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Probability Inequalities for Sequential Random
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Mathematical Analysis of Machine Learning Algorithms
(Chapter 13)
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Sequential Estimation

In sequential estimation problems, we observe a sequence of random
variables Zt ∈ Z for t = 1,2, . . ., where each Zt may depend on the
previous observations St−1 = [Z1, . . . ,Zt−1] ∈ Z t−1.

Notations
The sigma algebra generated by {St} forms a natural filtration {Ft}.

We say a sequence {ξt} is adapted to the filtration {Ft}, if each ξt is
a function of St . That is, each ξt at time t does not depend on future
observations Zs for s > t .

Alternatively one may also say that ξt is measurable in Ft .
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Martingale
The sequence

ξ′t = ξt − E[ξt |Ft−1], or equivalently ξ′t (St ) = ξt (St )− EZt |St−1ξt (St ),

is referred to as a martingale difference sequence with the property

E[ξ′t |Ft−1] = EZt |St−1ξ
′
t (St ) = 0.

The sum of a martingale difference sequence

t∑
s=1

ξ′s =
t∑

s=1

ξ′s(Ss)

is referred to as a martingale, which satisfies (for all t):

E

[
t∑

s=1

ξ′s|Ft−1

]
=

t−1∑
s=1

ξ′s, or EZt |St−1

t∑
s=1

ξ′s(Ss) =
t−1∑
s=1

ξ′s(Ss).
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General Notation

Refined Notation
We assume each observation is

Z = Z(x) ×Z(y),

and each Zt ∈ Z can be written as Zt = (Z (x)
t ,Z (y)

t ).

We are interested in the conditional expectation with respect to
Z (y)

t |Z
(x)
t ,St−1, rather than with respect to Zt |St−1.

Without causing confusion, we adopt the following shortened notation

E
Z (y)

t
[·] = E

Z (y)
t |Z

(x)
t ,St−1

[·].

This formulation is useful in many statistical estimation problems
such as regression, where conditional expectation is what we are
interested in.
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Martingale Exponential Equality

Lemma 1 (Martingale Exponential Equality, Lem 13.1 )

Consider a sequence of real-valued random (measurable) functions
ξ1(S1), . . . , ξT (ST ). Let τ ≤ T be a stopping time so that 1(t ≤ τ) is
measurable in St . We have

EST exp

(
τ∑

i=1

ξi −
τ∑

i=1

lnE
Z (y)

i
eξi

)
= 1.
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Proof of Lemma 1 (I/II)
We prove the lemma by induction on T . When T = 0, the equality is trivial.
Assume that the claim holds at T − 1 for some T ≥ 1. Now we will prove the
equation at time T using the induction hypothesis.
Note that ξ̃i = ξi1(i ≤ τ) is measurable in Si . We have

τ∑
i=1

ξi −
τ∑

i=1

lnEZ (y)
i

eξi =
T∑

i=1

ξ̃i −
T∑

i=1

lnEZ (y)
i

eξ̃i .

It follows that

EZ1,...,ZT exp

(
τ∑

i=1

ξi −
τ∑

i=1

lnEZ (y)
i

eξi

)

=EZ1,...,ZT exp

(
T∑

i=1

ξ̃i −
T∑

i=1

lnEZ (y)
i

eξ̃i

)

=EZ1,...,Zn−1,Z
(x)
T

exp

(
T−1∑
i=1

ξ̃i −
T−1∑
i=1

lnEZ (y)
i

eξ̃i

)
EZ (y)

T
exp(ξ̃T − lnEZ (y)

T
eξ̃T )︸ ︷︷ ︸

=1
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Proof of Lemma 1 (II/II)

· · ·

=EZ1,...,Zn−1,Z
(x)
T

exp

(
T−1∑
i=1

ξ̃i −
T−1∑
i=1

lnEZ (y)
i

eξ̃i

)
EZ (y)

T
exp(ξ̃T − lnEZ (y)

T
eξ̃T )︸ ︷︷ ︸

=1


=EZ1,...,ZT−1 exp

(
T−1∑
i=1

ξ̃i −
T−1∑
i=1

lnEZ (y)
i

eξ̃i

)

=EZ1,...,ZT−1 exp

min(τ,T−1)∑
i=1

ξi −
min(τ,T−1)∑

i=1

lnEZ (y)
i

eξi

 = 1.

