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Abstract

This paper presents a novel training al-
gorithm for a linearly-scored block se-
quence translation model. The key com-
ponent is a new procedure to directly op-
timize the global scoring function used by
a SMT decoder. No translation, language,
or distortion model probabilities are used
as in earlier work on SMT. Therefore
our method, which employs less domain
specific knowledge, is both simpler and
more extensible than previous approaches.
Moreover, the training procedure treats the
decoder as a black-box, and thus can be
used to optimize any decoding scheme.
The training algorithm is evaluated on a
standard Arabic-English translation task.

1 Introduction

This paper presents a view of phrase-based SMT
as a sequential process that generates block ori-
entation sequences. A block is a pair of phrases
which are translations of each other. For example,
Figure 1 shows an Arabic-English translation ex-
ample that uses four blocks. During decoding, we
view translation as a block segmentation process,
where the input sentence is segmented from left
to right and the target sentence is generated from
bottom to top, one block at a time. A monotone
block sequence is generated except for the possi-
bility to handle some local phrase re-ordering. In
this local re-ordering model (Tillmann and Zhang,
2005; Kumar and Byrne, 2005) a blockb with
orientationo is generated relative to its predeces-
sor blockb′. During decoding, we maximize the
scoresw(bn1 , o

n
1 ) of a block orientation sequence
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Figure 1: An Arabic-English block translation ex-
ample, where the Arabic words are romanized.
The following orientation sequence is generated:
o1 = N, o2 = L, o3 = N, o4 = R.

(bn1 , o
n
1 ):

sw(bn1 , o
n

1 ) =

n
∑

i=1

wT · f(bi, oi, bi−1), (1)

wherebi is a block,bi−1 is its predecessor block,
andoi ∈ {L(eft), R(ight),N(eutral)} is a three-
valued orientation component linked to the block
bi: a block is generated to the left or the right of
its predecessor blockbi−1, where the orientation
oi−1 of the predecessor block is ignored. Here,n

is the number of blocks in the translation. We are
interested in learning the weight vectorw from the
training data.f(bi, oi, bi−1) is a high-dimensional
binary feature representation of the block orienta-
tion pair (bi, oi, bi−1). The block orientation se-



quence is generated under the restriction that the
concatenated source phrases of the blocksbi yield
the input sentence. In modeling a block sequence,
we emphasize adjacent block neighbors that have
right or left orientation, since in the current exper-
iments only local block swapping is handled (neu-
tral orientation is used for ’detached’ blocks as de-
scribed in (Tillmann and Zhang, 2005)).

This paper focuses on the discriminative train-
ing of the weight vectorw used in Eq. 1. The de-
coding process is decomposed into local decision
steps based on Eq. 1, but the model is trained in
a global setting as shown below. The advantage
of this approach is that it can easily handle tens of
millions of features, e.g. up to35 million features
for the experiments in this paper. Moreover, under
this view, SMT becomes quite similar to sequen-
tial natural language annotation problems such as
part-of-speech tagging and shallow parsing, and
the novel training algorithm presented in this pa-
per is actually most similar to work on training al-
gorithms presented for these task. e.g. the on-line
training algorithm presented in (McDonald et al.,
2005) and the perceptron training algorithm pre-
sented in (Collins, 2002). The current approach
does not use specialized probability features as in
(Och, 2003) in any stage during decoder parame-
ter training. Such probability features include lan-
guage model, translation or distortion probabili-
ties, which are commonly used in current SMT
approaches1. We are able to achieve comparable
performance to (Tillmann and Zhang, 2005). The
novel algorithm differs computationally from ear-
lier work in discriminative training algorithms for
SMT (Och, 2003) as follows:

• No computationally expensiveN -best lists
are generated during training: for each input
sentence a single block sequence is generated
on each iteration over the training data.

• No additional development data set is neces-
sary as the weight vectorw is trained on bilin-
gual training data only.

