Probability Inequalities for Sequential Random Variables

Mathematical Analysis of Machine Learning Algorithms (Chapter 13)

Sequential Estimation

In sequential estimation problems, we observe a sequence of random variables $Z_t \in \mathcal{Z}$ for t = 1, 2, ..., where each Z_t may depend on the previous observations $\mathcal{S}_{t-1} = [Z_1, ..., Z_{t-1}] \in \mathcal{Z}^{t-1}$.

Notations

The sigma algebra generated by $\{S_t\}$ forms a natural filtration $\{\mathcal{F}_t\}$.

We say a sequence $\{\xi_t\}$ is adapted to the filtration $\{\mathcal{F}_t\}$, if each ξ_t is a function of S_t . That is, each ξ_t at time *t* does not depend on future observations Z_s for s > t.

Alternatively one may also say that ξ_t is measurable in \mathcal{F}_t .

Martingale

The sequence

 $\xi'_t = \xi_t - \mathbb{E}[\xi_t | \mathcal{F}_{t-1}], \text{ or equivalently } \xi'_t(\mathcal{S}_t) = \xi_t(\mathcal{S}_t) - \mathbb{E}_{Z_t | \mathcal{S}_{t-1}} \xi_t(\mathcal{S}_t),$

is referred to as a martingale difference sequence with the property

$$\mathbb{E}[\xi'_t|\mathcal{F}_{t-1}] = \mathbb{E}_{Z_t|\mathcal{S}_{t-1}}\xi'_t(\mathcal{S}_t) = 0.$$

The sum of a martingale difference sequence

$$\sum_{s=1}^t \xi'_s = \sum_{s=1}^t \xi'_s(\mathcal{S}_s)$$

is referred to as a *martingale*, which satisfies (for all *t*):

$$\mathbb{E}\left[\sum_{s=1}^{t} \xi_s' | \mathcal{F}_{t-1}\right] = \sum_{s=1}^{t-1} \xi_s', \text{ or } \mathbb{E}_{Z_t | \mathcal{S}_{t-1}} \sum_{s=1}^{t} \xi_s'(\mathcal{S}_s) = \sum_{s=1}^{t-1} \xi_s'(\mathcal{S}_s).$$

General Notation

Refined Notation

We assume each observation is

$$\mathcal{Z} = \mathcal{Z}^{(x)} \times \mathcal{Z}^{(y)},$$

and each $Z_t \in \mathcal{Z}$ can be written as $Z_t = (Z_t^{(x)}, Z_t^{(y)})$.

We are interested in the conditional expectation with respect to $Z_t^{(y)}|Z_t^{(x)}, S_{t-1}$, rather than with respect to $Z_t|S_{t-1}$.

Without causing confusion, we adopt the following shortened notation

$$\mathbb{E}_{Z_t^{(y)}}[\cdot] = \mathbb{E}_{Z_t^{(y)}|Z_t^{(x)},\mathcal{S}_{t-1}}[\cdot].$$

This formulation is useful in many statistical estimation problems such as regression, where conditional expectation is what we are interested in.

Martingale Exponential Equality

Lemma 1 (Martingale Exponential Equality, Lem 13.1)

Consider a sequence of real-valued random (measurable) functions $\xi_1(S_1), \ldots, \xi_T(S_T)$. Let $\tau \leq T$ be a stopping time so that $\mathbb{1}(t \leq \tau)$ is measurable in S_t . We have

$$\mathbb{E}_{\mathcal{S}_{\mathcal{T}}} \exp\left(\sum_{i=1}^{\tau} \xi_i - \sum_{i=1}^{\tau} \ln \mathbb{E}_{Z_i^{(y)}} \boldsymbol{e}^{\xi_i}\right) = 1.$$

Proof of Lemma 1 (I/II)

We prove the lemma by induction on T. When T = 0, the equality is trivial. Assume that the claim holds at T - 1 for some $T \ge 1$. Now we will prove the equation at time T using the induction hypothesis.

Note that $\tilde{\xi}_i = \xi_i \mathbb{1}(i \leq \tau)$ is measurable in S_i . We have

$$\sum_{i=1}^{\tau} \xi_i - \sum_{i=1}^{\tau} \ln \mathbb{E}_{Z_i^{(y)}} \boldsymbol{e}^{\xi_i} = \sum_{i=1}^{T} \tilde{\xi}_i - \sum_{i=1}^{T} \ln \mathbb{E}_{Z_i^{(y)}} \boldsymbol{e}^{\tilde{\xi}_i}.$$

It follows that

$$\mathbb{E}_{Z_{1},...,Z_{T}} \exp\left(\sum_{i=1}^{\tau} \xi_{i} - \sum_{i=1}^{\tau} \ln \mathbb{E}_{Z_{i}^{(y)}} \boldsymbol{e}^{\xi_{i}}\right)$$

= $\mathbb{E}_{Z_{1},...,Z_{T}} \exp\left(\sum_{i=1}^{T} \tilde{\xi}_{i} - \sum_{i=1}^{T} \ln \mathbb{E}_{Z_{i}^{(y)}} \boldsymbol{e}^{\tilde{\xi}_{i}}\right)$
= $\mathbb{E}_{Z_{1},...,Z_{n-1},Z_{T}^{(x)}} \left[\exp\left(\sum_{i=1}^{T-1} \tilde{\xi}_{i} - \sum_{i=1}^{T-1} \ln \mathbb{E}_{Z_{i}^{(y)}} \boldsymbol{e}^{\tilde{\xi}_{i}}\right) \underbrace{\mathbb{E}_{Z_{T}^{(y)}} \exp(\tilde{\xi}_{T} - \ln \mathbb{E}_{Z_{T}^{(y)}} \boldsymbol{e}^{\tilde{\xi}_{T}})}_{=1}\right]$