Note that the last equation follows from the induction hypothesis, and the
fact that min(τ,T − 1) is a stopping time ≤ T − 1.
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Martingale Exponential Tail Inequality

Theorem 2 (Thm 13.2)

Consider a sequence of random functions ξ1(S1), . . . , ξt (St ), . . ., with
filtration {Ft}. We have for any δ ∈ (0,1) and λ > 0:

Pr

[
∃n > 0 : −

n∑
i=1

ξi ≥
ln(1/δ)

λ
+

1
λ

n∑
i=1

lnE
Z (y)

i
e−λξi

]
≤ δ.

Moreover, consider a sequence of {zt ∈ R} adapted to {Ft}, and
events At on Ft :

ln Pr

[
∃n > 0 :

n∑
i=1

ξi ≤ zn &Sn ∈ An

]

≤ inf
λ>0

sup
n>0

sup
Sn∈An

[
λzn +

n∑
i=1

lnE
Z (y)

i
e−λξi

]
.
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Proof of Theorem 2 (I/II)
We will prove the result for a finite time sequence ξ1(S1), . . . , ξT (ST ).
It implies the desired result by letting T →∞. Let

ξτ (λ) = −
τ∑

i=1

lnE
Z (y)

i
e−λξi − λ

τ∑
i=1

ξi ,

where τ is a stopping time, then we have from Lemma 1:
Eeξτ (λ) = 1. Now for any given sequence of z̃n(Sn) and An, define
the stopping time τ as either T , or the first time step n so that

ξn(λ) ≥ −z̃n(Sn) & Sn ∈ An

for each sequence ST . It follows that

Pr (∃n : ξn(λ) ≥ −z̃n(Sn) & Sn ∈ An) inf
n>0,Sn∈An

e−z̃n(Sn)

≤E
[
eξτ (λ)+z̃τ (Sτ )

1(Sτ ∈ Aτ )
]

inf
n>0,Sn∈An

e−z̃n(Sn)

≤E
[
eξτ (λ)+z̃τ (Sτ )

1(Sτ ∈ Aτ )e−z̃τ (Sτ )
]
≤ Eeξτ (λ) = 1.
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Proof of Theorem 2 (II/II)

Therefore we obtain

ln Pr

[
∃n > 0 : −λ

n∑
i=1

ξi ≥ −z̃n(Sn) +
n∑

i=1

lnE
Z (y)

i
e−λξi & Sn ∈ An

]
≤ sup

n>0:Sn∈An

z̃n(Sn).

Let z̃(Sn) = ln δ, we obtain the first inequality. Let

z̃n(Sn) = λzn +
n∑

i=1

lnE
Z (y)

i
e−λξi ,

we obtain the second inequality.
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Remarks

I In the iid case (Theorem 2.5), one can optimizing over λ to obtain
an inequality in terms of the rate function.

I Theorem 13.2 requires fixed λ. However, one can take a union
bound over λ to obtain a result that holds for all λ: this may lead
to an extra log n factor in the resulting bound.

I The second inequality in Theorem 2 resolves the issue of paying
extra log factor by restricting the optimization over λ in a restricted
event An.

I In general, one can obtain sample dependent bounds requiring
empirical quantities bounded in An, and this can be alleviated by
taking union bound over An.
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Martingale Sub-Gaussian Inequality

Theorem 3 (Martingale Sub-Gaussian Inequality, Thm 13.3)

Consider a sequence of random functions ξ1(S1), . . . , ξt (St ), . . ..
Assume each ξi is sub-Gaussian with respect to Z (y)

i :

ln E
Z (y)

i
eλξi ≤ λE

Z (y)
i
ξi +

λ2σ2
i

2

for some σi that may depend on Si−1 and Z (x)
i . Then for all σ > 0,

with probability at least 1− δ,

∀n > 0 :
n∑

i=1

E
Z (y)

i
ξi <

n∑
i=1

ξi +

(
σ +

∑n
i=1 σ

2
i

σ

)√
ln(1/δ)

2
.
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Data Independent Sub-Gaussian Bound

Since we allow σi to be data dependent, we cannot in general choose
σ2 =

∑n
i=1 σ

2
i . However, if σi does not depend on data, then we can

further optimize σ for specific time horizon n.