The paper is structured as follows: Section 2
presents the baseline block sequence model and
the feature representation. Section 3 presents
the discriminative training algorithm that learns

1A translation and distortion model is used in generating
the block set used in the experiments, but these translation
probabilities are not used during decoding.

a good global ranking function used during de-
coding. Section 4 presents results on a standard
Arabic-English translation task. Finally, some dis-
cussion and future work is presented in Section 5.

2 Block Sequence Model

This paper views phrase-based SMT as a block
sequence generation process. Blocks are phrase
pairs consisting of target and source phrases and
local phrase re-ordering is handled by including
so-called block orientation. Starting point for the
block-based translation model is a block set, e.g.
about9.5 million Arabic-English phrase pairs for
the experiments in this paper. This block set is
used to decode training sentence to obtain block
orientation sequences that are used in the discrim-
inative parameter training. Nothing but the block
set and the parallel training data is used to carry
out the training. We use the block set described
in (Al-Onaizan et al., 2004), the use of a different
block set may effect translation results.
Rather than predicting local block neighbors as in
(Tillmann and Zhang, 2005) , here the model pa-
rameters are trained in a global setting. Starting
with a simple model, the training data is decoded
multiple times: the weight vectorw is trained to
discriminate block sequences with a high trans-
lation score against block sequences with a high
BLEU score 2. The high BLEU scoring block
sequences are obtained as follows: the regular
phrase-based decoder is modified in a way that
it uses the BLEU score as optimization criterion
(independent of any translation model). Here,
searching for the highest BLEU scoring block se-
quence is restricted to local re-ordering as is the
model-based decoding (as shown in Fig. 1). The
BLEU score is computed with respect to the sin-
gle reference translation provided by the paral-
lel training data. A block sequence with an av-
erage BLEU score of about0.54 is obtained for
each training sentence3. The ’true’ maximum
BLEU block sequence as well as the high scoring

2High scoring block sequences may contain translation er-
rors that are quantified by a lower BLEU score.

3The training BLEU score is computed for each train-
ing sentence pair separately (treating each sentence pair as
a single-sentence corpus with a single reference) and then av-
eraged over all training sentences. Although block sequences
are found with a high BLEU score on average there is no
guarantee to find the maximum BLEU block sequence for a
given sentence pair. The target word sequence correspond-
ing to a block sequence does not have to match the refer-
ence translation, i.e. maximum BLEU scores are quite low
for some training sentences.



block sequences are represented by high dimen-
sional feature vectors using the binary features de-
fined below and the translation process is handled
as a multi-class classification problem in which
each block sequence represents a possible class.
The effect of this training procedure can be seen
in Figure 2: each decoding step on the training
data adds a high-scoring block sequence to the dis-
criminative training and decoding performance on
the training data is improved after each iteration
(along with the test data decoding performance).
A theoretical justification for the novel training
procedure is given in Section 3.

We now define the feature components for the
block bigram feature vectorf(bi, oi, bi−1) in Eq. 1.
Although the training algorithm can handle real-
valued features as used in (Och, 2003; Tillmann
and Zhang, 2005) the current paper intentionally
excludes them. The current feature functions are
similar to those used in common phrase-based
translation systems: for them it has been shown
that good translation performance can be achieved
4. A systematic analysis of the novel training algo-
rithm will allow us to include much more sophis-
ticated features in future experiments, i.e. POS-
based features, syntactic or hierarchical features
(Chiang, 2005). The dimensionality of the fea-
ture vectorf(bi, oi, bi−1) depends on the number
of binary features. For illustration purposes, the
binary features are chosen such that they yield1
on the example block sequence in Fig. 1. There
arephrase-based andword-based features:

f1000(bi, oi, bi−1) =

=







1 block bi consists of target phrase
’violate’ and source phrase ’tnthk’

0 otherwise

f1001(bi, oi, bi−1) =

=















1 ’Lebanese’ is a word in the target
phrase of blockbi and ’AllbnAny’
is a word in the source phrase

0 otherwise

The featuref1000 is a ’unigram’ phrase-based fea-
ture capturing the identity of a block. Addi-
tional phrase-based features include block orien-
tation, target and source phrase bigram features.
Word-based features are used as well, e.g. fea-
ture f1001 captures word-to-word translation de-

