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Contextual Bandits

Mathematical Analysis of Machine Learning Algorithms
(Chapter 17)
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Contextual Bandits

Definition 1 (Contextual Bandit Problem)

In contextual bandit, we consider a context space X and an action
space A. Given context x ∈ X , we take an action a ∈ A, and observe
a reward r ∈ R that can depend on (x ,a). The contextual bandit
problem is a repeated game: at each time step t :
I The player observes a sample xt ∈ X
I The player chooses precisely one action (or arm) at ∈ A
I The reward rt is revealed.
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Policy for Contextual Bandit

Definition 2
A policy π for contextual bandit is a map X → ∆(A), where ∆(A)
denotes probability measures over A with an appropriately defined
σ-algebra. One may also write it as a conditional distribution π(a|x),
and the policy draws a ∼ π(·|x) when it observes context x . A
contextual bandit algorithm q̂ maps historic observations

St−1 = {(x1,a1, r1), . . . , (xt−1,at−1, rt−1)}

to a policy πt = q̂(·|St−1) at each time step t , and pulls an arm
at ∼ πt (·|xt ) based on the observation xt . In this chapter, we will also
write the history dependent policy as at ∼ q̂(at |xt ,St−1).
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Adversarial Setting
Similar to the case of multi-armed bandit problem, we may also
consider the adversarial setting with an oblivious adversary as
follows. At each time step t , we have the information of all rewards
[rt (a) : a ∈ A], but only reveals the value of rt (at ) for the chosen arm
at . The goal is to maximize the expected cumulative reward

T∑
t=1

Eat∼πt [rt (at )].

If we are given a policy class Π, then regret of a contextual bandit
algorithm with respect to Π can be written as follows.

Regret

REGT = sup
π∈Π

T∑
t=1

Eat∼π[rt (at )]−
T∑

t=1

Eat∼πt [rt (at )]. (1)
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Stochastic Setting
If we consider the stochastic contextual bandit setting with unknown
value functions

f∗(x ,a) = E[r |x ,a], f∗(x) = max
a∈A

f (x ,a)

that do not change over time, then the goal becomes to maximize the
expected reward

T∑
t=1

Eat∼πt [f∗(xt ,at )].

Regret

The regret of a bandit algorithm that produces policy sequence {πt}
is:

REGT =
T∑

t=1

Eat∼πt [f∗(xt )− f∗(xt ,at )]. (2)
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EXP4: Policy based Algorithm

EXP4 is a generalization of the EXP3. It can be regarded as a policy
based method for adversarial contextual bandits.

Assume that we have an expert class indexed by w :

G = {[q̂t (·|w , xt )]t=1,2,... : w ∈ Ω}.

Given any context xt ∈ X , an expert w returns a probability
distribution q̂t (·|w , xt ) on at ∈ {1, . . . ,K}.

Let p0(w) be a prior on Ω, then the EXP4 algorithm, has a regret
bound that is logarithmic in |G| for finite G, if the regret is to compete
with the best expert in G.
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Example

Example 3

Any stationary policy can be regarded as an expert. As an example,
we may consider experts of logistic policies (parametrized by w)
defined as

q̂t (a|w , x) = q̂(a|w , x) =
exp(w>ψ(x ,a))∑K
`=1 exp(w>ψ(x , `))

,

with Gaussian prior p0(w):

w ∼ N(0, σ2).
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EXP4 Algorithm

Algorithm 1: EXP4
Input: K , T , G, p0(·), γ ∈ (0,1], η > 0,b ≥ 0

1 Let u0(w) = 1
2 for t = 1,2, . . . ,T do
3 Observe xt
4 for a = 1, . . . ,K do
5 Let π̂t (a) = (1− γ)Ew∼pt−1(w)q̂t (a|w , xt ) + γ/K

6 Sample at according to π̂t (·)
7 Pull arm at and observe reward rt (at ) ∈ [0,1]
8 Let r̂t (w , xt ,at ) = q̂t (at |w , xt )(rt (at )− b)/π̂t (at )
9 Let ut (w) = ut−1(w) exp(ηr̂t (w , xt ,at ))

10 Let pt (w) = p0(w)ut (w)/Ew∼p0(w)ut (w)
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Some Intuitions

Note that conditioned on the history, the estimator r̂t (w , xt ,at ) is a
random estimator that depends on the partial reward rt (at ) received
for at ∼ π̂t (a).

