Online Aggregation and Second Order Algorithms

Mathematical Analysis of Machine Learning Algorithms
(Chapter 15)



Log-Loss for Density Estimation

Consider conditional density estimation with log-loss
(negative-log-likelihood), where the loss function is

Example 1

For discrete y € {1,..., K}, we have

exp(f, (W, X))
Sy exp(fi(w, X))’

p(y|w,x) =

and (let Z = (x, y)):

K
$(w, Z) = —f,(w,x) +In Y exp(fi(w, x)).
k=1



Example 2 (More Log-Loss Example)

For least squares regression with noise variance 2, we may have

_ 2
p(ylw,x) = \/zlﬂaexp <—(y;(C|:V2’X))) :

and (let Z = (x, y)):
_ 2
o(w,2) = VIOV (o),

We may also consider the noise as part of the model parameter, and
let

— 2

o(w, o1, 2) =Y IWF ()

202




Bayesian Posterior Averaging

Bayesian Posterior Distribution

Consider a prior pp(w) on €. Given the training data
Sh=1{24,...,2Z,}, the posterior distribution is

IR p(Yiw, X)po(w)
PWISA) = T oYW, X,)po(w') oW’ ()

The Bayesian posterior average estimator is the averaged probability
estimate over the posterior

P(yIX. Sn) = /Q p(y|w, x)p(W|Sn) dw. @)

However, we do not assume that the Bayesian assumption holds true
in the theoretical analysis.



Regret Bound: Property of Log-Partition Function

Proposition 3 (Prop 7.16)

Given any function U(w), we have

min [Bu-pU(w) + KL(p )] = ~ InEw-p, exp(~U(w)).

and the solution is achieved by the Gibbs distribution
q(w) o po(w) exp(—U(w)).

Here A(Q2) denotes the set of probability distributions on Q.



Regret Bound: Conditional Density Estimation

Theorem 4 (Thm 15.3)

We have

T

i

=D Inp(Yt, [Xt, 8t-1) = = InEuep, [ [ P(YVilw, Xt)
t=1 t=1

i q(w)

—EWNQ tz:; In p( Yt|W, Xt) + ]EWNq In po(VV)] 9

where A(Q) is the set of probability distributions over Q2.

= inf
qeA(Q)




Proof of Theorem 4
We have
Inp(Vi, X, St 1) = In /Q P(Yilw, X)p(W|Sc—1) dw

fQH,1P Yilw, Xi)po(w)adw
fQ ,1PY|W Xi)po(w')dw’

t—1
=InEwep, Hp(mw, Xi) = InEyep, [ [ o(Yilw, X)).

=1 i=1
By summing over t =1 to t = T, we obtain

T

P(Ys, |xt, St—1) =InEuwep, | [ P(Yilw, X;)
t=1

|\M~4

q(w)
Po(w)

—sup ]EWNqIan Yiiw, Xi) — Ey~gln
t=1

)

where the second equality used Proposition 3.



Discrete Family of Probability Distributions

Corollary 5 (Cor 15.4)

IfQ = {wy,...} is discrete, then

T T
- ; InB(Ye, X, Si-1) < inf [— ; Inp(Vilw, X) — |nP0(W)] .

Given any w’ € Q, if we choose q(w) =1 when w = w/, and q(w) =0
when w # w’, then from Theorem 4:

T T
—Ewng Y Inp(YelW, Xp) + Ewegln m == Inp(Yi|w', X;) — In po(w').
t=1 t=1

O



Example: Finite || = N

Let po(w) = 1/N be the uniform distribution on ©, then we have

T

.
—;Inf)(Yt, [Xt, St-1) < inf, [—;mp(y,yw,xt) +InN

This means that we have a constant regret which is independent of T.
Using online to batch conversion:
1 T InN

_TEST;EZND Inp(Y|X,St-1) < Jnf |:_EZ~D Inp(Y|w, X) + T] -



Ridge Regression

The general regret bound for Bayesian model averaging can be used
to analyze the ridge regression method. Consider the following linear
prediction problem with least squares loss:

f(w, x) = w(x),
with loss function
(y - f(Wa X))z'
Consider the following ridge regression estimator:

n

W(Sn) = argmin | > (Vi —w (X)) + W, | , (3)
i=1

where Ag is a symmetric positive definite matrix, which is often
chosen as A/ for some A > 0 in applications.



Bayesian Interpretation of Ridge Regression

Proposition 6 (Prop 15.5)

Consider probability model p(y|w, x) = N(w"(x), o), with prior
po(w) = N(0,02A; ). Then given Sp = {(X1, Y1), .., (Xn, Yn)}, we
have

p(W[Sn) = N(W(Sn), 0®A(Sn) "),
where w(S,) is given by (3) and

Z¢ V(X)) + No.

