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Multi-armed Bandits

Mathematical Analysis of Machine Learning Algorithms
(Chapter 16)
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Multi-armed Bandits

In the multi-armed bandit (or MAB) problem, we consider K arms.
The environment generates a sequence of reward vectors for time
steps t ≥ 1 as rt = [rt (1), . . . , rt (K )]. Each rt (a) is associated with an
arm a ∈ {1, . . . ,K}. An arm a is also referred to as an action.

MAB
At each time step t = 1,2, . . . ,T ,
I The player pulls one of the arms at ∈ {1, . . . ,K}.
I The environment returns the reward rt (at ), but does not reveal

information on any other arm a 6= at .

At each time t , a (randomized) bandit algorithm takes the historic
observations observed so far, and maps it to a distribution π̂t−1 over
actions a ∈ {1, . . . ,K}. We then draw a random action at (arm) from
π̂t−1. Here π̂t−1 is referred to as policy.
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Adversarial Bandit
In adversarial bandit, we are given an arbitrary reward sequence
{[r1(1), . . . , rt (K )] : t ≥ 1} a priori. For this reward sequence, the
expected cumulative reward of a randomized bandit algorithm is

E
T∑

t=1

rt (at ),

where E is over the internal randomization of the bandit algorithm.

Regret

REGT = max
a

T∑
t=1

rt (a)− E
T∑

t=1

rt (at ). (1)

If the algorithm pulls a single arm at deterministically at any time step:

REGT = max
a

T∑
t=1

rt (a)−
T∑

t=1

rt (at ).
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Stochastic Bandit
In stochastic bandit, we assume that the reward rt (a) is drawn
independently from a distribution Da, with mean
µ(a) = Ert (a)∼Da [rt (a)]. In this setting, the goal is to find a that
maximizes the expected reward µ(a).

Regret

REGT = T max
a
µ(a)− E

T∑
t=1

µ(at ). (2)

The regret is defined for each realization of the stochastic rewards;
the expectation is with respect to the randomness of the algorithm.

If the algorithm has deterministic output at at each time t , then

REGT = T max
a
µ(a)−

T∑
t=1

µ(at ).



5

Expected Regret Bound for Stochastic Bandit

We can further include randomization over data into the regret of
stochastic bandit, by considering the following expected regret over
all possible realizations of observed data.

Expected Regret

E REGT = T max
a
µ(a)− E

T∑
t=1

µ(at ),

where the expectation is with respect to both the data and the internal
randomization of the learning algorithm.
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Upper Confidence Bound

An important algorithm for stochastic bandit is Upper Confidence
Bound (UCB), which is a deterministic algorithm.

In this method, we define for each a = 1, . . . ,K

n̂t (a) =
t∑

s=1

1(as = a), µ̂t (a) =
1

n̂t (a)

t∑
s=1

rs(as)1(as = a), (3)

and a properly defined ct (a), so that the following upper confidence
bound holds with high probability at time t .

Upper Confidence Bound

Given any optimal arm a∗ ∈ arg maxa µ(a):

µ(a∗) ≤ µ̂t−1(a∗) + ĉt−1(a∗).
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UCB Algorithm

Algorithm 1: UCB Algorithm
Input: K and T ≥ K

1 for a = 1, . . . ,K do
2 Let n̂0(a) = 0
3 Let µ̂0(a) = 0

4 for t = 1,2, . . . ,T do
5 if t ≤ K then
6 Let at = t

7 else
8 Let at ∈ arg maxa[µ̂t−1(a) + ĉt−1(a)] according to (3)

9 Pull arm at and observe reward rt (at )
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UCB Analysis: Generic High Probability Result

Lemma 1 (Lem 16.2 )

Let a∗ ∈ arg maxa µ(a). Let

δ1 = Pr [∃t > K : µ(a∗) > µ̂t−1(a∗) + ĉt−1(a∗)]

be the probability that the upper confident bound fails on a∗. Let

δ2 = Pr
[
∃t > K & a ∈ {1, . . . ,K} \ {a∗} : µ(a) < µ̂t−1(a)− ĉ′t−1(a)

