Reinforcement Learning

Mathematical Analysis of Machine Learning Algorithms (Chapter 18)

Episodic MDP

An episodic Markov decision process (MDP) of length *H*, denoted by $M = \text{MDP}(\mathcal{X}, \mathcal{A}, P)$, contains a state space \mathcal{X} , an action space \mathcal{A} , and probability measures $\{P^h(r^h, x^{h+1}|x^h, a^h)\}_{h=1}^H$. At each step $h \in [H] = \{1, \ldots, H\}$, we observe a state $x^h \in \mathcal{X}$ and take action $a^h \in \mathcal{A}$. We then get a reward r^h and go to the next state x^{h+1} with probability $P^h(r^h, x^{h+1}|x^h, a^h)$. We assume that x^1 is drawn from an unknown but fixed distribution.

The goal is to determine action $a^h \in A$ based on x^h to maximize the reward

Figure: Episodic Markov decision process

Policy

A random policy π is a set of conditional probability $\pi^h(a^h|x^h)$ that determines the probability of taking action a^h on state x^h at step h. If a policy π is deterministic, then we also write the action a^h it takes at x^h as $\pi^h(x^h) \in \mathcal{A}$.

The policy π interacts with the MDP in an episode as follows: for step h = 1, ..., H, the player observes x^h , and draws $a^h \sim \pi(a^h | x^h)$; the MDP returns (r^h, x^{h+1}) . The reward of the episode is

$$\sum_{h=1}^{H} [r^h].$$

The observations $(x, a, r) = \{(x^h, a^h, r^h)\}_{h=1}^H$ is called a trajectory, and each policy π , when interacting with the MDP, defines a distribution over trajectories, which we denote as $(x, a, r) \sim \pi$.

Value of Policy

The value of a policy π is defined as its expected reward:

$$V_{\pi} = \mathbb{E}_{(x,a,r)\sim\pi} \sum_{h=1}^{H} [r^h].$$

We note that the state x^{H+1} has no significance as the episode ends after taking action a^h at x^h and observe the reward r^h .

Optimal policy value

$$V_* = \sup_{\pi} V_{\pi},$$

with a policy π_* achieving this value referred to as an optimal policy.

Regret

Definition 1

In episodic reinforcement learning (RL), we consider an episodic MDP. The player interacts with the MDP via a repeated game: at each time (episode) t:

- The player chooses a policy π_t based on historic observations.
- The policy interacts with the MDP, and generates a trajectory $(x_t, a_t, r_t) = \{(x_t^h, a_t^h, r_t^h)\}_{h=1}^H \sim \pi_t.$

The regret of episodic reinforcement learning is

$$\sum_{t=1}^{T} [V_* - V_{\pi_t}],$$

where $V_* = \sup_{\pi} V_{\pi}$ is the optimal value function.

Example

Example 2 (Contextual Bandits)

Consider the episodic MDP with H = 1. We observe $x^1 \in \mathcal{X}$, take action $a^1 \in \mathcal{A}$, and observe reward $r^1 \in \mathbb{R}$. This case is the same as contextual bandits.

Example

Example 3 (Tabular MDP)

In a Tabular MDP, both \mathcal{X} and \mathcal{A} are finite: $|\mathcal{X}| = S$ and $|\mathcal{A}| = A$. It follows that the transition probability at each step *h*

$$\{P^h(x^{h+1}|x^h, a^h): h = 1, \dots, H\}$$

can be expressed using HS^2A numbers. The expected reward $\mathbb{E}[r^h|x^h, a^h]$ can be expressed using HSA numbers.

State and Action Dependent Value Functions

Definition 4

Given any policy π , we can define its value function (also referred to as the *Q*-function in the literature) starting at a state-action pair (x^h, a^h) at step *h* as follows:

$$Q^h_{\pi}(x^h, a^h) = \sum_{h'=h}^{H} \mathbb{E}_{r^{h'} \sim \pi \mid (x^h, a^h)}[r^{h'}],$$

where $r^{h'} \sim \pi | (x^h, a^h)$ is the reward distribution at step h' conditioned on starting from state action pair (x^h, a^h) at step h. Similarly, we also define

$$V^h_{\pi}(x^h) = \sum_{h'=h}^{H} \mathbb{E}_{r^{h'} \sim \pi \mid x^h}[r^{h'}].$$

By convention, we set $V_{\pi}^{H+1}(x^{H+1}) \equiv 0$.

Property of Value Function

Proposition 5 (Prop 18.7)

We have

$$\begin{aligned} Q^{h}_{\pi}(x^{h}, a^{h}) = & \mathbb{E}_{r^{h}, x^{h+1} | x^{h}, a^{h}}[r^{h} + V^{h+1}_{\pi}(x^{h+1})], \\ & V^{h}_{\pi}(x^{h}) = & \mathbb{E}_{a^{h} \sim \pi^{h}(\cdot | x^{h})} Q^{h}_{\pi}(x^{h}, a^{h}). \end{aligned}$$

Optimal Value Function

Definition 6

The optimal value functions starting at step h are given by

$$Q^h_*(x^h, a^h) = \sup_{\pi} Q^h_{\pi}(x^h, a^h), \qquad V^h_*(x^h) = \sup_{\pi} V^h_{\pi}(x^h).$$

We also define the optimal policy value as

$$V_*=\mathbb{E}_{x^1}V^1_*(x^1).$$

Bellman Equation

Theorem 7 (Thm 18.9)

The optimal Q-function Q_{*} satisfies the Bellman equation:

$$Q^{h}_{*}(x^{h}, a^{h}) = \mathbb{E}_{r^{h}, x^{h+1}|x^{h}, a^{h}} \left[r^{h} + V^{h+1}_{*}(x^{h+1}) \right]$$

