
1

Basic Concepts of Online Learning

Mathematical Analysis of Machine Learning Algorithms
(Chapter 14)

2

Online Learning Model

The online learning learning model can be considered as a repeated
game. For t = 1,2, . . .,
I An adversary picks (Xt ,Yt), and reveals Xt only.
I An online learning algorithm A predicts f̂t−1(Xt).
I The value of Yt is revealed and a loss L(f̂t−1(Xt),Yt) is computed.

The goal of online learning is to minimize the aggregated loss

T∑
t=1

L(f̂t−1(Xt),Yt).

3

Regret Bound

An online algorithm A considers model class F = {f (w , x) : w ∈ Ω},
and learn wt−1 ∈ Ω at time t based on previously observed data
St−1 = {Z1, . . . ,Zt−1}. It makes prediction on next observation:

f̂t−1(Xt) = f (wt−1,Xt) with wt−1 = A(St−1).

The performance of online learning is measured by regret bound,
which is analogous to oracle inequality in supervised learning.

Regret

The aggregated loss of an online algorithm is compared to the
optimal aggregated loss in hindsight:

REGT =
T∑

t=1

L(f (wt−1,Xt),Yt)− inf
w∈Ω

T∑
t=1

L(f (w ,Xt),Yt) ≤ εT . (1)

4

Online Binary Classification with Perceptron

Consider the binary classification problem with Y ∈ {±1}, and linear
functions

f (w ,X) = w>X ,

with prediction rule: {
1 f (w ,X) ≥ 0
−1 otherwise

.

The loss function is binary classification error: 1(f (w ,X)Y ≤ 0).

The Perceptron algorithm is an algorithm which works with data
coming in sequentially as in Algorithm 1. It is mistake-driven, which
means it only updates the model weight vector when the prediction
makes a mistake.

5

Perceptron Algorithm

Algorithm 1: Perceptron Algorithm
Input: Sequence (X1,Y1), . . . , (XT ,YT)
Output: ws

1 Let w0 = 0
2 for t = 1,2, . . . ,T do
3 Observe Xt and predict label sign(w>t−1Xt)

4 Observe Yt and compute mistake 1(w>t−1XtYt ≤ 0)

5 if w>t−1XtYt > 0 then
6 // No mistake
7 Let wt = wt−1

8 else
9 // A mistake is observed

10 Let wt = wt−1 + XtYt

11 Randomly pick s from 0 to T − 1
Return: ws

6

Perceptron Mistake (Regret) Bound

Theorem 1 (Thm 14.1)

Consider the perceptron Algorithm in Algorithm 1. Consider γ > 0
and weight vector w∗ such that for all t

w>∗ XtYt ≥ γ.

Then we have the following mistake bound:

T∑
t=1

1(w>t−1XtYt ≤ 0) ≤
‖w∗‖22 sup{‖Xt‖22}

γ2 .

7

Proof of Theorem 1
Let M = supt ‖Xt‖2, and let η = γ/M2. Assume that we have a
mistake at time step t , then we have

(ηwt−1 − w∗)>XtYt ≤ 0− w>∗ XtYt ≤ −γ.

This implies that

‖ηwt − w∗‖22 =‖ηwt−1 + ηXtYt − w∗‖22
=‖ηwt−1 − w∗‖22 + 2η(ηwt−1 − w∗)>XtYt + η2‖Xt‖22
≤‖ηwt−1 − w∗‖22 − 2ηγ + η2M2

≤‖ηwt−1 − w∗‖22 −
γ2

M2 .

Note also that ‖ηwt − w∗‖22 = ‖ηwt−1 − w∗‖22 if there is no mistake at
time step t . Therefore by summing over t = 1 to t = t , we obtain

0 ≤ ‖ηwt − w∗‖22 ≤ ‖ηw0 − w∗‖22 −
γ2

M2 k ,

where k is the number of mistakes. This implies the bound.

8

Multi-class Perceptron

For multi-class prediction with q classes y ∈ {1, . . . ,q}, we may use
the notations of vector prediction functions in the analysis of kernel
methods.
Consider a vector prediction function f (x) ∈ Rq, with linear prediction
model for class ` defined as:

f`(x) = w>ψ(x , `).

The predicted class for each x is

ŷ(w , x) ∈ arg max
`

w>ψ(x , `),

and the error (or mistake) for an instance x with true label y is

1(ŷ(w , x) 6= y).

