SGD for only a small
number of iterations, instead of using it to solve (4)
completely. This is an important reason why in prac-
tice SGD can be a very efficient learning method for
large scale linear prediction problems.

5.3. Convergence of Standard Stochastic
Gradient Descent

Although Theorem 5.2 only implies that the expected
risk EQ(0;) of the averaged predictor 9; converges, in
reality, we observe that Q(w;) also converges. Note
that Theorem 5.2 essentially implies that if we ran-
domly stop at some time Ty € {1,...,T}, then the
same convergence bound on the right hand side ap-
plies to this randomly stopped estimator wr,. There-
fore with ' — oo, we know that E Q(wr,) converges
to the optimal value if 5, — 0.

Theoretically, an interesting problem is the behavior
of Wy for an arbitrary non-randomized stopping point
T. As we shall see, this problem is more easily studied
under the regularization framework. However, conver-
gence of Q(wr) is also a consequence of Theorem 5.2.
Due to the space limitation, we shall only state and
prove a relatively crude version with A = 0 and con-
stant learning rate n; = 7).

Theorem 5.3 Under Assumption 4.1 with A = 0,
and assume further that sup || X¢||s-1 < M. If we pick
wo =0, A =0, and n; =0 to be a constant, then

7) < in w)+—2T17 +7)(2+1n(T+1))BM.

Proof Sketch. Similar to Theorem 5.2, we have (with
wo and w replaced by w;):

T

1 . . (T —s+1)
t:;rl T QW) < EQ(ws) + WBM2-

Now, using induction, one obtain from this inequality:

zT: EQ (i)

T—-s5s—k 4
t=s+k+1 j=s

st+k—1 1
< EQ(ib,)+nBM*(1+) 5
Now let s+ k=T —1, we get

T—s

BQ(ir) < Qo) +nBM Y =
j=1

Therefore, EQ(wr) < inf,<r EQ(ws) + nBM?(1 +

In(T + 1)). Now applying Theorem 5.2. O

The factor In(T + 1) on the right hand side may be
an artifact due to the simplified proof-technique used
here. As pointed out earlier, with constant factor, we
only need to stop at a point T' where In(T + 1) =
O(ln %) Therefore the theorem can be applied with

only a loss of O(nln 1) factor. The result essentially
implies that even we go not choose a random stopping
point, we still obtain a convergence behavior similar
to that of the averaged predictor 7 in the worst case.

The issue of whether averaging helps is important in
SGD algorithms. As mentioned in the introduction,
the classical stochastic approximation theory such as
(Polyak & Juditsky, 1992) suggests that it is possi-
ble to obtain an asymptotically optimal estimator by
averaging asymptotically suboptimal estimators. Av-
eraging is also an important technical tool in online
learning since mistake bounds are obtained directly
for averaged predictors. In spite of the different inter-
pretations of averaging in different context, the funda-
mental role of averaging remains the same. That is, the
averaged predictor is more stable than non-averaged
predictors. This is why averaging may help in some
cases (and not necessarily so in other cases). Due to
the importance of this issue, we shall discuss it in the
context of our non-asymptotic convergence analysis.

Since Theorem 5.3 is based on Theorem 5.2, the corre-
sponding convergence bound is weaker than that of Or.
However, this does not mean that the averaged predic-
tor U is always superior. If we choose stopping point
T, € {0,...,T} randomly, then based on Theorem 5.2,
in order to achieve the same bound on the right hand
side, we stop at a time with expected value of T'/2. The
convergence bound implies that E Q(wr/,) on average
is roughly comparable to EQ (i), suggesting that W
can be superior to ¢7. The phenomenon that the con-
vergence behavior of 07 is similar to the convergence
behavior of w7 with 7' < T can be qualitatively ob-
served from our experiments.

Since wr makes a relatively large random change from
wr_1 based on (Xr,Yr), it has a relatively large vari-
ance. The predictor U7 reduces the variance by aver-
aging over random samples. This implies that if we
choose a large learning rate 7, then because of the
high variance, the averaged predictor U7 tends to be
superior. If we choose a relatively small learning rate
71, then due to the already low variance, the averaged
predictor 97 can be inferior.

