Probability Inequalities for Sequential Random Variables

Mathematical Analysis of Machine Learning Algorithms
(Chapter 13)

Sequential Estimation

In sequential estimation problems, we observe a sequence of random variables $Z_{t} \in \mathcal{Z}$ for $t=1,2, \ldots$, where each Z_{t} may depend on the previous observations $\mathcal{S}_{t-1}=\left[Z_{1}, \ldots, Z_{t-1}\right] \in \mathcal{Z}^{t-1}$.

Notations

The sigma algebra generated by $\left\{\mathcal{S}_{t}\right\}$ forms a natural filtration $\left\{\mathcal{F}_{t}\right\}$. We say a sequence $\left\{\xi_{t}\right\}$ is adapted to the filtration $\left\{\mathcal{F}_{t}\right\}$, if each ξ_{t} is a function of \mathcal{S}_{t}. That is, each ξ_{t} at time t does not depend on future observations Z_{s} for $s>t$.

Alternatively one may also say that ξ_{t} is measurable in \mathcal{F}_{t}.

Martingale

The sequence

$$
\xi_{t}^{\prime}=\xi_{t}-\mathbb{E}\left[\xi_{t} \mid \mathcal{F}_{t-1}\right], \text { or equivalently } \xi_{t}^{\prime}\left(\mathcal{S}_{t}\right)=\xi_{t}\left(\mathcal{S}_{t}\right)-\mathbb{E}_{\boldsymbol{Z}_{t} \mid \mathcal{S}_{t-1}} \xi_{t}\left(\mathcal{S}_{t}\right)
$$

is referred to as a martingale difference sequence with the property

$$
\mathbb{E}\left[\xi_{t}^{\prime} \mid \mathcal{F}_{t-1}\right]=\mathbb{E}_{Z_{t} \mid \mathcal{S}_{t-1}} \xi_{t}^{\prime}\left(\mathcal{S}_{t}\right)=0
$$

The sum of a martingale difference sequence

$$
\sum_{s=1}^{t} \xi_{s}^{\prime}=\sum_{s=1}^{t} \xi_{s}^{\prime}\left(\mathcal{S}_{s}\right)
$$

is referred to as a martingale, which satisfies (for all t):

$$
\mathbb{E}\left[\sum_{s=1}^{t} \xi_{s}^{\prime} \mid \mathcal{F}_{t-1}\right]=\sum_{s=1}^{t-1} \xi_{s}^{\prime}, \text { or } \mathbb{E}_{Z_{t} \mid \mathcal{S}_{t-1}} \sum_{s=1}^{t} \xi_{s}^{\prime}\left(\mathcal{S}_{s}\right)=\sum_{s=1}^{t-1} \xi_{s}^{\prime}\left(\mathcal{S}_{s}\right)
$$

General Notation

Refined Notation

We assume each observation is

$$
\mathcal{Z}=\mathcal{Z}^{(x)} \times \mathcal{Z}^{(y)}
$$

and each $Z_{t} \in \mathcal{Z}$ can be written as $Z_{t}=\left(Z_{t}^{(x)}, Z_{t}^{(y)}\right)$.
We are interested in the conditional expectation with respect to $Z_{t}^{(y)} \mid Z_{t}^{(x)}, \mathcal{S}_{t-1}$, rather than with respect to $Z_{t} \mid \mathcal{S}_{t-1}$.
Without causing confusion, we adopt the following shortened notation

$$
\mathbb{E}_{z_{t}^{())}}[\cdot]=\mathbb{E}_{z_{t}^{(1)} \mid Z_{t}^{(x)}, \mathcal{S}_{t-1}}[\cdot] .
$$

This formulation is useful in many statistical estimation problems such as regression, where conditional expectation is what we are interested in.

Martingale Exponential Equality

Lemma 1 (Martingale Exponential Equality, Lem 13.1)

Consider a sequence of real-valued random (measurable) functions $\xi_{1}\left(\mathcal{S}_{1}\right), \ldots, \xi_{T}\left(\mathcal{S}_{T}\right)$. Let $\tau \leq T$ be a stopping time so that $\mathbb{1}(t \leq \tau)$ is measurable in \mathcal{S}_{t}. We have

$$
\mathbb{E}_{\mathcal{S}_{T}} \exp \left(\sum_{i=1}^{\tau} \xi_{i}-\sum_{i=1}^{\tau} \ln \mathbb{E}_{Z_{i}^{(y)}} e^{\xi_{i}}\right)=1
$$

Proof of Lemma 1 (I/II)

We prove the lemma by induction on T. When $T=0$, the equality is trivial. Assume that the claim holds at $T-1$ for some $T \geq 1$. Now we will prove the equation at time T using the induction hypothesis.
Note that $\tilde{\xi}_{i}=\xi_{i} \mathbb{1}(i \leq \tau)$ is measurable in \mathcal{S}_{i}. We have

$$
\sum_{i=1}^{\tau} \xi_{i}-\sum_{i=1}^{\tau} \ln \mathbb{E}_{Z_{i}^{(y)}} e^{\xi_{i}}=\sum_{i=1}^{T} \tilde{\xi}_{i}-\sum_{i=1}^{T} \ln \mathbb{E}_{Z_{i}^{(y)}} e^{\tilde{\xi}_{i}}
$$

It follows that

$$
\begin{aligned}
& \mathbb{E}_{Z_{1}, \ldots, Z_{T}} \exp \left(\sum_{i=1}^{\tau} \xi_{i}-\sum_{i=1}^{\tau} \ln \mathbb{E}_{Z_{i}^{(y)}} e^{\xi_{i}}\right) \\
= & \mathbb{E}_{Z_{1}, \ldots, Z_{T}} \exp \left(\sum_{i=1}^{T} \tilde{\xi}_{i}-\sum_{i=1}^{T} \ln \mathbb{E}_{Z_{i}^{(y)}} e^{\tilde{\xi}_{i}}\right) \\
= & \mathbb{E}_{Z_{1}, \ldots, Z_{n-1}, Z_{T}^{(x)}}[\exp \left(\sum_{i=1}^{T-1} \tilde{\xi}_{i}-\sum_{i=1}^{T-1} \ln \mathbb{E}_{Z_{i}^{(y)}} e^{\tilde{e}_{i}}\right) \underbrace{\mathbb{E}_{Z_{T}^{(\nu)}} \exp \left(\tilde{\xi}_{T}-\ln \mathbb{E}_{Z_{T}^{(\nu)}} e^{\tilde{\xi}_{T}}\right)}_{=1}]
\end{aligned}
$$