Given x, the posterior distribution of y is

BUYIX,Sn) = N (W(Sn)T6(x), 0% + 2(x) TAS:) " (x)

The result holds even when the Bayesian model isn’t correct.



Proof of Proposition 6 (I/II)

It is clear that

n

T AR AY: 2
p(W|Sh) o exp (Z W () = Vi)” HWHA") .

— 202 202
1=

Note that (3) implies that

2”: (wT(X;) — Y))? . w3,
252 202

_Z”: (WT (X)) = Y9)? N W13, L]

5.2 52 202(w — W) TASH) (W — W). (4)




Proof of Proposition 6 (ll/1I)

This implies the first desired result. Moreover, given x, and let the
random variable u = w ' (x) with w ~ p(w|Sp,), we have

ulx, Sn ~ N(WT9(x), 0% (x) TA(Sp) " ().

Since in posterior distribution, the observation y|u ~ u + € with
e ~ N(0,02), we know that

YIX, S ~ N(WTp(x), 02p(x) TA™ 9 (x) + 62).

This implies the desired result.



Predictive Loss Bound

Theorem 7 (Thm 15.6)

Consider the ridge regression method of (3). We have the following
result for any o > 0 and for all observed sequence St :

T .
3 [(Yt - W(Stb:)TlZ)(Xt))z 4 o2 Inbt}

t=1

=inf +021In

.
D (Ve = wle(X))? + [wlf,

t=1

Ag'A |

where

t
At =No + Z P(Xs)(Xs) T,
s=1

and by = 1 + (X)) TA (X).



Proof of Theorem 7 (I/1l)

Assume w € RY. We note that from Gaussian integration that

.
Ew~po | [ P(YiIW, X))
i1

_ A2 1 < , w3,
_/(27T)(T+d)/207-0d &P 2§ X)) - 202 dw

g 'Ar| /2 1< o ene ST,
Wep —M;(W—W(ST) (X)) T 0,2 |

where the last equation used Gaussian integration with
decomposition (4).



Proof of Theorem 7 (ll/1I)
That is,

)

1

0By, [] POV, X) = Tin(v2r0) + 5 In Ay AT
i=1

Ty 1o, LSTIR,

T 202 ’

Moreover, from Proposition 6, we have

T

> = Inp(YelW(Si—1), Xt)

i=1

:Z [ (Yt — :;21[))1, (Xp))? + % In(by) + In(v270) | .

The desired result now follows from Theorem 4.



Regret Bound with Bounded Response

Corollary 8 (Cor 15.7)

Assume that Y; € [0, M] fort > 1. Consider the ridge regression
method of (3), and let

¥ = max(0, min(M, W(S_1) T4(X0))).

We have

T T
> (Y- [Z w(X)? + [lw|3,

t=1 t=1

+M2In‘/\ A7,

where

.
At =No+ Z »(Xs)p(Xs) T

s=1



Proof of Corollary 8
We can apply Theorem 7 by taking o> = M?. By using the following
inequality

0< ! _bt—i—lnbt,
t
we obtain
T . T 1- b
§]n—nﬁg§jmkn)+w - +Wm5

t=1 t=1

[ o o b
(Y= B+ (e 0L 2 Mt (9

...
Il
N

_ ~ ))2
(Y — W(Stb1 )T¢(XO) + M?In bz} )
t

t=1 -

whereAbt is defined in Theorem 7. Note that (5) used 1 — by < 0 and
(Y: — Y;)? < M2. The desired result is now a direct application of

Theorem 7.



Estimation of Determinant

Proposition 9 (Simplification of Prop 15.8)

Given any X and ) : X — H, where H is an inner product space.
Then for each A > 0 and integer T, the embedding entropy of 1(-)
can be defined as

entro(A, (X)) = supIn |/ + %IEXNDw(X)z/J(X)T
D

If supxcx |(X) |l < B anddim(H) < oo, then

2
entro(\, (X)) < dim(#) In (1 o (:hnf’H)A) .

One can also deal with the situation of dim(?) = oo (see
Proposition 15.8).



Proof of Proposition 9

Let A= I+ (N "Ex.py(X)¥(X)T and d = dim(#), then
trace(A) < d + (\)'Exptrace(y)(X)w(X)") < d + B2/
Using the AM-GM inequality, we have

A < [trace(A)/d]? < (1 + B?/(d)))°.