Proof of Lemma 1 (II/II)

. . .

$$=\mathbb{E}_{Z_{1},...,Z_{T-1},Z_{T}^{(x)}}\left[\exp\left(\sum_{i=1}^{T-1}\tilde{\xi}_{i}-\sum_{i=1}^{T-1}\ln\mathbb{E}_{Z_{i}^{(y)}}\boldsymbol{e}^{\tilde{\xi}_{i}}\right)\underbrace{\mathbb{E}_{Z_{T}^{(y)}}\exp(\tilde{\xi}_{T}-\ln\mathbb{E}_{Z_{T}^{(y)}}\boldsymbol{e}^{\tilde{\xi}_{T}})}_{=1}\right]$$
$$=\mathbb{E}_{Z_{1},...,Z_{T-1}}\exp\left(\sum_{i=1}^{T-1}\tilde{\xi}_{i}-\sum_{i=1}^{T-1}\ln\mathbb{E}_{Z_{i}^{(y)}}\boldsymbol{e}^{\tilde{\xi}_{i}}\right)$$
$$=\mathbb{E}_{Z_{1},...,Z_{T-1}}\exp\left(\sum_{i=1}^{\min(\tau,T-1)}\xi_{i}-\sum_{i=1}^{\min(\tau,T-1)}\ln\mathbb{E}_{Z_{i}^{(y)}}\boldsymbol{e}^{\xi_{i}}\right)=1.$$

Note that the last equation follows from the induction hypothesis, and the fact that $\min(\tau, T - 1)$ is a stopping time $\leq T - 1$.

Martingale Exponential Tail Inequality

Theorem 2 (Thm 13.2)

Consider a sequence of random functions $\xi_1(S_1), \ldots, \xi_t(S_t), \ldots$, with filtration $\{\mathcal{F}_t\}$. We have for any $\delta \in (0, 1)$ and $\lambda > 0$:

$$\Pr\left[\exists n > 0: -\sum_{i=1}^{n} \xi_i \geq \frac{\ln(1/\delta)}{\lambda} + \frac{1}{\lambda} \sum_{i=1}^{n} \ln \mathbb{E}_{Z_i^{(y)}} e^{-\lambda \xi_i}\right] \leq \delta.$$

Moreover, consider a sequence of $\{z_t \in \mathbb{R}\}$ adapted to $\{\mathcal{F}_t\}$, and events A_t on \mathcal{F}_t :

$$\ln \Pr \left[\exists n > 0 : \sum_{i=1}^{n} \xi_i \le z_n \& S_n \in A_n \right]$$
$$\leq \inf_{\lambda > 0} \sup_{n > 0} \sup_{S_n \in A_n} \left[\lambda z_n + \sum_{i=1}^{n} \ln \mathbb{E}_{Z_i^{(y)}} e^{-\lambda \xi_i} \right]$$

Proof of Theorem 2 (I/II)

We will prove the result for a finite time sequence $\xi_1(S_1), \ldots, \xi_T(S_T)$. It implies the desired result by letting $T \to \infty$. Let

$$\xi_{ au}(\lambda) = -\sum_{i=1}^{ au} \ln \mathbb{E}_{Z_i^{(y)}} \, oldsymbol{e}^{-\lambda\xi_i} - \lambda \sum_{i=1}^{ au} \xi_i,$$

where τ is a stopping time, then we have from Lemma 1: $\mathbb{E} e^{\xi_{\tau}(\lambda)} = 1$. Now for any given sequence of $\tilde{z}_n(S_n)$ and A_n , define the stopping time τ as either T, or the first time step n so that

$$\xi_n(\lambda) \geq -\tilde{z}_n(\mathcal{S}_n) \& \mathcal{S}_n \in \mathcal{A}_n$$

for each sequence S_T . It follows that

$$\Pr\left(\exists n: \xi_n(\lambda) \ge -\tilde{z}_n(\mathcal{S}_n) \& \mathcal{S}_n \in \mathcal{A}_n\right) \inf_{n > 0, \mathcal{S}_n \in \mathcal{A}_n} e^{-\tilde{z}_n(\mathcal{S}_n)}$$
$$\leq \mathbb{E}\left[e^{\xi_\tau(\lambda) + \tilde{z}_\tau(\mathcal{S}_\tau)} \mathbb{1}(\mathcal{S}_\tau \in \mathcal{A}_\tau)\right] \inf_{n > 0, \mathcal{S}_n \in \mathcal{A}_n} e^{-\tilde{z}_n(\mathcal{S}_n)}$$
$$\leq \mathbb{E}\left[e^{\xi_\tau(\lambda) + \tilde{z}_\tau(\mathcal{S}_\tau)} \mathbb{1}(\mathcal{S}_\tau \in \mathcal{A}_\tau) e^{-\tilde{z}_\tau(\mathcal{S}_\tau)}\right] \le \mathbb{E}e^{\xi_\tau(\lambda)} = 1.$$

Proof of Theorem 2 (II/II)

Therefore we obtain

$$\ln \Pr\left[\exists n > 0 : -\lambda \sum_{i=1}^{n} \xi_i \ge -\tilde{z}_n(\mathcal{S}_n) + \sum_{i=1}^{n} \ln \mathbb{E}_{Z_i^{(y)}} e^{-\lambda \xi_i} \& \mathcal{S}_n \in \mathcal{A}_n\right]$$

$$\leq \sup_{n > 0: \mathcal{S}_n \in \mathcal{A}_n} \tilde{z}_n(\mathcal{S}_n).$$

Let $\tilde{z}(S_n) = \ln \delta$, we obtain the first inequality. Let

$$\tilde{z}_n(\mathcal{S}_n) = \lambda z_n + \sum_{i=1}^n \ln \mathbb{E}_{Z_i^{(y)}} e^{-\lambda \xi_i},$$

we obtain the second inequality.