Proof of Lemma 1 (II/II)

$$
\begin{aligned}
& =\mathbb{E}_{Z_{1}, \ldots, Z_{n-1}, Z_{T}^{(x)}}[\exp \left(\sum_{i=1}^{T-1} \tilde{\xi}_{i}-\sum_{i=1}^{T-1} \ln \mathbb{E}_{Z_{i}^{(v)}} \tilde{e}^{\tilde{\xi}_{i}}\right) \underbrace{\mathbb{E}_{Z_{T}^{(\nu)}} \exp \left(\tilde{\xi}_{T}-\ln \mathbb{E}_{Z_{T}^{(\nu)}} e^{\tilde{\xi}_{\tau}}\right)}_{=1}] \\
& =\mathbb{E}_{Z_{1}, \ldots, Z_{T-1}} \exp \left(\sum_{i=1}^{T-1} \tilde{\xi}_{i}-\sum_{i=1}^{T-1} \ln \mathbb{E}_{Z_{i}^{(v)}} e^{\tilde{\xi}_{i}}\right) \\
& =\mathbb{E}_{Z_{1}, \ldots, Z_{T-1}} \exp \left(\sum_{i=1}^{\min (\tau, T-1)} \xi_{i}-\sum_{i=1}^{\min (\tau, T-1)} \ln \mathbb{E}_{Z_{i}^{(y)}} e^{\xi_{i}}\right)=1 .
\end{aligned}
$$

Note that the last equation follows from the induction hypothesis, and the fact that $\min (\tau, T-1)$ is a stopping time $\leq T-1$.

Martingale Exponential Tail Inequality

Theorem 2 (Thm 13.2)

Consider a sequence of random functions $\xi_{1}\left(\mathcal{S}_{1}\right), \ldots, \xi_{t}\left(\mathcal{S}_{t}\right), \ldots$, with filtration $\left\{\mathcal{F}_{t}\right\}$. We have for any $\delta \in(0,1)$ and $\lambda>0$:

$$
\operatorname{Pr}\left[\exists n>0:-\sum_{i=1}^{n} \xi_{i} \geq \frac{\ln (1 / \delta)}{\lambda}+\frac{1}{\lambda} \sum_{i=1}^{n} \ln \mathbb{E}_{Z_{i}^{(y)}} e^{-\lambda \xi_{i}}\right] \leq \delta
$$

Moreover, consider a sequence of $\left\{z_{t} \in \mathbb{R}\right\}$ adapted to $\left\{\mathcal{F}_{t}\right\}$, and events A_{t} on \mathcal{F}_{t} :

$$
\begin{aligned}
& \ln \operatorname{Pr}\left[\exists n>0: \sum_{i=1}^{n} \xi_{i} \leq z_{n} \& \mathcal{S}_{n} \in A_{n}\right] \\
\leq & \inf _{\lambda>0} \sup _{n>0} \sup _{\mathcal{S}_{n} \in A_{n}}\left[\lambda z_{n}+\sum_{i=1}^{n} \ln \mathbb{E}_{Z_{i}^{(y)}} e^{-\lambda \xi_{i}}\right] .
\end{aligned}
$$

Proof of Theorem 2 (I/II)

We will prove the result for a finite time sequence $\xi_{1}\left(\mathcal{S}_{1}\right), \ldots, \xi_{T}\left(\mathcal{S}_{T}\right)$. It implies the desired result by letting $T \rightarrow \infty$. Let

$$
\xi_{\tau}(\lambda)=-\sum_{i=1}^{\tau} \ln \mathbb{E}_{z_{i}^{(\nu)}} e^{-\lambda \xi_{i}}-\lambda \sum_{i=1}^{\tau} \xi_{i},
$$

where τ is a stopping time, then we have from Lemma 1 :
$\mathbb{E} e^{\xi_{\tau}(\lambda)}=1$. Now for any given sequence of $\tilde{z}_{n}\left(\mathcal{S}_{n}\right)$ and A_{n}, define the stopping time τ as either T, or the first time step n so that

$$
\xi_{n}(\lambda) \geq-\tilde{z}_{n}\left(\mathcal{S}_{n}\right) \& \mathcal{S}_{n} \in A_{n}
$$

for each sequence \mathcal{S}_{T}. It follows that

$$
\begin{aligned}
& \operatorname{Pr}\left(\exists n: \xi_{n}(\lambda) \geq-\tilde{z}_{n}\left(\mathcal{S}_{n}\right) \& \mathcal{S}_{n} \in A_{n}\right) \\
& \leq \mathbb{i n f} \\
& \leq \mathbb{E}\left[e^{\xi_{\tau}(\lambda)+\tilde{z}_{\tau}\left(\mathcal{S}_{\tau}\right)} \mathbb{1}\left(\mathcal{S}_{\tau} \in A_{\tau}\right)\right] \inf _{n>0, \mathcal{S}_{n} \in A_{n}} e^{-\tilde{z}_{n}\left(\mathcal{S}_{n}\right)} \\
& \leq e^{-\tilde{z}_{n}\left(\mathcal{S}_{n}\right)}\left[e^{\xi_{\tau}(\lambda)+\tilde{z}_{\tau}\left(\mathcal{S}_{\tau}\right)} \mathbb{1}\left(\mathcal{S}_{\tau} \in A_{\tau}\right) e^{-\tilde{z}_{\tau}\left(\mathcal{S}_{\tau}\right)}\right] \leq \mathbb{E} e^{\xi_{\tau}(\lambda)}=1 .
\end{aligned}
$$

Proof of Theorem 2 (II/II)

Therefore we obtain

$$
\begin{aligned}
& \ln \operatorname{Pr}\left[\exists n>0:-\lambda \sum_{i=1}^{n} \xi_{i} \geq-\tilde{z}_{n}\left(\mathcal{S}_{n}\right)+\sum_{i=1}^{n} \ln \mathbb{E}_{Z_{i}^{(y)}} e^{-\lambda \xi_{i}} \& \mathcal{S}_{n} \in A_{n}\right] \\
\leq & \sup _{n>0: \mathcal{S}_{n} \in A_{n}} \tilde{z}_{n}\left(\mathcal{S}_{n}\right) .
\end{aligned}
$$

Let $\tilde{z}\left(\mathcal{S}_{n}\right)=\ln \delta$, we obtain the first inequality. Let

$$
\tilde{z}_{n}\left(\mathcal{S}_{n}\right)=\lambda z_{n}+\sum_{i=1}^{n} \ln \mathbb{E}_{Z_{i}^{(y)}} e^{-\lambda \xi_{i}}
$$

we obtain the second inequality.