The optimal value function satisfies

$$V^h_*(x^h) = \max_{a \in \mathcal{A}} Q^h_*(x^h, a),$$

and the optimal value function can be achieved using a deterministic greedy policy π_* below

$$\pi^h_*(x^h) \in \arg \max_{a \in \mathcal{A}} Q^h_*(x^h, a).$$

Bellman Error

Definition 8

We say *f* is a candidate *Q*-function if $f = \{f^h(x^h, a^h) : \mathcal{X} \times \mathcal{A} \to \mathbb{R} : h \in [H + 1]\}$, with $f^{H+1}(\cdot) = 0$. Define $f^h(x^h) = \arg \max_{a \in \mathcal{A}} f^h(x^h, a)$,

and define its greedy policy π_f as a deterministic policy that satisfies

$$\pi_f^h(x^h) \in \arg \max_{a \in \mathcal{A}} f^h(x^h, a).$$

Given an MDP *M*, we also define the Bellman operator of *f* as

$$(\mathcal{T}^h f)(x^h, a^h) = \mathbb{E}_{r^h, x^{h+1}|x^h, a^h}[r^h + f^{h+1}(x^{h+1})],$$

and its Bellman error as

$$\mathcal{E}^h(f, x^h, a^h) = f^h(x^h, a^h) - (\mathcal{T}^h f)(x^h, a^h),$$

where the conditional expectation is with respect to the MDP M.

Value Decomposition

We note

$$\mathcal{E}^h(Q_*, x^h, a^h) = 0, \quad \forall h \in [H].$$

The following result shows that the reverse is also true.

Theorem 9 (Thm 18.11)

Consider any candidate value function $f = \{f^h(x^h, a^h) : \mathcal{X} \times \mathcal{A} \to \mathbb{R}\}$, with $f^{H+1}(\cdot) = 0$. Let π_f be its greedy policy. Then

$$[f^{1}(x^{1}) - V^{1}_{\pi_{f}}(x^{1})] = \mathbb{E}_{(x,a,r) \sim \pi_{f}|x^{1}} \sum_{h=1}^{H} \mathcal{E}^{h}(f, x^{h}, a^{h}).$$

Proof of Theorem 9 (I/II)

We prove the following statement by induction from h = H to h = 1.

$$[f^{h}(x^{h}) - V^{h}_{\pi_{f}}(x^{h})] = \mathbb{E}_{\{(x^{h'}, a^{h'}, r^{h'})\}_{h'=h}^{H} \sim \pi_{f}|x^{h}} \sum_{h'=h}^{H} \mathcal{E}^{h'}(f, x^{h'}, a^{h'}).$$
(1)

When h = H, we have $a^H = \pi_f^H(x^H)$ and

$$\mathcal{E}^{H}(f, x^{H}, a^{H}) = f^{H}(x^{H}, a^{H}) - \mathbb{E}_{r^{H}|x^{H}, a^{H}}[r^{H}] = f^{H}(x^{H}) - V_{\pi}^{H}(x^{H}).$$

Therefore (1) holds.

Proof of Theorem 9 (II/II)

Assume that the equation holds at h + 1 for some $1 \le h \le H - 1$. Then at h, we have

$$\mathbb{E}_{\{(x^{h'},a^{h'},r^{h'})\}_{h'=h}^{H}\sim\pi_{f}|x^{h}} \sum_{h'=h}^{H} \mathcal{E}^{h'}(f,x^{h'},a^{h'})$$

$$= \mathbb{E}_{x^{h+1},r^{h},a^{h}\sim\pi_{f}|x^{h}}[\mathcal{E}^{h}(f,x^{h},a^{h}) + f^{h+1}(x^{h+1}) - V_{\pi_{f}}^{h+1}(x^{h+1})]$$

$$= \mathbb{E}_{x^{h+1},r^{h},a^{h}\sim\pi_{f}|x^{h}}[f^{h}(x^{h},a^{h}) - r^{h} - V_{\pi_{f}}^{h+1}(x^{h+1})]$$

$$= \mathbb{E}_{a^{h}\sim\pi_{f}|x^{h}}[f^{h}(x^{h},a^{h}) - V_{\pi_{f}}^{h}(x^{h})]$$

$$= [f^{h}(x^{h}) - V_{\pi_{f}}^{h}(x^{h})].$$

The first equation used the induction hypothesis. The second equation used the definition of Bellman error. The third equation used Proposition 5. The last equation used $a^h = \pi_f(x^h)$ and thus by definition, $f^h(x^h, a^h) = f^h(x^h)$.

Realizable Assumption

Assumption 10 (Asm 18.12)

Given a candidate value function class \mathcal{F} of functions $f = \{f^h(x^h, a^h) : \mathcal{X} \times \mathcal{A} \to \mathbb{R}\}$, with $f^{H+1}(\cdot) = 0$. We assume that (realizable assumption)

$$Q_* = f_* \in \mathcal{F}.$$

Moreover, we assume that $f^{1}(x^{1}) \in [0, 1]$ *and* $r^{h} + f^{h+1}(x^{h+1}) \in [0, 1]$ *(h* \geq 1*).*

Completeness Assumption

Definition 11 (Bellman Completeness)

A candidate value function class \mathcal{F} is complete with respect to another candidate value function class \mathcal{G} if for any $h \in [H]$, $f \in \mathcal{F}$, there exists $g \in \mathcal{G}$ so that for all $h \in [H]$:

$$g^{h}(x^{h}, a^{h}) = (\mathcal{T}^{h}f)(x^{h}, a^{h}) = \mathbb{E}_{r^{h}, x^{h+1}|x^{h}, a^{h}} \left[r^{h} + f^{h+1}(x^{h+1}) \right].$$

We say \mathcal{F} is complete if \mathcal{F} is complete with respect to itself.

