
1

Analysis of Neural Networks

Mathematical Analysis of Machine Learning Algorithms
(Chapter 11)

2

Two-layer Neural Networks

Two-Layer Neural Networks with Real-Valued Output

Observe d-dimensional input vector x ∈ Rd :

fm(w , x) =
m∑

j=1

ujh(θ>j x + bj), (1)

where x ∈ Rd , θj ∈ Rd , bj ∈ R, uj ∈ R, and

w = {[uj , θj ,bj] : j = 1, . . . ,m}.

Function h(·): activation function, and popular choices include
I rectified linear unit (ReLU) h(z) = max(0, z)

I sigmoid h(z) = 1/(1 + e−z)

3

Deep Neural Networks

K -layer fully-connected DNN with Real-Valued Output

I Let m(0) = d and m(K) = 1
I Define recursively

x (0)
j =xj (j = 1, . . . ,m(0)),

x (k)
j =h

m(k−1)∑
j ′=1

θ
(k)
j,j ′ x

(k−1)
j ′ + b(k)

j

 {
j = 1, . . . ,m(k),

k = 1,2, . . . ,K − 1

f (x) =x (K)
1 =

m(K−1)∑
j=1

ujx
(K−1)
j .

I w = {[uj , θ
(k)
j,j ′ ,b

(k)
j] : j , j ′, k}: model parameters

I m(k): the number of hidden units at layer k .

4

Universal Approximation

For two-layer neural networks, we have the following result.

Theorem 1 (Universal Approximation Thm 11.1)

If h is a non-polynomial continuous function, then the two-layer neural
network function class in (1) is dense in C0(K) for all compact
subsets K of Rd , where C0(K) denotes the set of continuous
functions on K .

M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken (1993). “Multilayer feedforward

networks with a nonpolynomial activation function can approximate any function”. In:

Neural networks 6.6, pp. 861–867 .

5

Barron Class

A more refined result can be obtained for functions with a certain
smoothness property in Fourier representation.

Definition 2
Consider a real valued function f (x) : Rd → R. Assume that
f ∈ L1(Rd) has the following Fourier representation:

f (x) =

∫
Rd

eiω>x f̃ (ω) dω,

where f̃ (ω) is the Fourier transform of f (x) that may be a complex
function. Define

C(f) =

∫
Rd
‖ω‖2 |̃f (ω)|dω.

6

Refined Universal Approximation
Theorem 3 (Thm 11.3)

If h(z) is a bounded measurable function on the real line for which
limz→−∞ h(z) = 0 and limz→∞ h(z) = 1. Consider
Br = {x ∈ Rd : ‖x‖2 ≤ r}, and let f be a real-valued function defined
on Br such that C(f) <∞. Then there exists a neural network (1)
such that ∫

(f (x)− f (0)− fm(w , x))2 dµ(x) ≤ (2rC(f))2

m
,

where µ is an arbitrary probability measure on Br .

Note that we can take any b so that h(b) 6= 0, and

f (0) = (f (0)/h(b))h(0>x + b).

It follows that if f (x)− f (0) can be represented by a two-layer neural
network (1) with m neurons, then f (x) can be represented by a
two-layer neural network (1) with m + 1 neurons.

7

From Shallow to Deep Representation

Two Layer Neural Networks

I A function f can be efficiently represented by a two-layer neural
network if C(f) is small [Barron, 1993].

I Target functions with large C(f): exponentially many nodes to
represent with two layer neural networks.

Deep Representation

I Reduce the number of nodes needed to represent complexity
functions.

I Related to the ability of deep neural networks to form more
complex composite features from simpler features.

8

Benefit of Deep Representation

Theorem 4 (Thm 11.4)

Consider any integer k ≥ 3. There exists f (x) : [0,1]→ [0,1]
computed by a 2k2-layer neural network with standard ReLU
activation function, with no more than 2 neurons per layer so that∫ 1

0
|f (x)− g(x)|dx ≥ 1

16
, (2)

where g is any function of a ReLU network with no more than k
layers and ≤ 2k−2 nodes per layer.