]
be the probability that the lower confident bound fails on a 6= a∗. Then
for Algorithm 1, we have with probability at least 1− δ1 − δ2:

REGT ≤
K∑

a=1

[µ(a∗)− µ(a)] +
T∑

t=K +1

[ĉt−1(at ) + ĉ′t−1(at )]1(at 6= a∗).
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Proof of Lemma 1
We have with probability 1− δ1 − δ2, the following hold for all t > K :

µ(a∗) ≤µ̂t−1(a∗) + ĉt−1(a∗), (upper confidence bound)
µ̂t−1(at )1(at 6= a∗) ≤[µ(at ) + ĉ′t−1(at )]1(at 6= a∗).

(lower confidence bound)

It follows that for all t > K :

µ(a∗)1(at 6= a∗)
≤[µ̂t−1(a∗) + ĉt−1(a∗)]1(at 6= a∗) (upper confidence bound)
≤[µ̂t−1(at ) + ĉt−1(at )]1(at 6= a∗) (UCB algorithm)
≤[µ(at ) + ĉ′t−1(at ) + ĉt−1(at )]1(at 6= a∗). (lower confidence bound)

For t ≤ K , we have

µ(a∗) = µ(at ) + [µ(a∗)− µ(at = t)].

We obtain the bound by summing over t = 1 to t = T .
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Remarks

The analysis of bandits in Lemma 1 is similar to the empirical process
analysis of ERM. This technique can be used in other bandit
problems such as linear bandits.
I We note that although the algorithm uses an upper confidence

bound, it only requires the bound to hold for the optimal arm a∗.
I The regret bound relies on both upper confidence bound, and

lower confidence bound.
I The lower confidence bound needs to hold for all arms a, which

implies that it holds for at . However, the upper confidence bound
does not have to satisfy for all at .

I Given upper and lower confidence bounds, the regret bound for
MAB becomes an estimation of the summation of the confidence
bounds.
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Regret for Bounded Reward

Theorem 2 (Thm 16.3)

Assume that rewards rt (a) ∈ [0,1]. Let a∗ ∈ arg maxa µ(a). With a
choice of

ĉt (a) =

√
ln(2(n̂t (a) + 1)2/δ)

2n̂t (a)
,

we have with probability at least 1− δ:

REGT ≤ (K − 1) +
√

8 ln(2KT 2/δ)(T − K )K .
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Proof of Theorem 2 (I/III)
Given any integer m ≥ 1 and a ∈ {1, . . . ,K}. We know that the
sequence r(at )1(at = a) satisfies the sub-Gaussian bound in
Theorem 13.3 with σi = 0.51(ai = a). This means that∑t

i=1 σ
2
i = 0.25n̂t (a). By letting σ = 0.5

√
m for a constant m, and

consider the event n̂t (a) = m, we obtain with probability at most
0.5δ/(m + 1)2:

∃t ≥ 1 : µ(a) > µ̂t (a) + ĉt (a) & n̂t (a) = m.

Similarly, with probability at most (0.5/K )δ/(m + 1)2:

∃t ≥ 1 : µ(a) < µ̂t (a)− ĉ′t (a) & n̂t (a) = m,

where the lower confidence interval size is defined as

ĉ′t (a) =

√
ln(2K (n̂t (a) + 1)2/δ)

2n̂t (a)
.
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Proof of Theorem 2 (II/III)
It follows that the failure probability of upper confidence bound is given by

Pr [∃t > K : µ(a∗) > µ̂t (a∗) + ĉt (a∗)]

≤
∞∑

m=1

Pr [∃t > K : n̂t (a∗) = m & µ(a∗) > µ̂t (a∗) + ĉt (a∗)]

≤
∞∑

m=1

0.5δ/(m + 1)2 ≤ 0.5δ.

