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Abstract b,
airspace

This paper presents a novel training al- Lebanese
gorithm for a linearly-scored block se-
guence translation model. The key com-
ponent is a new procedure to directly op- warplanes
timize the global scoring function used by
a SMT decoder. No translation, language,
or distortion model probabilities are used
as in earlier work on SMT. Therefore
our method, which employs less domain
specific knowledge, is both simpler and
more extensible than previous approaches.
Moreover, the training procedure treats the
decoder as a black-box, and thus can be
used to optimize any decoding scheme.
The training algorithm is evaluated on a
standard Arabic-English translation task. Figure 1: An Arabic-English block translation ex-
ample, where the Arabic words are romanized.
The following orientation sequence is generated:
01 = N,OQ = L,Og = N,04 = R.
This paper presents a view of phrase-based SMT
as a sequential process that generates block ofign on).
entation sequences. A block is a pair of phrases
which are translations of each other. For example, W on T
Figure 1 shows an Arabic-English translation ex- sw(bf,of) = Zw S (bi, 01, bi-1), (1)
ample that uses four blocks. During decoding, we =1
view translation as a block segmentation processyhereb; is a block,b;  is its predecessor block,
where the input sentence is segmented from lefando; € {L(eft), R(ight), N(eutra)} is a three-
to right and the target sentence is generated fromalued orientation component linked to the block
bottom to top, one block at a time. A monotoneb;: a block is generated to the left or the right of
block sequence is generated except for the possits predecessor block;_, where the orientation
bility to handle some local phrase re-ordering. Ino;_; of the predecessor block is ignored. Hete,
this local re-ordering model (Tillmann and Zhang, is the number of blocks in the translation. We are
2005; Kumar and Byrne, 2005) a blodkwith  interested in learning the weight vectorfrom the
orientationo is generated relative to its predeces-training data.f (b;, 0;, b;—1) is a high-dimensional
sor blockd’. During decoding, we maximize the binary feature representation of the block orienta-
scores,, (b}, o) of a block orientation sequence tion pair (b;, 0;,b;—1). The block orientation se-
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guence is generated under the restriction that tha good global ranking function used during de-
concatenated source phrases of the blégkseld coding. Section 4 presents results on a standard
the input sentence. In modeling a block sequencéirabic-English translation task. Finally, some dis-
we emphasize adjacent block neighbors that haveussion and future work is presented in Section 5.
right or left orientation, since in the current exper-

iments only local block swapping is handled (neu-2 Block Sequence Model

tral orientation is used for 'detached’ blocks as de—pig paper views phrase-based SMT as a block
scribed in (Tillmann and Zhang, 2005)). sequence generation process. Blocks are phrase
This paper focuses on the discriminative train-pajrs consisting of target and source phrases and
ing of the weight vectorw used in Eq. 1. The de- |ocal phrase re-ordering is handled by including
coding process is decomposed into local decisioRo-called block orientation. Starting point for the
steps based on Eq. 1, but the model is trained iBjock-based translation model is a block set, e.g.
a global setting as shown below. The advantag@hout9.5 million Arabic-English phrase pairs for
of this approach is that it can easily handle tens ofhe experiments in this paper. This block set is
millions of features, e.g. up @5 million features  ysed to decode training sentence to obtain block
for the experiments in this paper. Moreover, undepyrientation sequences that are used in the discrim-
this view, SMT becomes quite similar to sequen-inative parameter training. Nothing but the block
tial natural language annotation problems such aset and the parallel training data is used to carry
part-of-speech tagging and shallow parsing, angut the training. We use the block set described
the novel training algorithm presented in this pa-in (Al-Onaizan et al., 2004), the use of a different
per is actually most similar to work on training al- plock set may effect translation results.
gorithms presented for these task. e.g. the on-linRather than predicting local block neighbors as in
training algorithm presented in (McDonald et a'-,(TiIImann and Zhang, 2005) , here the model pa-
2005) and the perceptron training algorithm prevameters are trained in a global setting. Starting
sented in (Collins, 2002). The current approachyith a simple model, the training data is decoded
does not use specialized probability features as i?nultiple times: the weight vectow is trained to
(Och, 2003) in any stage during decoder paramegiscriminate block sequences with a high trans-
ter training. Such prObablIlty features include Ian'lation score against block sequences with a h|gh
guage model, translation or distortion probabili-BLEU score2. The high BLEU scoring block
ties, which are commonly used in current SMTsequences are obtained as follows: the regular
approaches. We are able to achieve comparablephrase-based decoder is modified in a way that
performance to (Tillmann and Zhang, 2005). Thejt yses the BLEU score as optimization criterion
novel algorithm differs computationally from ear- (independent of any translation model). Here,
lier work in discriminative training algorithms for searching for the highest BLEU scoring block se-
SMT (Och, 2003) as follows: quence is restricted to local re-ordering as is the
_ _ _ model-based decoding (as shown in Fig. 1). The
e No computationally expensivéV-best lists g gy score is computed with respect to the sin-
are generated during training: for each inputyje reference translation provided by the paral-
sentence a single block sequence is generatgg yrajining data. A block sequence with an av-
on each iteration over the training data. erage BLEU score of about54 is obtained for