9

Multiclass Perceptron Algorithm
Algorithm 2: Multi-Class Perceptron Algorithm
Input: Sequence (X1,Y1), . . . , (XT ,YT)
Output: ws

1 Let w0 = 0
2 for t = 1,2, . . . ,T do
3 Observe Xt and predict label Ŷt ∈ arg max`{w>t−1ψ(Xt , `)}
4 Observe Yt and compute mistake 1(Ŷt 6= Yt)

5 if Ŷt == Yt then
6 // No mistake
7 Let wt = wt−1

8 else
9 // A mistake is observed

10 Let wt = wt−1 + [ψ(Xt ,Yt)− ψ(Xt , Ŷt)]

11 Randomly pick s from 0 to T − 1
Return: ws

10

Mistake Bound

Theorem 2 (Thm 14.2)

Consider Algorithm 2. We have the following mistake bound:

T∑
t=1

1(Ŷt 6= Yt) ≤ inf
γ>0,w

[
T∑

t=1

2 max

(
0,1− γ−1 min

` 6=Yt
w>[ψ(Xt ,Yt)− ψ(Xt , `)]

)
+
‖w‖2

2 sup{‖ψ(Xt ,Yt)− ψ(Xt ,Y`)‖2
2}

γ2

]
.

11

Proof of Theorem 2 (I/II)

The proof is basically the same as that of the binary case. Given any
γ > 0 and w . We let ψt = ψ(Xt ,Yt)− ψ(Xt , Ŷt), M = sup{‖ψt‖2}, and
η = γ/M2. Assume that we have a mistake at time step t , then we
have Ŷt 6= Yt , and w>t−1ψt ≤ 0. It implies that

(ηwt−1 − w∗)>ψt ≤ 0− w>∗ ψt ≤ max(0, γ − w>∗ ψt)− γ.

Therefore by taking

‖ηwt − w∗‖22 =‖ηwt−1 + ηψt − w∗‖22
=‖ηwt−1 − w∗‖22 + 2η(ηwt−1 − w∗)>ψt + η2‖ψt‖22
≤‖ηwt−1 − w∗‖22 + 2ηmax(0, γ − w>∗ ψt)− 2ηγ + η2M2

≤‖ηwt−1 − w∗‖22 + 2ηmax(0, γ − w>∗ ψt)−
γ2

M2 .

12

Proof of Theorem 2 (II/II)

Note also that ‖ηwt − w∗‖22 = ‖ηwt−1 − w∗‖22 if there is no mistake at
time step t . Therefore by summing over t = 1 to t = T , we obtain

0 ≤ ‖ηwT − w∗‖22 ≤ 2η
T∑

t=1

max(0, γ − w>∗ ψt) + ‖ηw0 − w∗‖22 −
γ2

M2 k ,

where k is the number of mistakes. This implies the bound.

13

Online to Batch Conversion
Assume that in online learning, the observed data are random, with
Zt = (Xt ,Yt) ∼ D. Assume also that we have a regret bound of the
general form:

T∑
t=1

φ(wt−1,Zt) ≤ ε(ST). (2)

By taking expectations, we obtain an expected generalization bound

EST

T∑
t=1

EZφ(wt−1,Z) ≤ EST ε(ST).

If we select s uniformly from 0 to T − 1, then

EST EsEZφ(ws,Z) ≤ EST ε(ST)/T .

This leads to an oracle inequality in the batch (supervised learning)
setting.

14

Expected Oracle Inequality Example
For the perceptron algorithm, we may let

φ(w ,Z) =1(ŷ(w ,X) 6= Y)

− 2 max

(
0,1− γ−1 min

` 6=Y
w>[ψ(X ,Y)− ψ(X , `)]

)
.

Proposition 3

Consider Algorithm 2, with s chosen uniformly at random from 0 to
T − 1. If Zt = (Xt ,Yt) ∼ D are iid observations, then we have

EST−1 EsEZ∼D1(ŷ(ws,X) 6= Y)

≤ inf
γ>0,w

[
2EZ∼Dmax

(
0,1− γ−1 min

6̀=Yt
w>[ψ(X ,Y)− ψ(X , `)]

)
+
‖w‖22 sup{‖ψ(X ,Y)− ψ(X ,Y ′)‖22}

γ2 T

]
,

where the prediction rule is ŷ(w , x) ∈ arg max` w>ψ(x , `).

