Online Aggregation and Second Order Algorithms

Mathematical Analysis of Machine Learning Algorithms
(Chapter 15)

Log-Loss for Density Estimation

Consider conditional density estimation with log-loss (negative-log-likelihood), where the loss function is

$$
\phi(w, Z)=-\ln p(Y \mid w, X)
$$

Example 1

For discrete $y \in\{1, \ldots, K\}$, we have

$$
p(y \mid w, x)=\frac{\exp \left(f_{y}(w, x)\right)}{\sum_{k=1}^{K} \exp \left(f_{k}(w, x)\right)}
$$

and (let $Z=(x, y))$:

$$
\phi(w, Z)=-f_{y}(w, x)+\ln \sum_{k=1}^{K} \exp \left(f_{k}(w, x)\right)
$$

Example 2 (More Log-Loss Example)

For least squares regression with noise variance σ^{2}, we may have

$$
p(y \mid w, x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(y-f(w, x))^{2}}{2 \sigma^{2}}\right)
$$

and (let $Z=(x, y))$:

$$
\phi(w, Z)=\frac{(y-f(w, x))^{2}}{2 \sigma^{2}}+\ln (\sqrt{2 \pi} \sigma)
$$

We may also consider the noise as part of the model parameter, and let

$$
\begin{aligned}
p(y \mid[w, \sigma], x) & =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(y-f(w, x))^{2}}{2 \sigma^{2}}\right) \\
\phi([w, \sigma], Z) & =\frac{(y-f(w, x))^{2}}{2 \sigma^{2}}+\ln (\sqrt{2 \pi} \sigma)
\end{aligned}
$$

Bayesian Posterior Averaging

Bayesian Posterior Distribution

Consider a prior $p_{0}(w)$ on Ω. Given the training data
$\mathcal{S}_{n}=\left\{Z_{1}, \ldots, Z_{n}\right\}$, the posterior distribution is

$$
\begin{equation*}
p\left(w \mid \mathcal{S}_{n}\right)=\frac{\prod_{i=1}^{n} p\left(Y_{i} \mid w, X_{i}\right) p_{0}(w)}{\int_{\Omega} \prod_{i=1}^{n} p\left(Y_{i} \mid w^{\prime}, X_{i}\right) p_{0}\left(w^{\prime}\right) d w^{\prime}} . \tag{1}
\end{equation*}
$$

The Bayesian posterior average estimator is the averaged probability estimate over the posterior

$$
\begin{equation*}
\hat{p}\left(y \mid x, \mathcal{S}_{n}\right)=\int_{\Omega} p(y \mid w, x) p\left(w \mid \mathcal{S}_{n}\right) d w . \tag{2}
\end{equation*}
$$

However, we do not assume that the Bayesian assumption holds true in the theoretical analysis.

Regret Bound: Property of Log-Partition Function

Proposition 3 (Prop 7.16)

Given any function $U(w)$, we have

$$
\min _{p \in \Delta(\Omega)}\left[\mathbb{E}_{w \sim p} U(w)+\operatorname{KL}\left(p \| p_{0}\right)\right]=-\ln \mathbb{E}_{w \sim p_{0}} \exp (-U(w))
$$

and the solution is achieved by the Gibbs distribution

$$
q(w) \propto p_{0}(w) \exp (-U(w))
$$

Here $\Delta(\Omega)$ denotes the set of probability distributions on Ω.

Regret Bound: Conditional Density Estimation

Theorem 4 (Thm 15.3)

We have

$$
\begin{aligned}
& -\sum_{t=1}^{T} \ln \hat{p}\left(Y_{t}, \mid X_{t}, \mathcal{S}_{t-1}\right)=-\ln \mathbb{E}_{w \sim p_{0}} \prod_{t=1}^{T} p\left(Y_{t} \mid w, X_{t}\right) \\
= & \inf _{q \in \Delta(\Omega)}\left[-\mathbb{E}_{w \sim q} \sum_{t=1}^{T} \ln p\left(Y_{t} \mid w, X_{t}\right)+\mathbb{E}_{w \sim q} \ln \frac{q(w)}{p_{0}(w)}\right],
\end{aligned}
$$

where $\Delta(\Omega)$ is the set of probability distributions over Ω.