Remarks

- In the iid case (Theorem 2.5), one can optimizing over λ to obtain an inequality in terms of the rate function.
- Theorem 13.2 requires fixed λ. However, one can take a union bound over λ to obtain a result that holds for all λ: this may lead to an extra log *n* factor in the resulting bound.
- The second inequality in Theorem 2 resolves the issue of paying extra log factor by restricting the optimization over λ in a restricted event A_n.
- In general, one can obtain sample dependent bounds requiring empirical quantities bounded in A_n, and this can be alleviated by taking union bound over A_n.

Martingale Sub-Gaussian Inequality

Theorem 3 (Martingale Sub-Gaussian Inequality, Thm 13.3)

Consider a sequence of random functions $\xi_1(S_1), \ldots, \xi_t(S_t), \ldots$ Assume each ξ_i is sub-Gaussian with respect to $Z_i^{(y)}$:

$$\ln \ \mathbb{E}_{\boldsymbol{Z}_{i}^{(y)}} \boldsymbol{e}^{\lambda \xi_{i}} \leq \lambda \mathbb{E}_{\boldsymbol{Z}_{i}^{(y)}} \xi_{i} + \frac{\lambda^{2} \sigma_{i}^{2}}{2}$$

for some σ_i that may depend on S_{i-1} and $Z_i^{(x)}$. Then for all $\sigma > 0$, with probability at least $1 - \delta$,

$$\forall n > 0: \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i} < \sum_{i=1}^{n} \xi_{i} + \left(\sigma + \frac{\sum_{i=1}^{n} \sigma_{i}^{2}}{\sigma}\right) \sqrt{\frac{\ln(1/\delta)}{2}}$$

Data Independent Sub-Gaussian Bound

Since we allow σ_i to be data dependent, we cannot in general choose $\sigma^2 = \sum_{i=1}^{n} \sigma_i^2$. However, if σ_i does not depend on data, then we can further optimize σ for specific time horizon *n*.

Theorem 4 (Azuma's Inequality, Thm 13.4)

Consider a sequence of random functions $\xi_1(S_1), \ldots, \xi_n(S_n)$ with a fixed number n > 0. If for each *i*: $\sup \xi_i - \inf \xi_i \le M_i$ for some constant M_i , then with probability at least $1 - \delta$,

$$\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}_{Z_{i}^{(y)}}\xi_{i} < \frac{1}{n}\sum_{i=1}^{n}\xi_{i} + \sqrt{\frac{\sum_{i=1}^{n}M_{i}^{2}\ln(1/\delta)}{2n^{2}}}$$

Example: Data Dependent sub-Gaussian Inequality

We now consider the situation σ_i is data dependent in Theorem 3. Using the technique of Chapter 8, we can obtain the following data-dependent bound.

Proposition 5

Under the assumptions of Theorem 3. Given any $c_0 > 0$ and $\delta \in (0, 1)$, with probability at least $1 - \delta$:

$$\forall n > 0: \quad \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i} < \sum_{i=1}^{n} \xi_{i} + \sqrt{4\left(c_{0} + \sum_{i=1}^{n} \sigma_{i}^{2}\right) \ln \frac{(\hat{\ell}+1)^{2}}{\delta}},$$

where $\hat{\ell} = \lfloor 1 + \log_2(1 + \sum_{i=1}^n \sigma_i^2 / c_0) \rfloor$.

Proof of Proposition 5

Consider the sequence of numbers $2^{\ell}c_0$ ($\ell = 1, ...$). For each ℓ , we consider the event $\sum_{i=1}^{n} \sigma_i^2 \leq 2^{\ell}c_0$, and let $\sigma = \sqrt{2^{\ell}c_0}$ in Theorem 3. It follows that with probability at least $1 - \delta/(\ell + 1)^2$,

$$\forall n > 0: \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i} < \sum_{i=1}^{n} \xi_{i} + \sqrt{2^{\ell+1} c_{0} \ln \frac{(\ell+1)^{2}}{\delta}} \text{ or } \sum_{i=1}^{n} \sigma_{i}^{2} > 2^{\ell} c_{0}.$$

Taking union bound, the above inequality holds for all $\ell \ge 1$ with probability at least $1 - \delta$. Now let $\hat{\ell} = \lfloor 1 + \log_2(1 + \sum_{i=1}^n \sigma_i^2 / c_0) \rfloor$, we know that the following inequalities hold

$$\sum_{i=1}^n \sigma_i^2 \leq 2^{\hat{\ell}} c_0, \qquad 2^{\hat{\ell}+1} c_0 \leq 4 \left(c_0 + \sum_{i=1}^n \sigma_i^2 \right).$$

Therefore we obtain the desired bound.

Multiplicative Chernoff Bound

Theorem 6 (Thm 13.5)

Consider a sequence of random functions $\xi_1(S_1), \ldots, \xi_t(S_t), \ldots$ such that $\xi_i \in [0, 1]$ for all *i*. We have for $\lambda > 0$, with probability at least $1 - \delta$:

$$\forall n > 0: \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i} < \frac{\lambda}{1 - e^{-\lambda}} \frac{1}{n} \sum_{i=1}^{n} \xi_{i} + \frac{\ln(1/\delta)}{(1 - e^{-\lambda}) n}$$

Similarly, for $\lambda > 0$, with probability at least $1 - \delta$:

$$\forall n > 0: \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{Z_i^{(y)}} \xi_i > \frac{\lambda}{e^{\lambda} - 1} \frac{1}{n} \sum_{i=1}^{n} \xi_i - \frac{\ln(1/\delta)}{(e^{\lambda} - 1) n}$$

We note that similar to Theorem 3, the result is with fixed λ . However similar to Proposition 5, we can take union bound over a range of λ values to obtain a bound that allow λ to be data dependent.