4On our test set, (Tillmann and Zhang, 2005) reports a
BLEU score of37.8 and (Ittycheriah and Roukos, 2005) re-
ports a BLEU score of46.0 using real-valued features only.

pendencies similar to the use of Model1 probabil-
ities in (Koehn et al., 2003). Additionally, we use
distortion features involving relative source word
position andm-gram features for adjacent target
words. These features correspond to the use of
a language model, but the weights for theses fea-
tures are trained on the parallel training data only.
For the most complex model, the number of fea-
tures is about35 million (ignoring all features that
occur only once).

3 Approximate Relevant Set Method

Throughout the section, we letz = (bn1 , o
n
1 ). Each

block sequencez = (bn1 , o
n
1 ) corresponds to a can-

didate translation. In the training data where target
translations are given, a BLEU scoreBl(z) can be
calculated for eachz = (bn1 , o

n
1 ) against the tar-

get translations. In this set up, our goal is to find
a weight vectorw such that the highersw(z) is,
the higher the corresponding BLEU scoreBl(z)
should be. If we can find such a weight vector,
then block decoding by searching for the high-
estsw(z) will lead to good translation with high
BLEU score.

Formally, we denote a source sentence byS,
and letV (S) be the set of possible candidate ori-
ented block sequencesz = (bn1 , o

n
1 ) that the de-

coder can generate fromS. For example, in a
monotone decoder, the setV (S) contains block
sequences{bn1} that cover the source sentence
S in the same order. For a decoder with lo-
cal re-ordering, the candidate setV (S) also in-
cludes additional block sequences with re-ordered
block configurations that the decoder can effi-
ciently search. Therefore depending on the spe-
cific implementation of the decoder, the setV (S)
can be different. In general,V (S) is a subset of all
possible oriented block sequences{(bn1 , o

n
1 )} that

are consistent with input sentenceS.
Given a scoring functionsw(·) and an input sen-

tenceS, we can assume that the decoder imple-
ments the following decoding rule:

ẑ(S) = arg max
z∈V (S)

sw(z). (2)

LetS1, . . . ,SN be a set ofN training sentences.
Each sentenceSi is associated with a setV (Si)
of possible translation block sequences that are
searchable by the decoder. Each translation block
sequencez ∈ V (Si) induces a translation, which
is then assigned a BLEU scoreBl(z) (obtained
by comparing against the target translations). The



goal of the training is to find a weight vectorw
such that for each training sentenceSi, the corre-
sponding decoder outputŝz ∈ V (Si) which has
the maximum BLEU score among allz ∈ V (Si)
based on Eq. 2. In other words, ifẑ maximizes the
scoring functionsw(z), thenẑ also maximizes the
BLEU metric.

Based on the description, a simple idea is to
learn the BLEU scoreBl(z) for each candidate
block sequencez. That is, we would like to es-
timatew such thatsw(z) ≈ Bl(z). This can be
achieved through least squares regression. It is
easy to see that if we can find a weight vectorw

that approximatesBl(z), then the decoding-rule in
Eq. 2 automatically maximizes the BLEU score.
However, it is usually difficult to estimateBl(z)
reliably based only on a linear combination of the
feature vector as in Eq. 1. We note that a good de-
coder does not necessarily employ a scoring func-
tion that approximates the BLEU score. Instead,
we only need to make sure that the top-ranked
block sequence obtained by the decoder scoring
function has a high BLEU score. To formulate
this idea, we attempt to find a decoding parame-
ter such that for each sentenceS in the training
data, sequences inV (S) with the highest BLEU
scores should getsw(z) scores higher than those
with low BLEU scores.