Linear MDP

Definition 12 (Linear MDP, Def 18.15)

Let $\mathcal{H} = \{\mathcal{H}^h\}$ be a sequence of vector spaces with inner products $\langle \cdot, \cdot \rangle$. An MDP $M = \text{MDP}(\mathcal{X}, \mathcal{A}, P)$ is a linear MDP with feature maps $\phi = \{\phi^h(x^h, a^h) : \mathcal{X} \times \mathcal{A} \to \mathcal{H}^h\}_{h=1}^H$ if for all $h \in [H]$, there exist a map $\nu^h(x^{h+1}) : \mathcal{X} \to \mathcal{H}^h$ and $\theta^h \in \mathcal{H}^h$, such that

$$dP^{h}(x^{h+1}|x^{h},a^{h}) = \langle \nu^{h}(x^{h+1}), \phi^{h}(x^{h},a^{h}) \rangle d\mu^{h+1}(x^{h+1}),$$
$$\mathbb{E}[r^{h}|x^{h},a^{h}] = \langle \theta^{h}, \phi^{h}(x^{h},a^{h}) \rangle.$$

Here $\langle \cdot, \cdot \rangle$ denotes the inner product in \mathcal{H}^h for different *h*, and the conditional probability measure $dP^h(\cdot|x^h, a^h)$ is absolute continuous with respect to a measure $d\mu^{h+1}(\cdot)$ with density $\langle \nu^h(x^{h+1}), \phi^h(x^h, a^h) \rangle$. In general, we assume that $\nu^h(\cdot)$ and θ^h are unknown.

We assume $\phi(\cdot)$ is either known or unknown.

Example

Example 13 (Tabular MDP)

In a tabular MDP, we assume that $|\mathcal{A}| = A$ and $|\mathcal{X}| = S$. Let d = AS, and we can encode the space of $\mathcal{X} \times \mathcal{A}$ into a *d*-dimensional vector with components indexed by (x, a). Let $\phi^h(x, a) = e_{(x,a)}$ and let $\nu^h(x^{h+1})$ be a *d* dimensional vector so that its (x, a) component is $P^h(x^{h+1}|x^h = x, a^h = a)$. Similarly, we can take θ^h as a *d* dimensional vector so that its (x, a) component is $\mathbb{E}[r^h|x^h = x, a^h = a]$. Therefore tabular MDP is linear MDP with d = AS.

Example

Example 14 (Low-Rank MDP)

For a low-rank MDP, we assume that the transition probability matrix can be decomposed as

$$P^{h}(x^{h+1}|x^{h},a^{h}) = \sum_{j=1}^{d} P^{h}(x^{h+1}|z=j)P^{h}(z=j|x^{h},a^{h}).$$

In this case we can set $\phi^h(x^h, a^h) = [P^h(z = j | x^h, a^h)]_{j=1}^d$, and $\nu^h(x^{h+1}) = [P^h(x^{h+1} | z = j)]_{j=1}^d$. Therefore a low-rank MDP is a linear MDPs with rank as dimension.

Property of Linear MDP

Proposition 15 (Prop 18.18)

In a linear MDP with feature map $\phi^h(x^h, a^h)$ on vector spaces \mathcal{H}^h ($h \in [H]$). Consider the linear candidate Q function class

$$\mathcal{F} = \left\{ \langle w^h, \phi^h(x^h, a^h) \rangle : w^h \in \mathcal{H}^h, h \in [H] \right\}.$$

Any function $g^{h+1}(x^{h+1})$ on \mathcal{X} satisfies

 $(\mathcal{T}^h g^{h+1})(x^h, a^h) \in \mathcal{F}.$

It implies that \mathcal{F} is complete, and $Q_* \in \mathcal{F}$. Moreover, $\forall f \in \mathcal{F}$,

 $\mathcal{E}^h(f, x^h, a^h) \in \mathcal{F}.$

Proof of Proposition 15

Let

$$U_g^h = \int g^{h+1}(x^{h+1})\nu^h(x^{h+1})d\mu^{h+1}(x^{h+1}).$$

We have

$$\mathbb{E}_{x^{h+1}|x^{h},a^{h}}g^{h+1}(x^{h+1}) = \int g^{h+1}(x^{h+1}) \langle \nu^{h}(x^{h+1}), \phi^{h}(x^{h},a^{h}) \rangle d\mu^{h+1}(x^{h+1}) \\ = \langle u_{g}^{h}, \phi^{h}(x^{h},a^{h}) \rangle.$$

This implies that

$$(\mathcal{T}^h g)(x^h, a^h) = \langle \theta^h + u^h_g, \phi^h(x^h, a^h) \rangle \in \mathcal{F}.$$

Since $Q_*^h(x^h, a^h) = (\mathcal{T}^h Q_*)(x^h, a^h)$, we know $Q_*^h(x^h, a^h) \in \mathcal{F}$. Similarly, since $(\mathcal{T}^h f)(x^h, a^h) \in \mathcal{F}$, we know that $f \in \mathcal{F}$ implies

$$\mathcal{E}^h(f, x^h, a^h) = f^h(x^h, a^h) - (\mathcal{T}^h f)(x^h, a^h) \in \mathcal{F}$$

This proves the desired result.

Estimating Bellman Error

Consider

$$(f^{h}(x^{h}, a^{h}) - r^{h} - f^{h+1}(x^{h+1}))^{2}.$$
 (2)

By taking conditional expectation with respect to (x^h, a^h) , we obtain

$$\mathbb{E}_{r^{h},x^{h+1}|x^{h},a^{h}}(f^{h}(x^{h},a^{h})-r^{h}-f^{h+1}(x^{h+1}))^{2} = \mathcal{E}^{h}(f,x^{h},a^{h})^{2} + \mathbb{E}_{r^{h},x^{h+1}|x^{h},a^{h}}\left(\underbrace{r^{h}+f^{h+1}(x^{h+1})-(\mathcal{T}^{h}f)(x^{h},a^{h})}_{f\text{-dependent zero-mean noise}}\right)^{2}.$$

Since noise variance depends on f, if we use (2) to estimate f, we will favor f with smaller noise variance, which may not have zero Bellman error.