Moreover, the failure probability of lower confidence bound is given by

Pr [∃t > K & a ∈ {1, . . . ,K} : µ(a) < µ̂t (a)− ĉ′t (a)]

≤
K∑

a=1

Pr [∃t > K : µ(a) < µ̂t (a)− ĉ′t (a)]

≤
K∑

a=1

∞∑
m=1

Pr [∃t > K : n̂t (a) = m & µ(a) < µ̂t (a)− ĉ′t (a)]

≤
K∑

a=1

∞∑
m=1

δ

2K (m + 1)2 ≤ δ/2.
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Proof of Theorem 2 (III/III)
The following bound follows from Lemma 1. With probability at least 1− δ:

T∑
t=1

[µ(a∗)− µ(at )]−
K∑

a=1

[µ(a∗)− µ(a)] ≤
T∑

t=K +1

[ĉt−1(at ) + ĉ′t−1(at )]

≤2
T∑

t=K +1

√
ln(2K (n̂t−1(at ) + 1)2/δ)

2n̂t−1(at )

=2
K∑

a=1

T∑
t=K +1

√
ln(2K (n̂t−1(at ) + 1)2/δ)

2n̂t−1(at )
1(at = a)

(a)
=2

K∑
a=1

n̂T (a)−1∑
m=1

√
ln(2K (m + 1)2/δ)

2m
≤ 2

K∑
a=1

∫ n̂T (a)−1

0

√
ln(2K n̂T (a)2/δ)

2t
dt

=4
K∑

a=1

√
ln(2K n̂T (a)2/δ)(n̂T (a)− 1)

2
≤ 4

√
ln(2KT 2/δ)(T − K )K

2
.

Therefore
K∑

a=1

√
n̂T (a)− 1 ≤

√√√√K
K∑

a=1

(n̂T (a)− 1) =
√

K (T − K ).
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Example 3 (Multiplicative UCB)

Assume in Theorem 2, µ(a∗) ≈ 0. In such case, we can use the
following multiplicative Chernoff bound in Theorem 13.5 to obtain an
upper confidence bound. We know that with probability at most 1− δ:

µ(a) ≤ e
e − 1

µ̂t (a) +
e ln(1/δ)

(e − 1)n̂t (a)
& n̂t (a) = m.

This implies that we may use an upper confidence bound

ĉt (a) =
1

e − 1
µ̂t (a) +

e ln(2(n̂t (a) + 1)2/δ)

(e − 1)n̂t (a)

in Algorithm 1.

In order to obtain a better regret bound than that of Theorem 2, one also
needs to use the multiplicative Chernoff bound for the lower confidence
interval, and then repeat the analysis of Theorem 2 with such a
multiplicative lower confidence interval bound.
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Example: sub-Gaussian UCB

Example 4

Assume for each arm a, the reward rt (a) is a sub-Gaussian random
variable, but different arms have different reward distributions:

lnE exp(λrt (a)) ≤ λErt (a) +
λ2

2
M(a)2,

where M(a) is known. Then one can obtain a bound similar to
Theorem 2, with arm dependent UCB estimate involving M(a).
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Gap-dependent Bound

Lemma 5 (Lem 16.6 )

Let a∗ ∈ arg maxa µ(a). Let

δ1 = Pr [∃t > K : µ(a∗) > µ̂t−1(a∗) + ĉt−1(a∗)] ,

δ2 = Pr
[
∃t > K ,a ∈ {1, . . . ,K} \ {a∗} : µ(a) < µ̂t−1(a)− ĉ′t−1(a)

]
.

Define ∆(a) = µ(a∗)− µ(a), and

T (a) = max {m : ∆(a) ≤ ĉt−1(a) + ĉ′t−1(a), n̂t−1(a) = m,K < t ≤ T} ∪ {0}.

Then for Algorithm 1, we have with probability at least 1− δ1 − δ2:

REGT ≤ inf
∆0>0

[
K∑

a=1

T (a)∆(a)1(∆(a) > ∆0) + (T − K )∆0

]
+

K∑
a=1

∆(a).
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Some Intuitions

In Lemma 5:
I δ1: failure probability for the upper confidence bound.
I δ2: failure probability for the lower confidence bound.
I T (a): after we have pulled arm a for more than T (a) times, the

confidence interval for a becomes smaller than the gap ∆(a).

The definition of T (a) implies that T (a) is the maximum number of
times that one will pull a particular arm a.

