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Lower Bounds and Minimax Analysis

Mathematical Analysis of Machine Learning Algorithms
(Chapter 12)



2

Lower Bounds for Empirical Process

Consider empirical processes associated with a function family
F = {f (w , z) : w ∈ Ω}, defined on the empirical measure
Sn = {Z1, . . . ,Zn}.

Definition 1 (Gaussian Complexity)

The empirical Gaussian complexity of F is defined as

G(F ,Sn) = Eg sup
f∈F

1
n

n∑
i=1

gi f (Zi),

where [g1, . . . ,gn] are independent standard normal random
variables: gi ∼ N(0,1) for i = 1, . . . ,n.
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Gaussian versus Rademacher Complexity

The following result shows that Gaussian complexity and
Rademacher complexity are equivalent up to a logarithmic factor in n.

Proposition 2 ([Bartlett et al., 2002], Prop 12.2)

There exists an absolute constant C > 0 such that if F = −F , then

C−1R(F ,Sn) ≤ G(F ,Sn) ≤ C ln n R(F ,Sn).

Upper bounds for both Rademacher and Gaussian complexities can
be obtained from covering numbers and Dudley’s entropy integral
(chaining).

Lower bound for Gaussian complexity, called Sudakov Minoration,
can be obtained via covering numbers.
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Slepian’s Lemma

Lemma 3 (Slepian’s Lemma)

Let [X1, . . . ,Xn] and [Y1, . . . ,Yn] denote two zero-mean multivariate
normal random vectors. Assume that

∀i 6= j , E(Xi − Xj)
2 ≥ E(Yi − Yj)

2.

Then
E max

i
Xi ≥ E max

i
Yi .
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Sudakov Minoration

Theorem 4 (Sudakov Minoration, Thm 12.4)

For any ε > 0:

√
ln M(ε,F ,L2(Sn)) ≤ 2

√
nG(F ,Sn)

ε
+ 1.
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Proof of Theorem 4 (I/III)
Let FM = {f1, . . . , fM} ⊂ F be an ε packing subset of F under the
L2(Sn) metric. Consider independent standard Gaussian random
variables [g1, . . . ,gn].

E sup
f∈F

1
n

n∑
i=1

gi f (Zi) ≥ E sup
j∈[M]

1
n

n∑
i=1

gi fj(Zi).

Let g′1, . . . ,g
′
M be independent zero-mean normal random variables

with variance ε2/(2n) each. We then have for each j 6= k :

E

(
1
n

n∑
i=1

gi fj(Zi)−
1
n

n∑
i=1

gi fk (Zi)

)2

=
1
n2

n∑
i=1

(fj(Zi)− fk (Zi))2

≥1
n
ε2 = E (g′j − g′k )2.
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Proof of Theorem 4 (II/III)
Using Slepian’s lemma, we have

G(F ,L2(Sn)) ≥E sup
j

g′j .

We know from Theorem 2.1 that for all j and z ≥ 0,

Pr

(
g′j ≤

εz√
2n

)
≤1− 0.5e−(z+1)2/2

Pr

(
g′j ≤ −

εz√
2n

)
≤0.5e−z2/2,

and thus

Pr

(
sup

j
g′j ≤

εz√
2n

)
≤(1− 0.5e−(z+1)2/2)M

Pr

(
sup

j
g′j ≤ −

εz√
2n

)
≤0.5Me−Mz2/2.
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Proof of Theorem 4 (III/III)
We note that the desired inequality is trivial for M ≤ 2. For M ≥ 3:

E sup
j

√
2ng′j
ε

=−
∫ 0

−∞
Pr

(
sup

j
g′j ≤

εz√
2n

)
dz +

∫ ∞
0

Pr

(
sup

j
g′j ≥

εz√
2n

)
dz

≥
∫ ∞

0

(
1− (1− 0.5e−(z+1)2/2)M) dz −

∫ 0

−∞
0.5Me−Mz2/2dz

≥
∫ √2 ln M−1

0

(
1− 0.5(1− 0.5/M)M) dz −

∫ 0

−∞
0.5Me−Mz2/2dz

≥
∫ √2 ln M−1

0

(
1− 0.5/

√
e
)

dz − 0.5M+1M−1/2
∫ ∞
−∞

e−z2/2dz

=(1− 0.5/
√

e)(
√

2 ln M − 1)− 0.5M+1(3)−1/2
√

2π

≥0.98
√

ln M − 0.9.