Moreover, it is an unbiased estimator of the following shifted reward
of w , according to policy q̂t (·|w , xt ):

Eat∼π̂t r̂t (w , xt ,at ) = Ea∼q̂t (a|w ,xt )(rt (a)− b). (3)

which relies on the full reward vector [rt (a)] at time step t over all
arms a.
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Theorem 4 (EXP4 Regret Bound, Thm 17.4)

For any K , T ≥ 0, and any γ ∈ (0,1], η > 0 and b ≥ 0. Consider any expert
class G = {[q̂t (·|w , x)]t=1,2,... : w ∈ Ω} with prior p0(w). Let

RT (w) = E
T∑

t=1

Ea∼q̂t (·|w,xt )rt (a)

be the reward of expert w. Then the expected reward of EXP4 satisfies:

E
T∑

t=1

rt (at ) ≥(1− γ) max
q

[
Ew∼qRT (w)− 1

η
KL(q||p0),

]

− c(η,b)η
T∑

t=1

K∑
a=1

|rt (a)− b|,

where the expectation is with respect to the randomization of the algorithm,

c(η,b) = φ(z0) max(b,1− b), z0 = max(0, η(1− b)K/γ),

and φ(z) = (ez − 1− z)/z2.



11

Finite Policy
The following result is a direct consequence of Theorem 4. It can be
regarded as a direct generalization of that of EXP3.

Corollary 5 (Cor 17.5)

Let η = γ/K and b = 0. Assumes that the uniform random policy
belongs to Ω and |Ω| = N <∞. Let p0(w) be the uniform prior over
Ω, then

G∗ − E
T∑

t=1

rt (at ) ≤ (e − 1)γG∗ +
K ln N
γ

,

where the expectation is with respect to the randomization of the
algorithm, and

G∗ = arg max
w

T∑
t=1

E Ea∼q̂t (·|w ,xt )[rt (a)].
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Proof of Corollary 5

We have ηr̂t (w , xt ,at ) ≤ 1, and thus c(η,b) = e − 2. Note that the
uniform random policy belongs to Ω implies that

1
K

T∑
t=1

K∑
a=1

rt (a) ≤ G∗.

We consider Theorem 4, with q defined as q(w) = 1(w = w∗), where
w∗ achieves the maximum of G∗. This implies

E
T∑

t=1

rt (at ) ≥ (1− γ)

[
G∗ −

K
γ

ln N
]
− (e − 2)γG∗.

This implies the bound.
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Example 6 (Negative Bias)

We can take γ = 0 and b = 1 in Algorithm 1. By noting that φ(z) is
increasing in z and η(1− b) ≤ 0, we may take c(η,b) = 0.5. Theorem 4
implies that

E
T∑

t=1

rt (at ) ≥ max
q

[
RT (w)− 1

η
KL(q||p0)

]
− 0.5ηKT .

In the finite policy case |Ω| = N with uniform prior:

G∗ − E
T∑

t=1

rt (at ) ≤
ln N
η

+ 0.5ηKT .

By choosing η =
√

ln N/(KT ), we obtain

G∗ − E
T∑

t=1

rt (at ) ≤ 2
√

KT ln N.
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Partial versus Full Information
We may compare EXP4 to its full information counterpart Hedge in
Algorithm 14.4. We have the following Hedge online regret bound (in
the full information case) from Theorem 14.15:

E
T∑

t=1

rt (at ) ≥max
q

[
RT (w)− 1

η
KL(q||p0)

]
− ηT/8.

