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Online Aggregation and Second Order Algorithms

Mathematical Analysis of Machine Learning Algorithms
(Chapter 15)
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Log-Loss for Density Estimation
Consider conditional density estimation with log-loss
(negative-log-likelihood), where the loss function is

φ(w ,Z ) = − ln p(Y |w ,X ).

Example 1

For discrete y ∈ {1, . . . ,K}, we have

p(y |w , x) =
exp(fy (w , x))∑K

k=1 exp(fk (w , x))
,

and (let Z = (x , y)):

φ(w ,Z ) = −fy (w , x) + ln
K∑

k=1

exp(fk (w , x)).
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Example 2 (More Log-Loss Example)

For least squares regression with noise variance σ2, we may have

p(y |w , x) =
1√
2πσ

exp

(
−(y − f (w , x))2

2σ2

)
,

and (let Z = (x , y)):

φ(w ,Z ) =
(y − f (w , x))2

2σ2 + ln(
√

2πσ).

We may also consider the noise as part of the model parameter, and
let

p(y |[w , σ], x) =
1√
2πσ

exp

(
−(y − f (w , x))2

2σ2

)
φ([w , σ],Z ) =

(y − f (w , x))2

2σ2 + ln(
√

2πσ).
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Bayesian Posterior Averaging

Bayesian Posterior Distribution

Consider a prior p0(w) on Ω. Given the training data
Sn = {Z1, . . . ,Zn}, the posterior distribution is

p(w |Sn) =

∏n
i=1 p(Yi |w ,Xi)p0(w)∫

Ω

∏n
i=1 p(Yi |w ′,Xi)p0(w ′) dw ′

. (1)

The Bayesian posterior average estimator is the averaged probability
estimate over the posterior

p̂(y |x ,Sn) =

∫
Ω

p(y |w , x)p(w |Sn) dw . (2)

However, we do not assume that the Bayesian assumption holds true
in the theoretical analysis.
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Regret Bound: Property of Log-Partition Function

Proposition 3 (Prop 7.16)

Given any function U(w), we have

min
p∈∆(Ω)

[Ew∼pU(w) + KL(p||p0)] = − lnEw∼p0 exp(−U(w)),

and the solution is achieved by the Gibbs distribution

q(w) ∝ p0(w) exp(−U(w)).

Here ∆(Ω) denotes the set of probability distributions on Ω.
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Regret Bound: Conditional Density Estimation

Theorem 4 (Thm 15.3)

We have

−
T∑

t=1

ln p̂(Yt , |Xt ,St−1) = − lnEw∼p0

T∏
t=1

p(Yt |w ,Xt )

= inf
q∈∆(Ω)

[
−Ew∼q

T∑
t=1

ln p(Yt |w ,Xt ) + Ew∼q ln
q(w)

p0(w)

]
,

where ∆(Ω) is the set of probability distributions over Ω.
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Proof of Theorem 4
We have

ln p̂(Yt , |Xt ,St−1) = ln

∫
Ω

p(Yt |w ,Xt )p(w |St−1) dw

= ln

∫
Ω

∏t
i=1 p(Yi |w ,Xi )p0(w)dw∫

Ω

∏t−1
i=1 p(Yi |w ′,Xi )p0(w ′)dw ′

= lnEw∈p0

t∏
i=1

p(Yi |w ,Xi )− lnEw∈p0

t−1∏
i=1

p(Yi |w ,Xi ).

By summing over t = 1 to t = T , we obtain

T∑
t=1

ln p̂(Yt , |xt ,St−1) = lnEw∈p0

T∏
t=1

p(Yt |w ,Xt )

= sup
q

[
Ew∼q ln

T∏
t=1

p(Yt |w ,Xt )− Ew∼q ln
q(w)

p0(w)

]
,

where the second equality used Proposition 3.
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Discrete Family of Probability Distributions

Corollary 5 (Cor 15.4)

If Ω = {w1, . . .} is discrete, then

−
T∑

t=1

ln p̂(Yt , |Xt ,St−1) ≤ inf
w∈Ω

[
−

T∑
t=1

ln p(Yt |w ,Xt )− ln p0(w)

]
.