The Role of Completeness in Bellman Error Estimation

If \mathcal{F} is complete with respect to \mathcal{G} , then we may use the solution of

$$\min_{g^h \in \mathcal{G}^h} \sum_{s=1}^t (g^h(x^h_s, a^h_s) - r^h_s - f^{h+1}(x^{h+1}_s))^2$$

to estimate $(\mathcal{T}^h f)(x^h, a^h)$, which can be used to cancel the *f* dependent variance term in (2).

This motivates the following loss function

$$L^{h}(f, g, x^{h}, a^{h}, r^{h}, x^{h+1}) = \left[(f^{h}(x^{h}, a^{h}) - r^{h} - f^{h+1}(x^{h+1}))^{2} - (g^{h}(x^{h}, a^{h}) - r^{h} - f^{h+1}(x^{h+1}))^{2} \right].$$
 (3)

We have

$$\sup_{g \in \mathcal{G}} \sum_{h=1}^{H} \sum_{s=1}^{t} L^{h}(f, g, x_{s}^{h}, a_{s}^{h}, r_{s}^{h}, x_{s}^{h+1}) \approx \sum_{h=1}^{H} \sum_{s=1}^{t} \mathcal{E}^{h}(f, x_{s}^{h}, a_{s}^{h})^{2}.$$

Property of Minimax Bellman Error Estimator

Theorem 16 (Thm 18.14)

Assume that assumption 10 holds, \mathcal{F} is complete with respect to \mathcal{G} , and $g^h(\cdot) \in [0, 1]$ for all $g \in \mathcal{G}$. Consider (3), and let

$$\mathcal{F}_t = \left\{ f \in \mathcal{F} : \sup_{g \in \mathcal{G}} \sum_{h=1}^H \sum_{s=1}^t L^h(f, g, x_s^h, a_s^h, r_s^h, x_s^{h+1}) \le \beta_t^2 \right\},\$$

where

$$\beta_t^2 \ge 4\epsilon t (4+\epsilon) H + 2\ln\left(16M(\epsilon,\mathcal{F},\|\cdot\|_{\infty})^2 M(\epsilon,\mathcal{G},\|\cdot\|_{\infty})/\delta^2\right),$$

with $M(\cdot)$ denotes the $\|\cdot\|_{\infty}$ packing number, and $\|f\|_{\infty} = \sup_{h,x,a} |f^h(x,a)|$. Then with probability at least $1 - \delta$, for all $t \le n$: $Q_* \in \mathcal{F}_t$ and for all $f \in \mathcal{F}_t$:

$$\sum_{s=1}^t \sum_{h=1}^H \mathcal{E}^h(f, x_s^h, a_s^h)^2 \leq 4\beta_t^2.$$

UCB Algorithm

Algorithm 1: Bellman Error UCB Algorithm

Input: λ , T, \mathcal{F} , \mathcal{G} 1 Let $\mathcal{F}_0 = \{f_0\}$ 2 Let $\beta_0 = 0$ 3 for t = 1, 2, ..., T do 4 Observe x_t^1 5 Let $f_t \in \arg \max_{f \in \mathcal{F}_{t-1}} f(x_t^1)$. 6 Let $\pi_t = \pi_{f_t}$ 7 Play policy π_t and observe trajectory (x_t, a_t, r_t) 8 Let

$$\mathcal{F}_t = \left\{ f \in \mathcal{F} : \sup_{g \in \mathcal{G}} \sum_{h=1}^H \sum_{s=1}^t L^h(f, g, x_s^h, a_s^h, r_s^h, x_s^{h+1}) \le \beta_t^2 \right\}$$

with appropriately chosen β_t , where $L^h(\cdot)$ is defined in (3). **return** randomly chosen π_t from t = 1 to t = T

Analysis of Algorithm 1: Eluder Coefficient

Definition 17 (*Q*-type Bellman Eluder Coefficient, Def 18.19)

Given a candidate Q function class \mathcal{F} , its Q-type Bellman eluder coefficient $\text{EC}_Q(\epsilon, \mathcal{F}, T)$ is the smallest number d so that for any filtered sequence $\{f_t, (x_t, r_t, a_t) \sim \pi_{f_t}\}_{t=1}^T$:

$$\mathbb{E} \sum_{t=2}^{T} \sum_{h=1}^{H} \mathcal{E}^{h}(f_{t}, x_{t}^{h}, a_{t}^{h}) \leq \sqrt{d \mathbb{E} \sum_{h=1}^{H} \sum_{t=2}^{T} \left(\epsilon + \sum_{s=1}^{t-1} \mathcal{E}^{h}(f_{t}, x_{s}^{h}, a_{s}^{h})^{2}\right)}.$$

Eluder Coefficient for Linear MDP

Proposition 18 (Simplification of Prop 18.20)

Assume that a linear MDP has (possibly unknown) d^h dimensional feature maps $\phi^h(x^h, a^h)$ for each h. Assume also that the candidate Q-function class \mathcal{F} can be embedded into the linear function space

$$\mathcal{F} \subset \{ \langle \pmb{w}^{\pmb{h}}, \phi^{\pmb{h}}(\pmb{x}^{\pmb{h}}, \pmb{a}^{\pmb{h}})
angle : \pmb{w}^{\pmb{h}} \in \mathcal{H}^{\pmb{h}} \},$$

and there exists B > 0 such that $\|\mathcal{E}^h(f, \cdot, \cdot)\|_{\mathcal{H}^h} \leq B$. Assume that $|\mathcal{E}^h(f, x^h, a^h)| \in [0, 1]$, then

$$\mathrm{EC}_Q(1, \mathcal{F}, T) \leq 2 \sum_{h=1}^{H} d^h \ln(1 + T(BB')^2),$$

where $B' = \sup_h \sup_{x^h, a^h} \|\phi^h(x^h, a^h)\|_{\mathcal{H}^h}$.