Remarks

- In the iid case (Theorem 2.5), one can optimizing over λ to obtain an inequality in terms of the rate function.
- Theorem 13.2 requires fixed λ. However, one can take a union bound over λ to obtain a result that holds for all λ : this may lead to an extra $\log n$ factor in the resulting bound.
- The second inequality in Theorem 2 resolves the issue of paying extra log factor by restricting the optimization over λ in a restricted event A_{n}.
- In general, one can obtain sample dependent bounds requiring empirical quantities bounded in A_{n}, and this can be alleviated by taking union bound over A_{n}.

Martingale Sub-Gaussian Inequality

Theorem 3 (Martingale Sub-Gaussian Inequality, Thm 13.3)

Consider a sequence of random functions $\xi_{1}\left(\mathcal{S}_{1}\right), \ldots, \xi_{t}\left(\mathcal{S}_{t}\right), \ldots$. Assume each ξ_{i} is sub-Gaussian with respect to $Z_{i}^{(y)}$:

$$
\ln \mathbb{E}_{Z_{i}^{(y)}} e^{\lambda \xi_{i}} \leq \lambda \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}+\frac{\lambda^{2} \sigma_{i}^{2}}{2}
$$

for some σ_{i} that may depend on \mathcal{S}_{i-1} and $Z_{i}^{(x)}$. Then for all $\sigma>0$, with probability at least $1-\delta$,

$$
\forall n>0: \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}<\sum_{i=1}^{n} \xi_{i}+\left(\sigma+\frac{\sum_{i=1}^{n} \sigma_{i}^{2}}{\sigma}\right) \sqrt{\frac{\ln (1 / \delta)}{2}}
$$

Data Independent Sub-Gaussian Bound

Since we allow σ_{i} to be data dependent, we cannot in general choose $\sigma^{2}=\sum_{i=1}^{n} \sigma_{i}^{2}$. However, if σ_{i} does not depend on data, then we can further optimize σ for specific time horizon n.

Theorem 4 (Azuma's Inequality, Thm 13.4)

Consider a sequence of random functions $\xi_{1}\left(\mathcal{S}_{1}\right), \ldots, \xi_{n}\left(\mathcal{S}_{n}\right)$ with a fixed number $n>0$. If for each i : $\sup \xi_{i}-\inf \xi_{i} \leq M_{i}$ for some constant M_{i}, then with probability at least $1-\delta$,

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}<\frac{1}{n} \sum_{i=1}^{n} \xi_{i}+\sqrt{\frac{\sum_{i=1}^{n} M_{i}^{2} \ln (1 / \delta)}{2 n^{2}}}
$$

Example: Data Dependent sub-Gaussian Inequality

We now consider the situation σ_{i} is data dependent in Theorem 3. Using the technique of Chapter 8, we can obtain the following data-dependent bound.

Proposition 5

Under the assumptions of Theorem 3. Given any $c_{0}>0$ and $\delta \in(0,1)$, with probability at least $1-\delta$:

$$
\forall n>0: \quad \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}<\sum_{i=1}^{n} \xi_{i}+\sqrt{4\left(c_{0}+\sum_{i=1}^{n} \sigma_{i}^{2}\right) \ln \frac{(\hat{\ell}+1)^{2}}{\delta}}
$$

where $\hat{\ell}=\left\lfloor 1+\log _{2}\left(1+\sum_{i=1}^{n} \sigma_{i}^{2} / c_{0}\right)\right\rfloor$.

Proof of Proposition 5

Consider the sequence of numbers $2^{\ell} c_{0}(\ell=1, \ldots)$. For each ℓ, we consider the event $\sum_{i=1}^{n} \sigma_{i}^{2} \leq 2^{\ell} c_{0}$, and let $\sigma=\sqrt{2^{\ell} c_{0}}$ in Theorem 3. It follows that with probability at least $1-\delta /(\ell+1)^{2}$,

$$
\forall n>0: \sum_{i=1}^{n} \mathbb{E}_{z_{i}^{(y)}} \xi_{i}<\sum_{i=1}^{n} \xi_{i}+\sqrt{2^{\ell+1} c_{0} \ln \frac{(\ell+1)^{2}}{\delta}} \text { or } \sum_{i=1}^{n} \sigma_{i}^{2}>2^{\ell} c_{0} .
$$

Taking union bound, the above inequality holds for all $\ell \geq 1$ with probability at least $1-\delta$.
Now let $\hat{\ell}=\left\lfloor 1+\log _{2}\left(1+\sum_{i=1}^{n} \sigma_{i}^{2} / c_{0}\right)\right\rfloor$, we know that the following inequalities hold

$$
\sum_{i=1}^{n} \sigma_{i}^{2} \leq 2^{\hat{\ell}} c_{0}, \quad 2^{\hat{\ell}+1} c_{0} \leq 4\left(c_{0}+\sum_{i=1}^{n} \sigma_{i}^{2}\right) .
$$

Therefore we obtain the desired bound.

Multiplicative Chernoff Bound

Theorem 6 (Thm 13.5)

Consider a sequence of random functions $\xi_{1}\left(\mathcal{S}_{1}\right), \ldots, \xi_{t}\left(\mathcal{S}_{t}\right), \ldots$ such that $\xi_{i} \in[0,1]$ for all i. We have for $\lambda>0$, with probability at least $1-\delta$:

$$
\forall n>0: \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}<\frac{\lambda}{1-e^{-\lambda}} \frac{1}{n} \sum_{i=1}^{n} \xi_{i}+\frac{\ln (1 / \delta)}{\left(1-e^{-\lambda}\right) n}
$$

Similarly, for $\lambda>0$, with probability at least $1-\delta$:

$$
\forall n>0: \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}>\frac{\lambda}{e^{\lambda}-1} \frac{1}{n} \sum_{i=1}^{n} \xi_{i}-\frac{\ln (1 / \delta)}{\left(e^{\lambda}-1\right) n}
$$

We note that similar to Theorem 3, the result is with fixed λ. However similar to Proposition 5, we can take union bound over a range of λ values to obtain a bound that allow λ to be data dependent.