9

Proof of Theorem 4 (I/III)
We will briefly explain the high-level intuition of Telgarsky 2016, which
indicates what kind of functions are difficult to approximate with
shallow neural networks. Consider the case of d = 1, a specific
construction of a hard function f (x) for shallow neural networks is via
the function composition of the triangle function
f0(x) = max(0,min(2x ,2(1− x))) on [0,1]. We may define
fk (x) = f0(fk−1(x)) with k ≥ 1, as illustrated in Figure 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f0(x)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f1(x)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f2(x)

Figure: Plot of fk (x) with k = 0,1,2

10

Proof of Theorem 4 (II/III)

Since f0(x) can be represented by a two-layer neural ReLU network
with no more than two nodes per layer as
f0(x) = 2 max(0, x)− 4 max(0, x − 0.5) in [0,1], fk (x) can be
represented by a 2k -layer neural network with no more than two
nodes per layer.
It can be seen that fk (x) contains 2k points that reach values of 1,
and 2k + 1 points that reach values of 0. It follows that the number of
solution segments of fk (x) = 0.5, referred to as its crossing number,
is 2k+1.
It is easy to show that f (x)− fk (x) cannot be approximated well by a
function g(x) with crossing number < 2k in that the approximation
error is lower bounded by (2).

11

Proof of Theorem 4 (III/III)

Therefore in order to show that fk (x) cannot be approximated
efficiently by shallow neural networks, we only need to show that the
function of a shallow neural network cannot have many crossings
unless it contains exponentially many nodes.

Specifically, it can be shown (left as Exercise 11.2) that an `-layer
ReLu network with no more than m ReLU nodes per layer has a
crossing number of no larger than 2(2m)`.

It follows that if a neural network can approximate fk2(x) well, then
(2m) ≥ 2(k2−1)/`. Therefore the node number m > 2k−2if ` ≤ k .

12

Random Feature Method

Random Feature Model
We assume that {θj : j = 1, . . . ,m} are m independent samples
drawn from a distribution µ on Rd . A typical example is to take µ as a
Gaussian distribution.
The two-layer neural network in (1) can be written as

fm(u, x) =
1
m

m∑
j=1

ujh(θ>j x). (3)

Equivalent to a two-layer neural network, where we do not train
parameter θ.

It follows from Theorem 1 that (3) is universal with appropriate h.

13

Overparameterized: Infinity Width Network

As m→∞, the law of large numbers implies

f∞(x) = Eθ∼µu(θ)h(θ>x), (4)

where u(θ) is a weight function.
I Treat both u(θ) and h(θ>x) as infinite dimensional vectors

indexed by θ.
I May regard the limiting function class (4) as a linear system, in

which we learn the infinite dimensional linear weight u(θ).

14

Random Feature Kernel
Consider the L2 regularization for random feature method, where the
function class is given by

Eθ∼µ|u(θ)|2 ≤ A2.

This function class induces a kernel class.

Proposition 5 (Prop 11.5)

Consider any probability measure µ on Rd . The function class (4)
with L2 regularization

‖f‖2 =
(
Eθ∼µ|u(θ)|2

)1/2

is equivalent to the RKHS function class defined in Definition 9.4 with
kernel

k∞(x , x ′) = Eθ∼µh(θ, x)h(θ, x ′).

15

Rademacher Complexity
Corollary 6 (Infinite-Width Network, Cor 11.7)

Let F2
A = {Eθ∼µu(θ)h(θ>x) : Eθ∼µu(θ)2 ≤ A2},

then Rn(F2
A,D) ≤ A

√
Ex∼DEθ∼µh(θ>x)2

n
.

Corollary 7 (Finite-Width Network, Cor 11.8)

Let F2
A,m =

 1
m

m∑
j=1

ujh(θ>j x) : ‖u‖2 ≤
√

mA

 ,

then Rn(F2
A,m,D) ≤ A

√
Ex∼D

∑m
j=1 h(θ>j x)2

mn
.

16

L1 Regularization: Infinity-Width Network

Proposition 8 (Infinity-Width Network, Prop 11.9)

Let F = {h(θ>x) : θ ∈ Rd}. Let

F1
A = {Eθ∼µu(θ)h(θ>x) : Eθ∼µ|u(θ)| ≤ A}.

Then for all monotone function h(·) with h(·) ∈ [−M,M]:

R(F1
A,Sn) ≤AM

32
√

d + 1√
n

.

17

Proof of Proposition 8

Since h(·) is monotone, we know that F is a VC-subgraph class with
VC dimension d + 1 (see Chapter 5).
Therefore from Theorem 5.11 and the calculation in Example 6.26,
we obtain

R(F ,Sn) ≤ M
16
√

d + 1√
n

.

The desired bound now follows from Theorem 10.8:

R(F1
A,Sn) ≤ AR(F±,Sn) ≤ 2AR(F ,Sn).

18

L1 Regularization: Finite-Width Network

Corollary 9 (Finite Width Network, Cor 11.10)

Let

F1
A,m =

 1
m

m∑
j=1

ujh(θ>j x) : ‖u‖1 ≤ mA

 .

Assume that h(·) ∈ [−M,M] and h(·) is monotone. Then

R(F1
A,m,Sn) ≤ AM

32
√

d + 1√
n

.