Denote byVK(S) a set ofK block sequences
in V (S) with the highest BLEU scores. Our de-
coded result should lie in this set. We call them
the “truth”. The set of the remaining sequences
is V (S) − VK(S), which we shall refer to as the
“alternatives”. We look for a weight vectorw that
minimize the following training criterion:

ŵ = arg min
w

[

1

N

N
∑

i=1

Φ(w, VK(Si), V (Si))

+λw2
]

(3)

Φ(w, VK , V ) =
1

K

∑

z∈VK

max
z′∈V −VK

ψ(w, z, z′)

ψ(w, z, z′) = φ(sw(z),Bl(z); sw(z′),Bl(z′)),

whereφ is a non-negative real-valued loss func-
tion (whose specific choice is not critical for the
purposes of this paper),andλ ≥ 0 is a regular-
ization parameter. In our experiments, results are
obtained using the following convex loss

φ(s, b; s′, b′) = (b− b′)(1 − (s− s′))2+, (4)

where(z)+ = max(0, z). We refer to this for-
mulation as ’costMargin’ (cost-sensitive margin)
method: for each training sentenceS the ’cost-
Margin’ Φ(w, VK(S), V (S)) between the ’true’
block sequence setVK(S) and the ’alternative’
block sequence setV (S) is maximized. Note that
due to the truth and alternative set up, we always
haveb > b′. This loss function gives an upper
bound of the error we will suffer if the order ofs
ands′ is wrongly predicted (that is, if we predict
s ≤ s′ instead ofs > s′). It also has the property
that if for the BLEU scoresb ≈ b′ holds, then the
loss value is small (proportional tob− b′).

A major contribution of this work is a proce-
dure to solve Eq. 3 approximately. The main dif-
ficulty is that the search spaceV (S) covered by
the decoder can be extremely large. It cannot be
enumerated for practical purposes. Our idea is
to replace this large space by a small subspace
V (r)(S) ⊂ V (S) which we callrelevant set. The
possibility of this reduction is based on the follow-
ing theoretical result.

Lemma 1 Letψ(w, z, z′) be a non-negative con-
tinuous piece-wise differentiable function ofw,
and let ŵ be a local solution of Eq. 3. Let
ξi(w, z) = maxz′∈V (Si)−VK(Si) ψ(w, z, z′), and
define

V (r)(Si) = {z′ ∈ V (Si) : ∃z ∈ VK(Si) s.t.

ξi(ŵ, z) 6= 0 & ψ(ŵ, z, z′) = ξi(ŵ, z)}.

Thenŵ is a local solution of

min
w

[

1

N

N
∑

i=1

Φ(w, VK(Si), V
(r)(Si)) + λw2

]

.

(5)

If φ is a convex function ofw (as in our choice),
then we know that the global optimal solution re-
mains the same if the whole decoding spaceV is
replaced by the relevant setV (r).

Each subspaceV (r)(Si) will be significantly
smaller thanV (Si). This is because it only in-
cludes those alternativesz′ with scoresŵ(z′) close
to one of the selected truth. These are the most im-
portant alternatives that are easily confused with
the truth. Essentially the lemma says that if the
decoder works well on these difficult alternatives
(relevant points), then it works well on the whole
space. The idea is closely related to active learn-
ing in standard classification problems, where we
selectively pick the most important samples (often



Table 1:Generic Approximate Relevant Set Method

for each data pointS

initialize truthVK(S) and alternativeV (r)(S)

for each decoding iteration l: ℓ = 1, · · · , L

for each data pointS

select relevant points{z̃k} ∈ V (S) (*)

updateV (r)(S)← V (r)(S) ∪ {z̃k}

updatew by solving Eq. 5 approximately (**)

based on estimation uncertainty) for labeling in or-
der to maximize classification performance (Lewis
and Catlett, 1994). In the active learning setting,
as long as we do well on the actively selected sam-
ples, we do well on the whole sample space. In our
case, as long as we do well on the relevant set, the
decoder will perform well.

Since the relevant set depends on the decoder
parameterw, and the decoder parameter is opti-
mized on the relevant set, it is necessary to es-
timate them jointly using an iterative algorithm.
The basic idea is to start with a decoding parame-
terw, and estimate the corresponding relevant set;
we then updatew based on the relevant set, and it-
erate this process. The procedure is outlined in Ta-
ble 1. We intentionally leave the implementation
details of the (*) step and (**) step open. More-
over, in this general algorithm, we do not have to
assume thatsw(z) has the form of Eq. 1.