Result used in the Proof of Theorem 6

Lemma 7 (Lem 2.15)

Consider a random variable $X \in[0,1]$ and $\mathbb{E} X=\mu$. We have the following inequality:

$$
\ln \mathbb{E} e^{\lambda X} \leq \ln \left[(1-\mu) e^{0}+\mu e^{\lambda}\right] \leq \lambda \mu+\lambda^{2} / 8
$$

Proof of Theorem 6

We obtain from Lemma 7 and Theorem 2 that with probability at least $1-\delta$

$$
\begin{aligned}
-\sum_{i=1}^{n} \xi_{i} & <\frac{\ln (1 / \delta)}{\lambda}+\frac{1}{\lambda} \sum_{i=1}^{n} \ln \left(1+\left(e^{-\lambda}-1\right) \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}\right) \\
& \leq \frac{\ln (1 / \delta)}{\lambda}+\frac{1}{\lambda} \sum_{i=1}^{n}\left(e^{-\lambda}-1\right) \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}
\end{aligned}
$$

This implies the first bound. The second bound can be proved similarly.

Freedman's Inequality

Theorem 8 (Freedman's Inequality, Thm 13.6)

Consider a sequence of random functions $\xi_{1}\left(\mathcal{S}_{1}\right), \ldots, \xi_{n}\left(\mathcal{S}_{n}\right)$. Assume that $\xi_{i} \geq \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}-b$ for some constant $b>0$. Then for any
$\lambda \in(0,3 / b)$, with probability at least $1-\delta$:

$$
\forall n>0: \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}<\sum_{i=1}^{n} \xi_{i}+\frac{\lambda \sum_{i=1}^{n} \operatorname{Var}_{Z_{i}^{(y)}}\left(\xi_{i}\right)}{2(1-\lambda b / 3)}+\frac{\ln (1 / \delta)}{\lambda} .
$$

This implies that for all $\sigma>0$, with probability at least $1-\delta$:

$$
\begin{aligned}
\forall n>0: & \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}<\sum_{i=1}^{n} \xi_{i}+\sigma \sqrt{2 \ln (1 / \delta)}+\frac{b \ln (1 / \delta)}{3} \\
& \text { or } \sum_{i=1}^{n} \operatorname{Var}_{z_{i}^{(y)}}\left(\xi_{i}\right)>\sigma^{2}
\end{aligned}
$$

Reference Used in the Proof of Theorem 8

Lemma 9 (Lem 2.9)

Consider a random variable X so that $\mathbb{E}[X]=\mu$. Assume that there exists $\alpha>0$ and $\beta \geq 0$ such that for $\lambda \in\left[0, \beta^{-1}\right)$:

$$
\begin{equation*}
\Lambda_{X}(\lambda) \leq \lambda \mu+\frac{\alpha \lambda^{2}}{2(1-\beta \lambda)} \tag{1}
\end{equation*}
$$

then for $\epsilon>0$:

$$
\begin{aligned}
& -I_{X}(\mu+\epsilon) \leq-\frac{\epsilon^{2}}{2(\alpha+\beta \epsilon)} \\
& -I_{X}\left(\mu+\epsilon+\frac{\beta \epsilon^{2}}{2 \alpha}\right) \leq-\frac{\epsilon^{2}}{2 \alpha}
\end{aligned}
$$

Proof of Theorem 8

Using the logarithmic moment generating function (2.13), we obtain the first inequality directly from the first inequality of Theorem 2. Moreover, we can obtain from the second inequality of Theorem 2 with

$$
\begin{aligned}
& A_{n}=\left\{\mathcal{S}_{n}: \sum_{i=1}^{n} \operatorname{Var}_{Z_{i}^{(y)}}\left(\xi_{i}\right) \leq \sigma^{2}\right\} \\
& z_{n}=\sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}-\epsilon-\epsilon^{2} b /\left(6 \sigma^{2}\right)
\end{aligned}
$$

and the rate function estimate corresponding to the third inequality of Lemma 9:

$$
\operatorname{Pr}\left[\exists n>0: \sum_{i=1}^{n} \xi_{i} \leq z_{n} \text { and } \mathcal{S}_{n} \in A_{n}\right] \leq \exp \left(-\frac{\epsilon^{2}}{2 \sigma^{2}}\right)
$$

This implies the second desired inequality with $\epsilon=\sigma \sqrt{2 \ln (1 / \delta)}$.

Data Dependent Freedman's Inequality

We can remove the dependency on σ in Theorem 8, which leads to the following result. One may also use the same technique to alleviate the dependence on b.

Proposition 10

Under the assumptions of Theorem 8 , for $V_{0}>0$ and $\delta \in(0,1)$, we have with probability at least $1-\delta$:

$$
\begin{aligned}
\forall n>0 & : \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i}<\sum_{i=1}^{n} \xi_{i}+\sqrt{4\left(V_{0}+\sum_{i=1}^{n} \operatorname{Var}_{Z_{i}^{(y)}}\left(\xi_{i}\right)\right) \ln \left((\hat{\ell}+1)^{2} / \delta\right)} \\
& +\frac{b \ln \left((\hat{\ell}+1)^{2} / \delta\right)}{3}
\end{aligned}
$$

where $\hat{\ell}=\left\lfloor 1+\log _{2}\left(1+\sum_{i=1}^{n} \operatorname{Var}_{Z_{i}^{(y)}}\left(\xi_{i}\right) / V_{0}\right)\right\rfloor$.