Proof.
Given any w ′ ∈ Ω, if we choose q(w) = 1 when w = w ′, and q(w) = 0
when w 6= w ′, then from Theorem 4:

− Ew∼q

T∑
t=1

ln p(Yt |w ,Xt ) + Ew∼q ln
q(w)

p0(w)
= −

T∑
t=1

ln p(Yt |w ′,Xt )− ln p0(w ′).
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Example: Finite |Ω| = N

Let p0(w) = 1/N be the uniform distribution on Ω, then we have

−
T∑

t=1

ln p̂(Yt , |Xt ,St−1) ≤ inf
w∈Ω

[
−

T∑
t=1

ln p(Yt |w ,Xt ) + ln N

]
.

This means that we have a constant regret which is independent of T .

Using online to batch conversion:

− 1
T
EST

T∑
t=1

EZ∼D ln p̂(Y |X ,St−1) ≤ inf
w∈Ω

[
−EZ∼D ln p(Y |w ,X ) +

ln N
T

]
.
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Ridge Regression

The general regret bound for Bayesian model averaging can be used
to analyze the ridge regression method. Consider the following linear
prediction problem with least squares loss:

f (w , x) = w>ψ(x),

with loss function
(y − f (w , x))2.

Consider the following ridge regression estimator:

ŵ(Sn) = arg min
w

[
n∑

i=1

(Yi − w>ψ(Xi))2 + ‖w‖2Λ0
,

]
, (3)

where Λ0 is a symmetric positive definite matrix, which is often
chosen as λI for some λ > 0 in applications.
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Bayesian Interpretation of Ridge Regression
Proposition 6 (Prop 15.5)

Consider probability model p(y |w , x) = N(w>ψ(x), σ2), with prior
p0(w) = N(0, σ2Λ−1

0 ). Then given Sn = {(X1,Y1), . . . , (Xn,Yn)}, we
have

p(w |Sn) = N(ŵ(Sn), σ2Λ̂(Sn)−1),

where ŵ(Sn) is given by (3) and

Λ̂(Sn) =
n∑

i=1

ψ(Xi)ψ(Xi)
> + Λ0.

Given x, the posterior distribution of y is

p̂(y |x ,Sn) = N
(

ŵ(Sn)>ψ(x), σ2 + σ2ψ(x)>Λ̂(Sn)−1ψ(x)
)
.

The result holds even when the Bayesian model isn’t correct.
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Proof of Proposition 6 (I/II)

It is clear that

p(w |Sn) ∝ exp

(
−

n∑
i=1

(w>ψ(Xi)− Yi)
2

2σ2 −
‖w‖2Λ0

2σ2

)
.

Note that (3) implies that

n∑
i=1

(w>ψ(Xi)− Yi)
2

2σ2 +
‖w‖2Λ0

2σ2

=
n∑

i=1

(ŵ>ψ(Xi)− Yi)
2

2σ2 +
‖ŵ‖2Λ0

2σ2 +
1

2σ2 (w − ŵ)>Λ̂(Sn)(w − ŵ). (4)
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Proof of Proposition 6 (II/II)

This implies the first desired result. Moreover, given x , and let the
random variable u = w>ψ(x) with w ∼ p(w |Sn), we have

u|x ,Sn ∼ N(ŵ>ψ(x), σ2ψ(x)>Λ̂(Sn)−1ψ(x)).

Since in posterior distribution, the observation y |u ∼ u + ε with
ε ∼ N(0, σ2), we know that

y |x ,Sn ∼ N(ŵ>ψ(x), σ2ψ(x)>Λ̂−1ψ(x) + σ2).