Assume |Ω| = N <∞. Let p0(w) be the uniform prior over Ω, then we
obtain the following online regret bound for Hedge (full information):

G∗ − E
T∑

t=1

rt (at ) ≤
ln N
η

+
ηT
8
.

With η =
√

ln N/T , we obtain the full information regret bound of

G∗ − E
T∑

t=1

rt (at ) ≤ 2
√

T ln N,

which is better than the EXP4 result in Example 6 by a factor of
√

K .
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Linear Contextual Bandit

The EXP4 algorithm tries to find the best policy in a policy class. We
can also design an algorithm that finds the best value function from a
value function class.

Definition 7
Stochastic linear contextual bandit (or stochastic contextual bandit
with linear payoff) is a contextual bandit problem, where the reward at
each time step t is given by

rt (a) = rt (xt ,a) = w>∗ ψ(xt ,a) + εt (xt ,a), (4)

where εt (x ,a) is a zero-mean random variable. We assume that H is
a known inner product space, w∗ ∈ H is the unknown model
parameter, and the feature vector ψ(x ,a) ∈ H is known.
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Linear UCB

Algorithm 2: Linear UCB Algorithm
Input: λ, T , {βt}

1 Let A0 = λI
2 Let w0 = 0
3 Let b0 = 0
4 for t = 1,2, . . . ,T do
5 Observe xt

6 Let at ∈ arg maxa

[
w>t−1ψ(xt ,a) + βt−1

√
ψ(xt ,a)>A−1

t−1ψ(xt ,a)

]
7 Pull arm at and observe reward rt (xt ,at )
8 Let bt = bt−1 + rt (xt ,at )ψ(xt ,at )

9 Let At = At−1 + ψ(xt ,at )ψ(xt ,at )
>

10 Let wt = A−1
t bt



17

Confidence Interval Bound

Lemma 8 (Lem 17.8 )

Assume that in the stochastic linear bandit model, ‖w∗‖H ≤ B for
some constant B, and in Algorithm 2, assume that {βt} is any
sequence so that

Pr

∀0 ≤ t ≤ T : βt ≥
√
λB +

∥∥∥∥∥
t∑

s=1

εs(xs,as)ψ(xs,as)

∥∥∥∥∥
A−1

t

 ≥ 1− δ.

(5)
Then with probability at least 1− δ, for all t = 0, . . . ,T and u ∈ H:

|u>(wt − w∗)| ≤ βt

√
u>A−1

t u.
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Proof of Lemma 8
We have

u>(wt − w∗) =u>A−1
t

t∑
s=1

rs(xs,as)ψ(xs,as)− u>w∗

=u>A−1
t

t∑
s=1

εs(xs,as)ψ(xs,as)− λu>A−1
t w∗

≤‖u‖A−1
t

∥∥∥∥∥
t∑

s=1

εs(xs,as)ψ(xs,as)

∥∥∥∥∥
A−1

t

+ λ‖u‖A−1
t
‖w∗‖A−1

t

≤‖u‖A−1
t

∥∥∥∥∥
t∑

s=1

εs(xs,as)ψ(xs,as)

∥∥∥∥∥
A−1

t

+
√
λB

 ≤ βt‖u‖A−1
t
.