Theorem 4 (Azuma’s Inequality, Thm 13.4)

Consider a sequence of random functions ξ1(S1), . . . , ξn(Sn) with a
fixed number n > 0. If for each i: sup ξi − inf ξi ≤ Mi for some
constant Mi , then with probability at least 1− δ,

1
n

n∑
i=1

E
Z (y)

i
ξi <

1
n

n∑
i=1

ξi +

√∑n
i=1 M2

i ln(1/δ)

2n2 .
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Example: Data Dependent sub-Gaussian Inequality

We now consider the situation σi is data dependent in Theorem 3.
Using the technique of Chapter 8, we can obtain the following
data-dependent bound.

Proposition 5

Under the assumptions of Theorem 3. Given any c0 > 0 and
δ ∈ (0,1), with probability at least 1− δ:

∀n > 0 :
n∑

i=1

E
Z (y)

i
ξi <

n∑
i=1

ξi +

√√√√4

(
c0 +

n∑
i=1

σ2
i

)
ln

(ˆ̀+ 1)2

δ
,

where ˆ̀ = b1 + log2(1 +
∑n

i=1 σ
2
i /c0)c.
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Proof of Proposition 5

Consider the sequence of numbers 2`c0 (` = 1, . . .). For each `, we
consider the event

∑n
i=1 σ

2
i ≤ 2`c0, and let σ =

√
2`c0 in Theorem 3.

It follows that with probability at least 1− δ/(`+ 1)2,

∀n > 0 :
n∑

i=1

E
Z (y)

i
ξi <

n∑
i=1

ξi +

√
2`+1c0 ln

(`+ 1)2

δ
or

n∑
i=1

σ2
i > 2`c0.

Taking union bound, the above inequality holds for all ` ≥ 1 with
probability at least 1− δ.
Now let ˆ̀ = b1 + log2(1 +

∑n
i=1 σ

2
i /c0)c, we know that the following

inequalities hold

n∑
i=1

σ2
i ≤ 2ˆ̀c0, 2ˆ̀+1c0 ≤ 4

(
c0 +

n∑
i=1

σ2
i

)
.

Therefore we obtain the desired bound.



16

Multiplicative Chernoff Bound
Theorem 6 (Thm 13.5)

Consider a sequence of random functions ξ1(S1), . . . , ξt (St ), . . . such
that ξi ∈ [0,1] for all i . We have for λ > 0, with probability at least
1− δ:

∀n > 0 :
1
n

n∑
i=1

E
Z (y)

i
ξi <

λ

1− e−λ
1
n

n∑
i=1

ξi +
ln(1/δ)

(1− e−λ) n
.

Similarly, for λ > 0, with probability at least 1− δ:

∀n > 0 :
1
n

n∑
i=1

E
Z (y)

i
ξi >

λ

eλ − 1
1
n

n∑
i=1

ξi −
ln(1/δ)

(eλ − 1) n
.

We note that similar to Theorem 3, the result is with fixed λ. However
similar to Proposition 5, we can take union bound over a range of λ
values to obtain a bound that allow λ to be data dependent.
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Result used in the Proof of Theorem 6

Lemma 7 (Lem 2.15 )

Consider a random variable X ∈ [0,1] and EX = µ. We have the
following inequality:

lnEeλX ≤ ln[(1− µ)e0 + µeλ] ≤ λµ+ λ2/8.
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Proof of Theorem 6

We obtain from Lemma 7 and Theorem 2 that with probability at least
1− δ

−
n∑

i=1

ξi <
ln(1/δ)

λ
+

1
λ

n∑
i=1

ln(1 + (e−λ − 1)E
Z (y)

i
ξi)

≤ ln(1/δ)

λ
+

1
λ

n∑
i=1

(e−λ − 1)E
Z (y)

i
ξi .

This implies the first bound. The second bound can be proved
similarly.
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Freedman’s Inequality
Theorem 8 (Freedman’s Inequality, Thm 13.6)

Consider a sequence of random functions ξ1(S1), . . . , ξn(Sn). Assume
that ξi ≥ E

Z (y)
i
ξi − b for some constant b > 0. Then for any

λ ∈ (0,3/b), with probability at least 1− δ:

∀n > 0 :
n∑

i=1

E
Z (y)

i
ξi <

n∑
i=1

ξi +
λ
∑n

i=1 Var
Z (y)

i
(ξi)

2(1− λb/3)
+

ln(1/δ)

λ
.