A natural question concerning the procedure is
its convergence behavior. It can be shown that un-
der mild assumptions, if we pick in (*) an alterna-
tive z̃k ∈ V (S) − VK(S) for eachzk ∈ VK(S)
(k = 1, . . . ,K) such that

ψ(w, zk , z̃k) = max
z′∈V (S)−VK (S)

ψ(w, zk , z
′), (6)

then the procedure converges to the solution of
Eq. 3. Moreover, the rate of convergence depends
only on the property of the loss function, and not
on the size ofV (S). This property is critical as
it shows that as long as Eq. 6 can be computed
efficiently, then the Approximate Relevant Set al-
gorithm is efficient. Moreover, it gives a bound
on the size of an approximate relevant set with a
certain accuracy.5

5Due to the space limitation, we will not include a for-

The approximate solution of Eq. 5 in (**) can
be implemented using stochastic gradient descent
(SGD), where we may simply updatew as:

w → w − η∇wψ(w, zk , z̃k).

The parameterη > 0 is a fixed constant often re-
ferred to as learning rate. Again, convergence re-
sults can be proved for this procedure. Due to the
space limitation, we skip the formal statement as
well as the corresponding analysis.

Up to this point, we have not assumed any spe-
cific form of the decoder scoring function in our
algorithm. Now consider Eq. 1 used in our model.
We may express it as:

sw(z) = wT · F (z),

whereF (z) =
∑

n

i=1 f(bi, oi, bi−1). Using this
feature representation and the loss function in
Eq. 4, we obtain the following costMargin SGD
update rule for each training data point andk:

w→ w + η∆Blkxk (1− wT · xk)+, (7)

∆Blk = Bl(zk)− Bl(z̃k), xk = F (zk)− F (z̃k).

4 Experimental Results

We applied the novel discriminative training ap-
proach to a standard Arabic-to-English translation
task. The training data comes from UN news
sources. Some punctuation tokenization and some
number classing are carried out on the English
and the Arabic training data. We show transla-
tion results in terms of the automatic BLEU evalu-
ation metric (Papineni et al., 2002) on the MT03
Arabic-English DARPA evaluation test set con-
sisting of663 sentences with16 278 Arabic words
with 4 reference translations. In order to speed
up the parameter training the original training data
is filtered according to the test set: all the Ara-
bic substrings that occur in the test set are com-
puted and the parallel training data is filtered to
include only those training sentence pairs that con-
tain at least one out of these phrases: the resulting
pre-filtered training data contains about230 thou-
sand sentence pairs (5.52 million Arabic words
and6.76 million English words). The block set is
generated using a phrase-pair selection algorithm
similar to (Koehn et al., 2003; Al-Onaizan et al.,
2004), which includes some heuristic filtering to

mal statement here. A detailed theoretical investigation of
the method will be given in a journal paper.



increase phrase translation accuracy. Blocks that
occur only once in the training data are included
as well.

4.1 Practical Implementation Details

The training algorithm in Table 2 is adapted from
Table 1. The training is carried out by runningL =
30 times over the parallel training data, each time
decoding all theN = 230 000 training sentences
and generating a single block translation sequence
for each training sentence. The top five block se-
quencesV5(Si) with the highest BLEU score are
computed up-front for all training sentence pairs
Si and are stored separately as described in Sec-
tion 2. The score-based decoding of the230 000
training sentence pairs is carried out in parallel on
25 64-Bit Opteron machines. Here, the monotone
decoding is much faster than the decoding with
block swapping: the monotone decoding takes less
than 0.5 hours and the decoding with swapping
takes about an hour. Since the training starts with
only the parallel training data and a block set,
some initial block sequences have to be generated
in order to initialize the global model training: for
each input sentence a simple bag of blocks trans-
lation is generated. For each input interval that is
matched by some blockb, a single block is added
to the bag-of-blocks translationz0(S). The order
in which the blocks are generated is ignored. For
this block set only block and word identity fea-
tures are generated, i.e. features of typef1000 and
f1001 in Section 2. This step does not require the
use of a decoder. The initial training data con-
tains only a single alternative. The training proce-
dure proceeds by iteratively decoding the training
data. After each decoding step, the resulting trans-
lation block sequences are stored on disc in binary
format. A block sequence generated at decoding
stepℓ1 is used in all subsequent training stepsℓ2,
whereℓ2 > ℓ1. The training data after thei-th de-