The second equality used (4). The first inequality used the
Cauchy-Schwartz inequality. The last inequality used the definition of
βt . This implies the desired bound.
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Example (Sub-Gaussian Noise)

Example 9

Assume that noise in (4) satisfies the sub-Gaussian conditions of
Theorem 13.7, and assume that d = dim(H) is finite dimensional,
with B′ = supx ,a ‖ψ(x ,a)‖H. Then in Lemma 8 we can set

βt =
√
λB + σ

√
2 ln(1/δ) + d ln(1 + T (B′)2/dλ)

so that (5) holds. Note that Proposition 15.8 is used to obtain a bound
on the log determinant function in Theorem 13.7.
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Regret Bound for Algorithm 2

Theorem 10 (Thm 17.11)

Assume that in the stochastic linear bandit model, rt (xt ,at ) ∈ [0,1]
and ‖w∗‖2 ≤ B for some constant B. Let
µt (x ,a) = Eεt (x ,a)rt (x ,a) = w>∗ ψ(x ,a). Let a∗(x) ∈ arg maxa µt (x ,a)
be the optimal arm for each context x. Then in Algorithm 2, with
probability at least 1− δ,

E
T∑

t=1

[µt (xt ,a∗(xt ))− µt (xt ,at )] ≤ 3

√√√√ln |AT/λ|
T∑

t=1

β2
t−1 + 2 ln |AT/λ|,

where {βt} is any sequence that satisfies(5).
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Result used in the Proof of Theorem 10

Lemma 11 (Lem 13.9 )

Let Σ0 be a d × d symmetric positive definite matrix, and {ψ(Xt )} be
a sequence of vectors in Rd . Let

Σt = Σ0 +
t∑

s=1

ψ(Xs)ψ(Xs)>,

then
t∑

s=1

ψ(Xs)>Σ−1
s−1ψ(Xs)

1 + ψ(Xs)>Σ−1
s−1ψ(Xs)

≤ ln |Σ−1
0 Σt |.



22

Proof of Theorem 10 (I/II)

We have for t ≥ 1:

w>∗ ψ(xt ,a∗(xt ))

≤w>t−1ψ(xt ,a∗(xt )) + βt−1

√
ψ(xt ,a∗(xt ))>A−1

t−1ψ(xt ,a∗(xt ))

≤w>t−1ψ(xt ,at ) + βt−1

√
ψ(xt ,at )>A−1

t−1ψ(xt ,at )

≤w>∗ ψ(xt ,at ) + 2βt−1

√
ψ(xt ,at )>A−1

t−1ψ(xt ,at ),

where the first and the third inequalities used Lemma 8 . The second
inequality is due to the UCB choice of at in Algorithm 2.
Let Et be the event of ‖ψ(xt ,at )‖At−1 ≤ 1. Since w>∗ ψ(xt ,a) ∈ [0,1],
we have

w>∗ ψ(xt ,a∗(xt ))− w>∗ ψ(xt ,at ) ≤ 2βt−1‖ψ(xt ,at )‖A−1
t−1
1(Et ) + 1(Ec

t ).
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Proof of Theorem 10 (II/II)
By summing over t = 1 to t = T , we obtain

T∑
t=1

[µt (xt ,a∗(xt ))− µt (xt ,at )]

≤2
T∑

t=1

βt−1‖ψ(xt ,at )‖A−1
t−1
1(Et ) +

T∑
t=1

1(Ec
t )

≤2
T∑

t=1

βt−1

√√√√√ 2‖ψ(xt ,at )‖2A−1
t−1

1 + ‖ψ(xt ,at )‖2A−1
t−1

+ 2
T∑

t=1

ψ(xt ,at )
>A−1

t−1ψ(xt ,at )

1 + ψ(xt ,at )>A−1
t−1ψ(xt ,at )

≤3

√√√√ T∑
t=1

β2
t−1

√√√√ T∑
t=1

ψ(xt ,at )>A−1
t−1ψ(xt ,at )

1 + ψ(xt ,at )>A−1
t−1ψ(xt ,at )

+ 2 ln |AT/λ|.