This implies the desired bound.
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Majorizing Measure
A more precise characterization of Gaussian complexity, due to
Talagrand 1996, is to consider a generalization of covering numbers (
majorizing measures). We consider any measure µ on F , and let

µ(f , ε,L2(Sn)) = µ
(
{f ′ ∈ F : ‖f ′ − f‖L2(Sn) ≤ ε}

)
.

Then − lnµ(f , ε,L2(Sn)) may be regarded as a generalization of the
entropy number of F localized around f . If we define

γ2(F ,Sn) = inf
µ

sup
f∈F

∫ ∞
0

√
− lnµ(f , ε,L2(Sn))

n
dε.

Theorem 5 (The Majorizing Measure Theorem)

There exists an absolute constant C > 0 so that

C−1γ2(F ,Sn) ≤ G(F ,Sn) ≤ Cγ2(F ,Sn).
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Statistical Estimation
Statistical Estimation

I Observe a sample Z from a distribution D on Z.
I Estimate a certain quantity θ ∈ Θ; based on a sample Z from

Learning Algorithm

Learning algorithm (estimator) A: a (possibly random) map Z → Θ.

Loss Function
The quality of the estimated distribution dependent quantity θ ∈ Θ
can be measured by a general loss function

Q(θ,D).

The goal is to find an estimator A that achieves the smallest loss
Q(A(Z ),D) when Z ∼ D.
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Supervised Learning from iid Samples

The definition can handle the general setting of supervised learning,
where we observe n iid training examples

Sn = {Z1, . . . ,Zn}

from an unknown underlying distribution Dn.

In this case:
I Take Z = Sn that is generated according to the product

distribution Dn.
I The model parameter space Θ can be regarded as the set of

prediction functions.
I We may denote θ by f , so that the learning algorithm A learns a

function f̂ = A(Sn).
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Example: Regression

Example 6

For least squares problem, f (x) is a real valued regression function.
Let

fD(x) = ED [Y |X = x ].

We may define

Q(f ,D) = EX∼D(f (X )− fD(X ))2.
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Example: Conditional Density Estimation

Example 7

For conditional density estimation with K classes y ∈ {1, . . . ,K}, we
may consider Θ as the class of vector valued density functions

f (x) = [p(y = 1|x), . . . ,p(y = K |x)].

For density estimation, the estimation quality can be measured by the
KL-divergence

Q(f ,D) = EX∼DEY∼pD(Y |X) ln
pD(Y |X )

p(Y |X )
,

or by squared Hellinger distance:

Q(f ,D) = 2− 2EX∼DEY∼pD(Y |X)

(
p(Y |X )

pD(Y |X )

)1/2

.
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Example: Classification

Example 8 (K Class Classification)

If we are interested in classification accuracy, then we may use the
excess classification error over the Bayes classification error as
quality measure. Here

fD(x) = arg max
`

pD(Y = `|X = x)

is the optimal Bayes classifier. Let f (x) ∈ {1, . . . ,K} be any classifier,
then we can define

Q(f ,D) = EX∼D[Pr(Y = fD(X )|X )− Pr(Y = f (X )|X )].
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Minimax Risk
The worst case expected risk of a learning algorithm A to measure
the ability of the algorithm to learn the quantity θ with respect to a
family of distributions P.

Definition 9 (Def 12.9)

Consider a distribution family P on sample space Z, a parameter
space Θ. A learning algorithm A : Zn → Θ, a loss function
Q : Θ× P → R. Then the worst case expected risk of a learning
algorithm (i.e., a statistical estimator) A with respect to P is given by

rn(A,P,Q) = sup
D∈P

ESn∼Dn EA Q(A(Sn),D),

where EA is the expectation over any internal randomization of A.
Moreover, the minimax risk is defined as:

rn(P,Q) = inf
A

rn(A,P,Q).
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Minimax Analysis

In minimax analysis, we find an algorithm with the smallest worse
case risk rn(A,P,Q).

