Reinforcement Learning

Mathematical Analysis of Machine Learning Algorithms (Chapter 18)

Episodic MDP

An episodic Markov decision process (MDP) of length H, denoted by $M=\operatorname{MDP}(\mathcal{X}, \mathcal{A}, P)$, contains a state space \mathcal{X}, an action space \mathcal{A}, and probability measures $\left\{P^{h}\left(r^{h}, x^{h+1} \mid x^{h}, a^{h}\right)\right\}_{h=1}^{H}$. At each step $h \in[H]=\{1, \ldots, H\}$, we observe a state $x^{h} \in \mathcal{X}$ and take action $a^{h} \in \mathcal{A}$. We then get a reward r^{h} and go to the next state x^{h+1} with probability $P^{h}\left(r^{h}, x^{h+1} \mid x^{h}, a^{h}\right)$. We assume that x^{1} is drawn from an unknown but fixed distribution.
The goal is to determine action $a^{h} \in \mathcal{A}$ based on x^{h} to maximize the reward

$$
\sum_{h=1}^{H}\left[r^{h}\right] .
$$

Figure: Episodic Markov decision process

Policy

A random policy π is a set of conditional probability $\pi^{h}\left(a^{h} \mid x^{h}\right)$ that determines the probability of taking action a^{h} on state x^{h} at step h. If a policy π is deterministic, then we also write the action a^{h} it takes at x^{h} as $\pi^{h}\left(x^{h}\right) \in \mathcal{A}$.
The policy π interacts with the MDP in an episode as follows: for step $h=1, \ldots, H$, the player observes x^{h}, and draws $a^{h} \sim \pi\left(a^{h} \mid x^{h}\right)$; the MDP returns (r^{h}, x^{h+1}). The reward of the episode is

$$
\sum_{h=1}^{H}\left[r^{h}\right] .
$$

The observations $(x, a, r)=\left\{\left(x^{h}, a^{h}, r^{h}\right)\right\}_{h=1}^{H}$ is called a trajectory, and each policy π, when interacting with the MDP, defines a distribution over trajectories, which we denote as $(x, a, r) \sim \pi$.

Value of Policy

The value of a policy π is defined as its expected reward:

$$
V_{\pi}=\mathbb{E}_{(x, a, r) \sim \pi} \sum_{h=1}^{H}\left[r^{h}\right] .
$$

We note that the state x^{H+1} has no significance as the episode ends after taking action a^{h} at x^{h} and observe the reward r^{h}.

Optimal policy value

$$
V_{*}=\sup _{\pi} V_{\pi},
$$

with a policy π_{*} achieving this value referred to as an optimal policy.

Regret

Definition 1

In episodic reinforcement learning (RL), we consider an episodic MDP. The player interacts with the MDP via a repeated game: at each time (episode) t :

- The player chooses a policy π_{t} based on historic observations.
- The policy interacts with the MDP, and generates a trajectory $\left(x_{t}, a_{t}, r_{t}\right)=\left\{\left(x_{t}^{h}, a_{t}^{h}, r_{t}^{h}\right)\right\}_{h=1}^{H} \sim \pi_{t}$.
The regret of episodic reinforcement learning is

$$
\sum_{t=1}^{T}\left[V_{*}-V_{\pi_{t}}\right]
$$

where $V_{*}=\sup _{\pi} V_{\pi}$ is the optimal value function.

Example

Example 2 (Contextual Bandits)

Consider the episodic MDP with $H=1$. We observe $x^{1} \in \mathcal{X}$, take action $a^{1} \in \mathcal{A}$, and observe reward $r^{1} \in \mathbb{R}$. This case is the same as contextual bandits.

Example

Example 3 (Tabular MDP)

In a Tabular MDP, both \mathcal{X} and \mathcal{A} are finite: $|\mathcal{X}|=S$ and $|\mathcal{A}|=A$. It follows that the transition probability at each step h

$$
\left\{P^{h}\left(x^{h+1} \mid x^{h}, a^{h}\right): h=1, \ldots, H\right\}
$$

can be expressed using $H S^{2} A$ numbers. The expected reward $\mathbb{E}\left[r^{h} \mid x^{h}, a^{h}\right]$ can be expressed using HSA numbers.

State and Action Dependent Value Functions

Definition 4

Given any policy π, we can define its value function (also referred to as the Q-function in the literature) starting at a state-action pair (x^{h}, a^{h}) at step h as follows:

$$
Q_{\pi}^{h}\left(x^{h}, a^{h}\right)=\sum_{h^{\prime}=h}^{H} \mathbb{E}_{r h^{\prime} \sim \pi \mid\left(x^{h}, a^{h}\right)}\left[r^{h^{\prime}}\right]
$$

where $r^{h^{\prime}} \sim \pi \mid\left(x^{h}, a^{h}\right)$ is the reward distribution at step h^{\prime} conditioned on starting from state action pair $\left(x^{h}, a^{h}\right)$ at step h. Similarly, we also define

$$
V_{\pi}^{h}\left(x^{h}\right)=\sum_{h^{\prime}=h}^{H} \mathbb{E}_{r h^{\prime} \sim \pi \mid x^{h}}\left[r^{h^{\prime}}\right] .
$$

By convention, we set $V_{\pi}^{H+1}\left(x^{H+1}\right) \equiv 0$.

Property of Value Function

Proposition 5 (Prop 18.7)

We have

$$
\begin{aligned}
Q_{\pi}^{h}\left(x^{h}, a^{h}\right) & =\mathbb{E}_{r^{h}, x^{h+1} \mid x^{h}, a^{h}}\left[r^{h}+V_{\pi}^{h+1}\left(x^{h+1}\right)\right] \\
V_{\pi}^{h}\left(x^{h}\right) & =\mathbb{E}_{a^{h} \sim \pi^{h}\left(\cdot \mid x^{h}\right)} Q_{\pi}^{h}\left(x^{h}, a^{h}\right)
\end{aligned}
$$

Optimal Value Function

Definition 6

The optimal value functions starting at step h are given by

$$
Q_{*}^{h}\left(x^{h}, a^{h}\right)=\sup _{\pi} Q_{\pi}^{h}\left(x^{h}, a^{h}\right), \quad V_{*}^{h}\left(x^{h}\right)=\sup _{\pi} V_{\pi}^{h}\left(x^{h}\right)
$$

We also define the optimal policy value as

$$
V_{*}=\mathbb{E}_{x^{1}} V_{*}^{1}\left(x^{1}\right)
$$

Bellman Equation

Theorem 7 (Thm 18.9)

The optimal Q-function Q_{*} satisfies the Bellman equation:

$$
Q_{*}^{h}\left(x^{h}, a^{h}\right)=\mathbb{E}_{r^{h}, x^{h+1} \mid x^{h}, a^{h}}\left[r^{h}+V_{*}^{h+1}\left(x^{h+1}\right)\right] .
$$

