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Reinforcement Learning

Mathematical Analysis of Machine Learning Algorithms
(Chapter 18)
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Episodic MDP
An episodic Markov decision process (MDP) of length H, denoted by
M = MDP(X ,A,P), contains a state space X , an action space A,
and probability measures {Ph(rh, xh+1|xh,ah)}Hh=1. At each step
h ∈ [H] = {1, . . . ,H}, we observe a state xh ∈ X and take action
ah ∈ A. We then get a reward rh and go to the next state xh+1 with
probability Ph(rh, xh+1|xh,ah). We assume that x1 is drawn from an
unknown but fixed distribution.
The goal is to determine action ah ∈ A based on xh to maximize the
reward

H∑
h=1

[rh].

x1 x2 xh xHa1 a2 ah−1 ah aH−1 aH

r1 r2 rh−1 rh rh+1 rh+1

Figure: Episodic Markov decision process
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Policy

A random policy π is a set of conditional probability πh(ah|xh) that
determines the probability of taking action ah on state xh at step h. If
a policy π is deterministic, then we also write the action ah it takes at
xh as πh(xh) ∈ A.
The policy π interacts with the MDP in an episode as follows: for step
h = 1, . . . ,H, the player observes xh, and draws ah ∼ π(ah|xh); the
MDP returns (rh, xh+1). The reward of the episode is

H∑
h=1

[rh].

The observations (x ,a, r) = {(xh,ah, rh)}Hh=1 is called a trajectory,
and each policy π, when interacting with the MDP, defines a
distribution over trajectories, which we denote as (x ,a, r) ∼ π.
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Value of Policy

The value of a policy π is defined as its expected reward:

Vπ = E(x ,a,r)∼π

H∑
h=1

[rh].

We note that the state xH+1 has no significance as the episode ends
after taking action ah at xh and observe the reward rh.

Optimal policy value
V∗ = sup

π
Vπ,

with a policy π∗ achieving this value referred to as an optimal policy.
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Regret

Definition 1
In episodic reinforcement learning (RL), we consider an episodic
MDP. The player interacts with the MDP via a repeated game: at
each time (episode) t :
I The player chooses a policy πt based on historic observations.
I The policy interacts with the MDP, and generates a trajectory

(xt ,at , rt ) = {(xh
t ,a

h
t , r

h
t )}Hh=1 ∼ πt .

The regret of episodic reinforcement learning is

T∑
t=1

[V∗ − Vπt ],

where V∗ = supπ Vπ is the optimal value function.
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Example

Example 2 (Contextual Bandits)

Consider the episodic MDP with H = 1. We observe x1 ∈ X , take
action a1 ∈ A, and observe reward r1 ∈ R. This case is the same as
contextual bandits.
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Example

Example 3 (Tabular MDP)

In a Tabular MDP, both X and A are finite: |X | = S and |A| = A. It
follows that the transition probability at each step h

{Ph(xh+1|xh,ah) : h = 1, . . . ,H}

can be expressed using HS2A numbers. The expected reward
E[rh|xh,ah] can be expressed using HSA numbers.
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State and Action Dependent Value Functions

Definition 4
Given any policy π, we can define its value function (also referred to
as the Q-function in the literature) starting at a state-action pair
(xh,ah) at step h as follows:

Qh
π(xh,ah) =

H∑
h′=h

Erh′∼π|(xh,ah)[rh′ ],

where rh′ ∼ π|(xh,ah) is the reward distribution at step h′ conditioned
on starting from state action pair (xh,ah) at step h. Similarly, we also
define

V h
π (xh) =

H∑
h′=h

Erh′∼π|xh [rh′ ].

By convention, we set V H+1
π (xH+1) ≡ 0.
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Property of Value Function

Proposition 5 (Prop 18.7)

We have

Qh
π(xh,ah) =Erh,xh+1|xh,ah [rh + V h+1

π (xh+1)],

V h
π (xh) =Eah∼πh(·|xh)Q

h
π(xh,ah).
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Optimal Value Function

Definition 6
The optimal value functions starting at step h are given by

Qh
∗ (xh,ah) = sup

π
Qh
π(xh,ah), V h

∗ (xh) = sup
π

V h
π (xh).