Result used in the Proof of Theorem 6

Lemma 7 (Lem 2.15)

Consider a random variable $X \in [0, 1]$ and $\mathbb{E}X = \mu$. We have the following inequality:

$$\ln \mathbb{E} \boldsymbol{e}^{\lambda X} \leq \ln[(1-\mu)\boldsymbol{e}^0 + \mu \boldsymbol{e}^\lambda] \leq \lambda \mu + \lambda^2/8.$$

Proof of Theorem 6

We obtain from Lemma 7 and Theorem 2 that with probability at least 1 $-\,\delta$

$$-\sum_{i=1}^{n} \xi_i < \frac{\ln(1/\delta)}{\lambda} + \frac{1}{\lambda} \sum_{i=1}^{n} \ln(1 + (e^{-\lambda} - 1)\mathbb{E}_{Z_i^{(y)}}\xi_i)$$
$$\leq \frac{\ln(1/\delta)}{\lambda} + \frac{1}{\lambda} \sum_{i=1}^{n} (e^{-\lambda} - 1)\mathbb{E}_{Z_i^{(y)}}\xi_i.$$

This implies the first bound. The second bound can be proved similarly.

Freedman's Inequality

Theorem 8 (Freedman's Inequality, Thm 13.6)

Consider a sequence of random functions $\xi_1(S_1), \ldots, \xi_n(S_n)$. Assume that $\xi_i \geq \mathbb{E}_{Z_i^{(y)}}\xi_i - b$ for some constant b > 0. Then for any $\lambda \in (0, 3/b)$, with probability at least $1 - \delta$:

$$\forall n > 0: \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}}\xi_{i} < \sum_{i=1}^{n} \xi_{i} + \frac{\lambda \sum_{i=1}^{n} \operatorname{Var}_{Z_{i}^{(y)}}(\xi_{i})}{2(1-\lambda b/3)} + \frac{\ln(1/\delta)}{\lambda}.$$

This implies that for all $\sigma > 0$, with probability at least $1 - \delta$:

$$\forall n > 0 : \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i} < \sum_{i=1}^{n} \xi_{i} + \sigma \sqrt{2 \ln(1/\delta)} + \frac{b \ln(1/\delta)}{3}$$

or
$$\sum_{i=1}^{n} \operatorname{Var}_{Z_{i}^{(y)}}(\xi_{i}) > \sigma^{2}.$$

Reference Used in the Proof of Theorem 8

Lemma 9 (Lem 2.9)

Consider a random variable X so that $\mathbb{E}[X] = \mu$. Assume that there exists $\alpha > 0$ and $\beta \ge 0$ such that for $\lambda \in [0, \beta^{-1})$:

$$\Lambda_X(\lambda) \le \lambda \mu + \frac{\alpha \lambda^2}{2(1 - \beta \lambda)},\tag{1}$$

then for $\epsilon > 0$:

$$egin{aligned} &-I_X(\mu+\epsilon)\leq-rac{\epsilon^2}{2(lpha+eta\epsilon)},\ &-I_X\left(\mu+\epsilon+rac{eta\epsilon^2}{2lpha}
ight)\leq-rac{\epsilon^2}{2lpha} \end{aligned}$$

Proof of Theorem 8

Using the logarithmic moment generating function (2.13), we obtain the first inequality directly from the first inequality of Theorem 2. Moreover, we can obtain from the second inequality of Theorem 2 with

$$A_n = \left\{ S_n : \sum_{i=1}^n \operatorname{Var}_{Z_i^{(y)}}(\xi_i) \le \sigma^2 \right\},$$
$$z_n = \sum_{i=1}^n \mathbb{E}_{Z_i^{(y)}}\xi_i - \epsilon - \epsilon^2 b / (6\sigma^2),$$

and the rate function estimate corresponding to the third inequality of Lemma 9:

$$\Pr\left[\exists n > 0 : \sum_{i=1}^{n} \xi_i \leq z_n \text{ and } \mathcal{S}_n \in \mathcal{A}_n\right] \leq \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right).$$

This implies the second desired inequality with $\epsilon = \sigma \sqrt{2 \ln(1/\delta)}$.

Data Dependent Freedman's Inequality

We can remove the dependency on σ in Theorem 8, which leads to the following result. One may also use the same technique to alleviate the dependence on *b*.

Proposition 10

Under the assumptions of Theorem 8, for $V_0 > 0$ and $\delta \in (0, 1)$, we have with probability at least $1 - \delta$:

$$\begin{aligned} \forall n > 0 : \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i} < \sum_{i=1}^{n} \xi_{i} + \sqrt{4 \left(V_{0} + \sum_{i=1}^{n} \operatorname{Var}_{Z_{i}^{(y)}}(\xi_{i}) \right) \ln((\hat{\ell} + 1)^{2} / \delta)} \\ &+ \frac{b \ln((\hat{\ell} + 1)^{2} / \delta)}{3}, \end{aligned}$$

where $\hat{\ell} = \left\lfloor 1 + \log_2(1 + \sum_{i=1}^n \operatorname{Var}_{Z_i^{(y)}}(\xi_i) / V_0) \right\rfloor$.