The optimal value function satisfies

$$
V_{*}^{h}\left(x^{h}\right)=\max _{a \in \mathcal{A}} Q_{*}^{h}\left(x^{h}, a\right)
$$

and the optimal value function can be achieved using a deterministic greedy policy π_{*} below

$$
\pi_{*}^{h}\left(x^{h}\right) \in \arg \max _{a \in \mathcal{A}} Q_{*}^{h}\left(x^{h}, a\right)
$$

Bellman Error

Definition 8

We say f is a candidate Q-function if $f=\left\{f^{h}\left(x^{h}, a^{h}\right): \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}: h \in[H+1]\right\}$, with $f^{H+1}(\cdot)=0$. Define

$$
f^{h}\left(x^{h}\right)=\arg \max _{a \in \mathcal{A}} f^{h}\left(x^{h}, a\right)
$$

and define its greedy policy π_{f} as a deterministic policy that satisfies

$$
\pi_{f}^{h}\left(x^{h}\right) \in \arg \max _{a \in \mathcal{A}} f^{h}\left(x^{h}, a\right)
$$

Given an MDP M, we also define the Bellman operator of f as

$$
\left(\mathcal{T}^{h} f\right)\left(x^{h}, a^{h}\right)=\mathbb{E}_{r^{h}, x^{h+1} \mid x^{h}, a^{h}}\left[r^{h}+f^{h+1}\left(x^{h+1}\right)\right],
$$

and its Bellman error as

$$
\mathcal{E}^{h}\left(f, x^{h}, a^{h}\right)=f^{h}\left(x^{h}, a^{h}\right)-\left(\mathcal{T}^{h} f\right)\left(x^{h}, a^{h}\right)
$$

where the conditional expectation is with respect to the MDP M.

Value Decomposition

We note

$$
\mathcal{E}^{h}\left(Q_{*}, x^{h}, a^{h}\right)=0, \quad \forall h \in[H] .
$$

The following result shows that the reverse is also true.

Theorem 9 (Thm 18.11)

Consider any candidate value function $f=\left\{f^{h}\left(x^{h}, a^{h}\right): \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}\right\}$, with $f^{H+1}(\cdot)=0$. Let π_{f} be its greedy policy. Then

$$
\left[f^{1}\left(x^{1}\right)-V_{\pi_{f}}^{1}\left(x^{1}\right)\right]=\mathbb{E}_{(x, a, r) \sim \pi_{f} \mid x^{1}} \sum_{h=1}^{H} \mathcal{E}^{h}\left(f, x^{h}, a^{h}\right)
$$

Proof of Theorem 9 (I/II)

We prove the following statement by induction from $h=H$ to $h=1$.

$$
\begin{equation*}
\left[f^{h}\left(x^{h}\right)-V_{\pi_{f}}^{h}\left(x^{h}\right)\right]=\mathbb{E}_{\left\{\left(x^{h^{\prime}}, a a^{h^{\prime}}, r^{h^{\prime}}\right)\right\}_{h^{\prime}=h}^{H} \sim \pi_{f} \mid x^{h}} \sum_{h^{\prime}=h}^{H} \mathcal{E}^{h^{\prime}}\left(f, x^{h^{\prime}}, a^{h^{\prime}}\right) . \tag{1}
\end{equation*}
$$

When $h=H$, we have $a^{H}=\pi_{f}^{H}\left(x^{H}\right)$ and

$$
\mathcal{E}^{H}\left(f, x^{H}, a^{H}\right)=f^{H}\left(x^{H}, a^{H}\right)-\mathbb{E}_{r^{H} \mid x^{H}, a^{H}}\left[r^{H}\right]=f^{H}\left(x^{H}\right)-V_{\pi}^{H}\left(x^{H}\right) .
$$

Therefore (1) holds.

Proof of Theorem 9 (II/II)

Assume that the equation holds at $h+1$ for some $1 \leq h \leq H-1$. Then at h, we have

$$
\begin{aligned}
& \mathbb{E}_{\left\{\left(x^{h^{\prime}}, a^{h^{\prime}}, r^{h^{\prime}}\right)\right\}_{h^{\prime}=h}^{H} \sim \pi_{f} \mid x^{h}} \sum_{h^{\prime}=h}^{H} \mathcal{E}^{h^{\prime}}\left(f, x^{h^{\prime}}, a^{h^{\prime}}\right) \\
= & \mathbb{E}_{x^{h+1}, r^{h}, a^{h} \sim \pi_{f} \mid x^{h}}\left[\mathcal{E}^{h}\left(f, x^{h}, a^{h}\right)+f^{h+1}\left(x^{h+1}\right)-V_{\pi_{f}}^{h+1}\left(x^{h+1}\right)\right] \\
= & \mathbb{E}_{x^{h+1}, r^{h}, a^{h} \sim \pi_{f} \mid x^{h}}\left[f^{h}\left(x^{h}, a^{h}\right)-r^{h}-V_{\pi_{f}}^{h+1}\left(x^{h+1}\right)\right] \\
= & \mathbb{E}_{a^{h} \sim \pi_{f} \mid x^{h}}\left[f^{h}\left(x^{h}, a^{h}\right)-V_{\pi_{f}}^{h}\left(x^{h}\right)\right] \\
= & {\left[f^{h}\left(x^{h}\right)-V_{\pi_{f}}^{h}\left(x^{h}\right)\right] . }
\end{aligned}
$$

The first equation used the induction hypothesis. The second equation used the definition of Bellman error. The third equation used Proposition 5. The last equation used $a^{h}=\pi_{f}\left(x^{h}\right)$ and thus by definition, $f^{h}\left(x^{h}, a^{h}\right)=f^{h}\left(x^{h}\right)$.

Realizable Assumption

Assumption 10 (Asm 18.12)

Given a candidate value function class \mathcal{F} of functions
$f=\left\{f^{h}\left(x^{h}, a^{h}\right): \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}\right\}$, with $f^{H+1}(\cdot)=0$. We assume that (realizable assumption)

$$
Q_{*}=f_{*} \in \mathcal{F}
$$

Moreover, we assume that $f^{1}\left(x^{1}\right) \in[0,1]$ and $r^{h}+f^{h+1}\left(x^{h+1}\right) \in[0,1]$ ($h \geq 1$).

Completeness Assumption

Definition 11 (Bellman Completeness)

A candidate value function class \mathcal{F} is complete with respect to another candidate value function class \mathcal{G} if for any $h \in[H], f \in \mathcal{F}$, there exists $g \in \mathcal{G}$ so that for all $h \in[H]$:

$$
g^{h}\left(x^{h}, a^{h}\right)=\left(\mathcal{T}^{h} f\right)\left(x^{h}, a^{h}\right)=\mathbb{E}_{r^{h}, x^{h+1} \mid x^{h}, a^{h}}\left[r^{h}+f^{h+1}\left(x^{h+1}\right)\right] .
$$

We say \mathcal{F} is complete if \mathcal{F} is complete with respect to itself.