We also define the optimal policy value as

V∗ = Ex1V 1
∗ (x1).
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Bellman Equation

Theorem 7 (Thm 18.9)

The optimal Q-function Q∗ satisfies the Bellman equation:

Qh
∗ (xh,ah) = Erh,xh+1|xh,ah

[
rh + V h+1

∗ (xh+1)
]
.

The optimal value function satisfies

V h
∗ (xh) = max

a∈A
Qh
∗ (xh,a),

and the optimal value function can be achieved using a deterministic
greedy policy π∗ below

πh
∗(xh) ∈ arg max

a∈A
Qh
∗ (xh,a).
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Bellman Error

Definition 8
We say f is a candidate Q-function if
f = {f h(xh,ah) : X ×A → R : h ∈ [H + 1]}, with f H+1(·) = 0. Define

f h(xh) = arg max
a∈A

f h(xh,a),

and define its greedy policy πf as a deterministic policy that satisfies

πh
f (xh) ∈ arg max

a∈A
f h(xh,a).

Given an MDP M, we also define the Bellman operator of f as

(T hf )(xh,ah) = Erh,xh+1|xh,ah [rh + f h+1(xh+1)],

and its Bellman error as

Eh(f , xh,ah) = f h(xh,ah)− (T hf )(xh,ah),

where the conditional expectation is with respect to the MDP M.
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Value Decomposition

We note
Eh(Q∗, xh,ah) = 0, ∀h ∈ [H].

The following result shows that the reverse is also true.

Theorem 9 (Thm 18.11)

Consider any candidate value function f = {f h(xh,ah) : X ×A → R},
with f H+1(·) = 0. Let πf be its greedy policy. Then

[f 1(x1)− V 1
πf

(x1)] = E(x ,a,r)∼πf |x1

H∑
h=1

Eh(f , xh,ah).
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Proof of Theorem 9 (I/II)

We prove the following statement by induction from h = H to h = 1.

[f h(xh)− V h
πf

(xh)] = E{(xh′ ,ah′ ,rh′ )}H
h′=h
∼πf |xh

H∑
h′=h

Eh′(f , xh′ ,ah′). (1)

When h = H, we have aH = πH
f (xH) and

EH(f , xH ,aH) = f H(xH ,aH)− ErH |xH ,aH [rH ] = f H(xH)− V H
π (xH).

Therefore (1) holds.
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Proof of Theorem 9 (II/II)

Assume that the equation holds at h + 1 for some 1 ≤ h ≤ H − 1.
Then at h, we have

E{(xh′ ,ah′ ,rh′ )}H
h′=h
∼πf |xh

H∑
h′=h

Eh′(f , xh′ ,ah′)

=Exh+1,rh,ah∼πf |xh [Eh(f , xh,ah) + f h+1(xh+1)− V h+1
πf

(xh+1)]

=Exh+1,rh,ah∼πf |xh [f h(xh,ah)− rh − V h+1
πf

(xh+1)]

=Eah∼πf |xh [f h(xh,ah)− V h
πf

(xh)]

=[f h(xh)− V h
πf

(xh)].

The first equation used the induction hypothesis. The second
equation used the definition of Bellman error. The third equation used
Proposition 5. The last equation used ah = πf (xh) and thus by
definition, f h(xh,ah) = f h(xh).



16

Realizable Assumption

Assumption 10 (Asm 18.12)

Given a candidate value function class F of functions
f = {f h(xh,ah) : X ×A → R}, with f H+1(·) = 0. We assume that
(realizable assumption)

Q∗ = f∗ ∈ F .

Moreover, we assume that f 1(x1) ∈ [0,1] and rh + f h+1(xh+1) ∈ [0,1]
(h ≥ 1).
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Completeness Assumption

Definition 11 (Bellman Completeness)

A candidate value function class F is complete with respect to
another candidate value function class G if for any h ∈ [H], f ∈ F ,
there exists g ∈ G so that for all h ∈ [H]:

gh(xh,ah) = (T hf )(xh,ah) = Erh,xh+1|xh,ah

[
rh + f h+1(xh+1)

]
.