15

High Probability Bound

We can use martingale tail probability bounds in the online learning
analysis. Assume that we have high probability result of the following
form: with probability at least 1− δ over ST ,

T∑
t=1

EZ∼Dφ(wt−1,Z) ≤
T∑

t=1

φ(wt−1,Zt) + ε(δ). (3)

We may combine this bound with (2), and obtain the following
probability bound for the randomized estimator s, uniformly chosen
from 0 to T − 1. With probability at least 1− δ over ST :

Es EZ∼Dφ(ws,Z) ≤ ε(δ) + ε(ST)

T
.

16

Example: Perceptron Algorithm

Proposition 4

Consider Algorithm 1, with s uniformly drawn from 0 to T − 1.
Assume w>∗ XY ≥ γ > 0 for all Z = (X ,Y). If Zt = (Xt ,Yt) ∼ D, then
with probability at least 1− δ:

EsEZ∈D1(ŷ(ws,X) 6= Y)

≤ inf
λ>0

[
λ

1− e−λ
‖w∗‖22 supX ‖X‖22

γ2T
+

ln(1/δ)

(1− e−λ) T

]
.

17

Proof of Proposition 4

Let
{ξi = 1(w>i−1XiYi ≤ 0) : i = 1,2, . . . ,n}

be a sequence of random variables, Theorem 13.5 implies that for
any λ > 0, with probability at least 1− δ,

1
T

T∑
i=1

E(Xi ,Yi)∼Dξi ≤
λ

1− e−λ
1
T

T∑
i=1

ξi +
ln(1/δ)

(1− e−λ) T
.

Also note that the mistake bound in Theorem 1 implies that

T∑
i=1

ξi ≤
‖w∗‖22 sup{‖X‖22}

γ2 .

Since E(X ,Y)∼D1(w>i−1XY ≤ 0) = E(Xi ,Yi)∼Dξi , we obtain the desired
result.

18

Online Convex Optimization

One can extend the analysis of the Perceptron algorithms to general
convex loss functions, leading to the so-called online convex
optimization.

Algorithm 3: Online Gradient Descent
Input: Sequence of loss functions `1, . . . , `T defined on Ω
Output: ŵ

1 Let w0 = 0
2 for t = 1,2, . . . ,T do
3 Observe loss `t (wt−1)
4 Let w̃t = wt−1 − ηt∇`t (wt−1)

5 Let wt = arg minw∈Ω ‖w − w̃t‖22
6 Let ŵ = T−1∑T

t=1 wt−1 or ŵ = ws for a random s from 0 to T − 1
Return: ŵ

19

Regret Bound

Theorem 5 (Thm 14.5)

Let {`t (w) : w ∈ Ω} be a sequence of real-valued convex loss
functions defined on a convex set Ω. Assume that all `t (w) are
G-Lipschitz (that is, ‖∇`t (w)‖2 ≤ G). If we let ηt = η > 0 be a
constant in Algorithm 3. Then for all w ∈ Ω, we have

T∑
t=1

`t (wt−1) ≤
T∑

t=1

`t (w) +
‖w0 − w‖22

2η
+
ηT
2

G2.

20

Proof of Theorem 5 (I/II)

We have the following inequality:

‖w̃t − w‖22 =‖wt−1 − w − η∇`t (wt−1)‖22
=‖wt−1 − w‖22 − 2η∇`t (wt−1)>(wt−1 − w) + η2‖∇`t (wt−1)‖22
≤‖wt−1 − w‖22 − 2η∇`t (wt−1)>(wt−1 − w) + G2η2

≤‖wt−1 − w‖22 − 2η[`t (wt−1)− `t (w)] + G2η2,

where the first inequality used the Lipschitz condition, and the second
inequality used the convexity condition.

21

Proof of Theorem 5 (II/II)

Since wt ∈ Ω is the projection of w̃t onto Ω and w ∈ Ω. We also have

‖wt − w‖22 ≤ ‖w̃t − w‖22.

Therefore, we have

‖wt − w‖22 ≤ ‖wt−1 − w‖22 − 2η[`t (wt−1)− `t (w)] + G2η2.

Now we may sum over t = 1 to t = T , and obtain

‖wT − w‖22 ≤ ‖w0 − w‖22 − 2η
T∑

t=1

[`t (wt−1)− `t (w)] + TG2η2.

Rearrange the terms, we obtain the desired bound.

22

A More General Result

The following result applies both for online convex optimization and
perceptron algorithm.

Theorem 6 (Thm 14.6)

Consider Algorithm 5 with the update rule replaced by the following
method

w̃t = wt−1 − ηtgt .