No additional devel ¢ data set i each training sentencd The 'true’ maximum
¢ Mo additional development dala Set IS NeCesy gy pgck sequence as well as the high scoring
sary as the weight vectar is trained on bilin-

gual training data only. 2High scoring block sequences may contain translation er-
rors that are quantified by a lower BLEU score.
h . d foll . . 3The training BLEU score is computed for each train-
The paper is structured as follows: Section 2ing sentence pair separately (treating each sentence pair a

presents the baseline block sequence model arukingle-sentence corpus with a single reference) and then a

the feature representation. Section 3 present@@ged over alltraining sentences. Although block seqeenc
L .. . are found with a high BLEU score on average there is no
the discriminative training algorithm that learns gyarantee to find the maximum BLEU block sequence for a
- given sentence pair. The target word sequence correspond-
A translation and distortion model is used in generatinging to a block sequence does not have to match the refer-
the block set used in the experiments, but these translatioance translation, i.e. maximum BLEU scores are quite low
probabilities are not used during decoding. for some training sentences.



block sequences are represented by high dimempendencies similar to the use of Modgbrobabil-
sional feature vectors using the binary features deties in (Koehn et al., 2003). Additionally, we use
fined below and the translation process is handledistortion features involving relative source word
as a multi-class classification problem in whichposition andm-gram features for adjacent target
each block sequence represents a possible clasgords. These features correspond to the use of
The effect of this training procedure can be seera language model, but the weights for theses fea-
in Figure 2: each decoding step on the trainingtures are trained on the parallel training data only.
data adds a high-scoring block sequence to the dig-or the most complex model, the number of fea-
criminative training and decoding performance ontures is abou85 million (ignoring all features that
the training data is improved after each iterationoccur only once).

(along with the test data decoding performance). )
A theoretical justification for the novel training 3 APProximate Relevant Set Method

procedure is given in Section 3. Throughout the section, we let= (b7, 7). Each
We now define the feature components for theyjock sequence = (b7, o7) corresponds to a can-

block bigram feature vectdi(b;, 0;, b;—1) INEQ. 1. gjdate translation. In the training data where target

Although the training algorithm can handle real-ransiations are given, a BLEU scdBé(z) can be

and Zhang, 2005) the current paper intentionallyyet translations. In this set up, our goal is to find
excludes them. The current feature functions arg weight vectorw such that the highes,, (z) is,
similar to those used in common phrase-baseg,e higher the corresponding BLEU scdB&(z)
translation systems: for them it has been showRpguld be. If we can find such a weight vector,
that good translation performance can be achieveghen plock decoding by searching for the high-
*. A systematic analysis of the novel training algo-est s, (z) will lead to good translation with high
rithm will allow us to include much more sophis- gl EU score.
ticated features in future experiments, i.e. POS- Formally, we denote a source sentenceSjy
based features, syntactic or hierarchical featuregng letV (S) be the set of possible candidate ori-
(Chiang, 2005). The dimensionality of the fea-ented block sequences = (b7, o7) that the de-
ture vectorf (b;, 0;,b;—1) depends on the number coder can generate fro. For example, in a
of binary features. For illustration purposes, themgnotone decoder, the set(S) contains block
binary features are chosen such that they yield sequences{b?} that cover the source sentence
on the example block sequence in Fig. 1. Therg i the same order. For a decoder with lo-
arephrase-based andword-based features: cal re-ordering, the candidate SE(S) also in-
cludes additional block sequences with re-ordered
Fro00(bi; 03, bi-1) = _ block configurations that the decoder can effi-
1 blockb; consists of target phrase  cjently search. Therefore depending on the spe-
= violate’ and source phrase 'tnthk”  ciic implementation of the decoder, the $&(S)

