Reinforcement Learning

Mathematical Analysis of Machine Learning Algorithms
(Chapter 18)



Episodic MDP
An episodic Markov decision process (MDP) of length H, denoted by
M = MDP(X, A, P), contains a state space X, an action space A,
and probability measures {P(rf1, x+1|x ah}t . At each step
he [H] ={1,..., H}, we observe a state x" € X and take action
a € A. We then get a reward r" and go to the next state x*' with
probability P"(r", x"+1|x" a"). We assume that x' is drawn from an
unknown but fixed distribution.
The goal is to determine action a” € A based on x" to maximize the

reward
H
>
h=1

Figure: Episodic Markov decision process



Policy

A random policy T is a set of conditional probability 7(a|x") that
determines the probability of taking action a” on state x” at step h. If
a policy = is deterministic, then we also write the action a” it takes at
x"as ©M(x") € A.

The policy 7 interacts with the MDP in an episode as follows: for step
h=1,..., H, the player observes x", and draws a" ~ =(a"|x™); the
MDP returns (", x"*1). The reward of the episode is

H
>
h=1

The observations (x,a, r) = {(x", a", r")}}_, is called a trajectory,
and each policy 7, when interacting with the MDP, defines a
distribution over trajectories, which we denote as (x, a, r) ~ .



Value of Policy

The value of a policy 7 is defined as its expected reward:
H
Ve = IE(x,a,r)wr Z[rh]'
h=1

We note that the state x"*' has no significance as the episode ends
after taking action a" at x”” and observe the reward r".

Optimal policy value
V., = sup V,

with a policy 7. achieving this value referred to as an optimal policy.



Regret

Definition 1

In episodic reinforcement learning (RL), we consider an episodic
MDP. The player interacts with the MDP via a repeated game: at
each time (episode) t:
» The player chooses a policy 7; based on historic observations.
» The policy interacts with the MDP, and generates a trajectory
(Xtv at, rt) = {(Xth’ a?’ rth)}ﬁ:1 ~ Tt
The regret of episodic reinforcement learning is

T
Z[V* - V7Tr]7
t=1

where V, = sup,. V; is the optimal value function.



Example

Example 2 (Contextual Bandits)

Consider the episodic MDP with H = 1. We observe x' € X, take
action a' € A, and observe reward r' € R. This case is the same as

contextual bandits.



Example

Example 3 (Tabular MDP)

In a Tabular MDP, both X and A are finite: |[X| = Sand |A| = A. It
follows that the transition probability at each step h

{Ph(xM1xM aMy - h=1,... H}

can be expressed using HS?A numbers. The expected reward
E[r"|x", a"] can be expressed using HSA numbers.



State and Action Dependent Value Functions

Definition 4

Given any policy 7, we can define its value function (also referred to
as the Q-function in the literature) starting at a state-action pair
(x", a") at step h as follows:

Q(x Z Et (.2 [r,

where r” ~ r|(x", a") is the reward distribution at step ' conditioned
on starting from state action pair (x”, a") at step h. Similarly, we also

define
H
h/
=D Bl
h=h

By convention, we set V1 (xH+1) =0



Property of Value Function

Proposition 5 (Prop 18.7)

We have

QQ(th ah) :Erh,xh+1\xh,ah[rh + V:H(X’“H)],

Vi (x") =Eghomn xi Q(x", &").



Optimal Value Function

Definition 6

The optimal value functions starting at step h are given by
Qlx" &) =sup QU(x", &), VI(X") = sup VI(x").
We also define the optimal policy value as

Vi = Eu VI (x").



Bellman Equation

Theorem 7 (Thm 18.9)

The optimal Q-function Q. satisfies the Bellman equation:

QNx",&") = En g xh g [fh + Vit (xh+1)] .
The optimal value function satisfies
Vhxhy = hixh 4
Y0 = max Q" a),

and the optimal value function can be achieved using a deterministic
greedy policy .. below

mM(x") € argmax Q(x", a).
acA



Bellman Error

Definition 8

We say f is a candidate Q-function if
f={f(x"a": X xA—=R:he[H+1]}, with f#+1(.) = 0. Define

(x") = arg max (x", a),
and define its greedy policy s as a deterministic policy that satisfies
mh(x") € arg max f(x", a).
Given an MDP M, we also define the Bellman operator of f as
(TPF)(X",&") = Egn e pon anlr” + 7 (X" 1)],
and its Bellman error as
ENE xN &) = h(xh &) — (T"F)(x", a"),

where the conditional expectation is with respect to the MDP M.