This implies that for all σ > 0, with probability at least 1− δ:

∀n > 0 :
n∑

i=1

E
Z (y)

i
ξi <

n∑
i=1

ξi + σ
√

2 ln(1/δ) +
b ln(1/δ)

3

or
n∑

i=1

Var
Z (y)

i
(ξi) > σ2.
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Reference Used in the Proof of Theorem 8

Lemma 9 (Lem 2.9 )

Consider a random variable X so that E[X ] = µ. Assume that there
exists α > 0 and β ≥ 0 such that for λ ∈ [0, β−1):

ΛX (λ) ≤ λµ+
αλ2

2(1− βλ)
, (1)

then for ε > 0:

− IX (µ+ ε) ≤ − ε2

2(α + βε)
,

− IX

(
µ+ ε+

βε2

2α

)
≤ − ε

2

2α
.



21

Proof of Theorem 8
Using the logarithmic moment generating function (2.13), we obtain
the first inequality directly from the first inequality of Theorem 2.
Moreover, we can obtain from the second inequality of Theorem 2
with

An =

{
Sn :

n∑
i=1

Var
Z (y)

i
(ξi) ≤ σ2

}
,

zn =
n∑

i=1

E
Z (y)

i
ξi − ε− ε2b/(6σ2),

and the rate function estimate corresponding to the third inequality of
Lemma 9:

Pr

[
∃n > 0 :

n∑
i=1

ξi ≤ zn and Sn ∈ An

]
≤ exp

(
− ε2

2σ2

)
.

This implies the second desired inequality with ε = σ
√

2 ln(1/δ).
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Data Dependent Freedman’s Inequality

We can remove the dependency on σ in Theorem 8, which leads to
the following result. One may also use the same technique to
alleviate the dependence on b.

Proposition 10

Under the assumptions of Theorem 8, for V0 > 0 and δ ∈ (0,1), we
have with probability at least 1− δ:

∀n > 0 :
n∑

i=1

E
Z (y)

i
ξi <

n∑
i=1

ξi +

√√√√4

(
V0 +

n∑
i=1

Var
Z (y)

i
(ξi)

)
ln((ˆ̀+ 1)2/δ)

+
b ln((ˆ̀+ 1)2/δ)

3
,

where ˆ̀ =
⌊
1 + log2(1 +

∑n
i=1 Var

Z (y)
i

(ξi)/V0)
⌋
.
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Proof of Proposition 10

We consider a sequence σ2 = 2`V0 for ` = 1,2, . . .. With probability
at least 1− δ, for all ` ≥ 1:

∀n > 0 :
n∑

i=1

E
Z (y)

i
ξi <

n∑
i=1

ξi +
√

2`+1V0 ln((`+ 1)2/δ) +
b ln((`+ 11)2/δ)

3

or
n∑

i=1

Var
Z (y)

i
(ξi) > 2`V0.

With ˆ̀ = b1 + log2(1 +
∑n

i=1 Var
Z (y)

i
(ξi)/V0)c, we have

n∑
i=1

Var
Z (y)

i
(ξi) ≤ 2ˆ̀V0, 2ˆ̀+1V0 ≤ 4

(
V0 +

n∑
i=1

Var
Z (y)

i
(ξi)

)
.

This implies the desired result.
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Uniform Convergence

Consider a real-valued function class F on Z, and a sequence of
observations Z1, . . . ,Zn ∈ Z, and let

Sn = [Z1, . . . ,Zn].

We assume that each Zt may depend on St−1.

In uniform convergence, we are generally interested in estimating the
following quantity

sup
f∈F

[
1
n

n∑
i=1

[−f (Zi) + E
Z (y)

i
f (Zi)]

]
.
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Uniform Convergence with L∞ Packing Number
In the following theorem, M(ε,F , ‖ · ‖∞)) is the ε L∞ packing number
of F with the metric ‖f‖∞ = supZ |f (Z )|.