We say F is complete if F is complete with respect to itself.
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Linear MDP

Definition 12 (Linear MDP, Def 18.15)

Let H = {Hh} be a sequence of vector spaces with inner products
〈·, ·〉. An MDP M = MDP(X ,A,P) is a linear MDP with feature maps
φ = {φh(xh,ah) : X ×A → Hh}Hh=1 if for all h ∈ [H], there exist a map
νh(xh+1) : X → Hh and θh ∈ Hh, such that

dPh(xh+1|xh,ah) = 〈νh(xh+1), φh(xh,ah)〉dµh+1(xh+1),

E[rh|xh,ah] = 〈θh, φh(xh,ah)〉.

Here 〈·, ·〉 denotes the inner product in Hh for different h, and the
conditional probability measure dPh(·|xh,ah) is absolute continuous
with respect to a measure dµh+1(·) with density
〈νh(xh+1), φh(xh,ah)〉. In general, we assume that νh(·) and θh are
unknown.

We assume φ(·) is either known or unknown.
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Example

Example 13 (Tabular MDP)

In a tabular MDP, we assume that |A| = A and |X | = S. Let d = AS,
and we can encode the space of X ×A into a d-dimensional vector
with components indexed by (x ,a). Let φh(x ,a) = e(x ,a) and let
νh(xh+1) be a d dimensional vector so that its (x ,a) component is
Ph(xh+1|xh = x ,ah = a). Similarly, we can take θh as a d dimensional
vector so that its (x ,a) component is E[rh|xh = x ,ah = a]. Therefore
tabular MDP is linear MDP with d = AS.
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Example

Example 14 (Low-Rank MDP)

For a low-rank MDP, we assume that the transition probability matrix
can be decomposed as

Ph(xh+1|xh,ah) =
d∑

j=1

Ph(xh+1|z = j)Ph(z = j |xh,ah).

In this case we can set φh(xh,ah) = [Ph(z = j |xh,ah)]dj=1, and
νh(xh+1) = [Ph(xh+1|z = j)]dj=1. Therefore a low-rank MDP is a linear
MDPs with rank as dimension.
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Property of Linear MDP

Proposition 15 (Prop 18.18)

In a linear MDP with feature map φh(xh,ah) on vector spaces Hh

(h ∈ [H]). Consider the linear candidate Q function class

F =
{
〈wh, φh(xh,ah)〉 : wh ∈ Hh,h ∈ [H]

}
.

Any function gh+1(xh+1) on X satisfies

(T hgh+1)(xh,ah) ∈ F .

It implies that F is complete, and Q∗ ∈ F . Moreover, ∀f ∈ F ,

Eh(f , xh,ah) ∈ F .
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Proof of Proposition 15
Let

uh
g =

∫
gh+1(xh+1)νh(xh+1)dµh+1(xh+1).

We have

Exh+1|xh,ahgh+1(xh+1) =

∫
gh+1(xh+1)〈νh(xh+1), φh(xh,ah)〉dµh+1(xh+1)

=〈uh
g , φ

h(xh,ah)〉.

This implies that

(T hg)(xh,ah) = 〈θh + uh
g , φ

h(xh,ah)〉 ∈ F .

Since Qh
∗ (xh,ah) = (T hQ∗)(xh,ah), we know Qh

∗ (xh,ah) ∈ F .
Similarly, since (T hf )(xh,ah) ∈ F , we know that f ∈ F implies

Eh(f , xh,ah) = f h(xh,ah)− (T hf )(xh,ah) ∈ F .

This proves the desired result.
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Estimating Bellman Error

Consider
(f h(xh,ah)− rh − f h+1(xh+1))2. (2)

By taking conditional expectation with respect to (xh,ah), we obtain

Erh,xh+1|xh,ah (f h(xh,ah)− rh − f h+1(xh+1))2

=Eh(f , xh,ah)2 + Erh,xh+1|xh,ah

(
rh + f h+1(xh+1)− (T hf )(xh,ah)︸ ︷︷ ︸

f -dependent zero-mean noise

)2

.