Proof of Theorem 4

We have

$$
\begin{aligned}
& \ln \hat{p}\left(Y_{t}, \mid X_{t}, \mathcal{S}_{t-1}\right)=\ln \int_{\Omega} p\left(Y_{t} \mid w, X_{t}\right) p\left(w \mid \mathcal{S}_{t-1}\right) d w \\
= & \ln \frac{\int_{\Omega} \prod_{i=1}^{t} p\left(Y_{i} \mid w, X_{i}\right) p_{0}(w) d w}{\int_{\Omega} \prod_{i=1}^{t-1} p\left(Y_{i} \mid w^{\prime}, X_{i}\right) p_{0}\left(w^{\prime}\right) d w^{\prime}} \\
= & \ln \mathbb{E}_{w \in p_{0}} \prod_{i=1}^{t} p\left(Y_{i} \mid w, X_{i}\right)-\ln \mathbb{E}_{w \in p_{0}} \prod_{i=1}^{t-1} p\left(Y_{i} \mid w, X_{i}\right)
\end{aligned}
$$

By summing over $t=1$ to $t=T$, we obtain

$$
\begin{aligned}
\sum_{t=1}^{T} \ln \hat{p}\left(Y_{t}, \mid x_{t}, \mathcal{S}_{t-1}\right) & =\ln \mathbb{E}_{w \in p_{0}} \prod_{t=1}^{T} p\left(Y_{t} \mid w, X_{t}\right) \\
& =\sup _{q}\left[\mathbb{E}_{w \sim q} \ln \prod_{t=1}^{T} p\left(Y_{t} \mid w, X_{t}\right)-\mathbb{E}_{w \sim q} \ln \frac{q(w)}{p_{0}(w)}\right]
\end{aligned}
$$

where the second equality used Proposition 3.

Discrete Family of Probability Distributions

Corollary 5 (Cor 15.4)

If $\Omega=\left\{w_{1}, \ldots\right\}$ is discrete, then

$$
-\sum_{t=1}^{T} \ln \hat{p}\left(Y_{t}, \mid X_{t}, \mathcal{S}_{t-1}\right) \leq \inf _{w \in \Omega}\left[-\sum_{t=1}^{T} \ln p\left(Y_{t} \mid w, X_{t}\right)-\ln p_{0}(w)\right] .
$$

Proof.

Given any $w^{\prime} \in \Omega$, if we choose $q(w)=1$ when $w=w^{\prime}$, and $q(w)=0$ when $w \neq w^{\prime}$, then from Theorem 4:
$-\mathbb{E}_{w \sim q} \sum_{t=1}^{T} \ln p\left(Y_{t} \mid w, X_{t}\right)+\mathbb{E}_{w \sim q} \ln \frac{q(w)}{p_{0}(w)}=-\sum_{t=1}^{T} \ln p\left(Y_{t} \mid w^{\prime}, X_{t}\right)-\ln p_{0}\left(w^{\prime}\right)$.

Example: Finite $|\Omega|=N$

Let $p_{0}(w)=1 / N$ be the uniform distribution on Ω, then we have

$$
-\sum_{t=1}^{T} \ln \hat{p}\left(Y_{t}, \mid X_{t}, \mathcal{S}_{t-1}\right) \leq \inf _{w \in \Omega}\left[-\sum_{t=1}^{T} \ln p\left(Y_{t} \mid w, X_{t}\right)+\ln N\right]
$$

This means that we have a constant regret which is independent of T. Using online to batch conversion:
$-\frac{1}{T} \mathbb{E}_{\mathcal{S}_{T}} \sum_{t=1}^{T} \mathbb{E}_{Z \sim \mathcal{D}} \ln \hat{p}\left(Y \mid X, \mathcal{S}_{t-1}\right) \leq \inf _{W \in \Omega}\left[-\mathbb{E}_{Z \sim \mathcal{D}} \ln p(Y \mid w, X)+\frac{\ln N}{T}\right]$.

Ridge Regression

The general regret bound for Bayesian model averaging can be used to analyze the ridge regression method. Consider the following linear prediction problem with least squares loss:

$$
f(w, x)=w^{\top} \psi(x)
$$

with loss function

$$
(y-f(w, x))^{2}
$$

Consider the following ridge regression estimator:

$$
\begin{equation*}
\hat{w}\left(\mathcal{S}_{n}\right)=\arg \min _{w}\left[\sum_{i=1}^{n}\left(Y_{i}-w^{\top} \psi\left(X_{i}\right)\right)^{2}+\|w\|_{\Lambda_{0}}^{2},\right], \tag{3}
\end{equation*}
$$

where Λ_{0} is a symmetric positive definite matrix, which is often chosen as $\lambda /$ for some $\lambda>0$ in applications.

Bayesian Interpretation of Ridge Regression

Proposition 6 (Prop 15.5)

Consider probability model $p(y \mid w, x)=N\left(w^{\top} \psi(x), \sigma^{2}\right)$, with prior $p_{0}(w)=N\left(0, \sigma^{2} \Lambda_{0}^{-1}\right)$. Then given $\mathcal{S}_{n}=\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right\}$, we have

$$
p\left(w \mid \mathcal{S}_{n}\right)=N\left(\hat{w}\left(\mathcal{S}_{n}\right), \sigma^{2} \hat{\Lambda}\left(\mathcal{S}_{n}\right)^{-1}\right)
$$

where $\hat{w}\left(\mathcal{S}_{n}\right)$ is given by (3) and

$$
\hat{\Lambda}\left(\mathcal{S}_{n}\right)=\sum_{i=1}^{n} \psi\left(X_{i}\right) \psi\left(X_{i}\right)^{\top}+\Lambda_{0}
$$

Given x, the posterior distribution of y is

$$
\hat{p}\left(y \mid x, \mathcal{S}_{n}\right)=N\left(\hat{w}\left(\mathcal{S}_{n}\right)^{\top} \psi(x), \sigma^{2}+\sigma^{2} \psi(x)^{\top} \hat{\Lambda}\left(\mathcal{S}_{n}\right)^{-1} \psi(x)\right) .
$$

The result holds even when the Bayesian model isn't correct.