If we can choose gt so that

g>t (w − wt−1) ≤ ˜̀t (w)− `t (wt−1),

then
T∑

t=1

`t (wt−1) ≤
T∑

t=1

˜̀t (w) +
‖w0 − w‖22

2η
+
ηT
2

G2.

23

Example

Example 7

When w>t−1XtYt ≤ 0, we have

−(w − wt−1)>XtYt ≤γ − w>XtYt − γ
≤max(0, γ − w>XtYt)− γ1(w>t−1XtYt ≤ 0).

When w>t−1XtYt > 0, we have

0 ≤ max(0, γ − w>XtYt)− γ1(w>t−1XtYt ≤ 0).

Therefore let gt = −1(w>t−1XtYt ≤ 0)XtYt , then

(w − wt−1)>gt ≤ max(0, γ − w>XtYt)− γ1(w>t−1XtYt ≤ 0).

This implies that Theorem 1 is a special case of Theorem 6 by taking
˜̀t (w) = max(0, γ − w>XtYt) and `t (wt−1) = γ1(w>t−1XtYt ≤ 0).

24

Oracle Inequality

Theorem 8 (Thm 14.9)

Consider loss function φ(w ,Z) ∈ [0,M] with Z ∼ D, and w ∈ Ω,
where Ω is a convex set. Assume that φ(w ,Z) is convex and
G-Lipschitz with respect to w. Let [Z1, . . . ,ZT] ∼ DT be independent
samples, and consider ŵ obtained from Algorithm 3, with
`i(w) = φ(w ,Zi) and ηt = η > 0. Then with probability at least 1− δ,

EZ∼Dφ(ŵ ,Z) ≤ inf
w∈Ω

[
EZ∼Dφ(w ,Z) +

1
2ηT
‖w − w0‖22

]
+
η

2
G + M

√
2 ln(2/δ)

T
.

25

Proof of Theorem 8 (I/II)
Note that the convexity and Jensen’s inequality implies that

EZ∼Dφ(ŵ ,Z) ≤ 1
T

T∑
t=1

EZtφ(wt−1,Zt). (4)

Moreover, using the Azuma’s inequality, we have with probability at least
1− δ/2,

1
T

T∑
t=1

EZtφ(wt−1,Zt) ≤
1
T

T∑
t=1

φ(wt−1,Zt) + M

√
ln(2/δ)

2T
. (5)

Using Theorem 5, we obtain

1
T

T∑
t=1

φ(wt−1,Zt) ≤
1
T

T∑
t=1

φ(w ,Zt) +
‖w0 − w‖2

2
2ηT

+
η

2
G2. (6)

Using the Chernoff bound, we have with probability at least 1− δ/2:

1
T

T∑
t=1

φ(w ,Zt) ≤ EZ∼Dφ(w ,Z) + M

√
ln(2/δ)

2T
. (7)

26

Proof of Theorem 8 (II/II)

By taking the union bound, and combine the above four inequalities,
we obtain the following. With probability at least 1− δ:

EZ∼Dφ(ŵ ,Z) ≤ 1
T

T∑
t=1

EZtφ(wt−1,Zt)

≤ 1
T

T∑
t=1

φ(wt−1,Zt) + M

√
ln(2/δ)

2T

≤ 1
T

T∑
t=1

φ(w ,Zt) +
‖w0 − w‖22

2ηT
+
η

2
G2 + M

√
ln(2/δ)

2T

≤EZ∼Dφ(w ,Z) +
‖w0 − w‖22

2ηT
+
η

2
G2 + M

√
2 ln(2/δ)

T
.

The first inequality used (4). The second inequality used (5). The
third inequality used (6). The last inequality used (7).

27

Compare with ERM

If we take η = O(1/
√

T), then we obtain a convergence result of
O(1/

√
T) in Theorem 8.

In the ERM oracle inequality for kernel methods using Rademacher
complexity analysis, the loss function does not have to be convex.
We have the following result based on Corollary 9.27:

EDφ(ŵ ,Z) ≤EDφ(w ,Z) + λ‖w‖22

+ O

(√
ln((λ+ B2)/(δλ))

n

)
+ O

(
B2 ln((λ+ B2)/(δλ))

λn

)
.

This result is similar to that of Theorem 8 with η = 1/(λT).

28

Example
Example 9

Consider the structured-SVM loss of Example 9.32, where

φ(w , z) = max
`

[γ(y , `)− w>(ψ(x , y)− ψ(x , `))].