Example

Example 10

Consider Corollary 8 with Ag = Al. We can use Proposition 9 to obtain

;
> (Y-
- T

Z X0))? + Mwli3

TB?
<inf M2dn (1
<in + dn<+d/\>

where we assume that ||(x)|l2 < B, and d is the dimension of ¥(x).



Online to Batch Conversion

Assume (X:, Yi) ~ D are iid examples. By taking expectation with
respect to D, and by using Jensen’s inequality for the concave
log-determinant function, we obtain (see Corollary 15.11) that with
Ao = A, we have

.
By 73" Exep (L(X) = (S 1), X))
t=1

<inf Exup [(£(X) = wTw(X))? + Alwl3]
M? 4 52
Mot

n i+ IEXNW(XWM)T .

Note that this bound is superior to the Rademacher complexity
bound, and the best convergence rate can be achieved is O(In T/T).



Exponential Model Aggregation
Consider a general loss function with Z = (X, Y):
p(w, Z) = L(f(w, X), Y),
where L(f, y) is convex with respect to f. Consider a prior po(w) on

Q, and the following form of Gibbs distribution (which we will also
refer to as posterior):

p(W|Sn) o exp [—n > o(w, Zi)] po(w), (6)
i=1

where n > 0 is a learning rate parameter. The exponential model
aggregation algorithm computes

H(x|Sn) = /Q f(w, X)p(W|Sn) aw, @)

where p(w|Sy) is given by (6).



Online Exponential Model Aggregation

Algorithm 1: Online Exponential Model Aggregation

Input: > 0, {f(w, x) : w € Q}, prior po(w)
Output: 7(-|S7)
1 fort=1,2,...,Tdo
Observe X;
Let f, = F(X;|S;_1) according to (7)
Observe Y;
Compute L(, Y;)

Return: f(-|S7)

a & 0N




Exponential Concavity

In order to analyze Algorithm 1, we need to employ the concept of
a-exponential concavity introduced below.

Definition 11 (Def 15.12)
A convex function g(u) is a-exponential concave for some « > 0 if

e_ag(u)

is concave in u.



Properties

Proposition 12 (Prop 15.13)

A convex function ¢(u) is « exponentially concave if

aVe(u)Ve(u)" < V2e(u).

We have
V2g—ad(U) — g=ad(u) [—aVZQZ)(U) + a2v¢(u)v¢(u)ﬂ <O0.

This implies the concavity of exp(—a¢(u)). O



Examples

Example 13

We note that if ¢(u) is both Lipschitz [|[V¢(u)|l2 < G, and A-strongly
convex, then

(A GHVo(u)Vp(u)" < A < V2¢(u).

Proposition 12 implies that ¢(u) is A/ G? exponentially concave.



Examples (cont)

Example 14

Consider the loss function L(u, y) = (u— y)2. If [u — y| < M, then
L(u, y) is a-exponentially concave in u with o < 1/(2M?).

Example 15

Consider a function f(-), and let L(f(-),y) = —In f(y), then L(f(-),y) is
« exponentially concave in f(-) for « < 1. This loss function is
applicable to conditional probability estimate In f(y|x).



Regret Bound

Theorem 16 (Thm 15.19)

Assume that L(f, y) is n-exponentially concave. Then (7) satisfies the
following regret bound:

T

:

q(w)
§LfXS Y<f]EW~§LwXY+EWNI :
2100 Y2 f [ 30 Y e 25

We note that Theorem 4 is a special case of Theorem 16, with n =1,
L(f(w,x),y) = —In P(y|w, x)

and f(w, x) = P(y|w, x). In this case, exp(—L(f,y)) = f, is concave in f.



Proof of Theorem 16
Since e (") is concave in f, we obtain from Jensen’s inequality
|n/e—nL(f(w,x) P(W[S;_1)aw < In e "L((xISe)y).

With (x, y) = (X, Yt), this can be equivalently rewritten as

LIS, ). i < =1 i dn @ Cn S LW, X). Y)o(w)aiw
e o —n ST L(T(w, X,), Y;))po(w)aw

By summing over t =110 t = T, we obtain

ZL (X¢|St—1), Yt)§_771|n/exp< nZL (w, X;), >p0( )aw.

Using Proposition 3, we obtain the desired result.



Example: Log-Loss

Example 17

Theorem 4 is a special case of Theorem 16, withn =1,
L(f(-|w,x),y) = —In P(y|w, x)
and f(-|w, x) = P(-|w, x). In this case,
exp(—=L(f(:-), ) = f(¥I")

is a component of f(-|-) indexed by y, and thus concave in f(-|-).