Proof of Proposition 6 (I/II)

It is clear that

$$
p\left(w \mid \mathcal{S}_{n}\right) \propto \exp \left(-\sum_{i=1}^{n} \frac{\left(w^{\top} \psi\left(X_{i}\right)-Y_{i}\right)^{2}}{2 \sigma^{2}}-\frac{\|w\|_{\Lambda_{0}}^{2}}{2 \sigma^{2}}\right)
$$

Note that (3) implies that

$$
\begin{align*}
& \sum_{i=1}^{n} \frac{\left(w^{\top} \psi\left(X_{i}\right)-Y_{i}\right)^{2}}{2 \sigma^{2}}+\frac{\|w\|_{\Lambda_{0}}^{2}}{2 \sigma^{2}} \\
= & \sum_{i=1}^{n} \frac{\left(\hat{w}^{\top} \psi\left(X_{i}\right)-Y_{i}\right)^{2}}{2 \sigma^{2}}+\frac{\|\hat{w}\|_{\Lambda_{0}}^{2}}{2 \sigma^{2}}+\frac{1}{2 \sigma^{2}}(w-\hat{w})^{\top} \hat{\Lambda}\left(\mathcal{S}_{n}\right)(w-\hat{w}) . \tag{4}
\end{align*}
$$

Proof of Proposition 6 (II/II)

This implies the first desired result. Moreover, given x, and let the random variable $u=w^{\top} \psi(x)$ with $w \sim p\left(w \mid \mathcal{S}_{n}\right)$, we have

$$
u \mid x, \mathcal{S}_{n} \sim N\left(\hat{w}^{\top} \psi(x), \sigma^{2} \psi(x)^{\top} \hat{\Lambda}\left(\mathcal{S}_{n}\right)^{-1} \psi(x)\right)
$$

Since in posterior distribution, the observation $y \mid u \sim u+\epsilon$ with $\epsilon \sim N\left(0, \sigma^{2}\right)$, we know that

$$
y \mid x, \mathcal{S}_{n} \sim N\left(\hat{w}^{\top} \psi(x), \sigma^{2} \psi(x)^{\top} \hat{\Lambda}^{-1} \psi(x)+\sigma^{2}\right)
$$

This implies the desired result.

Predictive Loss Bound

Theorem 7 (Thm 15.6)

Consider the ridge regression method of (3). We have the following result for any $\sigma \geq 0$ and for all observed sequence \mathcal{S}_{T} :

$$
\begin{aligned}
& \sum_{t=1}^{T}\left[\frac{\left(Y_{t}-\hat{w}\left(\mathcal{S}_{t-1}\right)^{\top} \psi\left(X_{t}\right)\right)^{2}}{b_{t}}+\sigma^{2} \ln b_{t}\right] \\
= & \inf _{w}\left[\sum_{t=1}^{T}\left(Y_{t}-w^{\top} \psi\left(X_{t}\right)\right)^{2}+\|w\|_{\Lambda_{0}}^{2}\right]+\sigma^{2} \ln \left|\Lambda_{0}^{-1} \Lambda_{T}\right|
\end{aligned}
$$

where

$$
\Lambda_{t}=\Lambda_{0}+\sum_{s=1}^{t} \psi\left(X_{s}\right) \psi\left(X_{s}\right)^{\top}
$$

and $b_{t}=1+\psi\left(X_{t}\right)^{\top} \Lambda_{t-1}^{-1} \psi\left(X_{t}\right)$.

Proof of Theorem 7 (I/II)

Assume $w \in \mathbb{R}^{d}$. We note that from Gaussian integration that

$$
\begin{aligned}
& \mathbb{E}_{w \sim p_{0}} \prod_{i=1}^{T} p\left(Y_{i} \mid w, X_{i}\right) \\
= & \int \frac{\left|\Lambda_{0}^{-1}\right|^{-1 / 2}}{(2 \pi)^{(T+d) / 2} \sigma^{T} \sigma^{d}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{T}\left(Y_{i}-w^{\top} \psi\left(X_{i}\right)\right)^{2}-\frac{\|w\|_{\Lambda_{0}}^{2}}{2 \sigma^{2}}\right) d w \\
= & \frac{\left|\Lambda_{0}^{-1} \Lambda_{T}\right|^{-1 / 2}}{(2 \pi)^{T / 2} \sigma^{T}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{T}\left(Y_{i}-\hat{w}\left(\mathcal{S}_{T}\right)^{\top} \psi\left(X_{i}\right)\right)^{2}-\frac{\left\|\hat{w}\left(\mathcal{S}_{T}\right)\right\|_{\Lambda_{0}}^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

where the last equation used Gaussian integration with decomposition (4).