The regret caused by choosing a is upper bounded by T (a)∆(a).
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Proof of Lemma 5 (I/II)

The proof of Lemma 1 shows that with probability at least 1− δ, for all
t ≥ K + 1:

µ(a∗) ≤ µ(at ) + [ĉ′t−1(at ) + ĉt−1(at )]1(at 6= a∗),

which implies that

∆(at ) ≤ [ĉ′t−1(at ) + ĉt−1(at )]1(at 6= a∗).

Using the assumption of the lemma, we obtain for all a 6= a∗ and
1 ≤ t ≤ T , n̂t−1(a)1(at = a) ≤ T (a).
It follows that for all a 6= a∗, let t be the last time such that at = a,
then t ≤ T and n̂T (a) = n̂t−1(at ) + 1 ≤ T (a) + 1.
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Proof of Lemma 5 (II/II)

We thus obtain the following regret bound for any ∆0 ≥ 0:

T∑
t=1

[µ(a∗)− µ(at )] =
K∑

a=1

n̂T (a)∆(a)

≤
K∑

a=1

∆(a) +
K∑

a=1

(n̂T (a)− 1)∆0 +
K∑

a=1

(n̂T (a)− 1)∆(a)1(∆(a) > ∆0)

≤
K∑

a=1

∆(a) + (T − K )∆0 +
K∑

a=1

T (a)∆(a)1(∆(a) > ∆0).

The second inequality used
∑K

a=1 n̂T (a) = T − K and
n̂T (a)− 1 ≤ T (a). This implies the bound.
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Regret for Bounded Reward

Theorem 6 (Thm 16.7)

Assume that the reward rt (a) ∈ [0,1]. Let a∗ ∈ arg maxa µ(a). With a
choice of

ĉt (a) =

√
ln(2(n̂t (a) + 1)2/δ)

2n̂t (a)
,

we have

REGT ≤ inf
∆0>0

[
(T − K )∆0 +

K∑
a=1

2 ln(2KT 2/δ)

∆(a)
1(∆(a) > ∆0)

]

+
K∑

a=1

∆(a).
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Proof of Theorem 6
From the proof of Theorem 2, we know that with the choice of

ĉ′t (a) =

√
ln(2K (n̂t (a) + 1)2/δ)

2n̂t (a)
,

the inequality ∆(a) ≤ ĉt−1(a) + ĉ′t−1(a) in the definition of T (a)
implies that

∆(a) ≤

√
2 ln(2KT 2/δ)

n̂t−1(a)
.

This implies that

n̂t−1(a) ≤ 2 ln(2KT 2/δ)

∆(a)2 .

Therefore

T (a) ≤ 2 ln(2KT 2/δ)

∆(a)2 .

This implies the desired result from Lemma 5.
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Example: Gap Independent Bound

Example 7

The gap dependent regret bound of Theorem 6 implies the gap
independent regret bound of Theorem 2.
In fact, if we take

∆0 =

√
K ln(KT/δ)

T
,

then we obtain a regret of

REGT = O
(√

KT ln(KT/δ)
)

from Theorem 6.
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Example: Better Regret

Example 8

We may take ∆0 = 0 in the gap dependent regret bound of
Theorem 6, and obtain

REGT ≤
K∑

a=1

2 ln(2KT 2/δ)

∆(a)
+ K .

This implies Õ(1) regret which depends on the smallest gap, instead
of Õ(

√
T ) regret for gap-independent case.
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Expected Regret (Analogy of Lemma 5)
Lemma 9 (Lem 16.10 )

Let a∗ ∈ arg maxa µ(a). For t > K , define

δ1(t) = Pr [µ(a∗) > µ̂t−1(a∗) + ĉt−1(a∗)] ,

δ2(t) = Pr
[
∃a ∈ {1, . . . ,K} \ {a∗} : µ(a) < µ̂t−1(a)− ĉ′t−1(a)

]
,

and let
δ =

∑
t>K

[δ1(t) + δ2(t)].

Define ∆(a) = µ(a∗)− µ(a), M = supa ∆(a), and

T (a) = max {m : ∆(a) ≤ ĉt−1(a) + ĉ′t−1(a), n̂t−1(a) = m,K < t ≤ T} ∪ {0}.