The analysis, applied to the perceptron algorithm, ex-
plains why averaged perceptron algorithm tends to

help. Averaged perceptron, motivated from the voted
perceptron of (Freund & Schapire, 1999), has been
successfully applied to natural language learning prob-
lems (for example, see (Collins, 2002)). Note that for
practical large scale applications, it is crucial to use
averaging instead of voting since the latter is compu-
tationally very costly. In order to understand why
averaging helps, we simply observe that the percep-
tron method is a special case of SGD with the SVM
loss and n — oo. Since we are effectively using a large
learning rate, the non-averaged perceptron has a lot of
variance. If we use a small 7 in the stochastic gradient
descent algorithm with the SVM loss, then averaging
becomes much less helpful. This will be confirmed
with experiments. Theoretically, we believe that SGD
with the SVM loss and a small learning rate n can
be superior to the perceptron method since we try to
solve a well formed optimization problem which has
important statistical consequences. Moreover, the av-
eraged perceptron method, although useful in practice,
is hard to analyze. We will see from our experiments
that the theoretical advantages of SGD have observ-
able practical consequences.

6. Parameter Convergence for the
Regularized Formulation

For the regularized formulation, convergence results
similar to those of the unregularized formulation can
be developed. Moreover, since (2) has a unique finite
solution, we can show that the weight vector w; con-
verges to the optimal solution. Due to the space lim-
itation, we only discuss the convergence of the weight
vector to the optimal solution in this section. For sim-
plicity, we only state the resulting convergence bound
for constant learning rate 7;.

Theorem 6.1 Under Assumption 4.1, and in addi-
tion we assume that sup||X¢|ls-1 < M and 2\ <
AM?. If we pick g = 0, S =1, and gy = 1 > 0
such that n' = n(1 —nAM?) € [0,1/)], then

nC(1— (1= X))

where w. is the solution of (2), n' = n(1 — nAM?),
and C = 2(AQx(w.) + B)M?.

Proof Sketch. The convexity of Lg(-,,y) implies that
Qr(W-1) = Qa(wy) > 3lli—1 — w3, From (5), we

obtain

E[|le — wall3 — |1 — wall3]
<’ E (C'|lwe—1[5 + 2(ALg (i1, X¢, Yz) + B)M?)
—2nE (Ly(ws—1, X, Ys) — Lg(ws, X¢,Yy))
<2°(AQA(ws) + BYM? — M E ||ty —1 — w. |3,

where C' = A(2\ — AM?) < 0. The theorem follows
by induction on t. O

The above bound shows that if we pick a sufficiently
small n, and run the algorithm for a sufficiently long
time ¢, then as n — 0, the estimated parameter w;
converges to the true underlying parameter w, that
solves (2). This also implies that for small 7, with
regularization, the averaged estimator 0; will not be
much better than w,; asymptotically.

7. Experiments

We investigate empirically two aspects of SGD
for regularized linear systems: early stopping and
averaging. Although we are mostly interested in
the impact of algorithmic issues on the relative
learning performance, it is still useful for us to use
data such that algorithms proposed in this paper
compare favorably to other learning methods. Since
regularized linear classifiers achieve state of the
art performance in text-categorization (Li & Yang,
2003; Zhang & Oles, 2001), we use text data in our
experiments. Specifically we use the standard Mod-
Apte split of the Reuters-21578 data set available from
http://www.daviddlewis.com /resources /testcollections.
In our experiments, we use word stemming without
stop-word removal. Similar to the set up of (Zhang
& Oles, 2001), we use the binary bag-of-word model,
and select 10000 features.

In text categorization, the standard performance mea-
sures of a classification method are precision and recall
instead of classification error:

t iti
rue positive 100

precision = — —— X
true positive + false positive

true positive

recall = 100

X
true positive + false negative

We can also adjust the linear threshold to facilitate
a trade-off between precision and recall. Following
(Zhang & Oles, 2001), we report the break-even point
(BEP), where precision equals recall, as an evaluation
criterion for the performance of a linear classifier. The
reported results are micro-averaged over all 118 non-
empty categories. We run SGD (or averaged SGD)
repeatedly over the data with a random ordering. By

default, we choose a small constant learning rate of
n = 0.002.

7.1. Early Stopping and Regularization

As pointed out in Section 5.2, early-stopping for solv-
ing the unregularized batch formulation (4) with A = 0
has a similar effect as using explicit regularization.
Figure 1 demonstrates this phenomenon qualitatively,
where the least squares loss function, known to per-
form well for text-categorization (Li & Yang, 2003),
has been used for illustration.

There are some interesting observations from this
study. First, we can reach the optimal stopping point
relatively quickly (about ten iterations over the data).
This means that stochastic gradient algorithm is quite
efficient. Secondly, averaging does not help the per-
formance, but only smoothes the convergence curve
and shifts it to the right. The smoothing is due to
the variance reduction effect, and the shift is expected
from the discussion in Section 5.2. Thirdly, the be-
havior of early stopping is rather similar to explicit
regularization, as expected. However, early stopping
has the advantage of being easier to implement, more
efficient, and more robust.