Proof of Theorem 7 (II/II)

That is,
$-\ln \mathbb{E}_{w \sim p_{0}} \prod_{i=1}^{T} p\left(Y_{i} \mid w, X_{i}\right)=T \ln (\sqrt{2 \pi} \sigma)+\frac{1}{2} \ln \left|\Lambda_{0}^{-1} \Lambda_{T}\right|$

$$
+\frac{1}{2 \sigma^{2}} \sum_{i=1}^{T}\left(Y_{i}-\hat{w}\left(\mathcal{S}_{T}\right)^{\top} \psi\left(X_{i}\right)\right)^{2}+\frac{\left\|\hat{w}\left(\mathcal{S}_{T}\right)\right\|_{\Lambda_{0}}^{2}}{2 \sigma^{2}} .
$$

Moreover, from Proposition 6, we have

$$
\begin{aligned}
& \sum_{i=1}^{T}-\ln p\left(Y_{t} \mid \hat{w}\left(\mathcal{S}_{t-1}\right), X_{t}\right) \\
= & \sum_{t=1}^{T}\left[\frac{\left(Y_{t}-\hat{w}\left(\mathcal{S}_{t-1}\right)^{\top} \psi\left(X_{t}\right)\right)^{2}}{2 \sigma^{2} b_{t}}+\frac{1}{2} \ln \left(b_{t}\right)+\ln (\sqrt{2 \pi} \sigma)\right] .
\end{aligned}
$$

The desired result now follows from Theorem 4.

Regret Bound with Bounded Response

Corollary 8 (Cor 15.7)

Assume that $Y_{t} \in[0, M]$ for $t \geq 1$. Consider the ridge regression method of (3), and let

$$
\hat{Y}_{t}=\max \left(0, \min \left(M, \hat{w}\left(\mathcal{S}_{t-1}\right)^{\top} \psi\left(X_{t}\right)\right)\right)
$$

We have

$$
\sum_{t=1}^{T}\left(Y_{t}-\hat{Y}_{t}\right)^{2} \leq \inf _{w}\left[\sum_{t=1}^{T}\left(Y_{t}-w^{\top} \psi\left(X_{t}\right)\right)^{2}+\|w\|_{\Lambda_{0}}^{2}\right]+M^{2} \ln \left|\Lambda_{0}^{-1} \Lambda_{T}\right|
$$

where

$$
\Lambda_{T}=\Lambda_{0}+\sum_{s=1}^{T} \psi\left(X_{s}\right) \psi\left(X_{s}\right)^{\top}
$$

Proof of Corollary 8

We can apply Theorem 7 by taking $\sigma^{2}=M^{2}$. By using the following inequality

$$
0 \leq \frac{1-b_{t}}{b_{t}}+\ln b_{t},
$$

we obtain

$$
\begin{align*}
\sum_{t=1}^{T}\left(Y_{t}-\hat{Y}_{t}\right)^{2} & \leq \sum_{t=1}^{T}\left[\left(Y_{t}-\hat{Y}_{t}\right)^{2}+M^{2} \frac{1-b_{t}}{b_{t}}+M^{2} \ln b_{t}\right] \\
& \leq \sum_{t=1}^{T}\left[\left(Y_{t}-\hat{Y}_{t}\right)^{2}+\left(Y_{t}-\hat{Y}_{t}\right)^{2} \frac{1-b_{t}}{b_{t}}+M^{2} \ln b_{t}\right] \tag{5}\\
& \leq \sum_{t=1}^{T}\left[\frac{\left(Y_{t}-\hat{w}\left(\mathcal{S}_{t-1}\right)^{\top} \psi\left(X_{i}\right)\right)^{2}}{b_{t}}+M^{2} \ln b_{t}\right],
\end{align*}
$$

where b_{t} is defined in Theorem 7. Note that (5) used $1-b_{t} \leq 0$ and $\left(Y_{t}-\hat{Y}_{t}\right)^{2} \leq M^{2}$. The desired result is now a direct application of Theorem 7.