Regret Bound

Theorem 19 (Thm 18.21)

Assume that Assumption 10 holds, \mathcal{F} is complete with respect to \mathcal{G} , and $g^h(\cdot) \in [0, 1]$ for all $g \in \mathcal{G}$. Assume also that β_t is chosen in Algorithm 1 according to

$$\beta_t^2 \geq \inf_{\epsilon>0} \left[4\epsilon t (4+\epsilon) H + 2 \ln \left(16 M(\epsilon, \mathcal{F}, \|\cdot\|_{\infty})^2 M(\epsilon, \mathcal{G}, \|\cdot\|_{\infty}) / \delta^2 \right) \right],$$

with $M(\cdot)$ denoting the $\|\cdot\|_{\infty}$ packing number, and $\|f\|_{\infty} = \sup_{h,x,a} |f^h(x,a)|$. Then

$$\mathbb{E} \sum_{t=2}^{T} [V_*^1(x_t^1) - V_{\pi_t}^1(x_t^1)]$$

$$\leq \delta T + \sqrt{\mathrm{EC}_Q(\epsilon, \mathcal{F}, T) \left(\epsilon HT + \delta HT^2 + 4 \sum_{t=2}^{T} \beta_{t-1}^2\right)}.$$

Proof of Theorem 19 (I/II)

For $t \ge 2$, we have

$$\begin{split} & V_*^1(x_t^1) - V_{\pi_t}^1(x_t^1) \\ &= V_*^1(x_t) - f_t(x_t^1) + f_t(x_t^1) - V_{\pi_t}^1(x_t^1) \\ &\leq \mathbb{I}(Q_* \notin \mathcal{F}_{t-1}) + [f_t(x_t^1) - V_{\pi_t}^1(x_t^1)] \\ &= \mathbb{I}(Q_* \notin \mathcal{F}_{t-1}) + \mathbb{E}_{(x_t, a_t, r_t) \sim \pi_t \mid x_t^1} \sum_{h=1}^H \mathcal{E}^h(f_t, x_t^h, a_t^h). \end{split}$$

The inequality used the fact that if $Q_* \in \mathcal{F}_{t-1}$, then $f_t(x_t^1) = \max_{f \in \mathcal{F}_{t-1}} f(x_t^1) \ge V_*^1(x_t^1)$, and if $Q_* \notin \mathcal{F}_{t-1}$, $V_*^1(x_t) - f_t(x_t^1) \le 1$. The last equation used Theorem 9. Theorem 16 implies that $\Pr(Q_* \in \mathcal{F}_{t-1}) \ge 1 - \delta$. We thus have

$$\mathbb{E}[V^1_*(x^1_t) - V^1_{\pi_t}(x^1_t)] \leq \delta + \mathbb{E} \sum_{h=1}^{H} \mathcal{E}^h(f_t, x^h_t, a^h_t).$$

Proof of Theorem 19 (II/II)

We can now obtain

$$\mathbb{E}\sum_{t=2}^{T} [V_*^1(x_t^1) - V_{\pi_t}^1(x_t^1)]$$

$$\leq \mathbb{E}\sum_{t=2}^{T}\sum_{h=1}^{H} \mathcal{E}^h(f_t, x_t^h, a_t^h) + \delta T$$

$$\leq \delta T + \sqrt{\mathrm{EC}_Q(\epsilon, \mathcal{F}, T)} \mathbb{E}\sum_{t=2}^{T}\sum_{h=1}^{H} \left(\epsilon + \sum_{s=1}^{t-1} \mathcal{E}^h(f_t, x_s^h, a_s^h)^2\right)$$

$$\leq \delta T + \sqrt{\mathrm{EC}_Q(\epsilon, \mathcal{F}, T)} \left(\epsilon HT + \delta HT^2 + 4\sum_{t=2}^{T} \beta_{t-1}^2\right).$$

The second inequality used Definition 17. The last inequality used the fact that for each *t*, Theorem 16 holds with probability $1 - \delta$, and otherwise, $\mathcal{E}^h(f_t, x_s^h, a_s^h)^2 \leq 1$.

Interpretation of Theorem 19: Linear MDP

Consider the *d* dimensional linear MDP with bounded \mathcal{F} and \mathcal{G} . Assume that the model coefficients at different step *h* are different, then the entropy can be bounded (ignoring log factors) as

$$\tilde{O}(H\ln(M_{\mathcal{F}}M_{\mathcal{G}})) = \tilde{O}(Hd),$$

and hence with $\epsilon = \delta = O(1/T^2)$, we have

$$\beta_t^2 = \tilde{O}(H\ln(M_{\mathcal{F}}M_{\mathcal{G}})) = \tilde{O}(Hd).$$

Since $EC_Q(\epsilon, \mathcal{F}, T) = \tilde{O}(dH)$, we obtain the following.

Regret Bound from Theorem 19

We have the following regret bound for Algorithm 1

$$\mathbb{E}\operatorname{REG}_{T} = \tilde{O}\left(H\sqrt{dT\ln(M_{\mathcal{F}}M_{\mathcal{G}})}\right) = \tilde{O}\left(Hd\sqrt{T}\right).$$
(4)

Least Squares Value Iteration

It was shown in Theorem 19 that the UCB method in Algorithm 1 can handle linear MDP with *Q*-type Bellman eluder coefficient. However, it requires solving a minimax formulation with global optimism, which may be difficult computationally. In fact, there is no practically effective implementation of the method.

Next, we show that a computationally more efficient procedure, referred to as Least Squares Value Iteration (LSVI), or Fitted *Q*-learning, can be used to solve RL. This procedure is closely related to the *Q*-learning method used by practitioners.