Linear MDP

Definition 12 (Linear MDP, Def 18.15)

Let $\mathcal{H}=\left\{\mathcal{H}^{h}\right\}$ be a sequence of vector spaces with inner products $\langle\cdot, \cdot\rangle$. $\operatorname{An} \operatorname{MDP} M=\operatorname{MDP}(\mathcal{X}, \mathcal{A}, P)$ is a linear MDP with feature maps $\phi=\left\{\phi^{h}\left(x^{h}, a^{h}\right): \mathcal{X} \times \mathcal{A} \rightarrow \mathcal{H}^{h}\right\}_{h=1}^{H}$ if for all $h \in[H]$, there exist a map $\nu^{h}\left(x^{h+1}\right): \mathcal{X} \rightarrow \mathcal{H}^{h}$ and $\theta^{h} \in \mathcal{H}^{h}$, such that

$$
\begin{aligned}
& d P^{h}\left(x^{h+1} \mid x^{h}, a^{h}\right)=\left\langle\nu^{h}\left(x^{h+1}\right), \phi^{h}\left(x^{h}, a^{h}\right)\right\rangle d \mu^{h+1}\left(x^{h+1}\right), \\
& \mathbb{E}\left[r^{h} \mid x^{h}, a^{h}\right]=\left\langle\theta^{h}, \phi^{h}\left(x^{h}, a^{h}\right)\right\rangle .
\end{aligned}
$$

Here $\langle\cdot, \cdot\rangle$ denotes the inner product in \mathcal{H}^{h} for different h, and the conditional probability measure $d P^{h}\left(\cdot \mid x^{h}, a^{h}\right)$ is absolute continuous with respect to a measure $d \mu^{h+1}(\cdot)$ with density $\left\langle\nu^{h}\left(x^{h+1}\right), \phi^{h}\left(x^{h}, a^{h}\right)\right\rangle$. In general, we assume that $\nu^{h}(\cdot)$ and θ^{h} are unknown.

We assume $\phi(\cdot)$ is either known or unknown.

Example

Example 13 (Tabular MDP)

In a tabular MDP, we assume that $|\mathcal{A}|=A$ and $|\mathcal{X}|=S$. Let $d=A S$, and we can encode the space of $\mathcal{X} \times \mathcal{A}$ into a d-dimensional vector with components indexed by (x, a). Let $\phi^{h}(x, a)=e_{(x, a)}$ and let $\nu^{h}\left(x^{h+1}\right)$ be a dimensional vector so that its (x, a) component is $P^{h}\left(x^{h+1} \mid x^{h}=x, a^{h}=a\right)$. Similarly, we can take θ^{h} as a dimensional vector so that its (x, a) component is $\mathbb{E}\left[r^{h} \mid x^{h}=x, a^{h}=a\right]$. Therefore tabular MDP is linear MDP with $d=A S$.

Example

Example 14 (Low-Rank MDP)

For a low-rank MDP, we assume that the transition probability matrix can be decomposed as

$$
P^{h}\left(x^{h+1} \mid x^{h}, a^{h}\right)=\sum_{j=1}^{d} P^{h}\left(x^{h+1} \mid z=j\right) P^{h}\left(z=j \mid x^{h}, a^{h}\right)
$$

In this case we can set $\phi^{h}\left(x^{h}, a^{h}\right)=\left[P^{h}\left(z=j \mid x^{h}, a^{h}\right)\right]_{j=1}^{d}$, and $\nu^{h}\left(x^{h+1}\right)=\left[P^{h}\left(x^{h+1} \mid z=j\right)\right]_{j=1}^{d}$. Therefore a low-rank MDP is a linear MDPs with rank as dimension.

Property of Linear MDP

Proposition 15 (Prop 18.18)

In a linear MDP with feature $\operatorname{map} \phi^{h}\left(x^{h}, a^{h}\right)$ on vector spaces \mathcal{H}^{h} ($h \in[H]$). Consider the linear candidate Q function class

$$
\mathcal{F}=\left\{\left\langle w^{h}, \phi^{h}\left(x^{h}, a^{h}\right)\right\rangle: w^{h} \in \mathcal{H}^{h}, h \in[H]\right\} .
$$

Any function $g^{h+1}\left(x^{h+1}\right)$ on \mathcal{X} satisfies

$$
\left(\mathcal{T}^{h} g^{h+1}\right)\left(x^{h}, a^{h}\right) \in \mathcal{F}
$$

It implies that \mathcal{F} is complete, and $Q_{*} \in \mathcal{F}$. Moreover, $\forall f \in \mathcal{F}$,

$$
\mathcal{E}^{h}\left(f, x^{h}, a^{h}\right) \in \mathcal{F} .
$$

Proof of Proposition 15

Let

$$
u_{g}^{h}=\int g^{h+1}\left(x^{h+1}\right) \nu^{h}\left(x^{h+1}\right) d \mu^{h+1}\left(x^{h+1}\right)
$$

We have

$$
\begin{aligned}
\mathbb{E}_{x^{h+1} \mid x^{h}, a^{h}} g^{h+1}\left(x^{h+1}\right) & =\int g^{h+1}\left(x^{h+1}\right)\left\langle\nu^{h}\left(x^{h+1}\right), \phi^{h}\left(x^{h}, a^{h}\right)\right\rangle d \mu^{h+1}\left(x^{h+1}\right) \\
& =\left\langle u_{g}^{h}, \phi^{h}\left(x^{h}, a^{h}\right)\right\rangle
\end{aligned}
$$

This implies that

$$
\left(\mathcal{T}^{h} g\right)\left(x^{h}, a^{h}\right)=\left\langle\theta^{h}+u_{g}^{h}, \phi^{h}\left(x^{h}, a^{h}\right)\right\rangle \in \mathcal{F}
$$

Since $Q_{*}^{h}\left(x^{h}, a^{h}\right)=\left(\mathcal{T}^{h} Q_{*}\right)\left(x^{h}, a^{h}\right)$, we know $Q_{*}^{h}\left(x^{h}, a^{h}\right) \in \mathcal{F}$. Similarly, since $\left(\mathcal{T}^{h} f\right)\left(x^{h}, a^{h}\right) \in \mathcal{F}$, we know that $f \in \mathcal{F}$ implies

$$
\mathcal{E}^{h}\left(f, x^{h}, a^{h}\right)=f^{h}\left(x^{h}, a^{h}\right)-\left(\mathcal{T}^{h} f\right)\left(x^{h}, a^{h}\right) \in \mathcal{F} .
$$

This proves the desired result.