The proof is the same as that of Proposition 8.

19

Example

Example 10

Consider a target function which is represented by a single neuron

f∗(x) = u1h(θ>1 x),

with |u1| ≤ 1 and h(·) ∈ [−1,1]. Then f∗ ∈ F1
1,m for all m ≥ 1.

Corollary 9 implies that the Rademacher complexity using L1
regularization is Rn(F1

1,m) = O(
√

d/n), which is well-behaved when
m→∞.
However, if we employ L2 regularization, then f∗ ∈ F2√

m,m. The
corresponding Rademacher complexity bound becomes
Rn(F2√

m,m) ≤
√

m/n, which becomes infinity when m→∞.

20

Neural Tangent Kernel

In the random feature approach
I The bottom layer model parameter θ is fixed, and only the top

layer model parameter u is trained.

Practical applications of neural networks
I both model parameter θ and parameter u are trained jointly.

It is possible to generalize the kernel view to handle this case, which
leads to the concept of neural tangent kernel (NTK).

The key idea of NTK is to linearly approximate the two-layer NN in
both θ and u around a small neighborhood around the initialization.

21

NTK Initialization: Finite Width
To derive NTK, we start with a random initialization of the neural
network (1) (again, for simplicity, we assume bj = 0) at [u, θ] = [ũ, θ̃],
which we refer to as the NTK initialization.

Here we independently draw m d + 1 dimensional model parameters
[ũj , θ̃j] ∈ Rd+1 from a probability distribution µ on Rd+1. The
probability distribution is often chosen as an iid normal distribution.

The resulting initial neural network is given below.

NTK Initialization
With NTK Initialization, we have

f̃ NTK
m (x) =

1√
m

m∑
j=1

ũjh(θ̃>j x), (5)

which is similar to the random feature method (3), but ũj is also drawn
randomly.

22

NTK Initialization: Infinity Width

We often choose µ to be a normal distribution with a diagonal
covariance matrix. This implies that

E[ũj |θ̃j] = 0.

Expected Function Value and Variance of NTK Initialization

Given x ∈ Rd , the expected value and variance of f̃ NTK
m (x) are

Eµ[f̃ NTK
m (x)] =0,

Varµ[f̃ NTK
m (x)] =E[ũ0,θ̃0]∼µũ2

0h(θ̃>0 x)2.

I Variance is finite when the right hand side is finite.
I Variance is independent of m as m→∞.

This is why we divide by
√

m instead of by m in NTK.

23

Properties of NTK Initialization (I/II)

Proposition 11 (Prop 11.12)

Assume that the central limit theorem holds for (5) (uniformly for all x)
as m→∞. Then as m→∞, f̃ NTK

m (x) converges to a Gaussian
process f̃ NTK

∞ (x) with zero-mean and covariance matrix

k(x , x ′) = E[ũ0,θ̃0]∼µũ2
0h(θ̃>0 x)h(θ̃>0 x ′).

24

Properties of NTK Initialization (II/II)

Proposition 12 (Prop 11.13)

Consider f̃ NTK
m (x) defined in (5). Let h′(z) be the derivative of h(·).

We have for all x and j:

E‖∇ũj
f̃ NTK
m (x)‖22 =

1
m
Eθ̃0∼µh(θ̃>0 x)2,

E‖∇θ̃j
f̃ NTK
m (x)‖22 =

1
m
E[ũ0,θ̃0]∼µũ2

0h′(θ̃>0 x)2‖x‖22,

where the expectation is with respect to the random initialization.
Moreover, for any x, as m→∞:

‖∇ũ f̃ NTK
m (x)‖22

p→Eθ̃0∼µh(θ̃>0 x)2,

‖∇θ̃ f̃
NTK
m (x)‖22

p→E[ũ0,θ̃0]∼µũ2
0h′(θ̃>0 x)2‖x‖22,

where the probability is with respect to the random initialization.

25

NTK Approximation
Let w = [u, θ] and w̃ = [ũ, θ̃]. Let B∞(w̃ , r) = {w : ‖w − w̃‖∞ ≤ r}.
Let

fnn(w , x) =
1√
m

m∑
j=1

ujh(θ>j x),

and we can define its NTK approximation as follows.

NTK Approximation of fnn(w , x)

We define

f NTK
m (w , x) =f̃ NTK

m (x) +
1√
m

m∑
j=1

[
(uj − ũj)h(θ̃>j x)

+ũjh′(θ̃>j x)(θj − θ̃j)
>x
]
. (6)

When w ∈ B∞(w̃ , r) for a sufficiently small r , we have
f NTK
m (w , x) ≈ fnn(w , x) and ∇w f NTK

m (w , x) ≈ ∇w fnn(w , x).