0 otherwise can be different. In general;(S) is a subset of all
f1001 (b, 04, bi-1) = possible oriented block sequencgs?, o})} that
1 ’Lebanese’is a word in the target  are consistent with input sentenge
phrase of block; and 'AllbnAny’ Given a scoring function,,(-) and an input sen-
- is a word in the source phrase tenceS, we can assume that the decoder imple-
0 otherwise ments the following decoding rule:
The featurefiggo is a 'unigram’ phrase-based fea- z(S) = arg max Suw(Z)- (2)
ture capturing the identity of a block. Addi- “eVis)
tional phrase-based features include block orien- LetSy, ..., Sy be asetofV training sentences.

tation, target and source phrase bigram featureg&ach sentencs; is associated with a séf(S;)

Word-based features are used as well, e.g. fe&f possible translation block sequences that are
ture fig01 captures word-to-word translation de- Searchable by the decoder. Each translation block

— _ sequence: € V (S;) induces a translation, which
On our test set, (Tillmann and Zhang, 2005) reports a.

BLEU score 0f37.8 and (Ittycheriah and Roukos, 2005) re- 'S then asslgned ? BLEU scot#(z) (Ob_tamed
ports a BLEU score 016.0 using real-valued features only. by comparing against the target translations). The



goal of the training is to find a weight vectar ~ where(z); = max(0,z). We refer to this for-
such that for each training senter8g the corre- mulation as 'costMargin’ (cost-sensitive margin)
sponding decoder outpus € V (S;) which has method: for each training sentenéethe ’'cost-
the maximum BLEU score among ale V(S;) Margin® ®(w,Vk(S),V(S)) between the 'true’
based on Eq. 2. In other wordszilnaximizes the block sequence sétx(S) and the ’alternative’
scoring functions,,(z), thenz also maximizes the block sequence sé&f(S) is maximized. Note that
BLEU metric. due to the truth and alternative set up, we always
Based on the description, a simple idea is tdhaveb > b'. This loss function gives an upper
learn the BLEU scoreBl(z) for each candidate bound of the error we will suffer if the order af
block sequence. That is, we would like to es- ands’ is wrongly predicted (that is, if we predict
timatew such thats,,(z) ~ Bl(z). This can be s < s’ instead ofs > s'). It also has the property
achieved through least squares regression. It ithat if for the BLEU score$ ~ b’ holds, then the
easy to see that if we can find a weight vector loss value is small (proportional to— b').
that approximateBl(z), then the decoding-rule in A major contribution of this work is a proce-
Eg. 2 automatically maximizes the BLEU score.dure to solve Eq. 3 approximately. The main dif-
However, it is usually difficult to estimatBl(z) ficulty is that the search spadé(S) covered by
reliably based only on a linear combination of thethe decoder can be extremely large. It cannot be
feature vector as in Eqg. 1. We note that a good deenumerated for practical purposes. Our idea is
coder does not necessarily employ a scoring functo replace this large space by a small subspace
tion that approximates the BLEU score. Instead) (") (S) c V(8S) which we callrelevant set The
we only need to make sure that the top-rankedossibility of this reduction is based on the follow-
block sequence obtained by the decoder scoringng theoretical result.

function has a high BLEU score. To formulate | gqqyma 1 Let+)(w, z, z') be a non-negative con-

this idea, we attempt to find a decoding paramerinyous piece-wise differentiable function of
ter such that for each sentenBein the training  gng let v be a local solution of Eq. 3. Let

data, sequences i (S) with the highest BLEU _ ) A _ /
scores should get,(z) scores higher than those gé;ﬁ;ez) ey (3)-Vie(5:) Y (0, 2 %) and
with low BLEU scores.