Proof of Proposition 10

We consider a sequence $\sigma^2 = 2^{\ell} V_0$ for $\ell = 1, 2, ...$ With probability at least $1 - \delta$, for all $\ell \ge 1$:

$$\forall n > 0 : \sum_{i=1}^{n} \mathbb{E}_{Z_{i}^{(y)}} \xi_{i} < \sum_{i=1}^{n} \xi_{i} + \sqrt{2^{\ell+1} V_{0} \ln((\ell+1)^{2}/\delta)} + \frac{b \ln((\ell+11)^{2}/\delta)}{3}$$

or $\sum_{i=1}^{n} \operatorname{Var}_{Z_{i}^{(y)}}(\xi_{i}) > 2^{\ell} V_{0}.$

With $\hat{\ell} = \lfloor 1 + \log_2(1 + \sum_{i=1}^n \operatorname{Var}_{Z_i^{(y)}}(\xi_i) / V_0) \rfloor$, we have

$$\sum_{i=1}^{n} \operatorname{Var}_{Z_{i}^{(Y)}}(\xi_{i}) \leq 2^{\hat{\ell}} V_{0}, \qquad 2^{\hat{\ell}+1} V_{0} \leq 4 \left(V_{0} + \sum_{i=1}^{n} \operatorname{Var}_{Z_{i}^{(Y)}}(\xi_{i}) \right).$$

This implies the desired result.

Uniform Convergence

Consider a real-valued function class \mathcal{F} on \mathcal{Z} , and a sequence of observations $Z_1, \ldots, Z_n \in \mathcal{Z}$, and let

$$\mathcal{S}_n = [Z_1,\ldots,Z_n].$$

We assume that each Z_t may depend on S_{t-1} .

In uniform convergence, we are generally interested in estimating the following quantity

$$\sup_{f\in\mathcal{F}}\left[\frac{1}{n}\sum_{i=1}^{n}\left[-f(Z_{i})+\mathbb{E}_{Z_{i}^{(y)}}f(Z_{i})\right]\right]$$

Uniform Convergence with L_{∞} Packing Number

In the following theorem, $M(\epsilon, \mathcal{F}, \|\cdot\|_{\infty})$ is the ϵL_{∞} packing number of \mathcal{F} with the metric $\|f\|_{\infty} = \sup_{Z} |f(Z)|$.

Theorem 11 (Simplification of Thm 13.11)

We have for any $\lambda > 0$, with probability at least $1 - \delta$, for all $n \ge 1$ and $f \in \mathcal{F}$:

$$-\sum_{i=1}^{n} f(Z_i) - \frac{1}{\lambda} \sum_{i=1}^{n} \ln \mathbb{E}_{Z_i^{(y)}} e^{-\lambda f(Z_i)}$$

$$\leq \inf_{\epsilon > 0} \left[2n\epsilon + \frac{\ln(M(\epsilon, \mathcal{F}, \|\cdot\|_{\infty}))/\delta)}{\lambda} \right]$$

It is also possible to improve Theorem 11 using chaining (see Proposition 13.14).

Proof of Theorem 11

Let $\mathcal{F}_{\epsilon} \subset \mathcal{F}$ be an ϵ maximal packing of \mathcal{F} , with $|\mathcal{F}_{\epsilon}| \leq M(\epsilon, \mathcal{F}, \|\cdot\|_{\infty})$. We obtain from Theorem 2, and the uniform bound over \mathcal{F}_{ϵ} that with probability at least $1 - \delta$:

$$\sup_{f\in\mathcal{F}_{\epsilon}}\left[-\sum_{i=1}^{n}f(Z_{i})-\frac{1}{\lambda}\sum_{i=1}^{n}\ln\mathbb{E}_{Z_{i}^{(y)}}\boldsymbol{e}^{-\lambda f(Z_{i})}\right]\leq\frac{\ln(\boldsymbol{M}(\epsilon,\mathcal{F},\|\cdot\|_{\infty}))/\delta)}{\lambda}$$

Since \mathcal{F}_{ϵ} is also an ϵL_{∞} cover of \mathcal{F} (see Theorem 5.2), we obtain

$$\sup_{f \in \mathcal{F}} \left[-\sum_{i=1}^{n} f(Z_i) - \frac{1}{\lambda} \sum_{i=1}^{n} \ln \mathbb{E}_{Z_i^{(y)}} e^{-\lambda f(Z_i)} \right]$$

$$\leq 2n\epsilon + \sup_{f \in \mathcal{F}_{\epsilon}} \left[-\sum_{i=1}^{n} f(Z_i) - \frac{1}{\lambda} \sum_{i=1}^{n} \ln \mathbb{E}_{Z_i^{(y)}} e^{-\lambda f(Z_i)} \right]$$

This implies the result.

.

Refined Least Squares Uniform Convergence

Theorem 12 (Simplification of Thm 13.15)

Let $\{(X_t, \epsilon_t)\}$ be a filtered sequence in $\mathcal{X} \times \mathbb{R}$ so that ϵ_t is conditional zero-mean sub-Gaussian noise: for all $\lambda \in \mathbb{R}$,

$$\ln \mathbb{E}[\boldsymbol{e}^{\lambda \epsilon_t} | \boldsymbol{X}_t, \boldsymbol{\mathcal{S}}_{t-1}] \leq \frac{\lambda^2}{2} \sigma^2,$$

where S_{t-1} denotes the history data. Assume that $Y_t = f_*(X_t) + \epsilon_t$, with $f_*(x) \in \mathcal{F} : \mathcal{X} \to \mathbb{R}$. Let \hat{f}_t be the exact ERM solution:

$$\hat{f}_t = \arg\min_{f\in\mathcal{F}}\sum_{s=1}^t (f(X_s) - Y_s)^2.$$

Then with probability at least $1 - \delta$, for all $t \ge 0$:

$$\sum_{s=1}^{t} (\hat{f}_t(X_t) - f_*(X_t))^2 \leq \inf_{\epsilon > 0} \left[8t\epsilon(\sigma + 2\epsilon) + 12\sigma^2 \ln \frac{2N(\epsilon, \mathcal{F}, \|\cdot\|_{\infty})}{\delta} \right]$$

Minimax Analysis for Sequential Estimation

Notations

Consider a general sequential estimation problem, where we observe data $Z_t \in \mathcal{Z}$ from the environment by interacting with the environment using a sequence of learned policies $\pi_t \in \Pi$.