Since noise variance depends on f , if we use (2) to estimate f , we will
favor f with smaller noise variance, which may not have zero Bellman
error.
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The Role of Completeness in Bellman Error Estimation
If F is complete with respect to G, then we may use the solution of

min
gh∈Gh

t∑
s=1

(gh(xh
s ,a

h
s)− rh

s − f h+1(xh+1
s ))2

to estimate (T hf )(xh,ah), which can be used to cancel the f
dependent variance term in (2).
This motivates the following loss function

Lh(f ,g, xh,ah, rh, xh+1) =
[
(f h(xh,ah)− rh − f h+1(xh+1))2

−(gh(xh,ah)− rh − f h+1(xh+1))2
]
. (3)

We have

sup
g∈G

H∑
h=1

t∑
s=1

Lh(f ,g, xh
s ,a

h
s , r

h
s , x

h+1
s ) ≈

H∑
h=1

t∑
s=1

Eh(f , xh
s ,a

h
s)2.
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Property of Minimax Bellman Error Estimator

Theorem 16 (Thm 18.14)

Assume that assumption 10 holds, F is complete with respect to G, and
gh(·) ∈ [0,1] for all g ∈ G. Consider (3), and let

Ft =

{
f ∈ F : sup

g∈G

H∑
h=1

t∑
s=1

Lh(f ,g, xh
s ,a

h
s , r

h
s , x

h+1
s ) ≤ β2

t

}
,

where

β2
t ≥ 4εt(4 + ε)H + 2 ln

(
16M(ε,F , ‖ · ‖∞)2M(ε,G, ‖ · ‖∞)/δ2) ,

with M(·) denotes the ‖ · ‖∞ packing number, and ‖f‖∞ = suph,x,a |f h(x ,a)|.
Then with probability at least 1− δ, for all t ≤ n: Q∗ ∈ Ft and for all f ∈ Ft :

t∑
s=1

H∑
h=1

Eh(f , xh
s ,a

h
s)2 ≤ 4β2

t .
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UCB Algorithm
Algorithm 1: Bellman Error UCB Algorithm
Input: λ, T , F , G

1 Let F0 = {f0}
2 Let β0 = 0
3 for t = 1,2, . . . ,T do
4 Observe x1

t
5 Let ft ∈ arg maxf∈Ft−1 f (x1

t ).
6 Let πt = πft
7 Play policy πt and observe trajectory (xt ,at , rt )
8 Let

Ft =

{
f ∈ F : sup

g∈G

H∑
h=1

t∑
s=1

Lh(f ,g, xh
s ,a

h
s , r

h
s , x

h+1
s ) ≤ β2

t

}

with appropriately chosen βt , where Lh(·) is defined in (3).
9 return randomly chosen πt from t = 1 to t = T
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Analysis of Algorithm 1: Eluder Coefficient

Definition 17 (Q-type Bellman Eluder Coefficient, Def 18.19)

Given a candidate Q function class F , its Q-type Bellman eluder
coefficient ECQ(ε,F ,T ) is the smallest number d so that for any
filtered sequence {ft , (xt , rt ,at ) ∼ πft}Tt=1:

E
T∑

t=2

H∑
h=1

Eh(ft , xh
t ,a

h
t ) ≤

√√√√d E
H∑

h=1

T∑
t=2

(
ε+

t−1∑
s=1

Eh(ft , xh
s ,ah

s)2

)
.
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Eluder Coefficient for Linear MDP

Proposition 18 (Simplification of Prop 18.20)

Assume that a linear MDP has (possibly unknown) dh dimensional
feature maps φh(xh,ah) for each h.
Assume also that the candidate Q-function class F can be
embedded into the linear function space

F ⊂ {〈wh, φh(xh,ah)〉 : wh ∈ Hh},

and there exists B > 0 such that ‖Eh(f , ·, ·)‖Hh ≤ B.
Assume that |Eh(f , xh,ah)| ∈ [0,1], then