This implies the desired result.
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Predictive Loss Bound

Theorem 7 (Thm 15.6)

Consider the ridge regression method of (3). We have the following
result for any σ ≥ 0 and for all observed sequence ST :

T∑
t=1

[
(Yt − ŵ(St−1)>ψ(Xt ))2

bt
+ σ2 ln bt

]

= inf
w

[
T∑

t=1

(Yt − w>ψ(Xt ))2 + ‖w‖2Λ0

]
+ σ2 ln

∣∣∣Λ−1
0 ΛT

∣∣∣ ,
where

Λt = Λ0 +
t∑

s=1

ψ(Xs)ψ(Xs)>,

and bt = 1 + ψ(Xt )
>Λ−1

t−1ψ(Xt ).
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Proof of Theorem 7 (I/II)

Assume w ∈ Rd . We note that from Gaussian integration that

Ew∼p0

T∏
i=1

p(Yi |w ,Xi)

=

∫ |Λ−1
0 |
−1/2

(2π)(T +d)/2σTσd exp

(
− 1

2σ2

T∑
i=1

(Yi − w>ψ(Xi))2 −
‖w‖2Λ0

2σ2

)
dw

=
|Λ−1

0 ΛT |−1/2

(2π)T/2σT exp

(
− 1

2σ2

T∑
i=1

(Yi − ŵ(ST )>ψ(Xi))2 −
‖ŵ(ST )‖2Λ0

2σ2

)
,

where the last equation used Gaussian integration with
decomposition (4).
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Proof of Theorem 7 (II/II)
That is,

− lnEw∼p0

T∏
i=1

p(Yi |w ,Xi) = T ln(
√

2πσ) +
1
2

ln
∣∣∣Λ−1

0 ΛT

∣∣∣
+

1
2σ2

T∑
i=1

(Yi − ŵ(ST )>ψ(Xi))2 +
‖ŵ(ST )‖2Λ0

2σ2 .

Moreover, from Proposition 6, we have

T∑
i=1

− ln p(Yt |ŵ(St−1),Xt )

=
T∑

t=1

[
(Yt − ŵ(St−1)>ψ(Xt ))2

2σ2bt
+

1
2

ln(bt ) + ln(
√

2πσ)

]
.

The desired result now follows from Theorem 4.
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Regret Bound with Bounded Response

Corollary 8 (Cor 15.7)

Assume that Yt ∈ [0,M] for t ≥ 1. Consider the ridge regression
method of (3), and let

Ŷt = max(0,min(M, ŵ(St−1)>ψ(Xt ))).

We have

T∑
t=1

(Yt − Ŷt )
2 ≤ inf

w

[
T∑

t=1

(Yt − w>ψ(Xt ))2 + ‖w‖2Λ0

]
+ M2 ln

∣∣∣Λ−1
0 ΛT

∣∣∣ ,
where

ΛT = Λ0 +
T∑

s=1

ψ(Xs)ψ(Xs)>.
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Proof of Corollary 8
We can apply Theorem 7 by taking σ2 = M2. By using the following
inequality

0 ≤ 1− bt

bt
+ ln bt ,

we obtain

T∑
t=1

(Yt − Ŷt )
2 ≤

T∑
t=1

[
(Yt − Ŷt )

2 + M2 1− bt

bt
+ M2 ln bt

]

≤
T∑

t=1

[
(Yt − Ŷt )

2 + (Yt − Ŷt )
2 1− bt

bt
+ M2 ln bt

]
(5)

≤
T∑

t=1

[
(Yt − ŵ(St−1)>ψ(Xi))2

bt
+ M2 ln bt

]
,

where bt is defined in Theorem 7. Note that (5) used 1− bt ≤ 0 and
(Yt − Ŷt )

2 ≤ M2. The desired result is now a direct application of
Theorem 7.
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Estimation of Determinant

Proposition 9 (Simplification of Prop 15.8)

Given any X and ψ : X → H, where H is an inner product space.
Then for each λ > 0 and integer T , the embedding entropy of ψ(·)
can be defined as

entro(λ, ψ(X )) = sup
D

ln

∣∣∣∣I +
1
λ
EX∼Dψ(X )ψ(X )>

∣∣∣∣ .
If supX∈X ‖ψ(X )‖H ≤ B and dim(H) <∞, then

entro(λ, ψ(X )) ≤ dim(H) ln

(
1 +

B2

dim(H)λ

)
.