Assumption for LSVI Algorithm

Assumption 20 (Completeness, Asm 18.22)

Assume that the Q function class \mathcal{F} can be factored as the product of H function classes:

$$\mathcal{F} = \prod_{h=1}^{H} \mathcal{F}^{h}, \quad \mathcal{F}^{h} = \{ \langle \boldsymbol{w}^{h}, \phi^{h}(\boldsymbol{x}^{h}, \boldsymbol{a}^{h}) \rangle, \boldsymbol{w}^{h} \in \mathcal{H}^{h} \},$$

so that for all $g^{h+1}(x^{h+1}) \in [0, 1]$:

$$(\mathcal{T}^h g^{h+1})(x^h, a^h) \in \mathcal{F}^h.$$
(5)

Assumption for LSVI Algorithm

Assumption 21 (Bonus Function, Asm 18.22)

In Assumption 20, assume further for any $\epsilon > 0$, there exists a function class $\mathcal{B}^h(\epsilon)$ so that for any sequence $\{(x_t^h, a_t^h, \hat{f}_t^h) \in \mathcal{X} \times \mathcal{A} \times \mathcal{F}^h : t = 1, ..., T\}$, we can construct a sequence of non-negative bonus functions $b_t^h(\cdot) \in \mathcal{B}^h(\epsilon)$ (each \hat{f}_t^h and b_t^h only depend on the historic observations up to t - 1) such that

$$b_t^h(x^h, a^h)^2 \ge \sup_{f^h \in \mathcal{F}^h} \frac{|f^h(x^h, a^h) - \hat{f}_t^h(x^h, a^h)|^2}{\epsilon + \sum_{s=1}^{t-1} |f^h(x_s^h, a_s^h) - \hat{f}_t^h(x_s^h, a_s^h)|^2}, \qquad (6)$$

and the bonus function satisfies the following uniform eluder condition:

$$\sup_{\{(\boldsymbol{x}^h_t,\boldsymbol{a}^h_t)\}} \sum_{t=1}^T \min(1, b^h_t(\boldsymbol{x}^h_t, \boldsymbol{a}^h_t)^2) \leq \dim(T, \mathcal{B}^h(\epsilon)).$$

Example 18.23: Linear MDP (I/II)

Consider a linear MDP in Definition 12, such that

$$\| heta^h\|_{\mathcal{H}^h}+\int \|
u^h(x^{h+1})\|_{\mathcal{H}^h} \, |d\mu^{h+1}(x^{h+1})|\leq B^h.$$

If \mathcal{F}^h is any function class that contains

$$\tilde{\mathcal{F}}^{h} = \{ \langle \boldsymbol{w}^{h}, \phi^{h}(\boldsymbol{x}^{h}, \boldsymbol{a}^{h}) \rangle : \| \boldsymbol{w}^{h} \|_{\mathcal{H}^{h}} \leq \boldsymbol{B}^{h} \},\$$

then the proof of Proposition 15 implies that (5) holds. Note that if $r^h \in [0, 1]$, then $(\mathcal{T}^h g^{h+1})(x^h, a^h) \in [0, 2]$. Therefore at any time step *t*, we may consider a subset of \mathcal{F}^h that satisfies the range constraint on historic observations, and in the mean time, impose the same range constraints in $\tilde{\mathcal{F}}^h$ as

$$\begin{split} \tilde{\mathcal{F}}^h &= \left\{ \langle \boldsymbol{w}^h, \phi^h(\boldsymbol{x}^h, \boldsymbol{a}^h) \rangle : \| \boldsymbol{w}^h \|_{\mathcal{H}^h} \leq \boldsymbol{B}^h, \\ &\langle \boldsymbol{w}^h, \phi^h(\boldsymbol{x}^h_{\boldsymbol{s}}, \boldsymbol{a}^h_{\boldsymbol{s}}) \rangle \in [0, 2] \, \forall \boldsymbol{s} \in [t-1] \right\}. \end{split}$$

Example 18.23: Linear MDP (II/II)

If moreover, each $f^h(x^h, a^h) \in \mathcal{F}^h$ can be written as $\langle \tilde{w}^h(f^h), \tilde{\phi}^h(x^h, a^h) \rangle$ so that $\|\tilde{w}^h(f^h) - \tilde{w}^h(\tilde{f}^h)\|_2 \leq \tilde{B}^h$ (here we assume that $\tilde{\phi}^h$ may or may not be the same as ϕ^h), then we can take

$$b_t^h(\boldsymbol{x}^h, \boldsymbol{a}^h) = \|\tilde{\phi}^h(\boldsymbol{x}^h, \boldsymbol{a}^h)\|_{(\Sigma_t^h)^{-1}},$$

$$\Sigma_t^h = \frac{\epsilon}{(\tilde{B}^h)^2} I + \sum_{s=1}^{t-1} \tilde{\phi}^h(\boldsymbol{x}^h, \boldsymbol{a}^h) \tilde{\phi}^h(\boldsymbol{x}^h, \boldsymbol{a}^h)^\top,$$
(7)

so that (6) holds. By using Lemma 13.9, we have

$$\sum_{t=1}^{T} \min\left(1, \|\tilde{\phi}^{h}(x_{t}^{h}, a_{t}^{h})\|_{(\Sigma_{t}^{h})^{-1}}^{2}\right) \leq \sum_{t=1}^{T} \frac{2\|\tilde{\phi}^{h}(x_{t}^{h}, a_{t}^{h})\|_{(\Sigma_{t}^{h})^{-1}}^{2}}{1 + \|\tilde{\phi}^{h}(x_{t}^{h}, a_{t}^{h})\|_{(\Sigma_{t}^{h})^{-1}}^{2}} \leq \ln\left|\left((\tilde{B}^{h})^{2}/\epsilon\right)\Sigma_{t}^{h}\right|.$$

Using Proposition 15.8, we can set dim $(T, \mathcal{B}^{h}(\epsilon)) = \operatorname{entro}(\epsilon/((\tilde{B}^{h})^{2}T), \tilde{\phi}^{h}(\cdot))$. For *d* dimensional problem, dim $(T, \mathcal{B}^{h}(\epsilon)) = \tilde{O}(d)$.