Value Decomposition

We note
EhQ.,x" a" =0, vhelH].

The following result shows that the reverse is also true.

Theorem 9 (Thm 18.11)

Consider any candidate value function f = {f"(x",a") : X x A — R},
with fH+1(.) = 0. Let =t be its greedy policy. Then

H
[f1 (X1) - V71f(X1 )= E(X,a,r)wrr,\x‘ Z gh(f7 Xh> ah)-
h=1



Proof of Theorem 9 (I/1l)

We prove the following statement by induction from h= Hto h=1.
[F1(x") = VI O] = By g vy, e Z N X a"y. (1)

When h = H, we have a" = =!(x"') and
eF(f,xH ") = fA(x", &) — B upyn aulrP] = £ (xM) — VI (x).

Therefore (1) holds.



Proof of Theorem 9 (ll/1I)

Assume that the equation holds at h+ 1 forsome 1 < h< H —1.
Then at h, we have

H

I n o N
E{(Xh’,ah',rh’) g,:thlxh Z E (f,X ,a )
h=h

=E i1 rh g [E(F, X, @) £ (XM — VIR (X))
=Eynit g g el (X7, ") = 1" = VIF (xMT))]
=E g pr[((X", &) = V7, (x")]
=[f"(x") = V7, (x")].
The first equation used the induction hypothesis. The second
equation used the definition of Bellman error. The third equation used

Proposition 5. The last equation used a" = 7;(x") and thus by
definition, f(x", a") = f(xM).



Realizable Assumption

Assumption 10 (Asm 18.12)

Given a candidate value function class F of functions
f={fM(x" a"): x x A— R}, with fH+1(.) = 0. We assume that
(realizable assumption)

Q.=f.ecF.

Moreover, we assume that f'(x") € [0,1] and r" + f"1(x"+1) € [0, 1]
(h>1).



Completeness Assumption

Definition 11 (Bellman Completeness)

A candidate value function class F is complete with respect to
another candidate value function class G if for any h € [H], f € F,
there exists g € G so that for all h € [H]:

g"(x", &) = (T")(X", &) = Epn ynet o gt [rh + i (1 )} .

We say F is complete if F is complete with respect to itself.



Linear MDP

Definition 12 (Linear MDP, Def 18.15)

Let % = {#"} be a sequence of vector spaces with inner products
(-,-). An MDP M = MDP(X, A, P) is a linear MDP with feature maps
¢ = {p"(x" a") : & x A — HMH  if for all h € [H], there exist a map
vI(xM1) - X — #Pand 0" € H, such that

dPh( h+1 |Xh ah) _ < h( h+1)’ ¢h(xh, ah))duh+1 (Xh+1),
E[r"|x", " = (6", ¢"(x", &")).
Here (-, -) denotes the inner product in #" for different h, and the
conditional probability measure dP"(-|x", a") is absolute continuous
with respect to a measure du/t'(-) with density

(h(x+1), ¢"(x", a")). In general, we assume that v"(-) and 6" are
unknown.

We assume ¢(-) is either known or unknown.



Example

Example 13 (Tabular MDP)

In a tabular MDP, we assume that |A| = Aand |X| = S. Let d = AS,
and we can encode the space of X’ x A into a d-dimensional vector
with components indexed by (x, a). Let ¢"(x, a) = €(x,a) and let
vN(x"*1) be a d dimensional vector so that its (x, a) component is
Ph(xh+1|xh = x, a" = a). Similarly, we can take ¢" as a d dimensional
vector so that its (x, a) component is E[r"|x" = x, a" = a]. Therefore
tabular MDP is linear MDP with d = AS.



Example

Example 14 (Low-Rank MDP)

For a low-rank MDP, we assume that the transition probability matrix
can be decomposed as

d
Ph(Xh+1 |Xh, ah) — Z Ph(xh+1 |Z — j)Ph(Z _ j|Xh, ah)'
j=1
In this case we can set ¢"(x", a") = [P"(z = jix",a")|_,, and
V(M) = [PP(x"H1|z = j)]L;. Therefore a low-rank MDP is a linear
MDPs with rank as dimension.