One can also deal with the situation of dim(H) =∞ (see
Proposition 15.8).
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Proof of Proposition 9

Let A = I + (λ)−1EX∼Dψ(X )ψ(X )> and d = dim(H), then

trace(A) ≤ d + (λ)−1EX∼Dtrace(ψ(X )ψ(X )>) ≤ d + B2/λ.

Using the AM-GM inequality, we have

|A| ≤ [trace(A)/d ]d ≤ (1 + B2/(dλ))d .
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Example

Example 10

Consider Corollary 8 with Λ0 = λI. We can use Proposition 9 to obtain

T∑
t=1

(Yt − Ŷt )
2

≤ inf
w

[
T∑

t=1

(Yt − w>ψ(Xt ))2 + λ‖w‖22

]
+ M2d ln

(
1 +

TB2

dλ

)
,

where we assume that ‖ψ(x)‖2 ≤ B, and d is the dimension of ψ(x).
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Online to Batch Conversion

Assume (Xt ,Yt ) ∼ D are iid examples. By taking expectation with
respect to D, and by using Jensen’s inequality for the concave
log-determinant function, we obtain (see Corollary 15.11) that with
Λ0 = λI, we have

EST

1
T

T∑
t=1

EX∼D (f∗(X )− f̂ (ŵ(St−1),X ))2

≤ inf
w

EX∼D

[
(f∗(X )− w>ψ(X ))2 + λ‖w‖22

]
+

M2 + σ2

T
ln

∣∣∣∣I +
T
λ
EX∼Dψ(X )ψ(X )>

∣∣∣∣ .
Note that this bound is superior to the Rademacher complexity
bound, and the best convergence rate can be achieved is O(ln T/T ).
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Exponential Model Aggregation
Consider a general loss function with Z = (X ,Y ):

φ(w ,Z ) = L(f (w ,X ),Y ),

where L(f , y) is convex with respect to f . Consider a prior p0(w) on
Ω, and the following form of Gibbs distribution (which we will also
refer to as posterior):

p(w |Sn) ∝ exp

[
−η

n∑
i=1

φ(w ,Zi)

]
p0(w), (6)

where η > 0 is a learning rate parameter. The exponential model
aggregation algorithm computes

f̂ (x |Sn) =

∫
Ω

f (w , x)p(w |Sn) dw , (7)

where p(w |Sn) is given by (6).
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Online Exponential Model Aggregation

Algorithm 1: Online Exponential Model Aggregation
Input: η > 0, {f (w , x) : w ∈ Ω}, prior p0(w)
Output: f̂ (·|ST )

1 for t = 1,2, . . . ,T do
2 Observe Xt

3 Let f̂t = f̂ (Xt |St−1) according to (7)
4 Observe Yt

5 Compute L(f̂t ,Yt )

Return: f̂ (·|ST )
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Exponential Concavity

In order to analyze Algorithm 1, we need to employ the concept of
α-exponential concavity introduced below.

Definition 11 (Def 15.12)

A convex function g(u) is α-exponential concave for some α > 0 if

e−αg(u)

is concave in u.
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Properties

Proposition 12 (Prop 15.13)

A convex function φ(u) is α exponentially concave if

α∇φ(u)∇φ(u)> ≤ ∇2φ(u).

Proof.
We have

∇2e−αφ(u) = e−αφ(u)
[
−α∇2φ(u) + α2∇φ(u)∇φ(u)>

]
≤ 0.

This implies the concavity of exp(−αφ(u)).
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Examples

Example 13

We note that if φ(u) is both Lipschitz ‖∇φ(u)‖2 ≤ G, and λ-strongly
convex, then

(λ/G2)∇φ(u)∇φ(u)> ≤ λI ≤ ∇2φ(u).