Proof of Proposition 10

We consider a sequence $\sigma^{2}=2^{\ell} V_{0}$ for $\ell=1,2, \ldots$. With probability at least $1-\delta$, for all $\ell \geq 1$:
$\forall n>0: \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(r)}} \xi_{i}<\sum_{i=1}^{n} \xi_{i}+\sqrt{2^{\ell+1} V_{0} \ln \left((\ell+1)^{2} / \delta\right)}+\frac{b \ln \left((\ell+11)^{2} / \delta\right)}{3}$

$$
\text { or } \sum_{i=1}^{n} \operatorname{Var}_{z_{i}^{(y)}}\left(\xi_{i}\right)>2^{\ell} V_{0} .
$$

With $\hat{\ell}=\left\lfloor 1+\log _{2}\left(1+\sum_{i=1}^{n} \operatorname{Var}_{z_{i}^{(y)}}\left(\xi_{i}\right) / V_{0}\right)\right\rfloor$, we have

$$
\sum_{i=1}^{n} \operatorname{Var}_{z_{i}^{(\gamma)}}\left(\xi_{i}\right) \leq 2^{\hat{\ell}} V_{0}, \quad 2^{\hat{\ell}+1} V_{0} \leq 4\left(V_{0}+\sum_{i=1}^{n} \operatorname{Var}_{z_{i}^{(y)}}\left(\xi_{i}\right)\right) .
$$

This implies the desired result.

Uniform Convergence

Consider a real-valued function class \mathcal{F} on \mathcal{Z}, and a sequence of observations $Z_{1}, \ldots, Z_{n} \in \mathcal{Z}$, and let

$$
\mathcal{S}_{n}=\left[Z_{1}, \ldots, Z_{n}\right] .
$$

We assume that each Z_{t} may depend on \mathcal{S}_{t-1}. In uniform convergence, we are generally interested in estimating the following quantity

$$
\sup _{f \in \mathcal{F}}\left[\frac{1}{n} \sum_{i=1}^{n}\left[-f\left(Z_{i}\right)+\mathbb{E}_{Z_{i}^{(y)}} f\left(Z_{i}\right)\right]\right] .
$$

Uniform Convergence with L_{∞} Packing Number

 In the following theorem, $M\left(\epsilon, \mathcal{F},\|\cdot\|_{\infty}\right)$) is the ϵL_{∞} packing number of \mathcal{F} with the metric $\|f\|_{\infty}=\sup _{\mathcal{Z}}|f(Z)|$.
Theorem 11 (Simplification of Thm 13.11)

We have for any $\lambda>0$, with probability at least $1-\delta$, for all $n \geq 1$ and $f \in \mathcal{F}$:

$$
\begin{aligned}
& -\sum_{i=1}^{n} f\left(Z_{i}\right)-\frac{1}{\lambda} \sum_{i=1}^{n} \ln \mathbb{E}_{Z_{i}^{(y)}} e^{-\lambda f\left(Z_{i}\right)} \\
\leq & \inf _{\epsilon>0}\left[2 n \epsilon+\frac{\left.\ln \left(M\left(\epsilon, \mathcal{F},\|\cdot\|_{\infty}\right)\right) / \delta\right)}{\lambda}\right] .
\end{aligned}
$$

It is also possible to improve Theorem 11 using chaining (see Proposition 13.14).

Proof of Theorem 11

Let $\mathcal{F}_{\epsilon} \subset \mathcal{F}$ be an ϵ maximal packing of \mathcal{F}, with $\left|\mathcal{F}_{\epsilon}\right| \leq M\left(\epsilon, \mathcal{F},\|\cdot\|_{\infty}\right)$. We obtain from Theorem 2, and the uniform bound over \mathcal{F}_{ϵ} that with probability at least $1-\delta$:

$$
\sup _{f \in \mathcal{F}_{\epsilon}}\left[-\sum_{i=1}^{n} f\left(Z_{i}\right)-\frac{1}{\lambda} \sum_{i=1}^{n} \ln \mathbb{E}_{Z_{i}^{(y)}} e^{-\lambda f\left(Z_{i}\right)}\right] \leq \frac{\left.\ln \left(M\left(\epsilon, \mathcal{F},\|\cdot\|_{\infty}\right)\right) / \delta\right)}{\lambda} .
$$

Since \mathcal{F}_{ϵ} is also an ϵL_{∞} cover of \mathcal{F} (see Theorem 5.2), we obtain

$$
\begin{aligned}
& \sup _{f \in \mathcal{F}}\left[-\sum_{i=1}^{n} f\left(Z_{i}\right)-\frac{1}{\lambda} \sum_{i=1}^{n} \ln \mathbb{E}_{Z_{i}^{(v)}} e^{-\lambda f\left(Z_{i}\right)}\right] \\
\leq & 2 n \epsilon+\sup _{f \in \mathcal{F}_{\epsilon}}\left[-\sum_{i=1}^{n} f\left(Z_{i}\right)-\frac{1}{\lambda} \sum_{i=1}^{n} \ln \mathbb{E}_{Z_{i}^{(y)}} e^{-\lambda f\left(Z_{i}\right)}\right] .
\end{aligned}
$$

This implies the result.

Refined Least Squares Uniform Convergence

Theorem 12 (Simplification of Thm 13.15)

Let $\left\{\left(X_{t}, \epsilon_{t}\right)\right\}$ be a filtered sequence in $\mathcal{X} \times \mathbb{R}$ so that ϵ_{t} is conditional zero-mean sub-Gaussian noise: for all $\lambda \in \mathbb{R}$,

$$
\ln \mathbb{E}\left[e^{\lambda \epsilon_{t}} \mid X_{t}, \mathcal{S}_{t-1}\right] \leq \frac{\lambda^{2}}{2} \sigma^{2}
$$

where \mathcal{S}_{t-1} denotes the history data. Assume that $Y_{t}=f_{*}\left(X_{t}\right)+\epsilon_{t}$, with $f_{*}(x) \in \mathcal{F}: \mathcal{X} \rightarrow \mathbb{R}$. Let \hat{f}_{t} be the exact ERM solution:

$$
\hat{f}_{t}=\arg \min _{f \in \mathcal{F}} \sum_{s=1}^{t}\left(f\left(X_{s}\right)-Y_{s}\right)^{2}
$$

Then with probability at least $1-\delta$, for all $t \geq 0$:

$$
\sum_{s=1}^{t}\left(\hat{f}_{t}\left(X_{t}\right)-f_{*}\left(X_{t}\right)\right)^{2} \leq \inf _{\epsilon>0}\left[8 t \epsilon(\sigma+2 \epsilon)+12 \sigma^{2} \ln \frac{2 N\left(\epsilon, \mathcal{F},\|\cdot\|_{\infty}\right)}{\delta}\right]
$$

Minimax Analysis for Sequential Estimation

Notations

Consider a general sequential estimation problem, where we observe data $Z_{t} \in \mathcal{Z}$ from the environment by interacting with the environment using a sequence of learned policies $\pi_{t} \in \Pi$.