Estimation of Determinant

Proposition 9 (Simplification of Prop 15.8)

Given any \mathcal{X} and $\psi: \mathcal{X} \rightarrow \mathcal{H}$, where \mathcal{H} is an inner product space. Then for each $\lambda>0$ and integer T, the embedding entropy of $\psi(\cdot)$ can be defined as

$$
\operatorname{entro}(\lambda, \psi(\mathcal{X}))=\sup _{\mathcal{D}} \ln \left|I+\frac{1}{\lambda} \mathbb{E}_{X \sim \mathcal{D}} \psi(X) \psi(X)^{\top}\right|
$$

If $\sup _{X \in \mathcal{X}}\|\psi(X)\|_{\mathcal{H}} \leq B$ and $\operatorname{dim}(\mathcal{H})<\infty$, then

$$
\operatorname{entro}(\lambda, \psi(\mathcal{X})) \leq \operatorname{dim}(\mathcal{H}) \ln \left(1+\frac{B^{2}}{\operatorname{dim}(\mathcal{H}) \lambda}\right)
$$

One can also deal with the situation of $\operatorname{dim}(\mathcal{H})=\infty$ (see Proposition 15.8).

Proof of Proposition 9

Let $A=I+(\lambda)^{-1} \mathbb{E}_{X \sim \mathcal{D}} \psi(X) \psi(X)^{\top}$ and $d=\operatorname{dim}(\mathcal{H})$, then

$$
\operatorname{trace}(A) \leq d+(\lambda)^{-1} \mathbb{E}_{X \sim \mathcal{D}} \operatorname{trace}\left(\psi(X) \psi(X)^{\top}\right) \leq d+B^{2} / \lambda
$$

Using the AM-GM inequality, we have

$$
|A| \leq[\operatorname{trace}(A) / d]^{d} \leq\left(1+B^{2} /(d \lambda)\right)^{d}
$$

Example

Example 10

Consider Corollary 8 with $\Lambda_{0}=\lambda /$. We can use Proposition 9 to obtain

$$
\begin{aligned}
& \sum_{t=1}^{T}\left(Y_{t}-\hat{Y}_{t}\right)^{2} \\
\leq & \inf _{w}\left[\sum_{t=1}^{T}\left(Y_{t}-w^{\top} \psi\left(X_{t}\right)\right)^{2}+\lambda\|w\|_{2}^{2}\right]+M^{2} d \ln \left(1+\frac{T B^{2}}{d \lambda}\right),
\end{aligned}
$$

where we assume that $\|\psi(x)\|_{2} \leq B$, and d is the dimension of $\psi(x)$.

Online to Batch Conversion

Assume $\left(X_{t}, Y_{t}\right) \sim \mathcal{D}$ are iid examples. By taking expectation with respect to \mathcal{D}, and by using Jensen's inequality for the concave log-determinant function, we obtain (see Corollary 15.11) that with $\Lambda_{0}=\lambda l$, we have

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{S}_{T}} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{X \sim \mathcal{D}}\left(f_{*}(X)-\hat{f}\left(\hat{w}\left(\mathcal{S}_{t-1}\right), X\right)\right)^{2} \\
& \leq \inf _{w} \mathbb{E}_{X \sim \mathcal{D}}\left[\left(f_{*}(X)-w^{\top} \psi(X)\right)^{2}+\lambda\|w\|_{2}^{2}\right] \\
& \quad+\frac{M^{2}+\sigma^{2}}{T} \ln \left|I+\frac{T}{\lambda} \mathbb{E}_{X \sim \mathcal{D}} \psi(X) \psi(X)^{\top}\right| .
\end{aligned}
$$

Note that this bound is superior to the Rademacher complexity bound, and the best convergence rate can be achieved is $O(\ln T / T)$.

Exponential Model Aggregation

Consider a general loss function with $Z=(X, Y)$:

$$
\phi(w, Z)=L(f(w, X), Y),
$$

where $L(f, y)$ is convex with respect to f. Consider a prior $p_{0}(w)$ on Ω, and the following form of Gibbs distribution (which we will also refer to as posterior):

$$
\begin{equation*}
p\left(w \mid \mathcal{S}_{n}\right) \propto \exp \left[-\eta \sum_{i=1}^{n} \phi\left(w, Z_{i}\right)\right] p_{0}(w), \tag{6}
\end{equation*}
$$

where $\eta>0$ is a learning rate parameter. The exponential model aggregation algorithm computes

$$
\begin{equation*}
\hat{f}\left(x \mid \mathcal{S}_{n}\right)=\int_{\Omega} f(w, x) p\left(w \mid \mathcal{S}_{n}\right) d w, \tag{7}
\end{equation*}
$$

where $p\left(w \mid \mathcal{S}_{n}\right)$ is given by (6).

Online Exponential Model Aggregation

Algorithm 1: Online Exponential Model Aggregation
Input: $\eta>0,\{f(w, x): w \in \Omega\}$, prior $p_{0}(w)$
Output: $\hat{f}\left(\cdot \mid \mathcal{S}_{T}\right)$
1 for $t=1,2, \ldots, T$ do
2 Observe X_{t}
Let $\hat{f}_{t}=\hat{f}\left(X_{t} \mid \mathcal{S}_{t-1}\right)$ according to (7)
Observe Y_{t}
Compute $L\left(\hat{f}_{t}, Y_{t}\right)$
Return: $\hat{f}\left(\cdot \mid \mathcal{S}_{T}\right)$

Exponential Concavity

In order to analyze Algorithm 1, we need to employ the concept of α-exponential concavity introduced below.