Property of Linear MDP

Proposition 15 (Prop 18.18)

In a linear MDP with feature map ¢"(x", a") on vector spaces #"
(h € [H]). Consider the linear candidate Q function class

F= {(wh, PN(x" ")y - wheH he [H]}.
Any function g"t1(x"1) on X satisfies
(Thgh+ ) (xh, a") e F.
It implies that F is complete, and Q. € F. Moreover, ¥f € F,

Nt xn a" e F.



Proof of Proposition 15
Let

uh = /gh+1(Xh+1)Vh(xhﬂ)dﬂhm(xhﬂ)
We have
By g™ (1) = [ @70, 0, @) ()
=(ug, ¢"(x",@").
This implies that
(T"g)(x". &") = (6" + ug. "(x", &) € F.

Since Q"(x", a") = (ThQ,)(x", a"), we know Q"(x", a") e F.
Similarly, since (7"f)(x", a") € F, we know that f € F implies

Nt x a = f(xh, a" — (TPF)(x", a") e F.

This proves the desired result.



Estimating Bellman Error

Consider
(fh(Xh, ah) B rh o fh+1 (Xh-H ))2 (2)

By taking conditional expectation with respect to (x", a), we obtain
Il:?;riv7)(;7+1‘Xhﬁh(fh(xh7 ah) _ h_ ght (Xh+1))2

2
£t B (14160 — (T ) )

~
f-dependent zero-mean noise

Since noise variance depends on f, if we use (2) to estimate f, we will
favor f with smaller noise variance, which may not have zero Bellman
error.



The Role of Completeness in Bellman Error Estimation
If F is complete with respect to G, then we may use the solution of

_thi1y  ht1 2
g;nelth(g x¢, af) ()

to estimate (77f)(x", a"), which can be used to cancel the f
dependent variance term in (2).
This motivates the following loss function

Lh(f,g, Xh, ah’ rh Xh+1) (fh(X a ) o fh+1 (Xh+1))2

(gh(Xh ah) _fh+1(xh+1))2 ) (3)

We have

H t H t
sup 35" LI, g, x Al el Xy = 303 e, X

9€9 h—1 s=1 h=1 s=1



Property of Minimax Bellman Error Estimator

Theorem 16 (Thm 18.14)

Assume that assumption 10 holds, F is complete with respect to G, and
g"(:) € [0,1] for all g € G. Consider (3), and let

H
}',:{fe]-‘ supz

9€9 =1 o=

t
L(f, g, x2. &b, rh xh+‘)<62}
1
where
BE > 4et(4 + e)H +2In (16M(e, F, || - || )2M(e, G, || - [|o0)/6?)

with M(-) denotes the || - || packing number, and ||f||oc = supp, 4 |f"(X, a)|.
Then with probability at least1 — 6, for allt < n: Q, € F; and for all f € F;:

t H
DSOS en(t x{, al)? < 482

s=1 h=1



UCB Algorithm

Algorithm 1: Bellman Error UCB Algorithm

Input: \, T, F, G
1 Let Fy = {fo}
2 Letfg=0

sfort=1,2...,Tdo

4 | Observe x{

5 Let f; € arg maxscr, , f(x}).

6 Let m; = us?

7 Play policy 7 and observe trajectory (x;, a, rt)
8 Let

H t
e {fef: oSS LN gt b ) sg,z}

9€9 h—1 s—1

with appropriately chosen j3;, where L"(.) is defined in (3).
9 return randomly chosen ; fromt=1tot=T




Analysis of Algorithm 1: Eluder Coefficient

Definition 17 (Q-type Bellman Eluder Coefficient, Def 18.19)

Given a candidate @ function class F, its Q-type Bellman eluder
coefficient ECq(e, F, T) is the smallest number d so that for any

filtered sequence {f;, (xi, 1, ar) ~ wf,}t;:

T H H T t—1
ES S e, al) < JdE 3 (e+25h(ft,xg,a’s’)2>.

s=1



Eluder Coefficient for Linear MDP

Proposition 18 (Simplification of Prop 18.20)

Assume that a linear MDP has (possibly unknown) d" dimensional
feature maps ¢"(x", a") for each h.