Denote byVi (S) a set of K block sequences V() (S;) = {z' € V(S;) : 3z € Vi (S;) s.t.
in V(S) with the highest BLEU scores. Our de- &, z) £ 0 & (i, 2,2') = &b, z)}.
coded result should lie in this set. We call them
the “truth”. The set of the remaining sequencesThenw is a local solution of
is V(S) — Vk(S), which we shall refer to as the

“alternatives”. We look for a weight vectar that 1 & ) )
minimize the following training criterion: min | D B(w, Vi (8:), VI(S))) + Aw
i=1
N (5)
W = arg min %Z O (w, Vi (S;),V(S;)) If ¢ is a convex function ofv (as in our choice),
h i=1 then we know that the global optimal solution re-
+ /\w2] (3) mains the same if the whole decoding spates
1 / replaced by the relevant sgt™).
Olw Vi, V)= D max (w,z,7) Each subspac (") (S;) will be significantly
2€Vk smaller thanV/(S;). This is because it only in-
V(w,z,2') = ¢(su(2), Bl(2); su(2'), Bl(2)), cludes those alternativeswith scores,; (z') close

to one of the selected truth. These are the mostim-

where ¢ is a non-negative real-valued loss func-portant alternatives that are easily confused with
tion (whose specific choice is not critical for the the truth. Essentially the lemma says that if the
purposes of this paper),and > 0 is a regular- decoder works well on these difficult alternatives
ization parameter. In our experiments, results ar¢relevant points), then it works well on the whole

obtained using the following convex loss space. The idea is closely related to active learn-
ing in standard classification problems, where we

P(s,b;8", b)) =(b—V)(1—(s—s))%, (4 selectively pick the mostimportant samples (often



The approximate solution of Eq. 5 in (**) can

Table 1:Generic Approximate Relevant Set Method . . . .
PP be implemented using stochastic gradient descent

for each data pointS (SGD), where we may simply updaieas:
initialize truth Vx (S) and alternative’ (") (S) W — w — NV (w, 2z, 7).
for each decodingiterationi: £ =1,--- | L

The parameten > 0 is a fixed constant often re-
for each data pointS ferred to as learning rate. Again, convergence re-
sults can be proved for this procedure. Due to the
space limitation, we skip the formal statement as
updateV (") (S) — V)(S) U {z;} well as the corresponding analysis.

Up to this point, we have not assumed any spe-
cific form of the decoder scoring function in our
algorithm. Now consider Eqg. 1 used in our model.

based on estimation uncertainty) for labeling in or-"V& May eXpress it as:

der to maximize classification performance (Lewis
and Catlett, 1994). In the active learning setting,
as long as we do well on the actively selected SaMyhere F(z) = Y7, f(bi,01,bi1). Using this

1= Y 9 —1)-
ples, we do well on the whole sample space. In 0Ufaa¢re representation and the loss function in
case, as long as we do well on the relevant set, thgq_ 4, we obtain the following costMargin SGD

select relevant point&z; } € V(S) (*)

updatew by solving Eg. 5 approximately (**

Sw(z) = wT ’ F(Z)>

decgder will perform well. update rule for each training data point dnd
Since the relevant set depends on the decoder
parameterv, and the decoder parameter is opti-wy — w + nABlx, (1 — w! - x1) 4, (7)

mized on thg relevant. set, it'is ne'cessary'to €SABI, = Bl(zy,) — Bl(zy), = = F(zx) — F(2).
timate them jointly using an iterative algorithm.

The basic idea is to start with a decoding parame4  Experimental Results

terw, and estimate the corresponding relevant set; _ o o

we then updatev based on the relevant set, and it-"W& applied the novel discriminative training ap-
erate this process. The procedure is outlined in TaRroach to a standard Arabic-to-English translation
ble 1. We intentionally leave the implementationt@sk. The training data comes from UN news
details of the (*) step and (**) step open. More- SOUrces. Some punctuation tokenization and some

over, in this general algorithm, we do not have tohumber classing are carried out on the English
assume that,,(z) has the form of Eq. 1. and the Arabic training data. We show transla-

A natural question concerning the procedure igion results in terms of the automatic BLEU evalu-

its convergence behavior. It can be shown that un@tion metric (Papineni et al., 2002) on the MT03
der mild assumptions, if we pick in (*) an alterna- Arabic-English DARPA evaluation test set con-

tive 7, € V(S) — Vi (S) for eachz; € Vi(S) sisting of663 sentences with6 278 Arabic words

(k =1,...,K) such that with 4 reference translations. In order to speed
up the parameter training the original training data