Estimating Bellman Error

Consider

$$
\begin{equation*}
\left(f^{h}\left(x^{h}, a^{h}\right)-r^{h}-f^{h+1}\left(x^{h+1}\right)\right)^{2} \tag{2}
\end{equation*}
$$

By taking conditional expectation with respect to $\left(x^{h}, a^{h}\right)$, we obtain

$$
\begin{aligned}
& \mathbb{E}_{r^{h}, x^{h+1} \mid x^{h}, a^{h}}\left(f^{h}\left(x^{h}, a^{h}\right)-r^{h}-f^{h+1}\left(x^{h+1}\right)\right)^{2} \\
= & \mathcal{E}^{h}\left(f, x^{h}, a^{h}\right)^{2}+\mathbb{E}_{r^{h}, x^{h+1} \mid x^{h}, a^{h}}(\underbrace{r^{h}+f^{h+1}\left(x^{h+1}\right)-\left(\mathcal{T}^{h} f\right)\left(x^{h}, a^{h}\right)}_{f \text {-dependent zero-mean noise }})^{2} .
\end{aligned}
$$

Since noise variance depends on f, if we use (2) to estimate f, we will favor f with smaller noise variance, which may not have zero Bellman error.

The Role of Completeness in Bellman Error Estimation

 If \mathcal{F} is complete with respect to \mathcal{G}, then we may use the solution of$$
\min _{g^{h} \in \mathcal{G}^{h}} \sum_{s=1}^{t}\left(g^{h}\left(x_{s}^{h}, a_{s}^{h}\right)-r_{s}^{h}-f^{h+1}\left(x_{s}^{h+1}\right)\right)^{2}
$$

to estimate $\left(\mathcal{T}^{h} f\right)\left(x^{h}, a^{h}\right)$, which can be used to cancel the f dependent variance term in (2).
This motivates the following loss function

$$
\begin{align*}
L^{h}\left(f, g, x^{h}, a^{h}, r^{h}, x^{h+1}\right)=[& \left(f^{h}\left(x^{h}, a^{h}\right)-r^{h}-f^{h+1}\left(x^{h+1}\right)\right)^{2} \\
& \left.-\left(g^{h}\left(x^{h}, a^{h}\right)-r^{h}-f^{h+1}\left(x^{h+1}\right)\right)^{2}\right] . \tag{3}
\end{align*}
$$

We have

$$
\sup _{g \in \mathcal{G}} \sum_{h=1}^{H} \sum_{s=1}^{t} L^{h}\left(f, g, x_{s}^{h}, a_{s}^{h}, r_{s}^{h}, x_{s}^{h+1}\right) \approx \sum_{h=1}^{H} \sum_{s=1}^{t} \mathcal{E}^{h}\left(f, x_{s}^{h}, a_{s}^{h}\right)^{2} .
$$

Property of Minimax Bellman Error Estimator

Theorem 16 (Thm 18.14)

Assume that assumption 10 holds, \mathcal{F} is complete with respect to \mathcal{G}, and $g^{h}(\cdot) \in[0,1]$ for all $g \in \mathcal{G}$. Consider (3), and let

$$
\mathcal{F}_{t}=\left\{f \in \mathcal{F}: \sup _{g \in \mathcal{G}} \sum_{h=1}^{H} \sum_{s=1}^{t} L^{h}\left(f, g, x_{s}^{h}, a_{s}^{h}, r_{s}^{h}, x_{s}^{h+1}\right) \leq \beta_{t}^{2}\right\},
$$

where

$$
\beta_{t}^{2} \geq 4 \epsilon t(4+\epsilon) H+2 \ln \left(16 M\left(\epsilon, \mathcal{F},\|\cdot\|_{\infty}\right)^{2} M\left(\epsilon, \mathcal{G},\|\cdot\|_{\infty}\right) / \delta^{2}\right),
$$

with $M(\cdot)$ denotes the $\|\cdot\|_{\infty}$ packing number, and $\|f\|_{\infty}=\sup _{h, x, a}\left|f^{h}(x, a)\right|$. Then with probability at least $1-\delta$, for all $t \leq n: Q_{*} \in \mathcal{F}_{t}$ and for all $f \in \mathcal{F}_{t}$:

$$
\sum_{s=1}^{t} \sum_{h=1}^{H} \mathcal{E}^{h}\left(f, x_{s}^{h}, a_{s}^{h}\right)^{2} \leq 4 \beta_{t}^{2}
$$

UCB Algorithm

Algorithm 1: Bellman Error UCB Algorithm
Input: $\lambda, T, \mathcal{F}, \mathcal{G}$
1 Let $\mathcal{F}_{0}=\left\{f_{0}\right\}$
2 Let $\beta_{0}=0$
3 for $t=1,2, \ldots, T$ do
$4 \quad$ Observe x_{t}^{1}
$5 \quad$ Let $f_{t} \in \arg \max _{f \in \mathcal{F}_{t-1}} f\left(x_{t}^{1}\right)$.
6
7 Let $\pi_{t}=\pi_{f_{t}}$
Play policy π_{t} and observe trajectory (x_{t}, a_{t}, r_{t})
8 Let

$$
\mathcal{F}_{t}=\left\{f \in \mathcal{F}: \sup _{g \in \mathcal{G}} \sum_{h=1}^{H} \sum_{s=1}^{t} L^{h}\left(f, g, x_{s}^{h}, a_{s}^{h}, r_{s}^{h}, x_{s}^{h+1}\right) \leq \beta_{t}^{2}\right\}
$$

with appropriately chosen β_{t}, where $L^{h}(\cdot)$ is defined in (3).
9 return randomly chosen π_{t} from $t=1$ to $t=T$

Analysis of Algorithm 1: Eluder Coefficient

Definition 17 (Q-type Bellman Eluder Coefficient, Def 18.19)

Given a candidate Q function class \mathcal{F}, its Q-type Bellman eluder coefficient $\mathrm{EC}_{Q}(\epsilon, \mathcal{F}, T)$ is the smallest number d so that for any filtered sequence $\left\{f_{t},\left(x_{t}, r_{t}, a_{t}\right) \sim \pi_{f_{t}}\right\}_{t=1}^{T}$:

$$
\mathbb{E} \sum_{t=2}^{T} \sum_{h=1}^{H} \mathcal{E}^{h}\left(f_{t}, x_{t}^{h}, a_{t}^{h}\right) \leq \sqrt{d \mathbb{E} \sum_{h=1}^{H} \sum_{t=2}^{T}\left(\epsilon+\sum_{s=1}^{t-1} \mathcal{E}^{h}\left(f_{t}, x_{s}^{h}, a_{s}^{h}\right)^{2}\right)} .
$$

Eluder Coefficient for Linear MDP

Proposition 18 (Simplification of Prop 18.20)

Assume that a linear MDP has (possibly unknown) d^{h} dimensional feature maps $\phi^{h}\left(x^{h}, a^{h}\right)$ for each h.
Assume also that the candidate Q-function class \mathcal{F} can be embedded into the linear function space

$$
\mathcal{F} \subset\left\{\left\langle w^{h}, \phi^{h}\left(x^{h}, a^{h}\right)\right\rangle: w^{h} \in \mathcal{H}^{h}\right\}
$$

and there exists $B>0$ such that $\left\|\mathcal{E}^{h}(f, \cdot, \cdot)\right\|_{\mathcal{H}^{h}} \leq B$.
Assume that $\left|\mathcal{E}^{h}\left(f, x^{h}, a^{h}\right)\right| \in[0,1]$, then

$$
\mathrm{EC}_{Q}(1, \mathcal{F}, T) \leq 2 \sum_{h=1}^{H} d^{h} \ln \left(1+T\left(B B^{\prime}\right)^{2}\right)
$$

where $B^{\prime}=\sup _{h} \sup _{x^{h}, a^{h}}\left\|\phi^{h}\left(x^{h}, a^{h}\right)\right\|_{\mathcal{H}^{h}}$.