At each time t, the observation history is

$$S_{t-1} = [(Z_1, \pi_1), \dots, (Z_{t-1}, \pi_{t-1})].$$

Based on the history, the player (or learning algorithm), denoted by \hat{q} , determines the next *policy* $\pi_t \in \Pi$ that can interact with the environment.

Based on the policy π_t , environment generates the next observation $Z_t \in \mathcal{Z}$ according to an unknown distribution $q(Z_t|\pi_t, S_{t-1})$.

Definition 13 (Sequential Statistical Estimation)

Consider a family of environment distributions $\mathcal{P}_{\mathcal{Z}}$, where each $q \in \mathcal{P}_{\mathcal{Z}}$ determines the probability for generating Z_t based on policy π_t as $q(Z_t|\pi_t, S_{t-1})$. Consider also a family of learning algorithms, represented by $\mathcal{P}_{\mathcal{A}}$. Each learning algorithm $\hat{q} \in \mathcal{P}_{\mathcal{A}}$ maps the history S_{t-1} deterministically to the next policy $\pi_t \in \Pi$ as $\pi_t = \hat{q}(S_{t-1})$. Given $q \in \mathcal{P}_{\mathcal{Z}}$, and $\hat{q} \in \mathcal{P}_{\mathcal{A}}$, the data generation probability is fully determined as

$$p(\mathcal{S}_n|\hat{q},q) = \prod_{t=1}^n q(Z_t|\hat{q}(\mathcal{S}_{t-1}),\mathcal{S}_{t-1}).$$

After observing S_n for some *n*, the learning algorithm \hat{q} determines a distribution $\hat{q}(\theta|S_n)$, and draw estimator $\theta \in \Theta$ according to $\hat{q}(\theta|S_n)$. The learning algorithm suffers a loss (also referred to as regret) $Q(\theta, q)$. The overall probability of θ and S_n is

$$p(\theta, \mathcal{S}_n | \hat{q}, q) = \hat{q}(\theta | \mathcal{S}_n) \prod_{t=1}^n q(Z_t | \hat{q}(\mathcal{S}_{t-1}), \mathcal{S}_{t-1}).$$
(2)

Example: Online Learning (non-adversarial)

We consider a parameter space Ω , and at each time t, the learning algorithm chooses a parameter $w_t \in \Omega$ according to a probability distribution $\pi_t(\cdot)$ on Ω .

This probability distribution is the policy. Given $w_t \sim \pi_t$, we then observe a $Z_t \sim q_t$ from an unknown distribution q_t . We assume that the loss function ℓ is known.

After *n* rounds, let $\theta(S_n) = [\pi_1, \dots, \pi_n]$, we suffer a loss

$$Q(\theta, q) = \sum_{t=1}^{n} \mathbb{E}_{w_t \sim \pi_t} \mathbb{E}_{Z_t \sim q_t} \ell(w_t, Z_t) - \inf_{w \in \Omega} \sum_{t=1}^{n} \mathbb{E}_{Z \sim q_t} \ell(w, Z_t).$$

Example: MAB

We consider the multi-armed bandit problem, where we have *K* arms from $\mathcal{A} = \{1, \ldots, K\}$. For each arm $a \in \mathcal{A}$, we have a probability distribution q_a on [0, 1]. If we pull an arm $a \in \mathcal{A}$, we observe a random reward $r \in [0, 1]$ from a distribution q_a that depends on the arm *a*.

Our goal is to find the best arm $\theta \in \Theta = A$ with the largest expected reward $\mathbb{E}_{r \sim q_a}[r]$, and the loss $Q(\theta, q) = \sup_a \mathbb{E}_{r \sim q_a}[r] - \mathbb{E}_{r \sim q_\theta}[r]$. In this case, a policy π_t is a probability distribution over A.

The learning algorithm defines a probability distribution $\hat{q}(S_{t-1})$ over \mathcal{A} at each time, and draw $a_t \sim \hat{q}(S_{t-1})$. The observation Z_t is the reward r_t which is drawn from q_{a_t} .

Contextual Bandits

In contextual bandits, we consider a context space \mathcal{X} and action space \mathcal{A} . Given a context $x \in \mathcal{X}$, we can take an action $a \in \mathcal{A}$, and observe a reward $r \sim q_{x,a}$.

A policy π is a map $\mathcal{X} \to \Delta(\mathcal{A})$, where $\Delta(\mathcal{A})$ denotes the set of probability distributions over \mathcal{A} (with an appropriately defined sigma algebra).

The policy π_t interacts with the environment to generate the next observation as: the environment generates x_t , the player takes an action $a_t \sim \pi_t(x_t)$, and then the environment generates the reward $r_t \sim q_{x_t,a_t}$.