W(w, zp, Zy) = max V(w,zy,2'), (6) IS filtered according to the test set: all the Ara-
z'€V(S)-Vk (S) bic substrings that occur in the test set are com-

Puted and the parallel training data is filtered to
0 . .

include only those training sentence pairs that con-
fin at least one out of these phrases: the resulting
pre-filtered training data contains ab@30 thou-
aand sentence pair$.52 million Arabic words
and6.76 million English words). The block set is

then the procedure converges to the solution
Eqg. 3. Moreover, the rate of convergence depend
only on the property of the loss function, and not
on the size ofi/(S). This property is critical as

it shows that as long as Eq. 6 can be compute

efficiently, then the Approximate Relevant Set al- . . . .
generated using a phrase-pair selection algorithm

gorithm .iS efficient. Morgover, it gives a boqnd similar to (Koehn et al., 2003; Al-Onaizan et al.
on th_e size of an approximate relevant set with a2004), which includes some heuristic filtering to
certain accuracy.

- mal statement here. A detailed theoretical investigatibn o
Due to the space limitation, we will not include a for- the method will be given in a journal paper.



increase phrase translation accuracy. Blocks th .
P . . Y ) aIta.ble 2: Relevant set methodZ = number of decoding
occur only once in the training data are includedierations N = number of training sentences.

as well.

for each input sentenc8;, i=1,--- /N

4.1 Practical Implementation Details initialize truth V5(S,) and alter-

The training alg_or_ithnj in Tgble 21is adaptc_sd from native V(") = {zo(S;)}
Table 1. The training is carried out by running= _ _
30 times over the parallel training data, each time | for each iteration i: £/=1,--- , L
decoding aII' theV = 230000 training §entences train w using SGD on training
and generating a single block translation sequence N

for each training sentence. The top five block se-|  data[ V5(S;), V((Sy) ]._,
quenceds(S;) with the highest BLEU score are

> ; for each input sentenc8;, i =1,--- | N
computed up-front for all training sentence pairs _ )
S; and are stored separately as described in Sed- select top-scoring sequenzgs; ) and
tion 2. The score-based decoding of 288 000 updateV (" (8;) — V)(S;) U {z(S;)}

training sentence pairs is carried out in parallel on
25 64-Bit Opteron machines. Here, the monotone
decoding is much faster than the decoding withyay to approximate Eq. 6 is to generate multi-
block swapping: the monotone decoding takes lesgle decoding outputs and pick the most relevant
than 0.5 hours and the decoding with swapping points based on Eq. 6. Since thebest list gen-
takes about an hour. Since the training starts witkeration is computationally costly, only a single
only the parallel training data and a block set,block sequence is generated for each training sen-
some initial block sequences have to be generate@nce pair, reducing the memory requirements for
in order to initialize the global model training: for the training algorithm as well. Although we are
each input sentence a simple bag of blocks transot able to rigorously prove fast convergence rate
lation is generated. For each input interval that isor this approximation, it works well in practice,
matched by some blodk a single block is added as Figure 2 shows. Theoretically this is because
to the bag-of-blocks translatiam (S). The order points achieving large values in Eq. 6 tend to have
in which the blocks are generated is ignored. Fohigher chances to become the top-ranked decoder
this block set only block and word identity fea- output as well. The SGD-based on-line training al-
tures are generated, i.e. features of typ@o and  gorithm described in Section 3, is carried out after
J1001 In Section 2. This step does not require theeach decoding step to generate the weight vector
use of a decoder. The initial training data con-for the subsequent decoding step. Since this train-
tains only a single alternative. The training proce-ing step is carried out on a single machine, it dom-
dure proceeds by iteratively decoding the traininginates the overall computation time. Since each
data. After each decoding step, the resulting transteration adds a single relevant alternative to the
lation block sequences are stored on disc in binarget (") (S;), computation time increases with the
format. A block sequence generated at decodingumber of training iterations: the initial model is
step/; is used in all subsequent training stéps  trained in a few minutes, while training the model
wherel; > ¢;. The training data after thieth de-  after the30-th iteration takes up t6 hours for the
coding step is given agVs(S;), V((S;) L]il most complex models.