The second inequality used simple algebraic inequalities under Et
and Ec

t . The third inequality used the Cauchy-Schwartz inequality
and Lemma 11. We can now apply Lemma 11 again to obtain the
desired bound.
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Interpretation of Theorem 10

We may consider the noise assumption and the choice of βt in
Example 9 with σ = O(1). It implies a bound

E
T∑

t=1

[µt (xt ,a∗(xt ))− µt (xt ,at )] = Õ
(√

λdTB + d
√

T
)
,

where Õ hides logarithmic factors. Proposition 15.8 is used to obtain
a bound on the log determinant function in Theorem 10.
Set λ to a small number, we obtain

E REGT = E
T∑

t=1

[µt (xt ,a∗(xt ))− µt (xt ,at )] = Õ(d
√

T ).
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Matching Lower Bound

Theorem 12 (Thm 17.13)

Given any integer d ≥ 1 and T ≥ 1, there exists a (noncontextual)
stochastic linear bandit problem with 2d arms corresponding to
feature vectors {±1}d , and reward r ∈ [−0.5,0.5]. So that regret of
any bandit algorithm is at least

min
(

0.05T ,0.12d
√

T
)
.
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Proof of Theorem 12 (I/III)
Consider 2d arms, represented by feature vectors
ψ(a) = a ∈ {−1,1}d . The reward r of pulling arm a (without context)
is in {−0.5,0.5}, and

E[r |a] = w>a

for some w ∈ {−ε, ε}d , where ε ∈ (0,0.5/d ] will be specified later.

Using notations of Theorem 13.24 with τ changed to w and m = 2,
PZ = {qw (r |a)}, where each qw (r |a) is a {−0.5,0.5} valued binary
random variable Bernoulli(0.5 + w>a)− 0.5. A policy π is a probability
distribution on A, and we can define qw (r |π) = Ea∼πqw (r |a).

Let θ indicate an arbitrary arm returned by a learning algorithm,
represented by its feature vector θ ∈ {±1}d . It follows that the regret
of pulling arm θ is

Q(θ,w) =
d∑

j=1

Qj(θ,w), Qj(θ,w) = ε− wjθj .
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Proof of Theorem 12 (II/III)
This means that for w ∼j w ′ and w 6= w ′ (w ′ ∼j w means that w ′ and
w are identical except at the j-th component):

Qj(θ,qw ) + Qj(θ,qw ′) ≥ 2ε.

Let w (j) = w − wjej be the vector with value zero at the j-th
component but the same value as that of w elsewhere.
Now we can let ε = min

(
0.1/d ,0.24

√
1/T

)
. Given any learning

algorithm q̂, for all w , time step t , and at represented by feature
representation in {−1,1}d :

1
2

∑
w ′∼j w

KL(qw (j)(·|q̂(St−1),St−1)||qw ′(·|q̂(St−1),St−1))

≤1
2

sup
at

∑
w ′∼j w

KL(0.5 + (w (j))>at ||0.5 + (w ′)>at )

≤2.1ε2.
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Proof of Theorem 12 (III/III)

We can now take β2
j,t = 2.1ε2 and apply Theorem 13.24. For n ≤ T ,

1
2d

∑
w

Eθ,Sn∼p(·|q̂,qw )Q(θ,qw ) ≥dε
(

1−
√

2× 2.1nε2
)

≥0.5dε = 0.5d min
(

0.1/d ,0.24
√

1/T
)
.

Since this holds for all n ≤ T , we obtain the bound.
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Suboptimality for Finite Arm Problems
Example 13

The stochastic multi-armed bandit with K arms and rewards in [0,1]
can be considered as a stochastic linear bandit, where we take
w∗ = [µ(1), . . . , µ(K )], and ψ(a, x) = ea for a ∈ {1, . . . ,K}. Therefore
we may chose B =

√
K , so that ‖w∗‖2 ≤ B. We can also choose

λ = 1 and M = 1. Theorem 10 implies

EREGT = E
T∑

t=1

[µt (xt ,a∗(xt ))− µt (xt ,at )] = Õ(K
√

T ),

which is suboptimal by a
√

K factor (ignoring log factors). In
comparison, for noncontextual stochastic linear bandit,
Algorithm 16.2 achieves a better regret of