Example 10 (Minimax Analysis for ERM)

I Upper bound of rn(P,Q): can be established for specific learning
algorithms. For example, if we consider the ERM method Aerm for
least squares regression, then we may obtain an upper bound of

rn(P,Q) ≤ rn(Aerm,P,Q) = O(n−r ),

for some r > 0, based on the analysis of Example 6.49.
I Lower bound: if we can show a lower bound rn(P,Q) ≥ cn−r for

some constant c that may depend on P but independent of n,
then we know that the ERM method achieves the optimal
minimax lower bound.
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Lower Bound Technique: Fano’s Inequality

Theorem 11 (Fano’s Inequality, Thm 12.10)

Consider a finite family of distributions P = {D1, . . . ,DN}. Assume
that j is a random variable that is uniformly distributed in {1, . . . ,N},
and conditioned on j , Z ∼ Dj . Let f (Z ) ∈ {1, . . . ,N} be an estimate
of the index j. Then

1
N

N∑
j=1

Pr
Z∼Dj

(f (Z ) 6= j) ≥ 1− I(j ,Z ) + ln 2
ln(N)

,

where
I(j ,Z ) = E(j,Z )∼p(j,Z ) ln

p(j ,Z )

p(j)p(Z )

is the mutual information between random variables j and Z .
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Data Processing Inequality
We first state the following lemma, which says that any data process
procedure (including supervised learning procedure) never increases
KL divergence.

Lemma 12 (Data Processing Inequality for KL-divergence)

Consider random variables A and B, and a (possibly random)
processing function h, then the inequality

KL(A||B) ≥ KL(h(A)||h(B))

holds.

Let pA and pB be the densities of A and B respectively. Then the
KL-divergence is defined as

KL(A||B) = Ez∼pA ln
pA(z)

pB(z)
.
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Proof of Data Processing Inequality (I/II)

Given random variables A1,A2 and B1,B2, It is easy to check that

KL((A1,A2)||(B1,B2))

=Ez1∼pA1
Ez2∼pA2|A1

(z2|z1) ln
pA1(z1)pA2(z2|A1 = z1)

pB1(z1)pB2(z2|B2 = z1)

=KL(A1||B1) + Ez1∼pA1
KL(pA2(·|A1 = z1)||pB2(·|B1 = z1))

≥KL(A1||B1).

Now let A1 = A, A2 = h(A1), B1 = B, and B2 = h(B1), then
PA2(·|A1 = z1) = PB2(·|B1 = z1) because the conditional probability
only depends on the processing function h.
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Proof of Data Processing Inequality (II/II)

Therefore
KL(pA2(·|A1 = z1)||pB2(·|B1 = z1)) = 0,

which implies that

KL(A||B) = KL((A,h(A))||(B,h(B))).

Now, we change the way to evaluate the right hand side of the above
equation by setting A2 = A, A1 = h(A), B2 = B, and B1 = h(B), which
implies that

KL((h(A),A)||(h(B),B)) ≥ KL(h(A)||h(B)).

This proves the desired result.
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Lower Bound for Statistical Estimation

Theorem 13 (Generalized Fano’s Inequality, Thm 12.11)

Consider a finite family of distributions P = {D1, . . . ,DN}. Given a
loss function Q on Θ× P, let

m = sup
θ∈Θ

∣∣∣∣ {k : Q(θ,Dk ) < ε}
∣∣∣∣.

Assume that j is a random variable that is uniformly distributed in
{1, . . . ,N}, and conditioned on j , Z ∼ Dj . Given any (possibly
random) estimator A(Z ). Then

1
N

N∑
j=1

Pr
Z∼Dj

(Q(A(Z ),Dj) < ε) ≤ max

(
m
N
,
I(j ,Z ) + ln 2

ln(N/m)

)
,

where I(j ,Z ) is the mutual information of j and Z . The probability
includes possible randomization in A.
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Proof of Theorem 13 (I/III)
Let pj be the density function of Z for Dj . Then the joint distribution of
(j ,Z ) is given by

p(j ,Z ) =
1
N

pj(Z ).

We can introduce a random variable Z ′ with the same marginal
distribution as Z , but is independent of j :

p(Z ′) =
1
N

N∑
j=1

pj(Z ′).