where the sizQV(’“)(Si)\ of the relevant alterna- Table 3 presents experimental results in terms of
tive set isi + 1. Although in order to achieve uncased BLELS. Two re-ordering restrictions are
fast convergence with a theoretical guarantee, weested, i.e. monotone decoding (MON’), and lo-
should use Eq. 6 to update the relevant set, in recal block re-ordering where neighbor blocks can
ality, this idea is difficult to implement because be swapped ('SWAP’). The 'SWAP’ re-ordering

it requires a more costly decoding step. Thereuses the same features as the monotone models
fore in Table 2, we adopt an approximation, whergdlus additional orientation-based and distortion-
the relevant set is updated by adding the decoddrased features. Different feature sets include

output at each §tage. In this way, we are able t0 ®Translation performance in terms of cased BLEU is typ-
treat the decoding scheme as a black box. Onieally reduced by abol %.
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Table 3: Translation results in terms of uncased | | | | AL —
BLEU on the training data280000 sentences) .|
and the MTO03 test data (670 sentences).

Re-ordering| Features train | test oer

word 0.455 | 0.359 0
both 0.479 | 0.363

L L L L L
0 5 10 15 20 25 30

1| 'MON bleu |0542| -

2 phrase | 0.378 | 0.256
3 word | 0.427 | 0.341

4 both | 0.477 | 0.359
5] 'SWAP’ bleu [0.594 [ -
6 phrase | 0.441 | 0.295

7

8

Figure 2: BLEU performance on the training set
(upper graph; averaged BLEU with single refer-
word-based features, phrase-based features, agqce) and the test set (lower graph; BLEU with
the combination of both. For the results with foyr references) as a function of the training iter-

word-based features, the decoder still generategion 1 for the model corresponding to lirgin
phrase-to-phrase translations, but all the scoringgp|e 3.

is done on the word level. Ling shows a BLEU
score 0f36.3 for the best performing system which
uses all word-based and phrase-based features
Line 1 and line5 of Table 3 show the training
data averaged BLEU score obtained by searchin[:;ake_S about days.

for the highest BLEU scoring block sequence for ' 19ure 2 shows the BLEU performance for the

each training sentence pair as described in SecEUOdeI corresponding to [in€ in Table 3 as a

tion 2. Allowing local block swapping in this function of the number of training iterations. By

search procedure yields a much improved BLEUado!ing tpp scoring alternatives in the training al-
score 0f0.59. The experimental results show go_rlt_hm In Taple 2, the BLEU performance on the
that word-based models significantly outperform!2ining data improves from aboG£22 for the ini-
phrase-based models, the combination of worgtal model to abouD.4s for the best model after
based and phrase-based features performs betfd} iterations. After each training iteration the test
than those features types taken separately. AddP—Iata IS _decoded ‘?S well. fHerhe, _th_e_ ?LEU pierfor-
tionally, swap-based re-ordering slightly improvesMance improves frorfi.08 for the initial model to

performance over monotone decoding. For alrstbout0.36 for the final model (vye do not_lnclude
the test data block sequences in the training). Ta-

experiments, the training BLEU score remains ' ) )
significantly lower than the maximum obtainable ble 3 shows atypical Iea_rn_mg curve for thg expert-
ments in Table 3: the training BLEU score is much

BLEU score shown in liné and line5. In this re- higher than th despite the f
spect, there is significant room for improvements 'gher than the test set BLEU score despite the fact

in terms of feature functions and alternative setthat the test set useseference translations.
generation. The word-based models perform su
prisingly well, i.e. the model in ling uses only
three feature types: modelfeatures likefioo1 in The work in this paper substantially differs from
Section 2, distortion features lik&ooz, and target  previous work in SMT based on the noisy chan-
language m-gram features up#te = 3. Train- nel approach presented in (Brown et al., 1993).
ing speed varies depending on the feature typeg/hile error-driven training techniques are com-
used: for the simplest model shown in ligeof  monly used to improve the performance of phrase-
Table 3, the training takes abol@ hours, for the based translation systems (Chiang, 2005; Och,
models using word-based features shown in $ine 2003), this paper presents a novel block sequence
B —— _ translation approach to SMT that is similar to
With a margin of£0.014, the differences between the . .

results in lined, line 7, and line8 are not statistically signifi- sequentlal natural Ianguage annotation problems
cant, but the other result differences are. such as part-of-speech tagging or shallow parsing,

and line7 training takes less thathdays. Finally,
the training for the most complex model in lige

'S Discussion and Future Work
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