Theorem 11 (Simplification of Thm 13.11)

We have for any λ > 0, with probability at least 1− δ, for all n ≥ 1 and
f ∈ F :

−
n∑

i=1

f (Zi)−
1
λ

n∑
i=1

lnE
Z (y)

i
e−λf (Zi )

≤ inf
ε>0

[
2nε+

ln(M(ε,F , ‖ · ‖∞))/δ)

λ

]
.

It is also possible to improve Theorem 11 using chaining (see
Proposition 13.14).
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Proof of Theorem 11

Let Fε ⊂ F be an ε maximal packing of F , with |Fε| ≤ M(ε,F , ‖ · ‖∞).
We obtain from Theorem 2, and the uniform bound over Fε that with
probability at least 1− δ:

sup
f∈Fε

[
−

n∑
i=1

f (Zi)−
1
λ

n∑
i=1

lnE
Z (y)

i
e−λf (Zi )

]
≤ ln(M(ε,F , ‖ · ‖∞))/δ)

λ
.

Since Fε is also an ε L∞ cover of F (see Theorem 5.2), we obtain

sup
f∈F

[
−

n∑
i=1

f (Zi)−
1
λ

n∑
i=1

lnE
Z (y)

i
e−λf (Zi )

]

≤2nε+ sup
f∈Fε

[
−

n∑
i=1

f (Zi)−
1
λ

n∑
i=1

lnE
Z (y)

i
e−λf (Zi )

]
.

This implies the result.
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Refined Least Squares Uniform Convergence

Theorem 12 (Simplification of Thm 13.15)

Let {(Xt , εt )} be a filtered sequence in X × R so that εt is conditional
zero-mean sub-Gaussian noise: for all λ ∈ R,

lnE[eλεt |Xt ,St−1] ≤ λ2

2
σ2,

where St−1 denotes the history data. Assume that Yt = f∗(Xt ) + εt , with
f∗(x) ∈ F : X → R. Let f̂t be the exact ERM solution:

f̂t = arg min
f∈F

t∑
s=1

(f (Xs)− Ys)2.

Then with probability at least 1− δ, for all t ≥ 0:

t∑
s=1

(f̂t (Xt )− f∗(Xt ))2 ≤ inf
ε>0

[
8tε(σ + 2ε) + 12σ2 ln

2N(ε,F , ‖ · ‖∞)

δ

]
.
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Minimax Analysis for Sequential Estimation

Notations
Consider a general sequential estimation problem, where we observe
data Zt ∈ Z from the environment by interacting with the environment
using a sequence of learned policies πt ∈ Π.

At each time t , the observation history is

St−1 = [(Z1, π1), . . . , (Zt−1, πt−1)].

Based on the history, the player (or learning algorithm), denoted by q̂,
determines the next policy πt ∈ Π that can interact with the
environment.

Based on the policy πt , environment generates the next observation
Zt ∈ Z according to an unknown distribution q(Zt |πt ,St−1).
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Definition 13 (Sequential Statistical Estimation)

Consider a family of environment distributions PZ , where each q ∈ PZ
determines the probability for generating Zt based on policy πt as
q(Zt |πt ,St−1). Consider also a family of learning algorithms, represented by
PA. Each learning algorithm q̂ ∈ PA maps the history St−1 deterministically
to the next policy πt ∈ Π as πt = q̂(St−1). Given q ∈ PZ , and q̂ ∈ PA, the
data generation probability is fully determined as

p(Sn|q̂,q) =
n∏

t=1

q(Zt |q̂(St−1),St−1).

After observing Sn for some n, the learning algorithm q̂ determines a
distribution q̂(θ|Sn), and draw estimator θ ∈ Θ according to q̂(θ|Sn). The
learning algorithm suffers a loss (also referred to as regret) Q(θ,q). The
overall probability of θ and Sn is

p(θ,Sn|q̂,q) = q̂(θ|Sn)
n∏

t=1

q(Zt |q̂(St−1),St−1). (2)
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Example: Online Learning (non-adversarial)

We consider a parameter space Ω, and at each time t , the learning
algorithm chooses a parameter wt ∈ Ω according to a probability
distribution πt (·) on Ω.

This probability distribution is the policy. Given wt ∼ πt , we then
observe a Zt ∼ qt from an unknown distribution qt . We assume that
the loss function ` is known.