Now, consider an arbitrary and possibly random estimator θ̂ = A(Z ).
Let θ̂′ = A(Z ′). By the data processing inequality for KL-divergence,
with input (j ,Z ) and binary output h(j ,Z ) = 1(Q(θ̂,Dj) < ε), where
1(·) is the indicator function. We obtain

KL(1(Q(θ̂,Dj) < ε)||1(Q(θ̂′,Dj) < ε)) ≤ KL((j ,Z )||(j ,Z ′)) = I(j ,Z ).
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Proof of Theorem 13 (II/III)

Now let q = Pr(Q(θ̂,Dj) < ε) and q′ = Pr(Q(θ̂′,Dj) < ε), then the
above inequality can be rewritten as:

KL(q||q′) = q ln
q
q′

+ (1− q) ln
1− q
1− q′

≤ I(j ,Z ).

Since θ̂′ is independent of j , and

|{j : Q(θ̂′,Dj) < ε}| ≤ m

for each θ̂′, we obtain
q′ ≤ m/N.
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Proof of Theorem 13 (III/III)

If q ≤ m/N, we have proved the desired inequality. Otherwise, since
KL(q||q′) as a function of q′ is decreasing in [0,q], we have

q ln
q

m/N
+ (1− q) ln

1− q
1−m/N

≤ I(j ,Z ).

Since q ln q + (1− q) ln(1− q) ≥ − ln 2, we obtain

− ln 2 + q ln
N
m

+ (1− q) ln
N

N −m
≤ I(j ,Z ).

This implies that

q ≤ I(j ,Z ) + ln 2
ln(N/m)

.

We thus obtain the desired bound.
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Example

Example 14

In Theorem 13, if we take Θ = {1, . . . ,N}, Q(θ,Dj) = 1(θ 6= j), and
ε = 1, then we have m = 1. Note that 1/N ≤ ln 2/ ln(N), we obtain
the following result

1
N

N∑
j=1

Pr
Z∼Dj

(A(Z ) = j) ≤ I(j ,Z ) + ln 2
ln N

.

This implies Fano’s inequality of Theorem 11.
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Mutual Information Bound

Lemma 15 (Lem 12.14 )

The mutual information I(j ,Z ) in Theorem 13 satisfies the inequality

I(j ,Z ) ≤ 1
N2

N∑
j=1

N∑
k=1

KL(Dj ||Dk ) ≤ sup
j,k

KL(Dj ||Dk ).

The result means that if the distributions Dj are very similar to each
other (in KL-divergence), then they are nearly independent (in mutual
information).
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Proof of Lemma 15

We have

I(j ,Z ) =
1
N

N∑
j=1

EZ∼Dj ln
pDj (Z )

1
N
∑N

k=1 pDk (Z )

≤ 1
N2

N∑
j=1

N∑
k=1

EZ∼Dj ln
pDj (Z )

pDk (Z )
,

where the inequality used Jensen’s inequality and the convexity of
− ln z.
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Consequence of Mutual Information Bound

Theorem 16 (Thm 12.15)

Consider a distributions family P that contains a finite subset of distributions
{D1, . . . ,DN}. Let Q be a loss function on Θ× P, and

m = sup
θ∈Θ

∣∣∣∣ {k : Q(θ,Dk ) < ε}
∣∣∣∣.

Let A(Sn) be an arbitrary (possibly random) estimator of Dj from iid data
Sn = [Z1, . . . ,Zn] ∼ Dn

j . If m ≤ N/2 and

ln(N/m) ≥ ln 4 + 2n sup
j,k

KL(Dj ||Dk ),

then
1
N

N∑
j=1

Pr
Sn∼Dn

j

(
Q(A(Sn),Dj ) < ε

)
≤ 0.5,

where the probability also includes possible randomization in A. If Q(·, ·) is
non-negative, then this implies that rn(P,Q) ≥ 0.5ε.
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Least Squares

For the least squares regression problem in Example 6, we consider
a function class F that contains the optimal prediction rule
fD(X ) = E[Y |X ], and

QLS(f ,D) = EX∼D(f (X )− fD(X ))2.