Regret Bound

Theorem 19 (Thm 18.21)

Assume that Assumption 10 holds, \mathcal{F} is complete with respect to \mathcal{G}, and $g^{h}(\cdot) \in[0,1]$ for all $g \in \mathcal{G}$. Assume also that β_{t} is chosen in Algorithm 1 according to

$$
\beta_{t}^{2} \geq \inf _{\epsilon>0}\left[4 \epsilon t(4+\epsilon) H+2 \ln \left(16 M\left(\epsilon, \mathcal{F},\|\cdot\|_{\infty}\right)^{2} M\left(\epsilon, \mathcal{G},\|\cdot\|_{\infty}\right) / \delta^{2}\right)\right]
$$

with $M(\cdot)$ denoting the $\|\cdot\|_{\infty}$ packing number, and $\|f\|_{\infty}=\sup _{h, x, a}\left|f^{h}(x, a)\right|$. Then

$$
\begin{aligned}
& \mathbb{E} \sum_{t=2}^{T}\left[V_{*}^{1}\left(x_{t}^{1}\right)-V_{\pi_{t}}^{1}\left(x_{t}^{1}\right)\right] \\
\leq & \delta T+\sqrt{\mathrm{EC}_{Q}(\epsilon, \mathcal{F}, T)\left(\epsilon H T+\delta H T^{2}+4 \sum_{t=2}^{T} \beta_{t-1}^{2}\right)}
\end{aligned}
$$

Proof of Theorem 19 (I/II)

For $t \geq 2$, we have

$$
\begin{aligned}
& V_{*}^{1}\left(x_{t}^{1}\right)-V_{\pi_{t}}^{1}\left(x_{t}^{1}\right) \\
= & V_{*}^{1}\left(x_{t}\right)-f_{t}\left(x_{t}^{1}\right)+f_{t}\left(x_{t}^{1}\right)-V_{\pi_{t}}^{1}\left(x_{t}^{1}\right) \\
\leq & \mathbb{1}\left(Q_{*} \notin \mathcal{F}_{t-1}\right)+\left[f_{t}\left(x_{t}^{1}\right)-V_{\pi_{t}}^{1}\left(x_{t}^{1}\right)\right] \\
= & \mathbb{1}\left(Q_{*} \notin \mathcal{F}_{t-1}\right)+\mathbb{E}_{\left(x_{t}, a_{t}, r_{t}\right) \sim \pi_{t} \mid x_{t}^{1}} \sum_{h=1}^{H} \mathcal{E}^{h}\left(f_{t}, x_{t}^{h}, a_{t}^{h}\right) .
\end{aligned}
$$

The inequality used the fact that if $Q_{*} \in \mathcal{F}_{t-1}$, then $f_{t}\left(x_{t}^{1}\right)=\max _{f \in \mathcal{F}_{t-1}} f\left(x_{t}^{1}\right) \geq V_{*}^{1}\left(x_{t}^{1}\right)$, and if $Q_{*} \notin \mathcal{F}_{t-1}$, $V_{*}^{1}\left(x_{t}\right)-f_{t}\left(x_{t}^{1}\right) \leq 1$. The last equation used Theorem 9.
Theorem 16 implies that $\operatorname{Pr}\left(Q_{*} \in \mathcal{F}_{t-1}\right) \geq 1-\delta$. We thus have

$$
\mathbb{E}\left[V_{*}^{1}\left(x_{t}^{1}\right)-V_{\pi_{t}}^{1}\left(x_{t}^{1}\right)\right] \leq \delta+\mathbb{E} \sum_{h=1}^{H} \mathcal{E}^{h}\left(f_{t}, x_{t}^{h}, a_{t}^{h}\right)
$$

Proof of Theorem 19 (II/II)

We can now obtain

$$
\begin{aligned}
& \mathbb{E} \sum_{t=2}^{T}\left[V_{*}^{1}\left(x_{t}^{1}\right)-V_{\pi_{t}}^{1}\left(x_{t}^{1}\right)\right] \\
& \leq \mathbb{E} \sum_{t=2}^{T} \sum_{h=1}^{H} \mathcal{E}^{h}\left(f_{t}, x_{t}^{h}, a_{t}^{h}\right)+\delta T \\
& \leq \delta T+\sqrt{\mathrm{EC}_{Q}(\epsilon, \mathcal{F}, T) \mathbb{E} \sum_{t=2}^{T} \sum_{h=1}^{H}\left(\epsilon+\sum_{s=1}^{t-1} \mathcal{E}^{h}\left(f_{t}, x_{s}^{h}, a_{s}^{h}\right)^{2}\right)} \\
& \leq \delta T+\sqrt{\mathrm{EC}_{Q}(\epsilon, \mathcal{F}, T)\left(\epsilon H T+\delta H T^{2}+4 \sum_{t=2}^{T} \beta_{t-1}^{2}\right)}
\end{aligned}
$$

The second inequality used Definition 17. The last inequality used the fact that for each t, Theorem 16 holds with probability $1-\delta$, and otherwise, $\mathcal{E}^{h}\left(f_{t}, x_{s}^{h}, a_{s}^{h}\right)^{2} \leq 1$.

Interpretation of Theorem 19: Linear MDP

Consider the d dimensional linear MDP with bounded \mathcal{F} and \mathcal{G}. Assume that the model coefficients at different step h are different, then the entropy can be bounded (ignoring log factors) as

$$
\tilde{O}\left(H \ln \left(M_{\mathcal{F}} M_{\mathcal{G}}\right)\right)=\tilde{O}(H d),
$$

and hence with $\epsilon=\delta=O\left(1 / T^{2}\right)$, we have

$$
\beta_{t}^{2}=\tilde{O}\left(H \ln \left(M_{\mathcal{F}} M_{\mathcal{G}}\right)\right)=\tilde{O}(H d) .
$$

Since $\mathrm{EC}_{Q}(\epsilon, \mathcal{F}, T)=\tilde{O}(d H)$, we obtain the following.

Regret Bound from Theorem 19

We have the following regret bound for Algorithm 1

$$
\begin{equation*}
\mathbb{E} \operatorname{REG}_{T}=\tilde{O}\left(H \sqrt{d T \ln \left(M_{\mathcal{F}} M_{\mathcal{G}}\right)}\right)=\tilde{O}(H d \sqrt{T}) . \tag{4}
\end{equation*}
$$

Least Squares Value Iteration

It was shown in Theorem 19 that the UCB method in Algorithm 1 can handle linear MDP with Q-type Bellman eluder coefficient. However, it requires solving a minimax formulation with global optimism, which may be difficult computationally. In fact, there is no practically effective implementation of the method.