coding step is given as
[

V5(Si) , V
(r)(Si)

]N

i=1
,

where the size|V (r)(Si)| of the relevant alterna-
tive set isi + 1. Although in order to achieve
fast convergence with a theoretical guarantee, we
should use Eq. 6 to update the relevant set, in re-
ality, this idea is difficult to implement because
it requires a more costly decoding step. There-
fore in Table 2, we adopt an approximation, where
the relevant set is updated by adding the decoder
output at each stage. In this way, we are able to
treat the decoding scheme as a black box. One

Table 2: Relevant set method:L = number of decoding
iterations,N = number of training sentences.

for each input sentenceSi, i = 1, · · · ,N

initialize truthV5(Si) and alter-

nativeV (r) = {z0(Si)}

for each iteration l: ℓ = 1, · · · , L

trainw using SGD on training

data
[

V5(Si) , V
(r)(Si)

]N

i=1

for each input sentenceSi, i = 1, · · · ,N

select top-scoring sequencez̃(Si) and

updateV (r)(Si)← V (r)(Si) ∪ {z̃(Si)}

way to approximate Eq. 6 is to generate multi-
ple decoding outputs and pick the most relevant
points based on Eq. 6. Since then-best list gen-
eration is computationally costly, only a single
block sequence is generated for each training sen-
tence pair, reducing the memory requirements for
the training algorithm as well. Although we are
not able to rigorously prove fast convergence rate
for this approximation, it works well in practice,
as Figure 2 shows. Theoretically this is because
points achieving large values in Eq. 6 tend to have
higher chances to become the top-ranked decoder
output as well. The SGD-based on-line training al-
gorithm described in Section 3, is carried out after
each decoding step to generate the weight vectorw

for the subsequent decoding step. Since this train-
ing step is carried out on a single machine, it dom-
inates the overall computation time. Since each
iteration adds a single relevant alternative to the
setV (r)(Si), computation time increases with the
number of training iterations: the initial model is
trained in a few minutes, while training the model
after the30-th iteration takes up to5 hours for the
most complex models.
Table 3 presents experimental results in terms of

uncased BLEU6. Two re-ordering restrictions are
tested, i.e. monotone decoding (’MON’), and lo-
cal block re-ordering where neighbor blocks can
be swapped (’SWAP’). The ’SWAP’ re-ordering
uses the same features as the monotone models
plus additional orientation-based and distortion-
based features. Different feature sets include

6Translation performance in terms of cased BLEU is typ-
ically reduced by about2 %.



Table 3: Translation results in terms of uncased
BLEU on the training data (230 000 sentences)
and the MT03 test data (670 sentences).

Re-ordering Features train test
1 ’MON’ bleu 0.542 -
2 phrase 0.378 0.256
3 word 0.427 0.341
4 both 0.477 0.359