Example: Least Squares

Example 18

Assume that L(f,y) = (f — y)?, and sup |f(w, x) — y| < M. Then for
n < 1/(2M?), L(f,y) is n exponentially concave. Therefore we have

T T
t;(?(x,wt_g —Y)2< inf l}Equ;(f(w, X)) — Y2 + %Ewmqm w] .

In particular, if Q is countable, then

T . [ 1 1
;(f(xt|81—1) - Yt)2 < M',';‘; [;(f(W7 Xt) = Yt)z + Eln po(W)] .

Model aggregation is superior to ERM for misspecified models, because the
regret with respect to the best function in the function class is still O(1/n).



Adaptive Gradient

Algorithm 2: Adaptive SubGradient Method (AdaGrad)

Input: n > 0, wp, Ag, and a sequence of loss functions ¢;(w)
Output: wr

1 fort=1,2,...,Tdo

Observe loss ¢1(w;_1)

Let gt = Ve (Wi—1)

Let Ay = A1+ 919/

Let Gt = diag(At)Vz

Let Wy = wi_1 —nG; ' gr

Let w; = arg minyecq(w — W) T Gr(w — W)

Return: wr

N o o b~ 0N




Regret Bound

Theorem 19 (Simplification with p = 0.5, Thm 15.25)

Assume that for all t, the loss function ¢; : Q@ — R is convex. Then
AdaGrad method has the following regret bound:

T T
;zt(wt_o < inf ; ((w) + ntrace(diag(A7)'/2)

2
- Az—ootrace(diag(AT)Vz),
n

where A = sup{||w' — w||« : w, W € Q} is the L..-diameter of .



Matrix Trace Function

The proof uses the fact that h(B) = 2trace(B'/?) is concave in B,
which follows from the following result.

Theorem 20 (Thm A.18)

Let Sg b be the set of d x d symmetric matrices with eigenvalues in
[a,b]. If f(2) : [a, b] — R is a convex function, then

trace(f(W))
is a convex function on S[@‘éﬁ b- This implies that for W, W' € S[@“’a, b’
trace(f(W')) > trace(f(W)) + trace(f' (W)(W' — W)),

where f'(z) is the derivative of f(z).



Proof of Theorem 19 (I/Il)

Consider w € Q. The convexity of ¢; implies that
—2n(wi—y — w) " gr < 2nte(w) — Le(Wi_1)].
Let G; = diag(A;)'/2. We obtain the following result:

(W — W)TGt(Wt w)

(Wt —1G; gt — w) " Gi(wi_1 — nG; g — w)

(Wi—1 — w) " Gr(Wi—1 — W) — 2n(wi—1 — W) " gt + 1°g{ G; ' ar
(

(

Wit — W) G(wi—y — w) + 2n[te(w) — Le(Ws—1)] + 17 9{ G " g
Wiy — W) Gr1(Wet — W) + (W1 — W) (Gt — Gr—1) (W1 — W)
+ 2n[l(w) — be(wr )] + nPrace((GF)/3(GF — G.y))

(Wit — W) Gy (Wit — W) + (We—g — W) (Gt — Gr—1)(Wi—1 — W)
+ 2n[le(w) — r(w;_1)] + 2nP[trace(G;) — trace(Gy_1)].

IA

IN



Proof of Theorem 19 (lI/II)

We can use the fact that
(wy — w) " Gr(wy — w) < (W — w) T G(Wy — w), and then sum over
t=1tot=T. Thisimplies that

-
Zﬁt wi_1) < Z —|— — + 7 [trace(Gr) — trace(Gp)] ,
where

.
Rr =(wo — w) Go(wo — W) + > _(Wi—1 — w) (Gt — Gr—1)(Wi—1 — W)
t=1

.

<AZ trace(Gy) + Z A2 trace(|Gt — Gi_1))
t=1

<A2 trace(Gr).

In the first inequality, we note that G; — G;_+ is a diagonal matrix.



Interpretation of Theorem 19

AdaGrad is more effective than SGD when the gradient is sufficiently
sparse, which means that trace(diag(A7)'/2) can be similar to
trace(diag(A7))'/2. In this case, Theorem 19 implies

trace(diag(AT)1/2) = O(VT).
Let n = O(A), then the regret bound becomes
O(AxVT).
Since in general
Ao < Do =sup{||W — w2 w,w € Q},

and in the extreme case, A, can be as large as Q(v/dA,,), where d
is the dimension of the model parameter. In such case, AdaGrad can
be better than SGD by a factor of v/d.



Summary (Chapter 15)

Bayesian Posterior Averaging (aggregation)
Ridge Regression (second order optimization)
Tow approaches are closely related
Generalization

Aggregation Methods

AdaGrad