Proposition 12 implies that φ(u) is λ/G2 exponentially concave.
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Examples (cont)

Example 14

Consider the loss function L(u, y) = (u − y)2. If |u − y | ≤ M, then
L(u, y) is α-exponentially concave in u with α ≤ 1/(2M2).

Example 15

Consider a function f (·), and let L(f (·), y) = − ln f (y), then L(f (·), y) is
α exponentially concave in f (·) for α ≤ 1. This loss function is
applicable to conditional probability estimate ln f (y |x).
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Regret Bound

Theorem 16 (Thm 15.19)

Assume that L(f , y) is η-exponentially concave. Then (7) satisfies the
following regret bound:

T∑
t=1

L(f̂ (Xt |St−1),Yt ) ≤ inf
q

[
Ew∼q

T∑
t=1

L(f (w ,Xt ),Yt ) +
1
η
Ew∼q ln

q(w)

p0(w)

]
.

We note that Theorem 4 is a special case of Theorem 16, with η = 1,

L(f (w , x), y) = − ln P(y |w , x)

and f (w , x) = P(y |w , x). In this case, exp(−L(f , y)) = fy is concave in f .
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Proof of Theorem 16

Since e−ηL(f ,y) is concave in f , we obtain from Jensen’s inequality

ln

∫
e−ηL(f (w ,x),y)p(w |St−1)dw ≤ ln e−ηL(f̂ (x |St−1),y).

With (x , y) = (Xt ,Yt ), this can be equivalently rewritten as

L(f̂ (Xt |St−1),Yt ) ≤
−1
η

ln

∫
Ω exp(−η

∑t
i=1 L(f (w ,Xi),Yi))p0(w)dw∫

Ω exp(−η
∑t−1

i=1 L(f (w ,Xi),Yi))p0(w)dw
.

By summing over t = 1 to t = T , we obtain

T∑
t=1

L(f̂ (Xt |St−1),Yt ) ≤
−1
η

ln

∫
Ω

exp

(
−η

T∑
i=1

L(f (w ,Xi),Yi)

)
p0(w)dw .

Using Proposition 3, we obtain the desired result.
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Example: Log-Loss

Example 17

Theorem 4 is a special case of Theorem 16, with η = 1,

L(f (·|w , x), y) = − ln P(y |w , x)

and f (·|w , x) = P(·|w , x). In this case,

exp(−L(f (·|·), y)) = f (y |·)

is a component of f (·|·) indexed by y , and thus concave in f (·|·).
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Example: Least Squares

Example 18

Assume that L(f , y) = (f − y)2, and sup |f (w , x)− y | ≤ M. Then for
η ≤ 1/(2M2), L(f , y) is η exponentially concave. Therefore we have

T∑
t=1

(f̂ (Xt |St−1)− Yt )
2 ≤ inf

q

[
Ew∼q

T∑
t=1

(f (w ,Xt )− Yt )
2 +

1
η
Ew∼q ln

q(w)

p0(w)

]
.

In particular, if Ω is countable, then

T∑
t=1

(f̂ (Xt |St−1)− Yt )
2 ≤ inf

w∈Ω

[
T∑

t=1

(f (w ,Xt )− Yt )
2 +

1
η

ln
1

p0(w)

]
.

Model aggregation is superior to ERM for misspecified models, because the
regret with respect to the best function in the function class is still O(1/n).
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Adaptive Gradient

Algorithm 2: Adaptive SubGradient Method (AdaGrad)
Input: η > 0, w0, A0, and a sequence of loss functions `t (w)
Output: wT

1 for t = 1,2, . . . ,T do
2 Observe loss `t (wt−1)
3 Let gt = ∇`t (wt−1)

4 Let At = At−1 + gtg>t
5 Let Gt = diag(At )

1/2

6 Let w̃t = wt−1 − ηG−1
t gt

7 Let wt = arg minw∈Ω(w − w̃t )
>Gt (w − w̃t )

Return: wT
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Regret Bound

Theorem 19 (Simplification with p = 0.5, Thm 15.25)

Assume that for all t , the loss function `t : Ω→ R is convex. Then
AdaGrad method has the following regret bound:

T∑
t=1

`t (wt−1) ≤ inf
w∈Ω

T∑
t=1

`t (w) + ηtrace(diag(AT )1/2)

+
∆2
∞

2η
trace(diag(AT )1/2),

where ∆∞ = sup{‖w ′ − w‖∞ : w ,w ′ ∈ Ω} is the L∞-diameter of Ω.
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Matrix Trace Function

The proof uses the fact that h(B) = 2trace(B1/2) is concave in B,
which follows from the following result.