Assume also that the candidate Q-function class F can be
embedded into the linear function space

Fc{w¢"(x", &) : wh e 1"},

and there exists B > 0 such that ||E(f,-,-) || < B.
Assume that |E(f,x", a")| € [0, 1], then

H
ECo(1,F,T)<2) d"In(1+ T(BB)?),
h=1

where B' = supj supyh g |o"(x", @")| -



Regret Bound
Theorem 19 (Thm 18.21)

Assume that Assumption 10 holds, F is complete with respect to G,

and g"(-) € [0,1] for all g € G. Assume also that j; is chosen in
Algorithm 1 according to

B2 = inf [4et(4+ )H + 2In (16M(e, . - )2 M(e, 0. [ - [)/5?) ]

inf
e>0

with M(-) denoting the || - ||~ packing number, and
1flloc = supp,x a|f"(x, @)|. Then

.
E ) VIO = Vi, 0]
=2

-
<0T + J ECq(e, F, T) <6HT +O6HT2 +4) " ,3,2_1> :

t=2



Proof of Theorem 19 (I/Il)

For t > 2, we have

VIx') — VL (x)
=V (x) = (X)) + (X)) — V;,(X;)
<L(Qu & Fro1) + [f(x]) — V(X))

H
=1(Q ¢ Ft-1) +E(, aromix] Z ENe, xP ap).
The inequality used the fact that if Q, € F;_4, then
(X)) = maxier,_, f(x}) = VI(x/), and if Q. ¢ Fi_4,
V3 (xt) — fi(x}) < 1. The last equation used Theorem 9.

Theorem 16 implies that Pr(Q, € F;_1) > 1 — §. We thus have

H
E[V] (X))~ Vi <0 +E ) &k X7, af).

h=1



Proof of Theorem 19 (lI/II)

We can now obtain
T
EY V() = V()]
t=2

T H
<EY > EMf Xl af) + 6T

t=2 h=1
T H t—1
<6T + 4 |ECo(e, F, TIED > <e + ) EN(f, X8, ag)2>
t=2 h=1 s=1
-
<OT + |ECq(e, F, T) (eHT +O6HT2 +4) 55_1> :
t=2

The second inequality used Definition 17. The last inequality used
the fact that for each t, Theorem 16 holds with probability 1 — §, and

otherwise, £M(f, x2, al)? < 1.



Interpretation of Theorem 19: Linear MDP

Consider the d dimensional linear MDP with bounded F and G.
Assume that the model coefficients at different step h are different,
then the entropy can be bounded (ignoring log factors) as

O(HIn(MzMg)) = O(Hd),
and hence with e = § = O(1/T2), we have
32 = O(HIn(MrMg)) = O(Hd).

Since ECq(e, F, T) = O(dH), we obtain the following.

Regret Bound from Theorem 19

We have the following regret bound for Algorithm 1

EREGr = O (H\/dT In(MrMg)) = O (Hdv/T) . (4)



Least Squares Value lteration

It was shown in Theorem 19 that the UCB method in Algorithm 1 can
handle linear MDP with Q-type Bellman eluder coefficient. However,
it requires solving a minimax formulation with global optimism, which
may be difficult computationally. In fact, there is no practically
effective implementation of the method.

Next, we show that a computationally more efficient procedure,
referred to as Least Squares Value Iteration (LSVI), or Fitted
Q-learning, can be used to solve RL. This procedure is closely
related to the Q-learning method used by practitioners.



Assumption for LSVI Algorithm

Assumption 20 (Completeness, Asm 18.22)

Assume that the Q function class F can be factored as the product of
H function classes:

F= Hfh Fh={(w", ¢"(x". "), w" e H"},

so that for all g1 (x"*1) € [0,1]:

(T g™ M) (x", &") e F". (5)



Assumption for LSVI Algorithm

Assumption 21 (Bonus Function, Asm 18.22)

In Assumption 20, assume further for any € > 0, there exists a
function class B"(¢) so that for any sequence

{(xP,ap, N ex x Ax FM:t=1,..., T}, we can construct a
sequence of non-negative bonus functions b{'(-) € B"(¢) (each ' and
b{’ only depend on the historic observations up to t — 1) such that