Õ(
√

KT )

according to Theorem 16.14 and Example 16.15.
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Nonlinear Stochastic Bandits

Definition 14
The stochastic nonlinear contextual bandit is a contextual bandit
problem, where the reward at each time step t is given by

rt (a) = rt (xt ,a) = f∗(xt ,a) + εt (xt ,a),

where εt (x ,a) is a zero-mean random variable, where we assume
that f∗(x ,a) ∈ F for a known function class F : X ×A → R. Given
any f (x ,a) ∈ F , we also define

f (x) = max
a∈A

f (x ,a),

and the greedy policy of f as:

πf (x) ∈ arg max
a∈A

f (x ,a).
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Nonlinear UCB

Algorithm 3: Version Space UCB Algorithm
Input: λ, T , f0 ∈ F

1 Let F0 = {f0}
2 for t = 1,2, . . . ,T do
3 Observe xt
4 Let ft ∈ arg maxf∈Ft−1 f (xt )

5 Let at ∈ arg maxa ft (xt ,a)
6 Pull arm at and observe reward rt (xt ,at ) ∈ [0,1]
7 Let Ft be an appropriate version space based on

St = {(xs,as)}ts=1.

In general, we say Ft is a version space if f∗ ∈ Ft with high
probability. Choosing the optimal ft in a properly defined version
space is a natural generalization of upper confidence bound.
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Nonlinear UCB Generalizes Linear UCB

Proposition 15

Assume that F = {f (w , x ,a) = w>ψ(x ,a) : w ∈ Rd}. Let

Ft =
{

f (w , ·) : φt (w) ≤ φt (wt ) + β2
t
}
,

where wt = arg minw φt (w), and

φt (w) =
t∑

s=1

(w>ψ(xs,as)− rs(xs,as))2 + λ‖w‖2
2.

Then Algorithm 3 is equivalent to Algorithm 2. In particular, we have

Ft−1 = {f (w , x ,a) : ‖w − wt−1‖At−1 ≤ βt−1},

and
max

f∈Ft−1

f (xt ,a) = w>t−1ψ(xt ,a) + βt−1‖ψ(xt ,a)‖A−1
t−1
.
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Analysis of Nonlinear UCB: Eluder Coefficient

Definition 16
Given a function class F , its eluder coefficient EC(ε,F ,T ) is defined
as the smallest number d so that for any sequence {(xt ,at )}Tt=1 and
{ft}Tt=1 ∈ F :

T∑
t=2

[ft (xt ,at )− f∗(xt ,at )] ≤

√√√√d
T∑

t=2

(
ε+

t−1∑
s=1

|ft (xs,as)− f∗(xs,as)|2
)
.
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Property of Eluder Coefficient

Proposition 17 (Prop 17.20)

Assume that F ⊂ H, where H is a RKHS which does not need to be
known to the learning algorithm. For all f ∈ H, we have the feature
representation f (x ,a) = 〈w(f ), ψ(x ,a)〉. Assume
‖w(f )− w(f∗)‖H ≤ B for all f ∈ F and f − f∗ ∈ [−1,1] for all f ∈ F .
Then

EC(1,F ,T ) ≤ 2entro(1/(B2T ), ψ(X ×A)), (6)

where entro(·) is defined as

entro(λ, ψ(X ×A)) = sup
D

ln

∣∣∣∣I +
1
λ
E(x ,a)∼Dψ(x ,a)ψ(x ,a)>

∣∣∣∣ .
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Analysis of Nonlinear UCB

Lemma 18 (Lem 17.18 )

In Algorithm 3, assume that f∗ ∈ Ft−1 for all t ≤ T , and there exists f̂t
and βt > 0 such that

sup
f∈Ft

t∑
s=2

|f (xs,as)− f̂t (xs,as)|2 ≤ β2
t .