ECQ(1,F ,T ) ≤ 2
H∑

h=1

dh ln(1 + T (BB′)2),

where B′ = suph supxh,ah ‖φh(xh,ah)‖Hh .
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Regret Bound
Theorem 19 (Thm 18.21)

Assume that Assumption 10 holds, F is complete with respect to G,
and gh(·) ∈ [0,1] for all g ∈ G. Assume also that βt is chosen in
Algorithm 1 according to

β2
t ≥ inf

ε>0

[
4εt(4 + ε)H + 2 ln

(
16M(ε,F , ‖ · ‖∞)2M(ε,G, ‖ · ‖∞)/δ2

)]
,

with M(·) denoting the ‖ · ‖∞ packing number, and
‖f‖∞ = suph,x ,a |f h(x ,a)|. Then

E
T∑

t=2

[V 1
∗ (x1

t )− V 1
πt

(x1
t )]

≤δT +

√√√√ECQ(ε,F ,T )

(
εHT + δHT 2 + 4

T∑
t=2

β2
t−1

)
.
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Proof of Theorem 19 (I/II)
For t ≥ 2, we have

V 1
∗ (x1

t )− V 1
πt

(x1
t )

=V 1
∗ (xt )− ft (x1

t ) + ft (x1
t )− V 1

πt
(x1

t )

≤1(Q∗ /∈ Ft−1) + [ft (x1
t )− V 1

πt
(x1

t )]

=1(Q∗ /∈ Ft−1) + E(xt ,at ,rt )∼πt |x1
t

H∑
h=1

Eh(ft , xh
t ,a

h
t ).

The inequality used the fact that if Q∗ ∈ Ft−1, then
ft (x1

t ) = maxf∈Ft−1 f (x1
t ) ≥ V 1

∗ (x1
t ), and if Q∗ /∈ Ft−1,

V 1
∗ (xt )− ft (x1

t ) ≤ 1. The last equation used Theorem 9.
Theorem 16 implies that Pr(Q∗ ∈ Ft−1) ≥ 1− δ. We thus have

E[V 1
∗ (x1

t )− V 1
πt

(x1
t )] ≤ δ + E

H∑
h=1

Eh(ft , xh
t ,a

h
t ).
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Proof of Theorem 19 (II/II)
We can now obtain

E
T∑

t=2

[V 1
∗ (x1

t )− V 1
πt

(x1
t )]

≤E
T∑

t=2

H∑
h=1

Eh(ft , xh
t ,a

h
t ) + δT

≤δT +

√√√√ECQ(ε,F ,T )E
T∑

t=2

H∑
h=1

(
ε+

t−1∑
s=1

Eh(ft , xh
s ,ah

s)2

)

≤δT +

√√√√ECQ(ε,F ,T )

(
εHT + δHT 2 + 4

T∑
t=2

β2
t−1

)
.

The second inequality used Definition 17. The last inequality used
the fact that for each t , Theorem 16 holds with probability 1− δ, and
otherwise, Eh(ft , xh

s ,ah
s)2 ≤ 1.
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Interpretation of Theorem 19: Linear MDP
Consider the d dimensional linear MDP with bounded F and G.
Assume that the model coefficients at different step h are different,
then the entropy can be bounded (ignoring log factors) as

Õ(H ln(MFMG)) = Õ(Hd),

and hence with ε = δ = O(1/T 2), we have

β2
t = Õ(H ln(MFMG)) = Õ(Hd).

Since ECQ(ε,F ,T ) = Õ(dH), we obtain the following.

Regret Bound from Theorem 19

We have the following regret bound for Algorithm 1

E REGT = Õ
(

H
√

dT ln(MFMG)
)

= Õ
(

Hd
√

T
)
. (4)
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Least Squares Value Iteration

It was shown in Theorem 19 that the UCB method in Algorithm 1 can
handle linear MDP with Q-type Bellman eluder coefficient. However,
it requires solving a minimax formulation with global optimism, which
may be difficult computationally. In fact, there is no practically
effective implementation of the method.