At each time t, the observation history is

$$
\mathcal{S}_{t-1}=\left[\left(Z_{1}, \pi_{1}\right), \ldots,\left(Z_{t-1}, \pi_{t-1}\right)\right]
$$

Based on the history, the player (or learning algorithm), denoted by \hat{q}, determines the next policy $\pi_{t} \in \Pi$ that can interact with the environment.

Based on the policy π_{t}, environment generates the next observation $Z_{t} \in \mathcal{Z}$ according to an unknown distribution $q\left(Z_{t} \mid \pi_{t}, \mathcal{S}_{t-1}\right)$.

Definition 13 (Sequential Statistical Estimation)

Consider a family of environment distributions $\mathcal{P}_{\mathcal{Z}}$, where each $q \in \mathcal{P}_{\mathcal{Z}}$ determines the probability for generating Z_{t} based on policy π_{t} as $q\left(Z_{t} \mid \pi_{t}, \mathcal{S}_{t-1}\right)$. Consider also a family of learning algorithms, represented by $\mathcal{P}_{\mathcal{A}}$. Each learning algorithm $\hat{q} \in \mathcal{P}_{\mathcal{A}}$ maps the history \mathcal{S}_{t-1} deterministically to the next policy $\pi_{t} \in \Pi$ as $\pi_{t}=\hat{q}\left(\mathcal{S}_{t-1}\right)$. Given $q \in \mathcal{P}_{\mathcal{Z}}$, and $\hat{q} \in \mathcal{P}_{\mathcal{A}}$, the data generation probability is fully determined as

$$
p\left(\mathcal{S}_{n} \mid \hat{q}, q\right)=\prod_{t=1}^{n} q\left(Z_{t} \mid \hat{q}\left(\mathcal{S}_{t-1}\right), \mathcal{S}_{t-1}\right)
$$

After observing \mathcal{S}_{n} for some n, the learning algorithm \hat{q} determines a distribution $\hat{q}\left(\theta \mid \mathcal{S}_{n}\right)$, and draw estimator $\theta \in \Theta$ according to $\hat{q}\left(\theta \mid \mathcal{S}_{n}\right)$. The learning algorithm suffers a loss (also referred to as regret) $Q(\theta, q)$. The overall probability of θ and \mathcal{S}_{n} is

$$
\begin{equation*}
p\left(\theta, \mathcal{S}_{n} \mid \hat{q}, q\right)=\hat{q}\left(\theta \mid \mathcal{S}_{n}\right) \prod_{t=1}^{n} q\left(Z_{t} \mid \hat{q}\left(\mathcal{S}_{t-1}\right), \mathcal{S}_{t-1}\right) \tag{2}
\end{equation*}
$$

Example: Online Learning (non-adversarial)

We consider a parameter space Ω, and at each time t, the learning algorithm chooses a parameter $w_{t} \in \Omega$ according to a probability distribution $\pi_{t}(\cdot)$ on Ω.

This probability distribution is the policy. Given $w_{t} \sim \pi_{t}$, we then observe a $Z_{t} \sim q_{t}$ from an unknown distribution q_{t}. We assume that the loss function ℓ is known.

After n rounds, let $\theta\left(\mathcal{S}_{n}\right)=\left[\pi_{1}, \ldots, \pi_{n}\right]$, we suffer a loss

$$
Q(\theta, q)=\sum_{t=1}^{n} \mathbb{E}_{w_{t} \sim \pi_{t}} \mathbb{E}_{Z_{t} \sim q_{t}} \ell\left(w_{t}, Z_{t}\right)-\inf _{w \in \Omega} \sum_{t=1}^{n} \mathbb{E}_{Z \sim q_{t}} \ell\left(w, Z_{t}\right) .
$$

Example: MAB

We consider the multi-armed bandit problem, where we have K arms from $\mathcal{A}=\{1, \ldots, K\}$. For each arm $a \in \mathcal{A}$, we have a probability distribution q_{a} on $[0,1]$. If we pull an arm $a \in \mathcal{A}$, we observe a random reward $r \in[0,1]$ from a distribution q_{a} that depends on the arm a.
Our goal is to find the best arm $\theta \in \Theta=\mathcal{A}$ with the largest expected reward $\mathbb{E}_{r \sim q_{a}}[r]$, and the loss $Q(\theta, q)=\sup _{a} \mathbb{E}_{r \sim q_{a}}[r]-\mathbb{E}_{r \sim q_{\theta}}[r]$. In this case, a policy π_{t} is a probability distribution over \mathcal{A}.
The learning algorithm defines a probability distribution $\hat{q}\left(\mathcal{S}_{t-1}\right)$ over \mathcal{A} at each time, and draw $a_{t} \sim \hat{q}\left(\mathcal{S}_{t-1}\right)$. The observation Z_{t} is the reward r_{t} which is drawn from $q_{a_{t}}$.

Contextual Bandits

In contextual bandits, we consider a context space \mathcal{X} and action space \mathcal{A}. Given a context $x \in \mathcal{X}$, we can take an action $a \in \mathcal{A}$, and observe a reward $r \sim q_{x, a}$.

A policy π is a map $\mathcal{X} \rightarrow \Delta(\mathcal{A})$, where $\Delta(\mathcal{A})$ denotes the set of probability distributions over \mathcal{A} (with an appropriately defined sigma algebra).
The policy π_{t} interacts with the environment to generate the next observation as: the environment generates x_{t}, the player takes an action $a_{t} \sim \pi_{t}\left(x_{t}\right)$, and then the environment generates the reward $r_{t} \sim q_{x_{t}, a_{t}}$.