Theorem 20 (Thm A.18)

Let Sd
[a,b] be the set of d × d symmetric matrices with eigenvalues in

[a,b]. If f (z) : [a,b]→ R is a convex function, then

trace(f (W ))

is a convex function on Sd
[a,b]. This implies that for W ,W ′ ∈ Sd

[a,b]:

trace(f (W ′)) ≥ trace(f (W )) + trace(f ′(W )(W ′ −W )),

where f ′(z) is the derivative of f (z).
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Proof of Theorem 19 (I/II)
Consider w ∈ Ω. The convexity of `t implies that

−2η(wt−1 − w)>gt ≤ 2η[`t (w)− `t (wt−1)].

Let Gt = diag(At )
1/2. We obtain the following result:

(w̃t − w)>Gt (w̃t − w)

=(wt−1 − ηG−1
t gt − w)>Gt (wt−1 − ηG−1

t gt − w)

=(wt−1 − w)>Gt (wt−1 − w)− 2η(wt−1 − w)>gt + η2g>t G−1
t gt

≤(wt−1 − w)>Gt (wt−1 − w) + 2η[`t (w)− `t (wt−1)] + η2g>t G−1
t gt

=(wt−1 − w)>Gt−1(wt−1 − w) + (wt−1 − w)>(Gt −Gt−1)(wt−1 − w)

+ 2η[`t (w)− `t (wt−1)] + η2trace((G2
t )−1/2(G2

t −G2
t−1))

≤(wt−1 − w)>Gt−1(wt−1 − w) + (wt−1 − w)>(Gt −Gt−1)(wt−1 − w)

+ 2η[`t (w)− `t (wt−1)] + 2η2[trace(Gt )− trace(Gt−1)].
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Proof of Theorem 19 (II/II)
We can use the fact that
(wt − w)>Gt (wt − w) ≤ (w̃t − w)>Gt (w̃t − w), and then sum over
t = 1 to t = T . This implies that

T∑
t=1

`t (wt−1) ≤
T∑

t=1

`t (w) +
RT

2η
+ η [trace(GT )− trace(G0)] ,

where

RT =(w0 − w)>G0(w0 − w) +
T∑

t=1

(wt−1 − w)>(Gt −Gt−1)(wt−1 − w)

≤∆2
∞trace(G0) +

T∑
t=1

∆2
∞trace(|Gt −Gt−1|)

≤∆2
∞trace(GT ).

In the first inequality, we note that Gt −Gt−1 is a diagonal matrix.
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Interpretation of Theorem 19

AdaGrad is more effective than SGD when the gradient is sufficiently
sparse, which means that trace(diag(AT )1/2) can be similar to
trace(diag(AT ))1/2. In this case, Theorem 19 implies

trace(diag(AT )1/2) = O(
√

T ).

Let η = O(∆∞), then the regret bound becomes

O(∆∞
√

T ).

Since in general

∆∞ � ∆2 ≡ sup{‖w ′ − w‖2 : w ,w ′ ∈ Ω},

and in the extreme case, ∆2 can be as large as Ω(
√

d∆∞), where d
is the dimension of the model parameter. In such case, AdaGrad can
be better than SGD by a factor of

√
d .



39

Summary (Chapter 15)

I Bayesian Posterior Averaging (aggregation)
I Ridge Regression (second order optimization)
I Tow approaches are closely related
I Generalization
I Aggregation Methods
I AdaGrad