Next, we show that a computationally more efficient procedure,
referred to as Least Squares Value Iteration (LSVI), or Fitted
Q-learning, can be used to solve RL. This procedure is closely
related to the Q-learning method used by practitioners.
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Assumption for LSVI Algorithm

Assumption 20 (Completeness, Asm 18.22)

Assume that the Q function class F can be factored as the product of
H function classes:

F =
H∏

h=1

Fh, Fh = {〈wh, φh(xh,ah)〉,wh ∈ Hh},

so that for all gh+1(xh+1) ∈ [0,1]:

(T h gh+1)(xh,ah) ∈ Fh. (5)
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Assumption for LSVI Algorithm

Assumption 21 (Bonus Function, Asm 18.22)

In Assumption 20, assume further for any ε > 0, there exists a
function class Bh(ε) so that for any sequence
{(xh

t ,a
h
t , f̂

h
t ) ∈ X ×A×Fh : t = 1, . . . ,T}, we can construct a

sequence of non-negative bonus functions bh
t (·) ∈ Bh(ε) (each f̂ h

t and
bh

t only depend on the historic observations up to t − 1) such that

bh
t (xh,ah)2 ≥ sup

f h∈Fh

|f h(xh,ah)− f̂ h
t (xh,ah)|2

ε+
∑t−1

s=1 |f h(xh
s ,ah

s)− f̂ h
t (xh

s ,ah
s)|2

, (6)

and the bonus function satisfies the following uniform eluder
condition:

sup
{(xh

t ,a
h
t )}

T∑
t=1

min(1,bh
t (xh

t ,a
h
t )2) ≤ dim(T ,Bh(ε)).
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Example 18.23: Linear MDP (I/II)
Consider a linear MDP in Definition 12, such that

‖θh‖Hh +

∫
‖νh(xh+1)‖Hh |dµh+1(xh+1)| ≤ Bh.

If Fh is any function class that contains

F̃h = {〈wh, φh(xh,ah)〉 : ‖wh‖Hh ≤ Bh},

then the proof of Proposition 15 implies that (5) holds.
Note that if rh ∈ [0,1], then (T h gh+1)(xh,ah) ∈ [0,2]. Therefore at
any time step t , we may consider a subset of Fh that satisfies the
range constraint on historic observations, and in the mean time,
impose the same range constraints in F̃h as

F̃h =
{
〈wh, φh(xh,ah)〉 : ‖wh‖Hh ≤ Bh,

〈wh, φh(xh
s ,a

h
s)〉 ∈ [0,2] ∀s ∈ [t − 1]

}
.
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Example 18.23: Linear MDP (II/II)
If moreover, each f h(xh,ah) ∈ Fh can be written as 〈w̃h(f h), φ̃h(xh,ah)〉 so
that ‖w̃h(f h)− w̃h(f̃ h)‖2 ≤ B̃h (here we assume that φ̃h may or may not be
the same as φh), then we can take

bh
t (xh,ah) =‖φ̃h(xh,ah)‖(Σh

t )−1 , (7)

Σh
t =

ε

(B̃h)2
I +

t−1∑
s=1

φ̃h(xh,ah)φ̃h(xh,ah)>,

so that (6) holds. By using Lemma 13.9, we have

T∑
t=1

min
(

1, ‖φ̃h(xh
t ,a

h
t )‖2

(Σh
t )−1

)
≤

T∑
t=1

2‖φ̃h(xh
t ,a

h
t )‖2

(Σh
t )−1

1 + ‖φ̃h(xh
t ,a

h
t )‖2

(Σh
t )−1

≤ ln
∣∣∣((B̃h)2/ε)Σh

t

∣∣∣ .
Using Proposition 15.8, we can set dim(T ,Bh(ε)) = entro

(
ε/((B̃h)2T ), φ̃h(·)

)
.