After n rounds, let θ(Sn) = [π1, . . . , πn], we suffer a loss

Q(θ,q) =
n∑

t=1

Ewt∼πtEZt∼qt `(wt ,Zt )− inf
w∈Ω

n∑
t=1

EZ∼qt `(w ,Zt ).
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Example: MAB

We consider the multi-armed bandit problem, where we have K arms
from A = {1, . . . ,K}. For each arm a ∈ A, we have a probability
distribution qa on [0,1]. If we pull an arm a ∈ A, we observe a random
reward r ∈ [0,1] from a distribution qa that depends on the arm a.

Our goal is to find the best arm θ ∈ Θ = A with the largest expected
reward Er∼qa [r ], and the loss Q(θ,q) = supa Er∼qa [r ]− Er∼qθ

[r ]. In
this case, a policy πt is a probability distribution over A.

The learning algorithm defines a probability distribution q̂(St−1) over
A at each time, and draw at ∼ q̂(St−1). The observation Zt is the
reward rt which is drawn from qat .
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Contextual Bandits

In contextual bandits, we consider a context space X and action
space A. Given a context x ∈ X , we can take an action a ∈ A, and
observe a reward r ∼ qx ,a.

A policy π is a map X → ∆(A), where ∆(A) denotes the set of
probability distributions over A (with an appropriately defined sigma
algebra).

The policy πt interacts with the environment to generate the next
observation as: the environment generates xt , the player takes an
action at ∼ πt (xt ), and then the environment generates the reward
rt ∼ qxt ,at .
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Minimax Risk

Definition 14
Consider an environment distribution family PZ , learning algorithm
distribution family PA. Then the worst case expected risk of a
learning algorithm q̂ ∈ PA with respect to PZ is given by

rn(q̂,PZ ,Q) = sup
q∈PZ

Eθ,Sn∼p(·|q̂,q) Q(θ,q),

where p(·|q̂,q) is defined in (2). Moreover, the minimax risk is
defined as:

rn(PA,PZ ,Q) = inf
q̂∈PA

rn(q̂,PZ ,Q).
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Lower Bound based on Assouad’s Lemma
Theorem 15 (Thm 13.24)

Let d ≥ 1 and m ≥ 2 be integers, and let PZ = {qτ : τ ∈ {1, . . . ,m}d}
contain md probability measures. Suppose that the loss function Q can be
decomposed as Q(θ,q) =

∑d
j=1 Qj (θ,q), where Qj ≥ 0 are all non-negative.

For each j, τ ∼j τ
′ if τ = τ ′ or if τ and τ ′ differs by only one component j.

Assume that there exists ε, β ≥ 0 such that

∀τ ′ ∼j τ, τ
′ 6= τ : [Qj (θ,qτ ) + Qj (θ,qτ

′
)] ≥ ε,

and there exists qτj such that all τ ′ ∼j τ map to the same value: qτ
′

j = qτj .
Given any learning algorithm q̂. If for all τ , j ∈ [d ], time step t, and St−1:

1
m

∑
τ ′∼jτ

KL(qτj (·|q̂(St−1),St−1)||qτ
′
(·|q̂(St−1),St−1))) ≤ β2

j,t , then

1
md

∑
τ

Eθ,Sn∼p(·|q̂,qτ )Q(θ,qτ ) ≥ 0.5dε

1−

√√√√ 2
d

d∑
j=1

n∑
t=1

β2
j,t

 .
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Result used in the Proof of Theorem 15
Lemma 16 (Generalized Assouad’s Lemma, Lem 12.27 )
Consider a finite family of distributions P. Let d ≥ 1 be an integer, and Q can be decomposed
as

Q(θ,D) =
d∑

j=1

Qj (θ,D),

where Qj ≥ 0 are all non-negative. Assume for all j , there exists a partition Mj of P. We use
notation D′ ∼j D to indicate that D′ and D belong to the same partition in Mj . Let mj (D) be
the number of elements in the partition containing D. Assume there exist ε, β ≥ 0 such that