Then for Algorithm 1, we have

E REGT ≤ inf
∆0>0

[
K∑

a=1

T (a)∆(a)1(∆(a) > ∆0) + (T − K )∆0

]
+ (K + δ)M.
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Expected Regret for Bounded Reward

Theorem 10 (Thm 16.11)

Assume that the reward rt (a) ∈ [0,1]. Let a∗ ∈ arg maxa µ(a). With a
choice of

ĉt (a) =

√
α ln t

2n̂t (a)

for α > 1. We have

E REGT ≤ inf
∆0>0

[
K∑

a=1

2α ln(T )

∆(a)
1(∆(a) > ∆0) + T ∆0

]
+
α + 1
α− 1

(K + 1).
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Gap-dependent Lower Bound

Theorem 11 (Thm 16.12)

Assume rt (a) ∈ {0,1}. Consider an algorithm such that ∀β ∈ (0,1),
limT→∞(REGT/T β) = 0, then

lim inf
T→∞

E [
∑T

t=1 1(at = a)]

ln T
≥ 1

KL(µ(a), µ∗)

for all a, where µ∗ = maxa µ(a).

The result implies that

lim inf
T→∞

E REGT

ln T
≥

K∑
a=1

∆(a)

KL(µ(a), µ∗)
1(µ(a) < µ∗).
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Compare UCB Upper Bound to Lower Bound

Since KL(µ(a), µ∗)
−1 = Ω(∆(a)−2), it follows that the UCB bound in

Theorem 10 has the worst case optimal dependency on the gap ∆(a)
up to a constant.

For Gap-independent bound, by taking ∆0 = O(
√

K ln(T )/T ) in
Theorem 10, we can obtain a gap-independent expected regret
bound similar to Theorem 2:

E REGT = O
(√

KT ln(T )
)
.

The lower bound, stated in Theorem 12, is Ω(
√

KT ).
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Gap-Independent Lower Bound

Theorem 12 (Thm 16.13)

Given K ≥ 2 and T ≥ 1. Then there exists a distribution over the
assignment of rewards rt (a) ∈ [0,1] such that the expected regret of
any algorithm (where the expectation is taken with respect to both the
randomization over rewards and the algorithm’s internal
randomization) is at least

min(0.02T ,0.06
√

KT ).
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Recall: Assouad’s Lemma for Dependent Data
Theorem 13 (d = 1 and m = K of Thm 13.24)

Let K ≥ 2 be integers, and let PZ = {qτ : τ ∈ {1, . . . ,K}} contain K
probability measures. Let Q(θ,q) be a non-negative loss function.
Assume that there exists ε, β ≥ 0 such that

∀τ ′ 6= τ : [Q(θ,qτ ) + Q(θ,qτ
′
)] ≥ ε,

and there exists q0 with the following property. Given any learning
algorithm q̂. If for all time step t, and St−1:

1
K

K∑
τ=1

KL(q0(·|q̂(St−1),St−1)||qτ (·|q̂(St−1),St−1))) ≤ β2
t ,

then
1
K

K∑
τ=1

Eθ,Sn∼p(·|q̂,qτ )Q(θ,qτ ) ≥ 0.5ε

1−

√√√√2
n∑

t=1

β2
t

 .
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Proof of Theorem 12 (I/II)

We would like to apply Theorem 13. We consider a family of K
distributions PZ = {qτ , τ = 1, . . . ,K}, and for each arm a, the
distribution qτ (a) is a Bernoulli distribution r ∈ {0,1} with mean
E[r ] = 0.5 + ε1(a = τ) with ε ∈ (0,0.1] to be determined later. We
also define q0(a) as a Bernoulli distribution r ∈ {0,1} with mean
E[r ] = 0.5.
If we pull an arm θ, we have

Q(θ,qτ ) = ε1(θ 6= τ).