(6)

Bh(xM 22 > |(x", a") — 1(x", a")|2
¢ (X7, a@")" > sup t=1 1¢hiyh ahy _ Fh(yh ahy(2’
fheFhe+ Y o 1 |f (XSaas)_ft (xs'» @)

and the bonus function satisfies the following uniform eluder
condition:

.
sup Y min(1, bf(x{, af)?) < dim(T, B"(e)).
(.} =1



Example 18.23: Linear MDP (I/11)

Consider a linear MDP in Definition 12, such that
HehHHh_'_/‘|Vh(Xh+1)’Hh | (x"T) < B".

If Fhis any function class that contains
Fh = {wh ¢h(xP, @) : ||, < B,

then the proof of Proposition 15 implies that (5) holds.

Note that if r € [0, 1], then (7" g"t1)(x", a") € [0, 2]. Therefore at
any time step t, we may consider a subset of F" that satisfies the
range constraint on historic observations, and in the mean time,
impose the same range constraints in 7" as

Fh={(wh, ", &) - | whllyyn < B,

(wh, (. al)) € [0,2] s € [t~ 1]}



Example 18.23: Linear MDP (11/11)

If moreover, each f"(x", a") e F" can be written as (W"("), $"(x", a")) so
that ||w"(f") — w" ()| < B" (here we assume that ¢” may or may not be
the same as ¢"), then we can take

by (x", a") =" (x", ah)||(z;v - (7)
b Bh)21+Z¢”(X D) an’,

so that (6) holds. By using Lemma 13.9, we have

T T 2len(x{, ap)llZs,
. ~ ) (=1
min (1, [|"(x¢", &) [|%n -
12:1: ( *0) ) §1+\|¢h Xtaat)”

<In

((B"?/e)xf|.

Using Proposition 15.8, we can set dim( T, B"(¢)) = entro(e/((B")2T), 3"(")).
For d dimensional problem, dim(T, B"(¢)) = O(d).



Linear Least Squares Value lteration

Algorithm 2: Least Squares Value lteration with UCB (LSVI-UCB)

Input: € > 0, T, {F", {B(¢)}
1 fort=1,2,...,Tdo
2 | Letfft'=0
3 forh=H H-1,...,1do
4 Let yd = r + 741 (x5""), where

fth+1 (XQ—H) = maxg fth+1 (XQ—H ’ a)
5 Let

t—1

“h . hewh o1y _ yhy2
ft _argf’r’gljr-]hsz_;(f (X57as) ys) :

Find 3/ > 0 and bonus function b{(-) that satisfies (6)
6 | Let f(x", a") = min(1, max(0, f'(x", a") + BIbJ(x", a")))

7 Let 7; be the greedy policy of " for each step h € [H]
8 | Play policy 7+ and observe trajectory (x:, ar, 1)

9 return randomly chosen ; fromt=1tot=T




Analysis of LSVI-UCB: Key Lemma
Lemma 22 (Lem 18.24 )

Consider Algorithm 2 under Assumption 18.22. Assume also that Q" ¢ F",
Qe [0,1], r" € [0,1], f" € [0,2] for h € [H] and f" ¢ F". Given any t > 0,
/ewH+1 BH1(e,6) =0, and forh=H,H—1,... 1:

2H M4
= B"(e,6) 24(1 + B ) —— + Ve + \/24(1 + Bh1(8))e + 121n 7T(6),
VT 5
where (with ||f||o = supy 44 f"(X, a))
M(e) = M(e/ T, F" || - loo)M(e/ T, F™* || - [loo)M(e/ T, B (), ] - [loo)-
Then with probability at least 1 — 6, for all h € [H], and (x", a") € X x A:
QQ(Xha ah) é fth(th ah)a
17(x", ") — (T )(x", &) < 28"(e, )b (x", &").



Regret Bound for LSVI-UCB

Theorem 23 (Thm 18.25)

Consider Algorithm 2, and assume that all conditions of Lemma 22
hold. Then

h=1

EZ[V‘ )]<6T+2J dHTZBhe §)2 + 2Hd,

where d = H=' 1 dim(T, BN (¢)).