Minimax Risk

Definition 14

Consider an environment distribution family $\mathcal{P}_{\mathcal{Z}}$, learning algorithm distribution family $\mathcal{P}_{\mathcal{A}}$. Then the worst case expected risk of a learning algorithm $\hat{q} \in \mathcal{P}_{\mathcal{A}}$ with respect to $\mathcal{P}_{\mathcal{Z}}$ is given by

$$
r_{n}\left(\hat{q}, \mathcal{P}_{\mathcal{Z}}, Q\right)=\sup _{q \in \mathcal{P}_{\mathcal{Z}}} \mathbb{E}_{\theta, \mathcal{S}_{n} \sim p(\cdot \mid \hat{q}, q)} Q(\theta, q)
$$

where $p(\cdot \mid \hat{q}, q)$ is defined in (2). Moreover, the minimax risk is defined as:

$$
r_{n}\left(\mathcal{P}_{\mathcal{A}}, \mathcal{P}_{\mathcal{Z}}, Q\right)=\inf _{\hat{q} \in \mathcal{P}_{\mathcal{A}}} r_{n}\left(\hat{q}, \mathcal{P}_{\mathcal{Z}}, Q\right)
$$

Lower Bound based on Assouad's Lemma

Theorem 15 (Thm 13.24)

Let $d \geq 1$ and $m \geq 2$ be integers, and let $\mathcal{P}_{\mathcal{Z}}=\left\{q^{\tau}: \tau \in\{1, \ldots, m\}^{d}\right\}$ contain m^{d} probability measures. Suppose that the loss function Q can be decomposed as $Q(\theta, q)=\sum_{j=1}^{d} Q_{j}(\theta, q)$, where $Q_{j} \geq 0$ are all non-negative. For each $j, \tau \sim_{j} \tau^{\prime}$ if $\tau=\tau^{\prime}$ or if τ and τ^{\prime} differs by only one component j. Assume that there exists $\epsilon, \beta \geq 0$ such that

$$
\forall \tau^{\prime} \sim_{j} \tau, \tau^{\prime} \neq \tau: \quad\left[Q_{j}\left(\theta, q^{\tau}\right)+Q_{j}\left(\theta, q^{\tau^{\prime}}\right)\right] \geq \epsilon
$$

and there exists q_{j}^{τ} such that all $\tau^{\prime} \sim_{j} \tau$ map to the same value: $q_{j}^{\tau^{\prime}}=q_{j}^{\tau}$. Given any learning algorithm \hat{q}. If for all $\tau, j \in[d]$, time step t, and \mathcal{S}_{t-1} :

$$
\begin{aligned}
& \left.\frac{1}{m} \sum_{\tau^{\prime} \sim_{j} \tau} \operatorname{KL}\left(q_{j}^{\tau}\left(\cdot \mid \hat{q}\left(\mathcal{S}_{t-1}\right), \mathcal{S}_{t-1}\right)| | q^{\tau^{\prime}}\left(\cdot \mid \hat{q}\left(\mathcal{S}_{t-1}\right), \mathcal{S}_{t-1}\right)\right)\right) \leq \beta_{j, t}^{2}, \quad \text { then } \\
& \frac{1}{m^{d}} \sum_{\tau} \mathbb{E}_{\theta, \mathcal{S}_{n} \sim p\left(\cdot \mid \hat{q}, q^{\tau}\right)} Q\left(\theta, q^{\tau}\right) \geq 0.5 d \epsilon\left(1-\sqrt{\frac{2}{d} \sum_{j=1}^{d} \sum_{t=1}^{n} \beta_{j, t}^{2}}\right)
\end{aligned}
$$

Result used in the Proof of Theorem 15

Lemma 16 (Generalized Assouad's Lemma, Lem 12.27)

Consider a finite family of distributions \mathcal{P}. Let $d \geq 1$ be an integer, and Q can be decomposed as

$$
Q(\theta, \mathcal{D})=\sum_{j=1}^{d} Q_{j}(\theta, \mathcal{D})
$$

where $Q_{j} \geq 0$ are all non-negative. Assume for all j, there exists a partition M_{j} of \mathcal{P}. We use notation $\mathcal{D}^{\prime} \sim_{j} \mathcal{D}$ to indicate that \mathcal{D}^{\prime} and \mathcal{D} belong to the same partition in M_{j}. Let $m_{j}(\mathcal{D})$ be the number of elements in the partition containing \mathcal{D}. Assume there exist $\epsilon, \beta \geq 0$ such that

$$
\begin{aligned}
\forall \mathcal{D}^{\prime} \sim_{j} \mathcal{D}, \mathcal{D}^{\prime} \neq \mathcal{D}: \quad \inf _{\theta}\left[Q_{j}\left(\theta, \mathcal{D}^{\prime}\right)+Q_{j}(\theta, \mathcal{D})\right] \geq \epsilon, \\
\forall \mathcal{D} \in \mathcal{P}: \quad \frac{1}{d(\mathcal{P})} \sum_{j=1}^{d} \sum_{\mathcal{D} \in \mathcal{P}_{j}} \frac{1}{m_{j}(\mathcal{D})-1} \sum_{\mathcal{D}^{\prime} \sim_{j} \mathcal{D}}\left\|\mathcal{D}^{\prime}-\mathcal{D}\right\|_{\mathrm{TV}} \leq \beta,
\end{aligned}
$$

where $\mathcal{P}_{j}=\left\{\mathcal{D} \in \mathcal{P}: m_{j}(\mathcal{D})>1\right\}$ and $d(\mathcal{P})=\sum_{j=1}^{d}\left|\mathcal{P}_{j}\right|$. Let $\mathcal{A}(Z)$ be any estimator, we have

$$
\frac{1}{|\mathcal{P}|} \sum_{\mathcal{D} \in \mathcal{P}} \mathbb{E}_{Z \sim \mathcal{D}} \mathbb{E}_{\mathcal{A}} Q(\mathcal{A}(Z), \mathcal{D}) \geq \frac{\epsilon d(\mathcal{P})}{2|\mathcal{P}|}[1-\beta]
$$

where $\mathbb{E}_{\mathcal{A}}$ is with respect to the internal randomization in \mathcal{A}.