Linear Least Squares Value Iteration

Algorithm 2: Least Squares Value Iteration with UCB (LSVI-UCB)

Input:
$$\epsilon > 0, T, \{\mathcal{F}^h\}, \{\mathcal{B}^h(\epsilon)\}$$

1 for $t = 1, 2, ..., T$ do
2 Let $f_t^{H+1} = 0$
3 for $h = H, H - 1, ..., 1$ do
4 Let $y_s^h = r_s^h + f_t^{h+1}(x_s^{h+1})$, where
 $f_t^{h+1}(x_s^{h+1}) = \max_a f_t^{h+1}(x_s^{h+1}, a)$
5 Let
 $\hat{t}_t^h = \arg\min_{f^h\in\mathcal{F}^h} \sum_{s=1}^{t-1} (f^h(x_s^h, a_s^h) - y_s^h)^2$.
Find $\beta_t^h > 0$ and bonus function $b_t^h(\cdot)$ that satisfies (6)
Let $f_t^h(x^h, a^h) = \min(1, \max(0, \hat{t}_t^h(x^h, a^h) + \beta_t^h b_t^h(x^h, a^h)))$
7 Let π_t be the greedy policy of f_t^h for each step $h \in [H]$
8 Play policy π_t and observe trajectory (x_t, a_t, r_t)
9 return randomly chosen π_t from $t = 1$ to $t = T$

Analysis of LSVI-UCB: Key Lemma

Lemma 22 (Lem 18.24)

Consider Algorithm 2 under Assumption 18.22. Assume also that $Q_*^h \in \mathcal{F}^h$, $Q_*^h \in [0, 1]$, $r^h \in [0, 1]$, $f^h \in [0, 2]$ for $h \in [H]$ and $f^h \in \mathcal{F}^h$. Given any t > 0, let $\beta_t^{H+1} = \beta^{H+1}(\epsilon, \delta) = 0$, and for h = H, H - 1, ..., 1:

$$\beta_t^h = \beta^h(\epsilon, \delta) \ge 4(1 + \beta^{h+1})\frac{\epsilon}{\sqrt{T}} + \sqrt{\epsilon} + \sqrt{24(1 + \beta^{h+1}(\delta))\epsilon} + 12\ln\frac{2HM_T^h(\epsilon)}{\delta},$$

where (with $||f||_{\infty} = \sup_{x,a,h} f^{h}(x, a)$)

 $M_T^h(\epsilon) = M(\epsilon/T, \mathcal{F}^h, \|\cdot\|_{\infty}) M(\epsilon/T, \mathcal{F}^{h+1}, \|\cdot\|_{\infty}) M(\epsilon/T, \mathcal{B}^{h+1}(\epsilon), \|\cdot\|_{\infty}).$

Then with probability at least $1 - \delta$, for all $h \in [H]$, and $(x^h, a^h) \in \mathcal{X} \times \mathcal{A}$:

$$\begin{aligned} &Q^h_*(x^h,a^h) \leq f^h_t(x^h,a^h), \\ &|f^h_t(x^h,a^h) - (\mathcal{T}^h f^{h+1}_t)(x^h,a^h)| \leq 2\beta^h(\epsilon,\delta) b^h(x^h,a^h). \end{aligned}$$

Regret Bound for LSVI-UCB

Theorem 23 (Thm 18.25)

Consider Algorithm 2, and assume that all conditions of Lemma 22 hold. Then

$$\mathbb{E}\sum_{t=1}^{T} [V^{1}_{*}(x^{1}_{t}) - V^{1}_{\pi_{t}}(x^{1}_{t})] \leq \delta T + 2\sqrt{dHT}\sum_{h=1}^{H}\beta^{h}(\epsilon,\delta)^{2} + 2Hd,$$

where $d = H^{-1} \sum_{h=1}^{H} \dim(T, \mathcal{B}^{h}(\epsilon))$.

Proof of Theorem 23 (I/II)

From Lemma 22, we know that for each *t*, with probability at least $1 - \delta$ over the observations $\{(x_s, a_s, r_s) : s = 1, ..., t - 1\}$, the two inequalities of the lemma hold (which we denote as event E_t). It implies that under event E_t , f_t^h satisfies the following inequalities for all $h \in [H]$:

$$\mathbb{E}_{x_t^1} V_*^1(x_t^1) \le \mathbb{E}_{x_t^1} f_t^1(x_t^1), \tag{8}$$

$$\mathbb{E}_{\boldsymbol{x}_{t}^{h},\boldsymbol{a}_{t}^{h}}|\mathcal{E}^{h}(\boldsymbol{f}_{t},\boldsymbol{x}_{t}^{h},\boldsymbol{a}_{t}^{h})| \leq 2\mathbb{E}_{\boldsymbol{x}_{t}^{h},\boldsymbol{a}_{t}^{h}}\beta^{h}(\epsilon,\delta)\boldsymbol{b}^{h}(\boldsymbol{x}_{t}^{h},\boldsymbol{a}_{t}^{h}). \tag{9}$$