We are interested in minimax rate.
I Does ERM achieve minimax rate?
I Are there better algorithms?
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Theorem 17 (Lower Bound for Least Squares, Thm 12.17)

Consider the regression model, where X ∼ DX with known DX , and

Y = fD(X ) + ε,

where ε is zero-mean noise that may depend on fD(·) ∈ F . Assume
there exists σ > 0 so that

EX∼DX (f (X )− f ′(X ))2 ≥ 2σ2KL(Df ||Df ′),

where Df is the distribution of (X ,Y ) when fD = f . If F contains N
functions f1, . . . , fN such that

ln N ≥ ln 4 + nσ−2 sup
j,k

EX∼D(fj(X )− fk (X ))2,

then
rn(P,QLS) ≥ 0.125 inf

j 6=k
EX∼DX (fj(X )− fk (X ))2.
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Proof of Theorem 17

Define Q(f , f ′) = EX∼D(f (X )− f ′(X ))2. Note that for each f ∈ F , we
associate a Df ∈ P = {Df : f ∈ F}.

We also let ε = 0.25 minj 6=k Q(fj , fk ), and it can be checked that for all
j 6= k :

max(Q(f , fj),Q(f , fk )) ≥ (Q(f , fj) + Q(f , fk ))/2 ≥ Q(fj , fk )/4 ≥ ε.

This means that we can take m = 1, and obtain the theorem as a
direct consequence of Theorem 16.
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Condition of Theorem 16

Theorem 16 holds for Gaussian noise.

Proposition 18

Consider Df (X ,Y ) so that X ∼ DX is identical for all f ∈ F , and
Y ∼ N(f (X ), σ2) for some constant σ > 0. Then

EX∼DX (f (X )− f ′(X ))2 = 2σ2KL(Df ||Df ′).

The condition also holds for other situations, such as certain Bernoulli
noise, where Y ∈ {0,1}.
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Metric Entropy Bound
Consider a distribution DX over X , with the metric

‖f − f ′‖L2(DX ) =
(
EX∼DX (f (X )− f ′(X ))2

)1/2
.

The following result shows that the corresponding metric entropy
leads to a lower bound on the minimax risk.

Corollary 19 (Cor 12.20)

If for some C > 0 and ε > 0:

C−1ε−q ≤ ln M(ε,F ,L2(DX )) ≤ Cε−q.

For noise model that satisfies the condition of Theorem 17, we have

rn(P,QLS) ≥ C′n−2/(2+q)

for some C′ > 0.
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Proof of Corollary 19 (I/II)
We consider an ε packing subset F ′ of F with size of at least
exp(C−1ε−q). Since for some C0 > 0,

ln N(0.5C0ε,F ,L2(DX )) ≤ 0.5C−1ε−q,

it implies that there exists a ball of size 0.5C0ε, which contains at least

exp(C−1ε−q)

exp(0.5C−1ε−q)
= exp(0.5C−1ε−q)

members of F ′.
This means we can find N ≥ exp(0.5C−1ε−q) functions {f1, . . . , fN}
such that

sup
j 6=k

Q(fj , fk ) ≤C2
0ε

2,

inf
j 6=k

Q(fj , fk ) ≥ε2,

where Q(f , f ′) = EX∼DX (f (X )− f ′(X ))2.
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Proof of Corollary 19 (II/II)

Now let n = d(C′/ε2)(q+2)/2e for a sufficiently small constant C′, then
we have

ln N ≥ 0.5C−1ε−q ≥ ln 4 + nσ−2C2
0ε

2 ≥ ln 4 + nσ−2 sup
j 6=k

Q(fj , fk ).

Theorem 17 implies that rn(P,QLS) ≥ 0.125ε2. Since
ε2 ≥ C′n−2/(q+2), we obtain the desired bound.
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ERM

Regression function class F
I Bounded
I Has a uniform covering number of O(ε−q) for q < 2

We know from the local Rademacher complexity analysis of
Example 6.49 that for the empirical risk minimization method

f̂erm = arg min
f∈F

n∑
i=1

(f (Xi)− Yi)
2,

the following risk bound holds:

ESn∼DnEX∼DX (f̂erm(X )− fD(X ))2 = O(n−2/(q+2)).