For d dimensional problem, dim(T ,Bh(ε)) = Õ(d).
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Linear Least Squares Value Iteration
Algorithm 2: Least Squares Value Iteration with UCB (LSVI-UCB)
Input: ε > 0, T , {Fh}, {Bh(ε)}

1 for t = 1,2, . . . ,T do
2 Let f H+1

t = 0
3 for h = H,H − 1, . . . ,1 do
4 Let yh

s = rh
s + f h+1

t (xh+1
s ), where

f h+1
t (xh+1

s ) = maxa f h+1
t (xh+1

s ,a)
5 Let

f̂ h
t = arg min

f h∈Fh

t−1∑
s=1

(f h(xh
s ,a

h
s)− yh

s )2.

Find βh
t > 0 and bonus function bh

t (·) that satisfies (6)
6 Let f h

t (xh,ah) = min(1,max(0, f̂ h
t (xh,ah) + βh

t bh
t (xh,ah)))

7 Let πt be the greedy policy of f h
t for each step h ∈ [H]

8 Play policy πt and observe trajectory (xt ,at , rt )

9 return randomly chosen πt from t = 1 to t = T
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Analysis of LSVI-UCB: Key Lemma

Lemma 22 (Lem 18.24 )

Consider Algorithm 2 under Assumption 18.22. Assume also that Qh
∗ ∈ Fh,

Qh
∗ ∈ [0,1], rh ∈ [0,1], f h ∈ [0,2] for h ∈ [H] and f h ∈ Fh. Given any t > 0,

let βH+1
t = βH+1(ε, δ) = 0, and for h = H,H − 1, . . . ,1:

βh
t = βh(ε, δ) ≥4(1 + βh+1)

ε√
T

+
√
ε+

√
24(1 + βh+1(δ))ε+ 12 ln

2H Mh
T (ε)

δ
,

where (with ‖f‖∞ = supx,a,h f h(x ,a))

Mh
T (ε) = M(ε/T ,Fh, ‖ · ‖∞)M(ε/T ,Fh+1, ‖ · ‖∞)M(ε/T ,Bh+1(ε), ‖ · ‖∞).

Then with probability at least 1− δ, for all h ∈ [H], and (xh,ah) ∈ X ×A:

Qh
∗(xh,ah) ≤ f h

t (xh,ah),

|f h
t (xh,ah)− (T hf h+1

t )(xh,ah)| ≤ 2βh(ε, δ)bh(xh,ah).
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Regret Bound for LSVI-UCB

Theorem 23 (Thm 18.25)

Consider Algorithm 2, and assume that all conditions of Lemma 22
hold. Then

E
T∑

t=1

[V 1
∗ (x1

t )− V 1
πt

(x1
t )] ≤ δT + 2

√√√√dHT
H∑

h=1

βh(ε, δ)2 + 2Hd ,

where d = H−1∑H
h=1 dim(T ,Bh(ε)).



41

Proof of Theorem 23 (I/II)

From Lemma 22, we know that for each t , with probability at least
1− δ over the observations {(xs,as, rs) : s = 1, . . . , t − 1}, the two
inequalities of the lemma hold (which we denote as event Et ). It
implies that under event Et , f h

t satisfies the following inequalities for
all h ∈ [H]:

Ex1
t
V 1
∗ (x1

t ) ≤ Ex1
t
f 1
t (x1

t ), (8)

Exh
t ,a

h
t
|Eh(ft , xh

t ,a
h
t )| ≤ 2Exh

t ,a
h
t
βh(ε, δ)bh(xh

t ,a
h
t ). (9)
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Proof of Theorem 23 (II/II)
We thus obtain

E
T∑

t=1

[V 1
∗ (x1

t )− V 1
πt

(x1
t )] ≤ δT + E

T∑
t=1

[f 1
t (x1

t )− V 1
πt

(x1
t )]1(Et )

=δT +
T∑

t=1

E
H∑

h=1

Eh(ft , xh
t ,a

h
t )1(Et )

≤δT + 2
T∑

t=1

E
H∑

h=1

[
βh(ε, δ) min(1,bh(xh

t ,a
h
t )) + min(1,bh(xh

t ,a
h
t ))2

]