Definition 11 (Def 15.12)

A convex function $g(u)$ is α-exponential concave for some $\alpha>0$ if

$$
e^{-\alpha g(u)}
$$

is concave in u.

Properties

Proposition 12 (Prop 15.13)

A convex function $\phi(u)$ is α exponentially concave if

$$
\alpha \nabla \phi(u) \nabla \phi(u)^{\top} \leq \nabla^{2} \phi(u)
$$

Proof.

We have

$$
\nabla^{2} e^{-\alpha \phi(u)}=e^{-\alpha \phi(u)}\left[-\alpha \nabla^{2} \phi(u)+\alpha^{2} \nabla \phi(u) \nabla \phi(u)^{\top}\right] \leq 0 .
$$

This implies the concavity of $\exp (-\alpha \phi(u))$.

Examples

Example 13

We note that if $\phi(u)$ is both Lipschitz $\|\nabla \phi(u)\|_{2} \leq G$, and λ-strongly convex, then

$$
\left(\lambda / G^{2}\right) \nabla \phi(u) \nabla \phi(u)^{\top} \leq \lambda I \leq \nabla^{2} \phi(u)
$$

Proposition 12 implies that $\phi(u)$ is λ / G^{2} exponentially concave.

Examples (cont)

Example 14

Consider the loss function $L(u, y)=(u-y)^{2}$. If $|u-y| \leq M$, then $L(u, y)$ is α-exponentially concave in u with $\alpha \leq 1 /\left(2 M^{2}\right)$.

Example 15

Consider a function $f(\cdot)$, and let $L(f(\cdot), y)=-\ln f(y)$, then $L(f(\cdot), y)$ is α exponentially concave in $f(\cdot)$ for $\alpha \leq 1$. This loss function is applicable to conditional probability estimate $\ln f(y \mid x)$.

Regret Bound

Theorem 16 (Thm 15.19)

Assume that $L(f, y)$ is η-exponentially concave. Then (7) satisfies the following regret bound:

$$
\sum_{t=1}^{T} L\left(\hat{f}\left(X_{t} \mid \mathcal{S}_{t-1}\right), Y_{t}\right) \leq \inf _{q}\left[\mathbb{E}_{w \sim q} \sum_{t=1}^{T} L\left(f\left(w, X_{t}\right), Y_{t}\right)+\frac{1}{\eta} \mathbb{E}_{w \sim q} \ln \frac{q(w)}{p_{0}(w)}\right]
$$

We note that Theorem 4 is a special case of Theorem 16, with $\eta=1$,

$$
L(f(w, x), y)=-\ln P(y \mid w, x)
$$

and $f(w, x)=P(y \mid w, x)$. In this case, $\exp (-L(f, y))=f_{y}$ is concave in f.

Proof of Theorem 16

Since $e^{-\eta L(f, y)}$ is concave in f, we obtain from Jensen's inequality

$$
\ln \int e^{-\eta L(f(w, x), y)} p\left(w \mid \mathcal{S}_{t-1}\right) d w \leq \ln e^{-\eta L\left(\hat{f}\left(x \mid S_{t-1}\right), y\right)} .
$$

With $(x, y)=\left(X_{t}, Y_{t}\right)$, this can be equivalently rewritten as

$$
L\left(\hat{f}\left(X_{t} \mid S_{t-1}\right), Y_{t}\right) \leq \frac{-1}{\eta} \ln \frac{\int_{\Omega} \exp \left(-\eta \sum_{i=1}^{t} L\left(f\left(w, X_{i}\right), Y_{i}\right)\right) p_{0}(w) d w}{\int_{\Omega} \exp \left(-\eta \sum_{i=1}^{t-1} L\left(f\left(w, X_{i}\right), Y_{i}\right)\right) p_{0}(w) d w} .
$$

By summing over $t=1$ to $t=T$, we obtain

$$
\sum_{t=1}^{T} L\left(\hat{f}\left(X_{t} \mid \mathcal{S}_{t-1}\right), Y_{t}\right) \leq \frac{-1}{\eta} \ln \int_{\Omega} \exp \left(-\eta \sum_{i=1}^{T} L\left(f\left(w, X_{i}\right), Y_{i}\right)\right) p_{0}(w) d w .
$$

Using Proposition 3, we obtain the desired result.

Example: Log-Loss

Example 17

Theorem 4 is a special case of Theorem 16 , with $\eta=1$,

$$
L(f(\cdot \mid w, x), y)=-\ln P(y \mid w, x)
$$

and $f(\cdot \mid w, x)=P(\cdot \mid w, x)$. In this case,

$$
\exp (-L(f(\cdot \mid \cdot), y))=f(y \mid \cdot)
$$

is a component of $f(\cdot \mid \cdot)$ indexed by y, and thus concave in $f(\cdot \mid \cdot)$.