Proof of Theorem 23 (II/II) We thus obtain

$$\begin{split} & \mathbb{E} \sum_{t=1}^{T} [V_{*}^{1}(x_{t}^{1}) - V_{\pi_{t}}^{1}(x_{t}^{1})] \leq \delta T + \mathbb{E} \sum_{t=1}^{T} [f_{t}^{1}(x_{t}^{1}) - V_{\pi_{t}}^{1}(x_{t}^{1})] \mathbb{1}(E_{t}) \\ &= \delta T + \sum_{t=1}^{T} \mathbb{E} \sum_{h=1}^{H} \mathcal{E}^{h}(f_{t}, x_{t}^{h}, a_{t}^{h}) \mathbb{1}(E_{t}) \\ &\leq \delta T + 2 \sum_{t=1}^{T} \mathbb{E} \sum_{h=1}^{H} \left[\beta^{h}(\epsilon, \delta) \min(1, b^{h}(x_{t}^{h}, a_{t}^{h})) + \min(1, b^{h}(x_{t}^{h}, a_{t}^{h}))^{2} \right] \\ &\leq \delta T + 2 \sqrt{\sum_{t=1}^{T} \sum_{h=1}^{H} \beta^{h}(\epsilon, \delta)^{2}} \sqrt{\mathbb{E} \sum_{t=1}^{T} \sum_{h=1}^{H} \min(1, b^{h}(x_{t}^{h}, a_{t}^{h}))^{2}} \\ &+ 2 \mathbb{E} \sum_{t=1}^{T} \sum_{h=1}^{H} \min(1, b^{h}(x_{t}^{h}, a_{t}^{h}))^{2} \\ &\leq \delta T + 2 \sqrt{T \sum_{h=1}^{H} \beta^{h}(\epsilon, \delta)^{2}} \sqrt{\sum_{h=1}^{H} \dim(T, \mathcal{B}^{h}(\epsilon))} + 2 \sum_{h=1}^{H} \dim(T, \mathcal{B}^{h}(\epsilon)). \end{split}$$

Interpretation of Theorem 23 : Linear MDP

Consider linear MDP with known *d* dimensional $\phi^{h}(\cdot) = \tilde{\phi}^{h}(\cdot)$.

- We have $\ln N(\epsilon/T, \mathcal{F}^h, \|\cdot\|_{\infty}) = \tilde{O}(d)$.
- Since the bonus function of (7) can be regarded as a function class with the *d* × *d* matrix Σ^h_t as its parameter, Theorem 5.3 implies ln *N*(ε/*T*, B^{h+1}(ε), || ⋅ ||_∞) = Õ(d²).
- We have dim $(T, \mathcal{B}^h(\epsilon)) = \tilde{O}(d)$ from Example 18.23 and Proposition 15.8. We can set $\beta^h = \tilde{O}(d^2)$.

Regret Bound from Theorem 23

For Algorithm 2, we have

$$\mathbb{E}\operatorname{REG}_{T}=\tilde{O}(Hd^{3/2}\sqrt{T}).$$

The bound is inferior by a factor of \sqrt{d} compared to (4), due to the $\tilde{O}(d^2)$ entropy number of the bonus function class $\mathcal{B}^{h+1}(\epsilon)$.

Model Based RL

Definition 24 (Def 18.35)

In a model-based RL problem, we are given an MDP model class M. Each $M \in M$ includes explicit transition probability

$$\mathsf{P}^h_M(x^{h+1}|x^h,a^h),$$

and expected reward

$$R^h_M(x^h,a^h) = \mathbb{E}_M [r^h | x^h,a^h],$$

where we use $\mathbb{E}_{M}[\cdot]$ to denote the expectation with respect to model *M*'s transition dynamics P_{M} .

We use $f_M = \{f_M^h(x^h, a^h)\}_{h=1}^H$ to denote the *Q* function of model *M*, and use $\pi_M = \pi_{f_M}$ to denote the corresponding optimal policy under model *M*.

Example: Linear Mixture MDP

A simple example of model-based reinforcement learning problem is linear mixture MDP (also see Definition 18.48).

Example 25 (Mixture of Known MDPs, Expl 18.50)

Consider *d* base MDPs M_1, \ldots, M_d , where each MDP M_j corresponds to a transition distribution $P^h_{M_j}(x^{h+1}|x^h, a^h)$ and an expected reward $R^h_{M_j}(x^h, a^h)$. Consider a model family \mathcal{M} , where $M \in \mathcal{M}$ is represented by $w_1, \ldots, w_d \ge 0$ and $\sum_{j=1}^d w_j = 1$. Then we can express

$$P_{M}^{h}(x^{h+1}|x^{h},a^{h}) = \sum_{j=1}^{d} w_{j}P_{M_{j}}^{h}(x^{h+1}|x^{h},a^{h}).$$

One can similarly define $R^h_M(x^h, a^h) = \sum_{j=1}^d w_j R^h_{M_j}(x^h, a^h)$.

Generic Model-Based Algorithm

Algorithm 3: Q-type Model-Based Posterior Sampling Algorithm Input: $\lambda, \eta, \tilde{\eta}, T, p_0, \mathcal{M}$ 1 for t = 1, 2, ..., T do Observe x_t^1 2 Draw 3 $M_t \sim p_t(M|x_t^1, S_{t-1})$ according to $p_t(M|x_1^t, S_{t-1})$ defined as $p_t(M|x_1^t, S_{t-1}) \propto p_0(M) \exp\left(\lambda \sum_{s=1}^{t-1} f_M(x_s^1) + \sum_{b=1}^{H} \sum_{s=1}^{t-1} L_s^b(M)\right),$ $L_{s}^{h}(M) = -\tilde{\eta}(R_{M}^{h}(x_{s}^{h}, a_{s}^{h}) - r_{s}^{h})^{2} + \eta \ln P_{M}^{h}(x_{s}^{h+1} \mid x_{s}^{h}, a_{s}^{h}).$ 4 Let $\pi_t = \pi_{M_t}$ Play policy π_t and observe trajectory (x_t, a_t, r_t)

Analysis of Mixture of Known MDPs

The analysis of Algorithm 3 can be found in Theorem 18.47.

For Mixture of Known MDPs, we can obtain the following result.

Regret Bound from Theorem 18.47

If we apply Algorithm 3 to Example 25 with appropriate parameter choices, then

 $\mathbb{E}\operatorname{REG}_{T}=\tilde{O}(dH\sqrt{T}).$

This result is similar to that of linear MDP.

Summary (Chapter 18)

- Episodic Reinforcement Learning
- Policy and Value Function
- Bellman Equation
- Realizability and Completeness
- Linear MDP
- UCB Algorithm for (Model Free) Episodic RL
- LSVI Algorithm for (Model Free) Episodic RL
- Model Based RL