87

break-even point

— standard SGD
- - averaged SGD

10"
number of iterations over the data

Figure 1. Performance of unregularized Least Squares ver-
sus the number of iterations over the data

7.2. Learning Rate and Averaging

Although interesting mistake bounds have been proved
in (Freund & Schapire, 1999) for the voted perceptron
method, the voting scheme is often too inefficient for
large scale problems such as text categorization since
it is infeasible to retain multiple weights. A practical
remedy is to use averaging as in (Collins, 2002), which
unfortunately cannot be analyzed theoretically under
the perceptron framework.

In this experiment, we compare the perceptron algo-
rithm to the stochastic gradient descent with the SVM
hinge loss. As pointed out earlier, these two methods
are very similar except for the following two differ-

ences. 1) with the SVM loss, we update the weight
more conservatively: as long as there is a mistake
within a positive margin; 2) the SGD update depends
on a learning rate parameter 7. The perceptron algo-
rithm can be regarded as a special case of the SVM-loss
based SGD algorithm with n — oo. We shall mention
that the idea of including margin in a perceptron like
algorithm has been considered in the online learning
literature such as (Kivinen et al., 2002). However, the
proposed algorithms were different from SGD for the
SVM hinge loss, and this connection was not explored
before. For simplicity, we shall not use explicit regu-
larization for the SVM loss.

Figure 2 compares the performance of the perceptron
method and that of SGD with the SVM loss, either
with or without averaging. Perceptron based meth-
ods are clearly inferior. Again, only a small number
of iterations is needed for optimal stopping. Note that
the averaged perceptron and the non-averaged percep-
tron become similar asymptotically. This is because
the training data are nearly or fully separable since
the problem dimensionality (10000) is larger than the
number of data points (9603). Therefore one eventu-
ally averages repeatedly over the same weight vector.

break-even point

10" 10°
number of iterations over the data

Figure 2. Performance of perceptron and SGD with SVM
loss versus the number of iterations over the data. non-
averaged methods: ’solid lines’; averaged methods: ’dashed
lines’; perceptron: 'x’, SGD : ’0’

8. Conclusion

We investigated the behavior of stochastic gradient de-
scent methods for solving linear prediction problems.
We have shown that this class of methods can be ana-
lyzed using a technique in the online learning literature
that extends the traditional proof of perceptron mis-
take bounds. By minimizing the resulting convergence
bound, we showed that the optimal convergence can
be attained with a constant learning rate. Our analy-
sis also suggests that with stochastic gradient descent,

one can obtain the effect of regularization using early-
stopping. Numerically, this implies that SGD is very
efficient for solving large scale learning problems be-
cause we only need to run the algorithm for a small
number of iterations to achieve optimal performance.
This phenomenon is confirmed with experiments on
text data. Moreover, we compared the proposed meth-
ods to the traditional perceptron methods, and argued
that loss minimization based SGD can be superior (at
least in principle). This is verified by an experiment.
Our analysis also leads to useful insights into the issue
of predictor averaging in online algorithms. We con-
cluded that although useful for the perceptron method,
averaging is much less important for stochastic gradi-
ent descent with a small learning rate.

References

Cesa-Bianchi, N. (1999). Analysis of two gradient-
based algorithms for on-line reression. Journal of
Computer and System Sciences, 59, 392-411.

Collins, M. (2002). Discriminative training methods
for hidden markov models: Theory and experiments
with perceptron algorithms. Proc. EMNLP’02.

Freund, Y., & Schapire, R. (1999). Large margin clas-
sification using the perceptron algorithm. Machine
Learning, 37, 277-296.

Kivinen, J., Smola, A., & Williamson, R. (2002).
Large margin classification for moving targets. Lec-
ture Notes in Artificial Intelligence (ALT 2002) (pp.
113-127). Springer.

Kivinen, J., & Warmuth, M. (2001). Relative loss
bounds for multidimensional regression problems.
Machine Learning, 45, 301-329.

Kushner, H. J., & Yin, G. G. (1997). Stochastic ap-
prozimation algorithms and applications. New York:
Springer-Verlag.

Li, F., & Yang, Y. (2003). A loss function analysis for
classification methods in text categorization. ICML
03 (pp. 472-479).

Polyak, B. T., & Juditsky, A. B. (1992). Acceleration
of stochastic approximation by averaging. SIAM J.
Control Optim., 30, 838-855.

Rosenblatt, F. (1962). Principles of neurodynamics:
Perceptrons and the theory of brain mechanisms.
New York: Spartan.

Zhang, T., & Oles, F. J. (2001). Text categorization
based on regularized linear classification methods.
Information Retrieval, 4, 5-31.