Minimax Risk

Definition 14

Consider an environment distribution family $\mathcal{P}_{\mathcal{Z}}$, learning algorithm distribution family $\mathcal{P}_{\mathcal{A}}$. Then the worst case expected risk of a learning algorithm $\hat{q} \in \mathcal{P}_{\mathcal{A}}$ with respect to $\mathcal{P}_{\mathcal{Z}}$ is given by

$$r_n(\hat{q}, \mathcal{P}_{\mathcal{Z}}, \boldsymbol{Q}) = \sup_{\boldsymbol{q} \in \mathcal{P}_{\mathcal{Z}}} \mathbb{E}_{\boldsymbol{\theta}, \mathcal{S}_n \sim \boldsymbol{p}(\cdot | \hat{\boldsymbol{q}}, \boldsymbol{q})} \boldsymbol{Q}(\boldsymbol{\theta}, \boldsymbol{q}),$$

where $p(\cdot | \hat{q}, q)$ is defined in (2). Moreover, the minimax risk is defined as:

$$r_n(\mathcal{P}_{\mathcal{A}},\mathcal{P}_{\mathcal{Z}},\mathbf{Q}) = \inf_{\hat{q}\in\mathcal{P}_{\mathcal{A}}} r_n(\hat{q},\mathcal{P}_{\mathcal{Z}},\mathbf{Q}).$$

Lower Bound based on Assouad's Lemma

Theorem 15 (Thm 13.24)

Let $d \ge 1$ and $m \ge 2$ be integers, and let $\mathcal{P}_{\mathcal{Z}} = \{q^{\tau} : \tau \in \{1, \ldots, m\}^d\}$ contain m^d probability measures. Suppose that the loss function Q can be decomposed as $Q(\theta, q) = \sum_{j=1}^d Q_j(\theta, q)$, where $Q_j \ge 0$ are all non-negative. For each j, $\tau \sim_j \tau'$ if $\tau = \tau'$ or if τ and τ' differs by only one component j. Assume that there exists $\epsilon, \beta \ge 0$ such that

$$\forall \tau' \sim_j \tau, \tau' \neq \tau : \quad [\mathbf{Q}_j(\theta, \mathbf{q}^{\tau}) + \mathbf{Q}_j(\theta, \mathbf{q}^{\tau'})] \geq \epsilon,$$

and there exists q_j^{τ} such that all $\tau' \sim_j \tau$ map to the same value: $q_j^{\tau'} = q_j^{\tau}$. Given any learning algorithm \hat{q} . If for all $\tau, j \in [d]$, time step t, and S_{t-1} :

$$\frac{1}{m}\sum_{\tau'\sim_j\tau} \mathrm{KL}(q_j^{\tau}(\cdot|\hat{q}(\mathcal{S}_{t-1}),\mathcal{S}_{t-1})||q^{\tau'}(\cdot|\hat{q}(\mathcal{S}_{t-1}),\mathcal{S}_{t-1}))) \leq \beta_{j,t}^2, \qquad \textit{then}$$

$$\frac{1}{m^d}\sum_{\tau} \mathbb{E}_{\theta, \mathcal{S}_n \sim p(\cdot | \hat{q}, q^{\tau})} \mathcal{Q}(\theta, q^{\tau}) \geq 0.5 d\epsilon \left(1 - \sqrt{\frac{2}{d}\sum_{j=1}^d \sum_{t=1}^n \beta_{j,t}^2}\right).$$

Result used in the Proof of Theorem 15

Lemma 16 (Generalized Assouad's Lemma, Lem 12.27)

Consider a finite family of distributions \mathcal{P} . Let $d \ge 1$ be an integer, and Q can be decomposed as

$$Q(heta,\mathcal{D}) = \sum_{j=1}^{d} Q_j(heta,\mathcal{D}),$$

where $Q_j \ge 0$ are all non-negative. Assume for all *j*, there exists a partition M_j of \mathcal{P} . We use notation $\mathcal{D}' \sim_j \mathcal{D}$ to indicate that \mathcal{D}' and \mathcal{D} belong to the same partition in M_j . Let $m_j(\mathcal{D})$ be the number of elements in the partition containing \mathcal{D} . Assume there exist $\epsilon, \beta \ge 0$ such that

$$\begin{split} \forall \mathcal{D}' \sim_{j} \mathcal{D}, \mathcal{D}' \neq \mathcal{D} : & \inf_{\theta} [Q_{j}(\theta, \mathcal{D}') + Q_{j}(\theta, \mathcal{D})] \geq \epsilon, \\ \forall \mathcal{D} \in \mathcal{P} : & \frac{1}{d(\mathcal{P})} \sum_{j=1}^{d} \sum_{\mathcal{D} \in \mathcal{P}_{j}} \frac{1}{m_{j}(\mathcal{D}) - 1} \sum_{\mathcal{D}' \sim_{j} \mathcal{D}} \|\mathcal{D}' - \mathcal{D}\|_{\mathrm{TV}} \leq \beta, \end{split}$$

where $\mathcal{P}_j = \{\mathcal{D} \in \mathcal{P} : m_j(\mathcal{D}) > 1\}$ and $d(\mathcal{P}) = \sum_{j=1}^d |\mathcal{P}_j|$. Let $\mathcal{A}(Z)$ be any estimator, we have

$$\frac{1}{|\mathcal{P}|}\sum_{\mathcal{D}\in\mathcal{P}}\mathbb{E}_{Z\sim\mathcal{D}}\mathbb{E}_{\mathcal{A}}\mathcal{Q}(\mathcal{A}(Z),\mathcal{D})\geq\frac{\epsilon d(\mathcal{P})}{2|\mathcal{P}|}\left[1-\beta\right],$$

where $\mathbb{E}_{\mathcal{A}}$ is with respect to the internal randomization in \mathcal{A} .