Proof of Theorem 23 (I/Il)

From Lemma 22, we know that for each t, with probability at least

1 — § over the observations {(xs, as,rs) : s=1,...,t — 1}, the two
inequalities of the lemma hold (which we denote as event E;). It
implies that under event E;, " satisfies the following inequalities for
all h e [H]:

EX? Vsj (Xt1) < Ex; fl‘1 (Xt1 )7 (8)
By g €, X0 )| < 2B, B0 OB A). (9)



Proof of Theorem 23 (lI/II)

We thus obtain

EZ[W x)] < 5T+EZ[f1 — VL ()OIL(E)

t=1

_5T+ZEZ€” (f, x, aM1(E)
1 —
- T H

<6T+2Y E Y [5”(6, §)min(1, BN(x", a") + min(1, b(x]", a"))?

t=1 h=1

H T H
gar+2$ ﬁh(e,é)Z\J]E D3 min(1, bA(x], af))2
t h=1 t=1 h=1
.
=3

=1

Mﬂ

min(1, b"(x]', af"))?

SEE
T o

H

<6T +2 T Bh $Zd|mTBh ) +2) dim(T,B"(e)).

1 h=1



Interpretation of Theorem 23 : Linear MDP

Consider linear MDP with known d dimensional ¢"(-) = ¢"(-).

> We have InN(e/T, 7", || - [|o) = O(d).

» Since the bonus function of (7) can be regarded as a function
class with the d x d matrix ! as its parameter, Theorem 5.3
implies In N(e/ T, B/ 1(e), |- lle) = O(d?).

» We have dim(T,B"(¢)) = O(d) from | Example 18.23 and
Proposition 15.8. We can set 3" = O(d?).

Regret Bound from Theorem 23

For Algorithm 2, we have

E REGT = O(Hd*2V/T).

The bound is inferior by a factor of v/d compared to (4), due to the
O(d?) entropy number of the bonus function class B (e).



Model Based RL

Definition 24 (Def 18.35)

In a model-based RL problem, we are given an MDP model class M.
Each M € M includes explicit transition probability

PI/\14(Xh+1 ’Xh, ah),
and expected reward
RII\7/I(Xh7 ah) = IE/\/’ [rh’th ah]a

where we use Ey[-] to denote the expectation with respect to model
M’s transition dynamics Py.

We use fiy = {ff}(x", a")}}_, to denote the Q function of model M,
and use 7y = 7y, to denote the corresponding optimal policy under
model M.



Example: Linear Mixture MDP

A simple example of model-based reinforcement learning problem is
linear mixture MDP (also see Definition 18.48).

Example 25 (Mixture of Known MDPs, Expl 18.50 )

Consider d base MDPs My, ..., My, where each MDP M;
corresponds to a transition distribution PA},/ (x"1x" a") and an

expected reward R,’(,,l_ (x", a"). Consider a model family M, where

M € M is represented by wy,...,wy > 0 and 2721 w; = 1. Then we
can express

d
P;;,(Xh-H ’Xh, ah) _ Z WjPI’\hj(Xh—H ‘Xh, ah)'
j=1

One can similarly define Rf,(x", a") = 27:1 WjR,f\'dj(Xh, am.



Generic Model-Based Algorithm

Algorithm 3: Q-type Model-Based Posterior Sampling Algorithm

Input: A\, n, 7, T, pg, M

1 fort=1,2,...,Tdo

2
3

Observe x/
Draw

M; ~ pr(M|x{, S—+)
according to p/(M|x!, S;_1) defined as

H t-1
MIxt Si1) xpo(M exp<Asz )+ 33 Lo )

h=1 s=1
LYM) = — ii(Rpy(x¢, a8) — )2 +nin PR(xt" | x{, &).

Let mp = mpy,
Play policy 7+ and observe trajectory (x;, a, rt)




Analysis of Mixture of Known MDPs

The analysis of Algorithm 3 can be found in Theorem 18.47.

For Mixture of Known MDPs, we can obtain the following result.

Regret Bound from Theorem 18.47

If we apply Algorithm 3 to Example 25 with appropriate parameter
choices, then y
E REGT = O(dHV'T).

This result is similar to that of linear MDP.



Summary (Chapter 18)
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