Next, we show that a computationally more efficient procedure, referred to as Least Squares Value Iteration (LSVI), or Fitted Q-learning, can be used to solve RL. This procedure is closely related to the Q-learning method used by practitioners.

Assumption for LSVI Algorithm

Assumption 20 (Completeness, Asm 18.22)

Assume that the Q function class \mathcal{F} can be factored as the product of H function classes:

$$
\mathcal{F}=\prod_{h=1}^{H} \mathcal{F}^{h}, \quad \mathcal{F}^{h}=\left\{\left\langle w^{h}, \phi^{h}\left(x^{h}, a^{h}\right)\right\rangle, w^{h} \in \mathcal{H}^{h}\right\},
$$

so that for all $g^{h+1}\left(x^{h+1}\right) \in[0,1]$:

$$
\begin{equation*}
\left(\mathcal{T}^{h} g^{h+1}\right)\left(x^{h}, a^{h}\right) \in \mathcal{F}^{h} \tag{5}
\end{equation*}
$$

Assumption for LSVI Algorithm

Assumption 21 (Bonus Function, Asm 18.22)

In Assumption 20, assume further for any $\epsilon>0$, there exists a function class $\mathcal{B}^{h}(\epsilon)$ so that for any sequence $\left\{\left(x_{t}^{h}, a_{t}^{h}, \hat{f}_{t}^{h}\right) \in \mathcal{X} \times \mathcal{A} \times \mathcal{F}^{h}: t=1, \ldots, T\right\}$, we can construct a sequence of non-negative bonus functions $b_{t}^{h}(\cdot) \in \mathcal{B}^{h}(\epsilon)$ (each \hat{f}_{t}^{h} and b_{t}^{h} only depend on the historic observations up to $t-1$) such that

$$
\begin{equation*}
b_{t}^{h}\left(x^{h}, a^{h}\right)^{2} \geq \sup _{f^{h} \in \mathcal{F}^{h}} \frac{\left|f^{h}\left(x^{h}, a^{h}\right)-\hat{f}_{t}^{h}\left(x^{h}, a^{h}\right)\right|^{2}}{\epsilon+\sum_{s=1}^{t-1}\left|f^{h}\left(x_{s}^{h}, a_{s}^{h}\right)-\hat{f}_{t}^{h}\left(x_{s}^{h}, a_{s}^{h}\right)\right|^{2}} \tag{6}
\end{equation*}
$$

and the bonus function satisfies the following uniform eluder condition:

$$
\sup _{\left\{\left(x_{t}^{h}, a_{t}^{h}\right)\right\}} \sum_{t=1}^{T} \min \left(1, b_{t}^{h}\left(x_{t}^{h}, a_{t}^{h}\right)^{2}\right) \leq \operatorname{dim}\left(T, \mathcal{B}^{h}(\epsilon)\right)
$$

Example 18.23: Linear MDP (I/II)

Consider a linear MDP in Definition 12, such that

$$
\left\|\theta^{h}\right\|_{\mathcal{H}^{h}}+\int\left\|\nu^{h}\left(x^{h+1}\right)\right\|_{\mathcal{H}^{h}}\left|d \mu^{h+1}\left(x^{h+1}\right)\right| \leq B^{h}
$$

If \mathcal{F}^{h} is any function class that contains

$$
\tilde{\mathcal{F}}^{h}=\left\{\left\langle w^{h}, \phi^{h}\left(x^{h}, a^{h}\right)\right\rangle:\left\|w^{h}\right\|_{\mathcal{H}^{h}} \leq B^{h}\right\}
$$

then the proof of Proposition 15 implies that (5) holds. Note that if $r^{h} \in[0,1]$, then $\left(\mathcal{T}^{h} g^{h+1}\right)\left(x^{h}, a^{h}\right) \in[0,2]$. Therefore at any time step t, we may consider a subset of \mathcal{F}^{h} that satisfies the range constraint on historic observations, and in the mean time, impose the same range constraints in $\tilde{\mathcal{F}}^{h}$ as

$$
\begin{aligned}
\tilde{\mathcal{F}}^{h}= & \left\{\left\langle w^{h}, \phi^{h}\left(x^{h}, a^{h}\right)\right\rangle:\left\|w^{h}\right\|_{\mathcal{H}^{h}} \leq B^{h},\right. \\
& \left.\left\langle w^{h}, \phi^{h}\left(x_{s}^{h}, a_{s}^{h}\right)\right\rangle \in[0,2] \forall s \in[t-1]\right\} .
\end{aligned}
$$

Example 18.23: Linear MDP (II/II)

If moreover, each $f^{h}\left(x^{h}, a^{h}\right) \in \mathcal{F}^{h}$ can be written as $\left\langle\tilde{w}^{h}\left(f^{h}\right), \tilde{\phi}^{h}\left(x^{h}, a^{h}\right)\right\rangle$ so that $\left\|\tilde{w}^{h}\left(f^{h}\right)-\tilde{w}^{h}\left(\tilde{f}^{h}\right)\right\|_{2} \leq \tilde{B}^{h}$ (here we assume that $\tilde{\phi}^{h}$ may or may not be the same as ϕ^{h}), then we can take

$$
\begin{align*}
b_{t}^{h}\left(x^{h}, a^{h}\right) & =\left\|\tilde{\phi}^{h}\left(x^{h}, a^{h}\right)\right\|_{\left(\Sigma_{t}^{h}\right)-1}, \tag{7}\\
\Sigma_{t}^{h} & =\frac{\epsilon}{\left(\tilde{B}^{h}\right)^{2}} I+\sum_{s=1}^{t-1} \tilde{\phi}^{h}\left(x^{h}, a^{h}\right) \tilde{\phi}^{h}\left(x^{h}, a^{h}\right)^{\top},
\end{align*}
$$

so that (6) holds. By using Lemma 13.9, we have

$$
\begin{aligned}
\sum_{t=1}^{T} \min \left(1,\left\|\tilde{\phi}^{h}\left(x_{t}^{h}, a_{t}^{h}\right)\right\|_{\left(\Sigma_{t}^{h}\right)-1}^{2}\right) & \leq \sum_{t=1}^{T} \frac{2\left\|\tilde{\phi}^{h}\left(x_{t}^{h}, a_{t}^{h}\right)\right\|_{\left(\Sigma_{t}^{h}\right)^{-1}}^{2}}{1+\left\|\tilde{\phi}^{h}\left(x_{t}^{h}, a_{t}^{h}\right)\right\|_{\left(\Sigma_{t}^{h}\right)^{-1}}^{2}} \\
& \leq \ln \left|\left(\left(\tilde{B}^{h}\right)^{2} / \epsilon\right) \Sigma_{t}^{h}\right|
\end{aligned}
$$

Using Proposition 15.8, we can set $\operatorname{dim}\left(T, \mathcal{B}^{h}(\epsilon)\right)=\operatorname{entro}\left(\epsilon /\left(\left(\tilde{B}^{h}\right)^{2} T\right), \tilde{\phi}^{h}(\cdot)\right)$. For d dimensional problem, $\operatorname{dim}\left(T, \mathcal{B}^{h}(\epsilon)\right)=\tilde{O}(d)$.