It is clear that [Q(θ,qτ ) + Q(θ,qτ
′
)] ≥ ε for τ 6= τ ′. Consider n ≤ T

samples generated sequentially by an arbitrary bandit algorithm and
qτ (a), and let the resulting distribution that generates Sn as pτ (Sn),
where Sn = {a1, r1, . . . ,an, rn}.
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Proof of Theorem 12 (II/II)
Let ε = min(0.1,0.24

√
K/T ). We have for all at :

1
K

K∑
τ=1

KL(q0(at )||qτ (at )) =
1
K

K∑
τ=1

KL(q0(at )||qτ (at ))1(at = τ)

=
1
K

KL(0.5||0.5 + ε) ≤ 0.5ε2

K (0.5 + ε)(0.5− ε)
≤ 2.1

K
ε2.

Theorem 13 with β2
t = 2.1

K ε2 implies that at the end of the n-th
iteration, θ̂ of any learning algorithm satisfies

1
K

K∑
τ=1

EqτEθ̂ Q(θ̂,qτ ) ≥0.5ε
(

1−
√

2× 2.1(n/K )ε2
)

≥0.25ε = 0.25 min
(

0.1,0.24
√

K/T
)
.

The second inequality used (n/K )ε2 ≤ 0.242. Since this holds for all
steps n ≤ T , we obtain the desired bound.
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Stochastic Linear Bandit

In MAB, the UCB algorithm has regret scale with K . This might not
be desirable for problems that contain many arms.

In order to deal with such problems, we need to impose additional
structures that model correlations among arms. A popular model for
such problems is stochastic linear bandits, which allow large action
(arm) space. In this section, we assume that the set of arms (or
actions) is A, which is finite: |A| = K .

Stochastic Linear Bandit
Each time, we pull one arm a ∈ A. We also know a feature vector
φ(a) ∈ H (where H is an inner product space) so that the expected
reward is a linear function

µ(a) = θ>∗ ψ(a)

with an unknown parameter θ∗ ∈ H to be estimated.
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Arm Elimination for Stochastic Linear Bandits

Algorithm 2: Arm Elimination for Stochastic Linear Bandit
Input: A, {ψ(a) : a ∈ A}

1 Let A0 = A
2 for ` = 1,2, . . . ,L do
3 Set parameters λ`,T`, β`,n`, η`
4 Use Algorithm 9.1 (with λ = λ`,n = n`, η = η`) to obtain a

policy
∑m`

i=1 π`,i1(a = a`,i) with m` ≤ n` examples
{a`,s ∈ A`−1}

5 For each i = 1, . . . ,T`, pull a`,i for J` = dT`π`,ie times, and
observe rewards r`,i,j ∈ [0,1] (j = 1, . . . , J`)

6 Let θ` = arg minθ
∑m`

i=1
∑J`

j=1

[
(θ>ψ(a`,i)− r`,i,j)2 + λ`‖θ‖22

]
7 Let a` = arg maxa∈A`−1 θ

>
` ψ(a)

8 Let A` = {a ∈ A`−1 : θ>` ψ(a) ≥ θ>` ψ(a`)− β`}
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Theorem 14 (Regret Bound, Thm 16.14)

Assume that we know ‖θ∗‖2 ≤ B. Let a∗ ∈ arg maxa∈A µ(a). Given η > 0.
For each ` ≥ 1 we set

λ` = α2/(B2T`), T` = 2`−1,

n` = d8entro(λ`, ψ(A))e, η` = min(0.1,0.1/ dim(λ`, ψ(A))),

β` = 2

(
α +

√
ln(2K (`+ 1)2/δ)

2

)√
4 dim(λ`, ψ(A))

T`

in Algorithm 2. We also define β0 = 0.5. It follows that ∀` ≥ 0, a∗ ∈ A` and

sup{µ(a∗)− µ(a) : a ∈ A`} ≤ 2β`.

This implies that after iteration L, and we have pulled total number of
T ≤ (2L − 1) +

∑L
`=1 n` arms, with probability at least 1− δ:

REGT ≤ 2
L∑

`=1

(n` + T`)β`−1.
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Interpretation of Theorem 14

For finite dimensional linear bandits, we can take dim(H) = d and
α = 1 in Theorem 14. Proposition 15.8 implies that

dim(λ`, ψ(A)) ≤ d , entro(λ`, ψ(A)) ≤ d ln(1 + (BB′)2/(λ`d)) = O(d`),

where B′ = supa ‖ψ(a)‖2. We thus have n` = O(d ln T ).