This matches the lower bound of Corollary 19.
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ERM (cont)

For q > 2, the generalization bound for empirical risk minimization
method is

ESn∼DnEX∼DX (f̂erm(X )− fD(X ))2 = O(n−1/q),

and since 1/q < 2/(q + 2), the rate is inferior to the minimax rate.
I This rate cannot be improved without additional assumptions.
I When nonparametric family has a large entropy, ERM can be

suboptimal.
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ERM on Sieves

It is possible to achieve the optimal rate of O(n−2/(q+2)). One of the
optimal method is least squares on sieves.

Sieve Method
Given a function class F , instead of running least squares on F with

f̂ = arg min
f∈F

n∑
i=1

(f (Xi)− Yi)
2,

the sieve method considers a subset Fn ⊂ F , and then perform least
squares regression restricted to this subset:

f̂Fn = arg min
f∈Fn

n∑
i=1

(f (Xi)− Yi)
2.
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Optimal Convergence

Proposition 20 (Sieve Method Upper Bound, Prop 12.21)

Assume that the distribution of X is DX . Let Fn be an ε packing
subset of F in the L2(DX ) metric with M(ε,F ,L2(DX )) members.
Assume there exists b > 0 such that [f (X )− f ′(X )] ≤ 2b for all
f , f ′ ∈ F . Assume that fD ∈ F and Y is sub-Gaussian:

lnEY |X exp(λ(Y − fD(X ))) ≤ λ2b2

2
.

Then

ESn∼DnEX∼DX (f̂Fn (X )− fD(X ))2 ≤
[
4ε2 +

14b2

n
ln M(ε,F ,L2(DX ))

]
.
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Example

Example 21

Consider the covering number condition of Corollary 19. We note that

inf
ε>0

O
(
ε2 +

1
n

ln M(ε,F ,L2(DX ))

)
= O(n−2/(2+q)).

Therefore the upper bound of Proposition 20 matches the lower
bound of Corollary 19.
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ERM Overfitting (I/II)

Consider the following function class

F = {f0(x)} ∪ {f1(x) + ∆f1(x) : |∆f1(x)| ≤ 1/
√

n},

where f1(x) = f0(x) + 0.5n−1/4.

If we consider ERM with sieve Fn = {fk (x) : k = 0,1}, then we have
a convergence rate no worse than O(1/n).

However, we have a overfitting problem with ERM on F . To see this,
we may consider the model

Y = f0(X ) + ε, ε ∼ N(0,1),

and training data (X1,Y1), . . . , (Xn,Yn).
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ERM Overfitting (II/II)
Let δi = ∆f1(Xi ) and εi = Yi − f0(Xi ). Then we have

n∑
i=1

min
|δi |≤1/

√
n
(f1(Xi ) + δi − Yi )

2 −
n∑

i=1

(f0(Xi )− Yi )
2

=
n∑

i=1

min
|δi |≤1/

√
n
(0.5n−1/4 + δi − εi )2 −

n∑
i=1

ε2i

≤
√

n(0.5 + n−1/4)2 − n−1/4
n∑

i=1

εi − 2n−1/2
n∑

i=1

|εi |.

The inequality is achieved with δi = sign(εi )/
√

n. When n is large,

−2n−1/2
n∑

i=1

|εi | = −2n1/2 [Eε∼N(0,1)|ε|+ Op(1/
√

n)
]

dominates the RHS with large probability. It implies that with large
probability, ERM gives an estimator f̂ (x) = f1(x) + ∆f1(x) with
|∆f (x)| ≤ 1/

√
n. This means that

ESn EX (f̂ (X )− f (X ))2 ≥ c/
√

n

for some c > 0. Note that this is a suboptimal rate.
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Lower Bound: Assouad’s Lemma
Lemma 22 (Assouad’s Lemma, Simplified Lem 12.27 )

Let d ≥ 1 be an integer and Pd = {Dτ : τ ∈ {−1,1}d} contain 2d probability
measures. Suppose that the loss function Q can be decomposed as
Q(θ,D) =

∑d
j=1 Qj (θ,D). For any j and τ , let τ−[j] be the index that differs

with τ only by one coordinate j. Assume that there exists ε, βj ≥ 0 such that

∀τ : [Qj (θ,Dτ ) + Qj (θ,Dτ−[j] )] ≥ ε, ‖Dτ −Dτ−[j]‖TV ≤ βj .