Linear Least Squares Value Iteration

Algorithm 2: Least Squares Value Iteration with UCB (LSVI-UCB)
Input: $\epsilon>0, T,\left\{\mathcal{F}^{h}\right\},\left\{\mathcal{B}^{h}(\epsilon)\right\}$
1 for $t=1,2, \ldots, T$ do
$2 \quad$ Let $f_{t}^{H+1}=0$
for $h=H, H-1, \ldots, 1$ do
Let $y_{s}^{h}=r_{s}^{h}+f_{t}^{h+1}\left(x_{s}^{h+1}\right)$, where $f_{t}^{h+1}\left(x_{s}^{h+1}\right)=\max _{a} f_{t}^{h+1}\left(x_{s}^{h+1}, a\right)$
Let

$$
\hat{f}_{t}^{h}=\arg \min _{f^{h} \in \mathcal{F}^{h}} \sum_{s=1}^{t-1}\left(f^{h}\left(x_{s}^{h}, a_{s}^{h}\right)-y_{s}^{h}\right)^{2}
$$

Find $\beta_{t}^{h}>0$ and bonus function $b_{t}^{h}(\cdot)$ that satisfies (6)
Let $f_{t}^{h}\left(x^{h}, a^{h}\right)=\min \left(1, \max \left(0, \hat{f}_{t}^{h}\left(x^{h}, a^{h}\right)+\beta_{t}^{h} b_{t}^{h}\left(x^{h}, a^{h}\right)\right)\right)$
Let π_{t} be the greedy policy of f_{t}^{h} for each step $h \in[H]$ Play policy π_{t} and observe trajectory $\left(x_{t}, a_{t}, r_{t}\right)$
9 return randomly chosen π_{t} from $t=1$ to $t=T$

Analysis of LSVI-UCB: Key Lemma

Lemma 22 (Lem 18.24)

Consider Algorithm 2 under Assumption 18.22. Assume also that $Q_{*}^{h} \in \mathcal{F}^{h}$, $Q_{*}^{h} \in[0,1], r^{h} \in[0,1], f^{h} \in[0,2]$ for $h \in[H]$ and $f^{h} \in \mathcal{F}^{h}$. Given any $t>0$, let $\beta_{t}^{H+1}=\beta^{H+1}(\epsilon, \delta)=0$, and for $h=H, H-1, \ldots, 1$:
$\beta_{t}^{h}=\beta^{h}(\epsilon, \delta) \geq 4\left(1+\beta^{h+1}\right) \frac{\epsilon}{\sqrt{T}}+\sqrt{\epsilon}+\sqrt{24\left(1+\beta^{h+1}(\delta)\right) \epsilon+12 \ln \frac{2 H M_{T}^{h}(\epsilon)}{\delta}}$,
where (with $\|f\|_{\infty}=\sup _{x, a, h} f^{h}(x, a)$)

$$
M_{T}^{h}(\epsilon)=M\left(\epsilon / T, \mathcal{F}^{h},\|\cdot\|_{\infty}\right) M\left(\epsilon / T, \mathcal{F}^{h+1},\|\cdot\|_{\infty}\right) M\left(\epsilon / T, \mathcal{B}^{h+1}(\epsilon),\|\cdot\|_{\infty}\right) .
$$

Then with probability at least $1-\delta$, for all $h \in[H]$, and $\left(x^{h}, a^{h}\right) \in \mathcal{X} \times \mathcal{A}$:

$$
\begin{aligned}
& Q_{*}^{h}\left(x^{h}, a^{h}\right) \leq f_{t}^{h}\left(x^{h}, a^{h}\right) \\
& \left|f_{t}^{h}\left(x^{h}, a^{h}\right)-\left(\mathcal{T}^{h} f_{t}^{h+1}\right)\left(x^{h}, a^{h}\right)\right| \leq 2 \beta^{h}(\epsilon, \delta) b^{h}\left(x^{h}, a^{h}\right)
\end{aligned}
$$

Regret Bound for LSVI-UCB

Theorem 23 (Thm 18.25)

Consider Algorithm 2, and assume that all conditions of Lemma 22 hold. Then

$$
\mathbb{E} \sum_{t=1}^{T}\left[V_{*}^{1}\left(x_{t}^{1}\right)-V_{\pi_{t}}^{1}\left(x_{t}^{1}\right)\right] \leq \delta T+2 \sqrt{d H T \sum_{h=1}^{H} \beta^{h}(\epsilon, \delta)^{2}}+2 H d
$$

where $d=H^{-1} \sum_{h=1}^{H} \operatorname{dim}\left(T, \mathcal{B}^{h}(\epsilon)\right)$.

Proof of Theorem 23 (I/II)

From Lemma 22, we know that for each t, with probability at least $1-\delta$ over the observations $\left\{\left(x_{s}, a_{s}, r_{s}\right): s=1, \ldots, t-1\right\}$, the two inequalities of the lemma hold (which we denote as event E_{t}). It implies that under event E_{t}, f_{t}^{h} satisfies the following inequalities for all $h \in[H]$:

$$
\begin{align*}
& \mathbb{E}_{x_{t}^{1}} V_{*}^{1}\left(x_{t}^{1}\right) \leq \mathbb{E}_{x_{t}^{1}} f_{t}^{1}\left(x_{t}^{1}\right) \tag{8}\\
& \mathbb{E}_{x_{t}^{h}, a_{t}^{h}}\left|\mathcal{E}^{h}\left(f_{t}, x_{t}^{h}, a_{t}^{h}\right)\right| \leq 2 \mathbb{E}_{x_{t}^{h}, a_{t}^{h}} \beta^{h}(\epsilon, \delta) b^{h}\left(x_{t}^{h}, a_{t}^{h}\right) \tag{9}
\end{align*}
$$

Proof of Theorem 23 (II/II)