5 ’SWAP’ bleu 0.594 -
6 phrase 0.441 0.295
7 word 0.455 0.359
8 both 0.479 0.363

word-based features, phrase-based features, and
the combination of both. For the results with
word-based features, the decoder still generates
phrase-to-phrase translations, but all the scoring
is done on the word level. Line8 shows a BLEU
score of36.3 for the best performing system which
uses all word-based and phrase-based features7.
Line 1 and line 5 of Table 3 show the training
data averaged BLEU score obtained by searching
for the highest BLEU scoring block sequence for
each training sentence pair as described in Sec-
tion 2. Allowing local block swapping in this
search procedure yields a much improved BLEU
score of 0.59. The experimental results show
that word-based models significantly outperform
phrase-based models, the combination of word-
based and phrase-based features performs better
than those features types taken separately. Addi-
tionally, swap-based re-ordering slightly improves
performance over monotone decoding. For all
experiments, the training BLEU score remains
significantly lower than the maximum obtainable
BLEU score shown in line1 and line5. In this re-
spect, there is significant room for improvements
in terms of feature functions and alternative set
generation. The word-based models perform sur-
prisingly well, i.e. the model in line7 uses only
three feature types: model1 features likef1001 in
Section 2, distortion features likef1002, and target
language m-gram features up tom = 3. Train-
ing speed varies depending on the feature types
used: for the simplest model shown in line2 of
Table 3, the training takes about12 hours, for the
models using word-based features shown in line3

7With a margin of±0.014, the differences between the
results in line4, line 7, and line8 are not statistically signifi-
cant, but the other result differences are.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  5  10  15  20  25  30

’SWAP.TRAINING’
’SWAP.TEST’

Figure 2: BLEU performance on the training set
(upper graph; averaged BLEU with single refer-
ence) and the test set (lower graph; BLEU with
four references) as a function of the training iter-
ation I for the model corresponding to line8 in
Table 3.

and line7 training takes less than2 days. Finally,
the training for the most complex model in line8
takes about4 days.

Figure 2 shows the BLEU performance for the
model corresponding to line8 in Table 3 as a
function of the number of training iterations. By
adding top scoring alternatives in the training al-
gorithm in Table 2, the BLEU performance on the
training data improves from about0.22 for the ini-
tial model to about0.48 for the best model after
30 iterations. After each training iteration the test
data is decoded as well. Here, the BLEU perfor-
mance improves from0.08 for the initial model to
about0.36 for the final model (we do not include
the test data block sequences in the training). Ta-
ble 3 shows a typical learning curve for the experi-
ments in Table 3: the training BLEU score is much
higher than the test set BLEU score despite the fact
that the test set uses4 reference translations.

5 Discussion and Future Work

The work in this paper substantially differs from
previous work in SMT based on the noisy chan-
nel approach presented in (Brown et al., 1993).
While error-driven training techniques are com-
monly used to improve the performance of phrase-
based translation systems (Chiang, 2005; Och,
2003), this paper presents a novel block sequence
translation approach to SMT that is similar to
sequential natural language annotation problems
such as part-of-speech tagging or shallow parsing,



both in modeling and parameter training. Unlike
earlier approaches to SMT training, which either
rely heavily on domain knowledge, or can only
handle a small number of features, this approach
treats the decoding process as a black box, and
can optimize tens millions of parameters automat-
ically, which makes it applicable to other prob-
lems as well. The choice of our formulation is
convex, which ensures that we are able to find the
global optimal even for large scale problems. The
loss function in Eq. 4 may not be optimal, and us-
ing different choices may lead to future improve-
ments. Another important direction for perfor-
mance improvement is to design methods that bet-
ter approximate Eq. 6. Although at this stage the
system performance is not yet better than previous
approaches, good translation results are achieved
on a standard translation task. While being similar
to (Tillmann and Zhang, 2005), the current proce-
dure is more automated with comparable perfor-
mance. The latter approach requires a decompo-
sition of the decoding scheme into local decision
steps with the inherent difficulty acknowledged in
(Tillmann and Zhang, 2005). Since such limita-
tion is not present in the current model, improved
results may be obtained in the future. A global
training procedure in the context of reranking is
presented in (Shen et al., 2004).
The computational requirements for the training
algorithm in Table 2 can be significantly reduced.
While the global training approach presented in
this paper is simple, after15 iterations or so, the
alternatives that are being added to the relevant set
differ very little from each other, slowing down
the training considerably such that the set of possi-
ble block translationsV (S) might not be fully ex-
plored. As mentioned in Section 2, the current ap-
proach is still able to handle real-valued features,
e.g. the language model probability. This is im-
portant since the language model can be trained
on a much larger monolingual corpus.
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