Proof of Theorem 15 (I/II)

We have

$$
\begin{aligned}
& \frac{1}{d m^{d}} \sum_{\tau} \sum_{j=1}^{d} \frac{1}{m-1} \sum_{\tau^{\prime} \sim j \tau}\left\|p\left(\cdot \mid \hat{q}, q^{\tau}\right)-p\left(\cdot \mid \hat{q}, q^{\tau^{\prime}}\right)\right\|_{\mathrm{TV}} \\
& \leq \frac{1}{d m^{d}} \sum_{\tau} \sum_{j=1}^{d} \frac{1}{m-1} \sum_{\tau^{\prime} \sim_{j} \tau, \tau^{\prime} \neq \tau}\left[\left\|p\left(\cdot \mid \hat{q}, q_{j}^{\tau}\right)-p\left(\cdot \mid \hat{q}, q^{\tau^{\prime}}\right)\right\|_{\mathrm{TV}}\right. \\
& \left.\quad+\left\|p\left(\cdot \mid \hat{q}, q_{j}^{\tau}\right)-p\left(\cdot \mid \hat{q}, q^{\tau}\right)\right\|_{\mathrm{TV}}\right] \\
& =\frac{2}{d m^{d}} \sum_{\tau} \sum_{j=1}^{d} \frac{1}{m} \sum_{\tau^{\prime} \sim_{j} \tau}\left\|p\left(\cdot \mid \hat{q}, q_{j}^{\tau}\right)-p\left(\cdot \mid \hat{q}, q^{\tau^{\prime}}\right)\right\|_{\mathrm{TV}}=A .
\end{aligned}
$$

The first inequality is triangle inequality for TV-norm. The first equality used $\hat{q}_{j}^{\tau}=\hat{q}_{j}^{\tau^{\prime}}$ when $\tau \sim_{j} \tau^{\prime}$.

Proof of Theorem 15 (II/II)

$$
A \leq \frac{2}{m^{d}} \sum_{\tau} \sqrt{\frac{1}{d m} \sum_{j=1}^{d} \sum_{\tau^{\prime} \sim j_{j} \tau}\left\|p\left(\cdot \mid \hat{q}, q_{j}^{\tau}\right)-p\left(\cdot \mid \hat{q}, q^{\tau^{\prime}}\right)\right\|_{\mathrm{TV}}^{2}}
$$

(Jensen's inequality for $\sqrt{ }$.)

$$
\leq \frac{2}{m^{d}} \sum_{\tau} \sqrt{\frac{1}{2 d m} \sum_{j=1}^{d} \sum_{\tau^{\prime} \sim_{j} \tau} K L\left(p\left(\cdot \mid \hat{q}, q_{j}^{\tau}\right)| | p\left(\cdot \mid \hat{q}, q^{\tau^{\prime}}\right)\right)}
$$

(Pinsker's inequality)

$$
\leq \sqrt{\frac{2}{d} \sum_{j=1}^{d} \sum_{t=1}^{n} \beta_{t}^{2}} .
$$

The last inequality used Lemma 13.21. Now in Lemma 16, we let $M_{j}\left(q^{\tau}\right)=\left\{q^{\tau^{\prime}}: \tau^{\prime} \sim_{j} \tau\right\}$ be the partitions. The result is a simple application of Lemma 16 with $m_{j}\left(q^{\tau}\right)=m,|\mathcal{P}|=m^{d}$, and $d(\mathcal{P})=d m^{d}$.

Example

Consider estimating the mean of a d dimensional Gaussian random variable $Z \sim N\left(\theta, I_{d \times d}\right)$. Each time the player draws an action $a_{t} \in\{1, \ldots, d\}$, and the environment draws $\tilde{Z}_{t} \sim N\left(\theta, I_{d \times d}\right)$, and reveals only the a_{t}-th component $Z_{t}=\tilde{Z}_{t, a_{t}}$. After T rounds, we would like to estimate the mean as $\hat{\theta}$, and measure the quality with $Q(\hat{\theta}, \theta)=\|\hat{\theta}-\theta\|_{2}^{2}$. In this case, a policy π_{t} can be regarded as a distribution over $\{1, \ldots, d\}$, and we draw $a_{t} \sim \pi_{t}$.
To obtain an upper bound of the loss, we can simply randomly pick a_{t}, and use the following unbiased estimator:

$$
\hat{\theta}_{j}=\frac{d}{n} \sum_{t=1}^{n} z_{t, a_{t}} \mathbb{1}\left(a_{t}=j\right) .
$$

This implies that

$$
\mathbb{E}\|\hat{\theta}-\theta\|_{2}^{2}=\frac{d^{2}}{n}
$$

Example (cont)

To obtain a lower bound of the loss, we consider Corollary 13.23, with $\theta^{\tau}=\epsilon \tau /(\sqrt{d})$ and $\mathcal{P}_{\mathcal{Z}}=\left\{N\left(\theta^{\tau}, l_{d \times d}\right): \tau \in\{ \pm 1\}^{d}\right.$. Consider the decomposition

$$
Q\left(\theta, q^{\tau}\right)=\sum_{j=1}^{d} Q_{j}\left(\theta, q^{\tau}\right), \quad Q_{j}\left(\theta, q^{\tau}\right)=\left(\theta_{j}-\theta_{j}^{\tau}\right)^{2} .
$$

This implies that

$$
\forall \tau: \quad\left[Q_{j}\left(\theta, q^{\tau}\right)+Q_{j}\left(\theta, q^{\tau^{-[]]}}\right)\right] \geq \epsilon^{2} / d
$$

Let Z_{t} and Z_{t}^{\prime} be the observations under $q, q^{\prime} \in \mathcal{P}_{\mathcal{Z}}$, then for any a_{t}, $\operatorname{KL}\left(Z_{t}, Z_{t}^{\prime}\right) \leq \beta_{t}^{2}=2 \epsilon^{2} / d$. When

$$
2 n \epsilon^{2} \leq d^{2} / 32-d
$$

we have

$$
r_{n}\left(\mathcal{P}_{\mathcal{A}}, \mathcal{P}_{\mathcal{Z}}, Q\right) \geq \epsilon^{2} / 16
$$

This matches the upper bound up to a constant.

Summary (Chapter 13)

- Martingale Exponential Equality
- Martingale Exponential Tail Probability Inequality
- Azuma's Inequality
- Freedman's Inequality
- Data Dependent Bound
- Uniform Convergence with L_{∞} Packing Number
- Minimax Analysis and Lower Bound