Regret Bound of Theorem 14

REGT = O
(√

Td ln(KT )
)
.

If we ignore the log-factors, this generalizes the result of MAB. In fact,
we note that MAB can be regarded as a linear bandit with
ψ(a) = ea ∈ RK , where ea is the vector with value 1 at component a,
and value 0 elsewhere. Therefore with d = K , we recover MAB
results up to logarithmic factors.
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Thompson Sampling

Thompson sampling1 is another popular algorithm for bandit
problems with a Bayesian interpretation.

The basic idea is to consider a prior distribution on the mean of the
reward distribution of every arm, and at any time step, sample a
mean from the posterior for each arm, then pick the arm with the
highest sampled mean.

In practice, it will be convenient to use a model so that the posterior is
simple. This can be achieved with conjugate priors.

1W. R. Thompson (1933). “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples”. In: Biometrika 25.3/4,
pp. 285–294.
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Thompson Sampling (Gaussian)

We can assume a Gaussian prior and reward likelihood:

µ(a) ∼ N(0,1), rt (a) ∼ N(µ(a),1).

Then the posterior for arm a after time step t − 1 is given by the
normal distribution

N(µ̂t−1(a), V̂t−1(a)),

where

µ̂t−1(a) =

∑t−1
s=1 1(as = a)rs(as)

1 +
∑t−1

s=1 1(as = a)
, V̂t−1(a) =

1
1 +

∑t−1
s=1 1(as = a)

.

(4)
This leads to Algorithm 3.
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Algorithm

Algorithm 3: Thompson Sampling (Gaussian)
Input: K and T

1 for t = 1,2, . . . ,T do
2 for a = 1, . . . ,K do
3 Sample µ̃t (a) ∼ N(µ̂t−1(a), V̂t−1(a)) according to (4)

4 Let at = arg maxa µ̃t (a)
5 Pull arm at and observe reward rt (at )

Regret bound2

REGT = O(
√

TK ln K )

2S. Agrawal and N. Goyal (2013). “Further optimal regret bounds for Thompson
sampling”. In: Artificial intelligence and statistics. Ed. by C. M. Carvalho and
P. Ravikumar. Vol. 31. PMLR, pp. 99–107.
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EXP3 for Adversarial MAB

Algorithm 4: EXP3
Input: K , T , γ ∈ (0,1]

1 for a = 1, . . . ,K do
2 Let w0(a) = 1

3 for t = 1,2, . . . ,T do
4 Let wt−1 =

∑K
a=1 wt−1(a)

5 for a = 1, . . . ,K do
6 Let π̂t (a) = (1− γ)wt−1(a)/wt−1 + γ/K

7 Sample at according to π̂t (·)
8 Pull arm at and observe reward rt (at ) ∈ [0,1]
9 for a = 1, . . . ,K do

10 Let r̂t (a,at ) = rt (at )1(a = at )/π̂t (at )
11 Let wt (a) = wt−1(a) exp(γ r̂t (a,at )/K )
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Regret Bound

The following regret bounds hold for the EXP3 algorithm, with regret
defined in (1).

Theorem 15 (Thm 16.17)

Consider Algorithm 4. Let G∗ = maxa
∑T

i=1 rt (a). We have the
following bound for the adversarial regret (1):

REGT ≤ (e − 1)γG∗ +
K ln K
γ

.
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Interpretation of the Bound

If we take

γ =

√
K ln K

(e − 1)g

for some g ≥ max(G∗,K ln K ) in Theorem 15, then we obtain a bound

REGT ≤ 2
√

e − 1
√

gK ln K .

In particular, with g = T , we have

REGT ≤ 2
√

e − 1
√

TK ln K .
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Summary (Chapter 16)

I Multi-armed Bandits
I adversarial MAB
I stochastic MAB

I UCB algorithm for stochastic MAB
I High probability analysis
I upper confidence bound for a∗
I lower confidence bound for all a
I regret bound is summation of the confidence bounds

I Expected UCB bound
I Gap dependent versus Gap independent bounds
I Near optimal regret but not optimal

I Thompson Sampling
I EXP3 for Adversarial MAB