Then we have the following regret bound:

T∑
t=2

[f∗(xt )− f∗(xt ,at )] ≤

√√√√EC(ε,F ,T )

(
εT + 4

T∑
t=2

β2
t−1

)
.
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Proof of Lemma 18
We have

f∗(xt )− f∗(xt ,at )

=f∗(xt )− ft (xt ) + ft (xt ,at )− f∗(xt ,at )

≤ft (xt ,at )− f∗(xt ,at ).

The first equality used ft (xt ,at ) = ft (xt ). The inequality used the fact
that f∗ ∈ Ft−1 and thus ft (xt ) = maxf∈Ft−1 f (xt ) ≥ f∗(xt ).
We can now obtain

T∑
t=2

[f∗(xt )− f∗(xt ,at )] ≤
T∑

t=2

[ft (xt ,at )− f∗(xt ,at )]

≤

√√√√EC(ε,F ,T )
T∑

t=2

(
ε+

t−1∑
s=1

|ft (xs,as)− f∗(xs,as)|2
)

≤

√√√√EC(ε,F ,T )

(
εT + 4

T∑
t=2

β2
t−1

)
.



37

Regret Bound for Nonlinear UCB

Theorem 19 (Thm 17.19)

Assume that rt = f∗(xt ,at ) + εt , where εt is conditional zero-mean
sub-Gaussian noise: for all λ ∈ R, lnE[eλεt |Xt ,Ft−1] ≤ λ2

2 σ
2. In Algorithm 3,

we define

f̂t = arg min
f∈F

t∑
s=1

(f (xs,as)− rs)2,

Ft =

{
f ∈ F :

t∑
s=1

(f (xs,as)− f̂t (xs,as))2 ≤ β2
t

}
,

where β2
t ≥ infε>0

[
8εt(σ + 2ε) + 12σ2 ln(2N(ε,F , ‖ · ‖∞)/δ)

]
. Then with

probability at least 1− δ:

T∑
t=2

[f∗(xt )− f∗(xt ,at )] ≤

√√√√EC(ε,F ,T )

(
εT + 4

T∑
t=2

β2
t−1

)
.
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Example

Example 20

If F ⊂ H = {w>ψ(x ,a) : w ∈ Rd} can be embedded into a d
dimensional linear function class for a finite d , then we have the
following bound from Proposition 17 and Proposition 15.8:

EC(1,F ,T ) ≤ 2d ln(1 + T (BB′)2/d).

Since Theorem 5.3 implies that the covering number of F is also
Õ(d), we can obtain the following regret bound from Theorem 19:

T∑
t=2

[f∗(xt )− f∗(xt ,at )] = Õ(d
√

T ),

which is consistent with that of Theorem 10. One may also use
Proposition 15.8 to obtain bounds for nonparametric models such as
RKHS induced by RBF kernels (also see Example 15.10).
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General Nonlinear Bandits with Finite Arms

Consider the Nonlinear UCB algorithm with function class F . The
regret bound in Theorem 19 requires that the eluder coefficient of the
function class is bounded.

Assumption 21

Assume that the action space A is finite: |A| = K , and F is also
finite: |F| = N. Moreover, assume realizability: f∗ ∈ F .

We show that under Assumption 21, it is possible to design a bandit
algorithm with regret bound which does not depend on the eluder
coefficient of the function class.
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Feel Good Thompson Sampling

Algorithm 4: Feel-Good Thompson Sampling for Contextual Bandits
Input: p0, T

1 for t = 1,2, . . . ,T do
2 Observe xt ∈ X
3 Draw ft ∼ p(f |St−1) according to

p(f |St−1) ∝ p0(f ) exp

(
−

t−1∑
s=1

L(f , xs,as, rs)

)
, (7)

where L(f , x ,a, r) = −λf (x) + η(f (x ,a)− r)2 and p0 is a prior
on F

4 Pull arm at = πft (xt ) ∈ arg maxa ft (xt )
5 Observe reward rt ∈ [0,1]
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Regret Bound

Theorem 22 (Simplification of Thm 17.30)

Under Assumption 21 (|F| = N, |A| = K , and f∗ ∈ F). Assume that
f ∈ [0,1] for all f ∈ F , and η ≤ 0.5, then the following bound holds for
Algorithm 4:

E REGT ≤
ln N
λ

+
λT
4

+
λK
η

T .