We thus obtain

$$
\begin{aligned}
& \mathbb{E} \sum_{t=1}^{T}\left[V_{*}^{1}\left(x_{t}^{1}\right)-V_{\pi_{t}}^{1}\left(x_{t}^{1}\right)\right] \leq \delta T+\mathbb{E} \sum_{t=1}^{T}\left[f_{t}^{1}\left(x_{t}^{1}\right)-V_{\pi_{t}}^{1}\left(x_{t}^{1}\right)\right] \mathbb{1}\left(E_{t}\right) \\
= & \delta T+\sum_{t=1}^{T} \mathbb{E} \sum_{h=1}^{H} \mathcal{E}^{h}\left(f_{t}, x_{t}^{h}, a_{t}^{h}\right) \mathbb{1}\left(E_{t}\right) \\
\leq & \delta T+2 \sum_{t=1}^{T} \mathbb{E} \sum_{h=1}^{H}\left[\beta^{h}(\epsilon, \delta) \min \left(1, b^{h}\left(x_{t}^{h}, a_{t}^{h}\right)\right)+\min \left(1, b^{h}\left(x_{t}^{h}, a_{t}^{h}\right)\right)^{2}\right] \\
\leq & \delta T+2 \sqrt{\sum_{t=1}^{T} \sum_{h=1}^{H} \beta^{h}(\epsilon, \delta)^{2}} \sqrt{\mathbb{E} \sum_{t=1}^{T} \sum_{h=1}^{H} \min \left(1, b^{h}\left(x_{t}^{h}, a_{t}^{h}\right)\right)^{2}} \\
& +2 \mathbb{E} \sum_{t=1}^{T} \sum_{h=1}^{H} \min \left(1, b^{h}\left(x_{t}^{h}, a_{t}^{h}\right)\right)^{2} \\
\leq & \delta T+2 \sqrt{T \sum_{h=1}^{H} \beta^{h}(\epsilon, \delta)^{2}} \sqrt{\sum_{h=1}^{H} \operatorname{dim}\left(T, \mathcal{B}^{h}(\epsilon)\right)}+2 \sum_{h=1}^{H} \operatorname{dim}\left(T, \mathcal{B}^{h}(\epsilon)\right) .
\end{aligned}
$$

Interpretation of Theorem 23 : Linear MDP

Consider linear MDP with known d dimensional $\phi^{h}(\cdot)=\tilde{\phi}^{h}(\cdot)$.

- We have $\ln N\left(\epsilon / T, \mathcal{F}^{h},\|\cdot\|_{\infty}\right)=\tilde{O}(d)$.
- Since the bonus function of (7) can be regarded as a function class with the $d \times d$ matrix \sum_{t}^{h} as its parameter, Theorem 5.3 implies $\ln N\left(\epsilon / T, \mathcal{B}^{h+1}(\epsilon),\|\cdot\|_{\infty}\right)=\tilde{O}\left(d^{2}\right)$.
- We have $\operatorname{dim}\left(T, \mathcal{B}^{h}(\epsilon)\right)=\tilde{O}(d)$ from Example 18.23 and Proposition 15.8. We can set $\beta^{h}=\tilde{O}\left(d^{2}\right)$.

Regret Bound from Theorem 23

For Algorithm 2, we have

$$
\mathbb{E} \mathrm{REG}_{T}=\tilde{O}\left(H d^{3 / 2} \sqrt{T}\right)
$$

The bound is inferior by a factor of \sqrt{d} compared to (4), due to the $\tilde{O}\left(d^{2}\right)$ entropy number of the bonus function class $\mathcal{B}^{h+1}(\epsilon)$.

Model Based RL

Definition 24 (Def 18.35)

In a model-based RL problem, we are given an MDP model class \mathcal{M}. Each $M \in \mathcal{M}$ includes explicit transition probability

$$
P_{M}^{h}\left(x^{h+1} \mid x^{h}, a^{h}\right)
$$

and expected reward

$$
R_{M}^{h}\left(x^{h}, a^{h}\right)=\mathbb{E}_{M}\left[r^{h} \mid x^{h}, a^{h}\right]
$$

where we use $\mathbb{E}_{M}[\cdot]$ to denote the expectation with respect to model M's transition dynamics P_{M}.
We use $f_{M}=\left\{f_{M}^{h}\left(x^{h}, a^{h}\right)\right\}_{h=1}^{H}$ to denote the Q function of model M, and use $\pi_{M}=\pi_{f_{M}}$ to denote the corresponding optimal policy under model M.

Example: Linear Mixture MDP

A simple example of model-based reinforcement learning problem is linear mixture MDP (also see Definition 18.48).

Example 25 (Mixture of Known MDPs, Expl 18.50)

Consider d base MDPs M_{1}, \ldots, M_{d}, where each MDP M_{j} corresponds to a transition distribution $P_{M_{j}}^{h}\left(x^{h+1} \mid x^{h}, a^{h}\right)$ and an expected reward $R_{M_{j}}^{h}\left(x^{h}, a^{h}\right)$. Consider a model family \mathcal{M}, where $M \in \mathcal{M}$ is represented by $w_{1}, \ldots, w_{d} \geq 0$ and $\sum_{j=1}^{d} w_{j}=1$. Then we can express

$$
P_{M}^{h}\left(x^{h+1} \mid x^{h}, a^{h}\right)=\sum_{j=1}^{d} w_{j} P_{M_{j}}^{h}\left(x^{h+1} \mid x^{h}, a^{h}\right)
$$

One can similarly define $R_{M}^{h}\left(x^{h}, a^{h}\right)=\sum_{j=1}^{d} w_{j} R_{M_{j}}^{h}\left(x^{h}, a^{h}\right)$.

Generic Model-Based Algorithm

Algorithm 3: Q-type Model-Based Posterior Sampling Algorithm Input: $\lambda, \eta, \tilde{\eta}, T, p_{0}, \mathcal{M}$
1 for $t=1,2, \ldots, T$ do
$2 \quad$ Observe x_{t}^{1}
Draw

$$
M_{t} \sim p_{t}\left(M \mid x_{t}^{1}, S_{t-1}\right)
$$

according to $p_{t}\left(M \mid x_{1}^{t}, S_{t-1}\right)$ defined as

$$
\begin{aligned}
& \qquad p_{t}\left(M \mid x_{1}^{t}, S_{t-1}\right) \propto p_{0}(M) \exp \left(\lambda \sum_{s=1}^{t-1} f_{M}\left(x_{s}^{1}\right)+\sum_{h=1}^{H} \sum_{s=1}^{t-1} L_{s}^{h}(M)\right), \\
& \qquad L_{s}^{h}(M)=-\tilde{\eta}\left(R_{M}^{h}\left(x_{s}^{h}, a_{s}^{h}\right)-r_{s}^{h}\right)^{2}+\eta \ln P_{M}^{h}\left(x_{s}^{h+1} \mid x_{s}^{h}, a_{s}^{h}\right) \\
& \text { Let } \pi_{t}=\pi_{M_{t}} \\
& \text { Play policy } \pi_{t} \text { and observe trajectory }\left(x_{t}, a_{t}, r_{t}\right)
\end{aligned}
$$

Analysis of Mixture of Known MDPs

The analysis of Algorithm 3 can be found in Theorem 18.47.
For Mixture of Known MDPs, we can obtain the following result.

Regret Bound from Theorem 18.47

If we apply Algorithm 3 to Example 25 with appropriate parameter choices, then

$$
\mathbb{E} \operatorname{REG}_{T}=\tilde{O}(d H \sqrt{T}) .
$$

This result is similar to that of linear MDP.

Summary (Chapter 18)

- Episodic Reinforcement Learning
- Policy and Value Function
- Bellman Equation
- Realizability and Completeness
- Linear MDP
- UCB Algorithm for (Model Free) Episodic RL
- LSVI Algorithm for (Model Free) Episodic RL
- Model Based RL