Proof of Theorem 15 (I/II)

We have

$$\begin{split} &\frac{1}{dm^{d}} \sum_{\tau} \sum_{j=1}^{d} \frac{1}{m-1} \sum_{\tau' \sim_{j\tau}} \| p(\cdot|\hat{q}, q^{\tau}) - p(\cdot|\hat{q}, q^{\tau'}) \|_{\mathrm{TV}} \\ \leq &\frac{1}{dm^{d}} \sum_{\tau} \sum_{j=1}^{d} \frac{1}{m-1} \sum_{\tau' \sim_{j\tau}, \tau' \neq \tau} \left[\| p(\cdot|\hat{q}, q^{\tau}_{j}) - p(\cdot|\hat{q}, q^{\tau'}) \|_{\mathrm{TV}} \right. \\ & + \| p(\cdot|\hat{q}, q^{\tau}_{j}) - p(\cdot|\hat{q}, q^{\tau}) \|_{\mathrm{TV}} \right] \\ &= &\frac{2}{dm^{d}} \sum_{\tau} \sum_{j=1}^{d} \frac{1}{m} \sum_{\tau' \sim_{j\tau}} \| p(\cdot|\hat{q}, q^{\tau}_{j}) - p(\cdot|\hat{q}, q^{\tau'}) \|_{\mathrm{TV}} = A. \end{split}$$

The first inequality is triangle inequality for TV-norm. The first equality used $\hat{q}_j^{\tau} = \hat{q}_j^{\tau'}$ when $\tau \sim_j \tau'$.

Proof of Theorem 15 (II/II)

$$A \leq \frac{2}{m^d} \sum_{\tau} \sqrt{\frac{1}{dm} \sum_{j=1}^d \sum_{\tau' \sim_j \tau} \|p(\cdot|\hat{q}, q_j^{\tau}) - p(\cdot|\hat{q}, q^{\tau'})\|_{\mathrm{TV}}^2}$$

(Jensen's inequality for $\sqrt{\cdot}$)

$$\leq \frac{2}{m^d} \sum_{\tau} \sqrt{\frac{1}{2dm} \sum_{j=1}^d \sum_{\tau' \sim_j \tau} \operatorname{KL}(p(\cdot | \hat{q}, q_j^{\tau}) || p(\cdot | \hat{q}, q^{\tau'}))}$$

(Pinsker's inequality)

$$\leq \sqrt{\frac{2}{d}\sum_{j=1}^{d}\sum_{t=1}^{n}\beta_t^2}.$$

The last inequality used Lemma 13.21. Now in Lemma 16, we let $M_j(q^{\tau}) = \{q^{\tau'} : \tau' \sim_j \tau\}$ be the partitions. The result is a simple application of Lemma 16 with $m_j(q^{\tau}) = m$, $|\mathcal{P}| = m^d$, and $d(\mathcal{P}) = dm^d$.

Example

Consider estimating the mean of a *d* dimensional Gaussian random variable $Z \sim N(\theta, I_{d \times d})$. Each time the player draws an action $a_t \in \{1, \ldots, d\}$, and the environment draws $\tilde{Z}_t \sim N(\theta, I_{d \times d})$, and reveals only the a_t -th component $Z_t = \tilde{Z}_{t,a_t}$. After *T* rounds, we would like to estimate the mean as $\hat{\theta}$, and measure the quality with $Q(\hat{\theta}, \theta) = ||\hat{\theta} - \theta||_2^2$. In this case, a policy π_t can be regarded as a distribution over $\{1, \ldots, d\}$, and we draw $a_t \sim \pi_t$. To obtain an upper bound of the loss, we can simply randomly pick a_t , and use the following unbiased estimator:

$$\hat{\theta}_j = \frac{d}{n} \sum_{t=1}^n Z_{t,a_t} \mathbb{1}(a_t = j).$$

This implies that

$$\mathbb{E} \|\hat{\theta} - \theta\|_2^2 = \frac{d^2}{n}.$$

Example (cont)

To obtain a lower bound of the loss, we consider Corollary 13.23, with $\theta^{\tau} = \epsilon \tau / (\sqrt{d})$ and $\mathcal{P}_{\mathcal{Z}} = \{ N(\theta^{\tau}, I_{d \times d}) : \tau \in \{\pm 1\}^{d}$. Consider the decomposition

$$oldsymbol{Q}(heta,oldsymbol{q}^ au) = \sum_{j=1}^d oldsymbol{Q}_j(heta,oldsymbol{q}^ au), \quad oldsymbol{Q}_j(heta,oldsymbol{q}^ au) = (heta_j - heta_j^ au)^2.$$

This implies that

$$orall au: \quad [oldsymbol{Q}_j(heta,oldsymbol{q}^ au)+oldsymbol{Q}_j(heta,oldsymbol{q}^{ au^{-[j]}})]\geq \epsilon^2/d.$$

Let Z_t and Z'_t be the observations under $q, q' \in \mathcal{P}_{\mathcal{Z}}$, then for any a_t , $KL(Z_t, Z'_t) \leq \beta_t^2 = 2\epsilon^2/d$. When

$$2n\epsilon^2 \le d^2/32 - d,$$

we have

$$r_n(\mathcal{P}_{\mathcal{A}},\mathcal{P}_{\mathcal{Z}},\mathbf{Q})\geq \epsilon^2/16.$$

This matches the upper bound up to a constant.

Summary (Chapter 13)

- Martingale Exponential Equality
- Martingale Exponential Tail Probability Inequality
- Azuma's Inequality
- Freedman's Inequality
- Data Dependent Bound
- Uniform Convergence with L_{∞} Packing Number
- Minimax Analysis and Lower Bound