Consider randomized A(Sn) based on Sn ∼ Dn
τ for some τ . We have

1
2d

∑
τ

ESn∼Dn
τ
EAQ(A(Sn),Dτ ) ≥ εd

2
− ε

2

d∑
j=1

βj ,

where EA is with respect to the internal randomization in A. This implies that

rn(Pd ,Q) ≥ εd
2
− ε

2

d∑
j=1

βj .
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Proof of Lemma 22
For notation convenient, assume there exists dµ(z) so that for all
D ∈ P, pD(z)dµ(z) is the distribution of D. Then

2
|P|

d∑
j=1

∑
D∈P

EZ∼DQj(A(Z ),D)

=
1
|P|

d∑
j=1

EZ∼D
∑
τ

[Qj(A(Z ),Dτ ) + Qj(θ,Dτ−[j])]

=
1
|P|

d∑
j=1

∑
τ

∫
[Qj(A(z),Dτ )pDτ (z) + Qj(A(z),Dτ−[j])pD

τ−[j] (z)]dµ(z)

≥ 1
|P|

d∑
j=1

∑
τ

∫
εmin(pDτ (z),pD

τ−[j] (z))dµ(z)

(Lemma’s assumption)

=
1
|P|

d∑
j=1

∑
τ

ε(1− ‖Dτ −Dτ−[j]‖TV) ≥
d∑

j=1

ε(1− βj). (TV-norm def)
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Theorem 23 (Thm 12.28)

Under the assumptions of Lemma 22. For any j and τ , let τ−[j] be the
index that differs with τ only by one coordinate j. Assume that there
exists ε, βj ≥ 0 such that

∀τ : [Qj(θ,Dτ ) + Qj(θ,Dτ−[j])] ≥ ε, H(Dτ ||Dτ−[j]) ≤ βj .

Consider randomized A(Sn) based on Sn ∼ Dn
τ for some τ . We have

1
2d

∑
τ

ESn∼Dn
τ
EAQ(A(Sn),Dτ ) ≥ εd

2
− ε

2

d∑
j=1

√
2− 2(1− 0.5β2

j )n,

where EA is with respect to the internal randomization in A. This
implies that

rn(Pd ,Q) ≥ εd
2
− ε

2

d∑
j=1

√
2− 2(1− 0.5β2

j )n.
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Example of Assouad’s Lemma

Consider observations Zi ∈ {0,1}d , where each Zi has d
components Zi,j ∼ Bernoulli(θj) for j = 1, . . . ,d .

Let θ = [θ1, . . . , θd ] ∈ (0,1)d be the model parameters to be
estimated. For τ ∈ {±1}d , we let θτ,j = ε2(1 + τj)/2, where
ε ∈ (0,0.5). Let Dτ be the corresponding Bernoulli distribution, and
Pd = {Dτ}. Define the metric

Q(θ̂, θ) =
d∑

j=1

Qj(θ̂, θ), Qj(θ̂, θ) =

∣∣∣∣√θ̂j −
√
θj

∣∣∣∣.
We cannot apply Theorem 16 directly on this subclass Pd because
the KL-divergence of two distributions in Pd can be infinity.
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Example (cont)

On the other hand, for all τ :

[Qj(θ,Dτ ) + Qj(θ,Dτ−[j])] ≥ ε

and
H(Dτ ||Dτ−[j]) ≤ 2ε.

We thus obtain from Theorem 23 that

rn(Pd ,Q) ≥ 0.5dε− 0.5dε
√

2− 2(1− 2ε2)n.

For sufficiently small ε, with n ≤ 1/(6ε2), we obtain

rn(Pd ,Q) ≥ 0.1dε.
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Summary (Chapter 12)
I Gaussian complexity versus Rademacher complexity
I Slepian’s lemma

I Empirical processes and covering numbers
I upper bound using chaining
I lower bound using Sudakov minoration

I Gaussian complexity and Majorizing Measures
I covering number→ Majorizing measures
I chaining→ generic chaining
I tight bounds

I Statistical estimation
I Data processing inequality
I Lower Bound for Statistical Estimation
I Entropy based Minimax Rate for Least Squares
I Matching upper bound: ERM on sieves
I Overfitting of ERM
I Lower Bound from Assouad’s lemma