Example: Least Squares

Example 18

Assume that $L(f, y)=(f-y)^{2}$, and sup $|f(w, x)-y| \leq M$. Then for $\eta \leq 1 /\left(2 M^{2}\right), L(f, y)$ is η exponentially concave. Therefore we have

$$
\sum_{t=1}^{T}\left(\hat{f}\left(X_{t} \mid \mathcal{S}_{t-1}\right)-Y_{t}\right)^{2} \leq \inf _{q}\left[\mathbb{E}_{w \sim q} \sum_{t=1}^{T}\left(f\left(w, X_{t}\right)-Y_{t}\right)^{2}+\frac{1}{\eta} \mathbb{E}_{w \sim q} \ln \frac{q(w)}{p_{0}(w)}\right] .
$$

In particular, if Ω is countable, then

$$
\sum_{t=1}^{T}\left(\hat{f}\left(X_{t} \mid \mathcal{S}_{t-1}\right)-Y_{t}\right)^{2} \leq \inf _{w \in \Omega}\left[\sum_{t=1}^{T}\left(f\left(w, X_{t}\right)-Y_{t}\right)^{2}+\frac{1}{\eta} \ln \frac{1}{p_{0}(w)}\right]
$$

Model aggregation is superior to ERM for misspecified models, because the regret with respect to the best function in the function class is still $O(1 / n)$.

Adaptive Gradient

Algorithm 2: Adaptive SubGradient Method (AdaGrad)

Input: $\eta>0, w_{0}, A_{0}$, and a sequence of loss functions $\ell_{t}(w)$
Output: w_{T}
1 for $t=1,2, \ldots, T$ do
2 Observe loss $\ell_{t}\left(w_{t-1}\right)$
$3 \quad$ Let $g_{t}=\nabla \ell_{t}\left(w_{t-1}\right)$
$4 \quad$ Let $A_{t}=A_{t-1}+g_{t} g_{t}^{\top}$
$5 \quad$ Let $G_{t}=\operatorname{diag}\left(A_{t}\right)^{1 / 2}$
$6 \quad$ Let $\tilde{w}_{t}=w_{t-1}-\eta G_{t}^{-1} g_{t}$
Let $w_{t}=\arg \min _{w \in \Omega}\left(w-\tilde{w}_{t}\right)^{\top} G_{t}\left(w-\tilde{w}_{t}\right)$
Return: w_{T}

Regret Bound

Theorem 19 (Simplification with $p=0.5$, Thm 15.25)

Assume that for all t, the loss function $\ell_{t}: \Omega \rightarrow \mathbb{R}$ is convex. Then AdaGrad method has the following regret bound:

$$
\begin{aligned}
\sum_{t=1}^{T} \ell_{t}\left(w_{t-1}\right) \leq & \inf _{w \in \Omega} \sum_{t=1}^{T} \ell_{t}(w)+\eta \operatorname{trace}\left(\operatorname{diag}\left(A_{T}\right)^{1 / 2}\right) \\
& +\frac{\Delta_{\infty}^{2}}{2 \eta} \operatorname{trace}\left(\operatorname{diag}\left(A_{T}\right)^{1 / 2}\right)
\end{aligned}
$$

where $\Delta_{\infty}=\sup \left\{\left\|w^{\prime}-w\right\|_{\infty}: w, w^{\prime} \in \Omega\right\}$ is the L_{∞}-diameter of Ω.

Matrix Trace Function

The proof uses the fact that $h(B)=2 \operatorname{trace}\left(B^{1 / 2}\right)$ is concave in B, which follows from the following result.

Theorem 20 (Thm A.18)

Let $S_{[a, b]}^{d}$ be the set of $d \times d$ symmetric matrices with eigenvalues in $[a, b]$. If $f(z):[a, b] \rightarrow \mathbb{R}$ is a convex function, then

$$
\operatorname{trace}(f(W))
$$

is a convex function on $S_{[a, b]}^{d}$. This implies that for $W, W^{\prime} \in S_{[a, b]}^{d}$:

$$
\operatorname{trace}\left(f\left(W^{\prime}\right)\right) \geq \operatorname{trace}(f(W))+\operatorname{trace}\left(f^{\prime}(W)\left(W^{\prime}-W\right)\right)
$$

where $f^{\prime}(z)$ is the derivative of $f(z)$.