If ‖ψ(x , y)− ψ(, `)‖2 ≤ B, then we take G = B in Theorem 5:

1
T

T∑
t=1

φ(wt−1,Zt) ≤
1
T

T∑
t=1

φ(w ,Zt) +
‖w0 − w‖22

2ηT
+
η

2
B2.

Taking expectation, we obtain with λ = 1/(ηT)

EST EZ∼Dφ(ŵ ,Z) ≤ EZ∼D φ(w ,Z) +
λ

2
‖w0 − w‖22 +

1
2λT

B2.

Independent of class size q, better than Rademacher complexity
result in Example 9.32.

29

Strong Convexity

For L2 regularization (or kernel methods), one can obtain a better
bound using strong convexity.

Definition 10
A convex function `(w) is λ strongly convex for some λ > 0 if

`(w ′) ≥ `(w) +∇`(w)>(w ′ − w) +
λ

2
‖w ′ − w‖22.

Observe that for regularized loss, we take

`t (w) = φ(w ,Zt) +
λ

2
‖w − w0‖22. (8)

If φ(w , z) is convex in w , then `t (w) is λ strongly convex.

30

Regret Bound

The following result holds for strongly convex loss functions, and the
learning rate has been proposed to solve SVMs

Theorem 11 (Thm 14.11)

Consider convex loss functions `t (w) : Ω→ R, which are G-Lipschitz
(that is, ‖∇`t (w)‖2 ≤ G) and λ strongly convex. If we let
ηt = 1/(λt) > 0 in Algorithm 3, then for for all w ∈ Ω, we have

T∑
t=1

`t (wt−1) ≤
T∑

t=1

`t (w) +
1 + ln T

2λ
G2.

31

Proof of Theorem 11 (I/II)

Similar to the proof of Theorem 5, we have

‖wt − w‖22
≤‖w̃t − w‖22
=‖wt−1 − w − ηt∇`t (wt−1)‖22
=‖wt−1 − w‖22 − 2ηt∇`t (wt−1)>(wt−1 − w) + η2

t ‖∇`t (wt−1)‖22
≤‖wt−1 − w‖22 + 2ηt [`t (w)− `t (wt−1)]− ηtλ‖wt−1 − w‖22 + G2η2

t

=(1− ληt)‖wt−1 − w‖22 + 2ηt [`t (w)− `t (wt−1)] + G2η2
t ,

where strong-convexity is used to derive the second inequality.

32

Proof of Theorem 11 (II/II)

Note that 1− ηtλ = ηt/ηt−1 and for notation convenience we take
1/η0 = 0. This implies that

η−1
t ‖wt − w‖22 ≤ η−1

t−1‖wt−1 − w‖22 + 2[`t (w)− `t (wt−1)] + G2ηt .

By summing over t = 1 to t = T , we obtain

η−1
T ‖wT −w‖22 ≤ η−1

0 ‖w0 −w‖22 + 2
T∑

t=1

[`t (w)− `t (wt−1)] + G2
T∑

t=1

1
λt
.

Using
∑T

t=1(1/t) ≤ 1 + ln T , we obtain the desired bound.

33

Weighted Regret

It is possible to remove the ln T factor if we use weighted regret.

Theorem 12 (Thm 14.12)

Consider convex loss functions `t (w) : Ω→ R, which are G-Lipschitz
(that is, ‖∇`t (w)‖2 ≤ G) and λ strongly convex. If we let
ηt = 2/(λ(t + 1)) > 0 in Algorithm 3, then for for all w ∈ Ω, we have

T∑
t=1

2(t + 1)

T (T + 3)
`t (wt−1) ≤

T∑
t=1

2(t + 1)

T (T + 3)
`t (w) +

2G2

λ(T + 3)
.

34

Proof of Theorem 12

As in the proof of Theorem 11, we have

‖wt − w‖22 ≤ (1− ηtλ)‖wt−1 − w‖22 + 2ηt [`t (w)− `t (wt−1)] + G2η2
t .

This implies that η−2
t (1− ηtλ) ≤ η−2

t−1, where we set η−2
0 = 0:

η−2
t ‖wt − w‖22 ≤ η−2

t−1‖wt−1 − w‖22 + 2η−1
t [`t (w)− `t (wt−1)] + G2.

By summing over t = 1 to t = T , we obtain

η−2
T ‖wT − w‖22 ≤ η−2

0 ‖w0 − w‖22 + 2
T∑

t=1

η−1
t [`t (w)− `t (wt−1)] + G2T .

This leads to the bound.