∀D′ ∼j D,D′ 6= D : inf
θ

[Qj (θ,D′) + Qj (θ,D)] ≥ ε,

∀D ∈ P :
1

d(P)

d∑
j=1

∑
D∈Pj

1
mj (D)− 1

∑
D′∼jD

‖D′ −D‖TV ≤ β,

where Pj = {D ∈ P : mj (D) > 1} and d(P) =
∑d

j=1 |Pj |. Let A(Z ) be any estimator, we have

1
|P|

∑
D∈P

EZ∼DEAQ(A(Z ),D) ≥
εd(P)

2|P|
[1− β] ,

where EA is with respect to the internal randomization in A.
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Proof of Theorem 15 (I/II)

We have

1
dmd

∑
τ

d∑
j=1

1
m − 1

∑
τ ′∼jτ

‖p(·|q̂,qτ )− p(·|q̂,qτ ′)‖TV

≤ 1
dmd

∑
τ

d∑
j=1

1
m − 1

∑
τ ′∼jτ,τ ′ 6=τ

[
‖p(·|q̂,qτj )− p(·|q̂,qτ ′)‖TV

+‖p(·|q̂,qτj )− p(·|q̂,qτ )‖TV

]
=

2
dmd

∑
τ

d∑
j=1

1
m

∑
τ ′∼jτ

‖p(·|q̂,qτj )− p(·|q̂,qτ ′)‖TV = A.

The first inequality is triangle inequality for TV-norm. The first
equality used q̂τj = q̂τ

′

j when τ ∼j τ
′.
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Proof of Theorem 15 (II/II)

A ≤ 2
md

∑
τ

√√√√√ 1
dm

d∑
j=1

∑
τ ′∼jτ

‖p(·|q̂,qτj )− p(·|q̂,qτ ′)‖2TV

(Jensen’s inequality for
√
·)

≤ 2
md

∑
τ

√√√√√ 1
2dm

d∑
j=1

∑
τ ′∼jτ

KL(p(·|q̂,qτj )||p(·|q̂,qτ ′))

(Pinsker’s inequality)

≤

√√√√2
d

d∑
j=1

n∑
t=1

β2
t .

The last inequality used Lemma 13.21. Now in Lemma 16, we let
Mj(qτ ) = {qτ ′ : τ ′ ∼j τ} be the partitions. The result is a simple
application of Lemma 16 with mj(qτ ) = m, |P| = md , and
d(P) = dmd .



38

Example

Consider estimating the mean of a d dimensional Gaussian random
variable Z ∼ N(θ, Id×d ). Each time the player draws an action
at ∈ {1, . . . ,d}, and the environment draws Z̃t ∼ N(θ, Id×d ), and
reveals only the at -th component Zt = Z̃t ,at . After T rounds, we would
like to estimate the mean as θ̂, and measure the quality with
Q(θ̂, θ) = ‖θ̂ − θ‖22. In this case, a policy πt can be regarded as a
distribution over {1, . . . ,d}, and we draw at ∼ πt .
To obtain an upper bound of the loss, we can simply randomly pick
at , and use the following unbiased estimator:

θ̂j =
d
n

n∑
t=1

Zt ,at1(at = j).

This implies that

E ‖θ̂ − θ‖22 =
d2

n
.
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Example (cont)
To obtain a lower bound of the loss, we consider Corollary 13.23, with
θτ = ετ/(

√
d) and PZ = {N(θτ , Id×d ) : τ ∈ {±1}d . Consider the

decomposition

Q(θ,qτ ) =
d∑

j=1

Qj(θ,qτ ), Qj(θ,qτ ) = (θj − θτj )2.

This implies that

∀τ : [Qj(θ,qτ ) + Qj(θ,qτ
−[j]

)] ≥ ε2/d .

Let Zt and Z ′t be the observations under q,q′ ∈ PZ , then for any at ,
KL(Zt ,Z ′t ) ≤ β2

t = 2ε2/d . When

2nε2 ≤ d2/32− d ,

we have
rn(PA,PZ ,Q) ≥ ε2/16.

This matches the upper bound up to a constant.
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Summary (Chapter 13)

I Martingale Exponential Equality
I Martingale Exponential Tail Probability Inequality
I Azuma’s Inequality
I Freedman’s Inequality
I Data Dependent Bound
I Uniform Convergence with L∞ Packing Number
I Minimax Analysis and Lower Bound