Note: Theorem 17.30 can also handle infinite action and infinite
function class. Taking η = 0.5 and λ =

√
ln N/(KT ), we obtain

E REGT = O(
√

KT ln N).

It doesn’t depend on the eluder coefficient of F , and matches the
lower bound up to log factors.
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Lower Bound: Nonlinear Bandit with Finite Arms

Theorem 23 (Thm 17.33)

Consider K ≥ 2 and d ≥ 1. There exists a bandit problem with {0,1}
valued rewards, such that the realizable condition holds with |A| = K ,
|F| = K d , so that the expected regret of any bandit algorithm q̂ is at
least

min
(

0.02T ,0.06
√

KdT
)
.
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Pure Exploration Problem

Consider a stochastic contextual bandit problem, in which the context
comes from a fixed distribution: x ∼ D.
Let πE be a bandit policy, referred to as an exploration policy.

Definition 24
Given any integer T , the goal of the pure exploration problem in
contextual bandit is to design an exploration policy πE , and draw T
samples

xt ∼ D, at ∼ πE (·|xt ), (t = 1, . . . ,T ),

so that one can learn a bandit policy π̂ from the samples with small
regret defined below:

REG(π̂) = Ex∼DEa∼π̂(·|x)[f∗(x)− f∗(x ,a)],

where f∗ is the true value function.
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Regret Bound for Pure Exploration

Proposition 25 (Simplified from Prop 17.37)

Under Assumption 21 (|F| = N, |A| = K and f∗ ∈ F). Assume that the
context x are drawn from a fixed distribution D on X . Let πE be the
exploration policy that draws action uniformly at random, then for all f ∈ F :

REG(πf ) ≤ +2
√

KEx∼DEa∼πE (·|x)(f (x ,a)− f∗(x ,a))2.

where πf is the greedy policy of f : πf (x) = arg maxa f (x ,a).

The result reduces pure exploration contextual bandit to supervised least
squares regression. Since Gibbs algorithm output f̂ satisfies

EEa∼πE (·|x)(f̂ (x ,a)− f∗(x ,a))2 = O(ln N/T ),

we obtain the following result for Gibbs algorithm:

EREG(π̂) = O(
√

K ln N/T ),

which matches the bound for Feel Good Thompson Sampling.
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Proof of Proposition 25

We note that

Ex∼D [f∗(x)− f∗(x , πf (x))]

≤Ex∼D [f∗(x , πf∗(x))− f (x , πf∗(x)) + f (x , πf (x))− f∗(x , πf (x))]

≤2Ex∼D sup
a∈A
|f (x ,a)− f∗(x ,a)|

≤2
√

Ex∼D sup
a∈A

(f (x ,a)− f∗(x ,a))2

≤2
√

KEx∼DEa∼πE (·|x) (f (x ,a)− f∗(x ,a))2.

The first inequality used the fact that 0 ≤ −f (x , πf∗(x)) + f (x , πf (x)),
which follows from the definition of greedy policy πf . The third
inequality used Jensen’s inequality and the concavity of

√
·. This

implies the desired bound.
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Summary (Chapter 17)

I Contextual bandit
I adversarial and stochastic

I Policy based Method
I EXP4
I control exploration with randomization or reward bias

I Linear Contextual Bandit
I value based

I Linear UCB
I uniform confidence interval
I handles infinite many arms but can be suboptimal for finite arm case

I Nonlinear UCB
I Thompson Sampling and Pure Exploration