35

Oracle Inequality

Corollary 13

Consider the regularized loss function (8) with w0 = 0, where φ(w , z) is
convex in w, and G Lipschitz in w. Moreover assume that
d(Ω) = sup{‖w‖2 : w ∈ Ω}. If Z1, . . . ,ZT ∼ D are independent samples,
then we can obtain the following expected oracle inequality for Algorithm 3 if
we take learning rate in Theorem 11:

EST EDφ(ŵ ,Z)+
λ

2
‖ŵ‖2

2 ≤ inf
w∈Ω

[
EDφ(w ,Z) +

λ

2
‖w‖2

2

]
+

ln(eT)

2λT
[G+λd(Ω)]2.

We can also obtain the following expected oracle inequality for Algorithm 3 if
we take learning rate in Theorem 12 with ŵ ′ =

∑T
t=1

2(t+1)
T 2+3T wt−1, then

EST EDφ(ŵ ′,Z) +
λ

2
‖ŵ ′‖2

2 ≤ inf
w∈Ω

[
EDφ(w ,Z) +

λ

2
‖w‖2

2

]
+

2[G + λd(Ω)]2

λ(T + 3)
.

36

Hedge Algorithm for Nonconvex Problem

Algorithm 4: Hedge Algorithm
Input: T , prior p0(w) on Ω, learning rate η > 0

1 Randomly draw w0 ∼ p0(w)
2 for t = 1,2, . . . ,T do
3 Observe loss `t (wt−1)
4 Randomly draw wt ∼ pt (w) according to

pt (w) ∝ p0(w) exp

(
−η

t∑
s=1

`s(w)

)
, (9)

where p0(w) is a prior on Ω.

37

Regret Bound

Theorem 14 (Thm 14.15)

Assume that for all t :

sup
w∈Ω

`t (w)− inf
w∈Ω

`t (w) ≤ M,

then Algorithm 4 has regret

T∑
t=1

Ewt−1∼pt−1(·)`t (wt−1) ≤ inf
p∈∆(Ω)

[
Ew∼p

T∑
t=1

`t (w) +
1
η

KL(p||p0)

]

+
ηTM2

8
,

where ∆(Ω) denotes the set of probability distributions on Ω.

38

Result used in the Proof of Theorem 14

Proposition 15 (Prop 7.16)

Given any function U(w), we have

min
p∈∆(Ω)

[Ew∼pU(w) + KL(p||p0)] = − lnEw∼p0 exp(−U(w)),

and the solution is achieved by the Gibbs distribution

q(w) ∝ p0(w) exp(−U(w)).

Here ∆(Ω) denotes the set of probability distributions on Ω.

39

Proof of Theorem 14
Let

Zt = − lnEw∼p0 exp

(
−η

t∑
s=1

`s(w)

)
be the log-partition function for observations up to time t . We have

Zt−1 − Zt = lnEw∼pt−1 exp (−η`t (w))

≤− ηEw∼pt−1`t (w) +
η2M2

8
,

where the first equation is simple algebra, and the inequality follows
from the estimate of logarithmic moment generation function in
Lemma 2.15. By summing over t = 1 to T , and noticing that Z0 = 0,
we obtain

T∑
t=1

Ewt−1∼pt−1(·)`t (wt−1) ≤ 1
η

ZT +
ηTM2

8
.

The desired bound follows by applying Proposition 15 to reformulate
the log-partition function ZT .

40

Example

If Ω contains a discrete number of functions, and consider p to be a
measure concentrated on a single w ∈ Ω, then
KL(p||p0) = ln(1/p0(w)). We thus obtain from Theorem 14

T∑
t=1

Ewt−1∼pt−1(·)`t (wt−1) ≤ inf
w∈Ω

[
T∑

t=1

`t (w) +
1
η

ln
1

p0(w)

]
+
ηTM2

8
.

If |Ω| = N with p0(w) = 1/N, then by setting η =
√

8 ln N/(TM2), we
obtain

T∑
t=1

Ewt−1∼pt−1(·)`t (wt−1) ≤ inf
w∈Ω

T∑
t=1

`t (w) + M

√
T ln N

2
.

This matches the generalization result using empirical process in
Chapter 3. Large probability bounds can be obtained by using online
to batch conversion with Azuma’s inequality.

41

Summary (Chapter 14)

I Basics of Online Learning
I Perceptron Mistake Bounds
I Online to Batch Conversion
I Online Convex Optimization
I first order gradient algorithm
I non-strongly-convex regret bound
I strongly-convex regret bound

I Online nonconvex optimization