≤δT + 2

√√√√ T∑
t=1

H∑
h=1

βh(ε, δ)2

√√√√E
T∑

t=1

H∑
h=1

min(1,bh(xh
t ,a

h
t ))2

+ 2E
T∑

t=1

H∑
h=1

min(1,bh(xh
t ,a

h
t ))2

≤δT + 2

√√√√T
H∑

h=1

βh(ε, δ)2

√√√√ H∑
h=1

dim(T ,Bh(ε)) + 2
H∑

h=1

dim(T ,Bh(ε)).
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Interpretation of Theorem 23 : Linear MDP

Consider linear MDP with known d dimensional φh(·) = φ̃h(·).
I We have ln N(ε/T ,Fh, ‖ · ‖∞) = Õ(d).
I Since the bonus function of (7) can be regarded as a function

class with the d × d matrix Σh
t as its parameter, Theorem 5.3

implies ln N(ε/T ,Bh+1(ε), ‖ · ‖∞) = Õ(d2).
I We have dim(T ,Bh(ε)) = Õ(d) from Example 18.23 and

Proposition 15.8. We can set βh = Õ(d2).

Regret Bound from Theorem 23

For Algorithm 2, we have

E REGT = Õ(Hd3/2
√

T ).

The bound is inferior by a factor of
√

d compared to (4), due to the
Õ(d2) entropy number of the bonus function class Bh+1(ε).
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Model Based RL

Definition 24 (Def 18.35)

In a model-based RL problem, we are given an MDP model classM.
Each M ∈M includes explicit transition probability

Ph
M(xh+1|xh,ah),

and expected reward

Rh
M(xh,ah) = EM [rh|xh,ah],

where we use EM [·] to denote the expectation with respect to model
M ’s transition dynamics PM .
We use fM = {f h

M(xh,ah)}Hh=1 to denote the Q function of model M,
and use πM = πfM to denote the corresponding optimal policy under
model M.
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Example: Linear Mixture MDP

A simple example of model-based reinforcement learning problem is
linear mixture MDP (also see Definition 18.48).

Example 25 (Mixture of Known MDPs, Expl 18.50 )

Consider d base MDPs M1, . . . ,Md , where each MDP Mj
corresponds to a transition distribution Ph

Mj
(xh+1|xh,ah) and an

expected reward Rh
Mj

(xh,ah). Consider a model familyM, where

M ∈M is represented by w1, . . . ,wd ≥ 0 and
∑d

j=1 wj = 1. Then we
can express

Ph
M(xh+1|xh,ah) =

d∑
j=1

wjPh
Mj

(xh+1|xh,ah).

One can similarly define Rh
M(xh,ah) =

∑d
j=1 wjRh

Mj
(xh,ah).
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Generic Model-Based Algorithm

Algorithm 3: Q-type Model-Based Posterior Sampling Algorithm
Input: λ, η, η̃, T , p0,M

1 for t = 1,2, . . . ,T do
2 Observe x1

t
3 Draw

Mt ∼ pt (M|x1
t ,St−1)

according to pt (M|x t
1,St−1) defined as

pt (M|x t
1,St−1) ∝p0(M) exp

(
λ

t−1∑
s=1

fM(x1
s ) +

H∑
h=1

t−1∑
s=1

Lh
s(M)

)
,

Lh
s(M) =− η̃(Rh

M(xh
s ,a

h
s)− rh

s )2 + η ln Ph
M(xh+1

s | xh
s ,a

h
s).4

Let πt = πMt

5 Play policy πt and observe trajectory (xt ,at , rt )
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Analysis of Mixture of Known MDPs

The analysis of Algorithm 3 can be found in Theorem 18.47.

For Mixture of Known MDPs, we can obtain the following result.

Regret Bound from Theorem 18.47

If we apply Algorithm 3 to Example 25 with appropriate parameter
choices, then

E REGT = Õ(dH
√

T ).

This result is similar to that of linear MDP.
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Summary (Chapter 18)

I Episodic Reinforcement Learning
I Policy and Value Function
I Bellman Equation
I Realizability and Completeness
I Linear MDP
I UCB Algorithm for (Model Free) Episodic RL
I LSVI Algorithm for (Model Free) Episodic RL
I Model Based RL