Proof of Theorem 19 (I/II)

Consider $w \in \Omega$. The convexity of ℓ_{t} implies that

$$
-2 \eta\left(w_{t-1}-w\right)^{\top} g_{t} \leq 2 \eta\left[\ell_{t}(w)-\ell_{t}\left(w_{t-1}\right)\right] .
$$

Let $G_{t}=\operatorname{diag}\left(A_{t}\right)^{1 / 2}$. We obtain the following result:

$$
\begin{aligned}
& \left(\tilde{w}_{t}-w\right)^{\top} G_{t}\left(\tilde{w}_{t}-w\right) \\
= & \left(w_{t-1}-\eta G_{t}^{-1} g_{t}-w\right)^{\top} G_{t}\left(w_{t-1}-\eta G_{t}^{-1} g_{t}-w\right) \\
= & \left(w_{t-1}-w\right)^{\top} G_{t}\left(w_{t-1}-w\right)-2 \eta\left(w_{t-1}-w\right)^{\top} g_{t}+\eta^{2} g_{t}^{\top} G_{t}^{-1} g_{t} \\
\leq & \left(w_{t-1}-w\right)^{\top} G_{t}\left(w_{t-1}-w\right)+2 \eta\left[\ell_{t}(w)-\ell_{t}\left(w_{t-1}\right)\right]+\eta^{2} g_{t}^{\top} G_{t}^{-1} g_{t} \\
= & \left(w_{t-1}-w\right)^{\top} G_{t-1}\left(w_{t-1}-w\right)+\left(w_{t-1}-w\right)^{\top}\left(G_{t}-G_{t-1}\right)\left(w_{t-1}-w\right) \\
& +2 \eta\left[\ell_{t}(w)-\ell_{t}\left(w_{t-1}\right)\right]+\eta^{2} \operatorname{trace}\left(\left(G_{t}^{2}\right)^{-1 / 2}\left(G_{t}^{2}-G_{t-1}^{2}\right)\right) \\
\leq & \left(w_{t-1}-w\right)^{\top} G_{t-1}\left(w_{t-1}-w\right)+\left(w_{t-1}-w\right)^{\top}\left(G_{t}-G_{t-1}\right)\left(w_{t-1}-w\right) \\
& +2 \eta\left[\ell_{t}(w)-\ell_{t}\left(w_{t-1}\right)\right]+2 \eta^{2}\left[\operatorname{trace}\left(G_{t}\right)-\operatorname{trace}\left(G_{t-1}\right)\right] .
\end{aligned}
$$

Proof of Theorem 19 (II/II)

We can use the fact that
$\left(w_{t}-w\right)^{\top} G_{t}\left(w_{t}-w\right) \leq\left(\tilde{w}_{t}-w\right)^{\top} G_{t}\left(\tilde{w}_{t}-w\right)$, and then sum over $t=1$ to $t=T$. This implies that

$$
\sum_{t=1}^{T} \ell_{t}\left(w_{t-1}\right) \leq \sum_{t=1}^{T} \ell_{t}(w)+\frac{R_{T}}{2 \eta}+\eta\left[\operatorname{trace}\left(G_{T}\right)-\operatorname{trace}\left(G_{0}\right)\right]
$$

where

$$
\begin{aligned}
R_{T} & =\left(w_{0}-w\right)^{\top} G_{0}\left(w_{0}-w\right)+\sum_{t=1}^{T}\left(w_{t-1}-w\right)^{\top}\left(G_{t}-G_{t-1}\right)\left(w_{t-1}-w\right) \\
& \leq \Delta_{\infty}^{2} \operatorname{trace}\left(G_{0}\right)+\sum_{t=1}^{T} \Delta_{\infty}^{2} \operatorname{trace}\left(\left|G_{t}-G_{t-1}\right|\right) \\
& \leq \Delta_{\infty}^{2} \operatorname{trace}\left(G_{T}\right) .
\end{aligned}
$$

In the first inequality, we note that $G_{t}-G_{t-1}$ is a diagonal matrix.

Interpretation of Theorem 19

AdaGrad is more effective than SGD when the gradient is sufficiently sparse, which means that trace $\left(\operatorname{diag}\left(A_{T}\right)^{1 / 2}\right)$ can be similar to $\operatorname{trace}\left(\operatorname{diag}\left(A_{T}\right)\right)^{1 / 2}$. In this case, Theorem 19 implies

$$
\operatorname{trace}\left(\operatorname{diag}\left(A_{T}\right)^{1 / 2}\right)=O(\sqrt{T})
$$

Let $\eta=O\left(\Delta_{\infty}\right)$, then the regret bound becomes

$$
O\left(\Delta_{\infty} \sqrt{T}\right)
$$

Since in general

$$
\Delta_{\infty} \ll \Delta_{2} \equiv \sup \left\{\left\|w^{\prime}-w\right\|_{2}: w, w^{\prime} \in \Omega\right\}
$$

and in the extreme case, Δ_{2} can be as large as $\Omega\left(\sqrt{d} \Delta_{\infty}\right)$, where d is the dimension of the model parameter. In such case, AdaGrad can be better than SGD by a factor of \sqrt{d}.

Summary (Chapter 15)

- Bayesian Posterior Averaging (aggregation)
- Ridge Regression (second order optimization)
- Tow approaches are closely related
- Generalization
- Aggregation Methods
- AdaGrad