26

Technical Conditions for NTK Approximation

Assumption 13 (Asm 11.14)

For any x, δ ∈ (0,1) and ε > 0, there exist A0 > 0, r0 > 0 and m0 > 0
such that when m > m0, with probability at least 1− δ over random
initialization, the following events hold uniformly for w ∈ B∞(w̃ , r0):
I |̃f NTK

m (x)| ≤ A0

I ‖∇w f NTK
m (w , x)‖2 + ‖∇w fnn(w , x)‖2 ≤ A0

I |f NTK
m (w , x)− fnn(w , x)| ≤ ε

I ‖∇w f NTK
m (w , x)−∇w fnn(w , x)‖2 ≤ ε

I ‖∇w f NTK
m (w , x)‖∞ + ‖∇w fnn(w , x)‖∞ ≤ m−1/4

Proposition 14 (Prop 11.15)

Assumption 13 holds for both ReLU and for sigmoid activation
functions with Gaussian initialization w̃ ∼ N(0, σ2I).

27

Proposition 15 (Limiting Kernel, Prop 11.16)

Consider the feature space NTK formulation (6). Then f NTK
m (w , x)− f̃ NTK

m (x)
belongs to the RKHS with kernel

kNTK
m (x , x ′) = kNTK

m,1 (x , x ′) + kNTK
m,2 (x , x ′), where

kNTK
m,1 (x , x ′) =

1
m

m∑
j=1

h(θ̃>j x)h(θ̃>j x ′),

kNTK
m,2 (x , x ′) =

1
m

m∑
j=1

ũ2
j h′(θ̃>j x)h′(θ̃>j x ′)x>x ′.

Moreover, for any x , x ′, as m→∞, we have

kNTK
m,1 (x , x ′)

p→ kNTK
∞,1 (x , x ′) = Eθ̃0∼µh(θ̃>0 x)h(θ̃>0 x ′),

kNTK
m,2 (x , x ′)

p→ kNTK
∞,2 (x , x ′) = E[ũ0,θ̃0]∼µũ2

0h′(θ̃>0 x)h′(θ̃>0 x ′)x>x ′,

where the probability is with respect to the random initialization.

28

NTK Approximation for Arbitrary Function

Theorem 16 (Thm 11.17)

Consider an arbitrary function f (x), and n distinct points {X1, . . . ,Xn}.
Assume that the limiting NTK kernel kNTK

∞ (x , x ′) in Proposition 15 is
universal. Consider a two-layer neural network with initialization (5).
Given any ε > 0 and δ ∈ (0,1), there exist A > 0 and m0 such that
when m > m0, with probability at least 1− δ, there exists
w ∈ B∞(w̃ , rm) that satisfy:
I rm = A/m1/4 and ‖w − w̃‖2 ≤ A.
I |f NTK

m (w ,Xi)− f (Xi)| ≤ ε for all i = 1, . . . ,n.

29

SGD Convergence in NTK Regime

Corollary 17 (Cor 11.18)

Assume that the NTK kernel kNTK
∞ (x , x ′) in Proposition 15 is

universal. Let f (x) be an arbitrary function, and
{(X1,Y1), . . . , (Xn,Yn)} be n distinct points. Consider a convex loss
function L(f (x), y) which is Lipschitz in f (x). There exists A > 0 so
that the following holds. For any T > 0, assume we run SGD from the
NTK initialization (5) for T steps with constant learning rate 1/

√
T ,

and return fnn(w , x) with w chosen uniformly at randomly from the
SGD iterates. Then as m→∞, ‖w − w̃‖∞

p→ 0 and

Ew
1
n

n∑
i=1

L(fnn(w ,Xi),Yi) ≤
1
n

n∑
i=1

L(f (Xi),Yi) +
A√
T

+ op(1),

where Ew indicates the randomness from the SGD iterates, and the
convergence in probability is with respect to the randomness in the
initialization.

30

NTK Kernel: Rademacher Complexity

Corollary 18 (Cor 11.19)

Let
FNTK

A (w̃) = {f NTK
m (w , x) : ‖w − w̃‖22 ≤ A2},

then

Rn(FNTK
A (w̃ ,D) ≤ A

√
Ex∼DkNTK

m (x , x)

n
.

This result is a special case of Theorem 9.20.

31

Mean Field Formulation

Mean Field Formulation
We consider a different normalization of (1) (still ignoring bj) as

fm(x) =
α

m

m∑
j=1

ujh(θ>j x), (7)

with a scaling constant α > 0. We assume that θj ∈ Rd and uj ∈ R.

I For mean filed formulation, as m→∞:

fmf(q, x) = αE[u,θ]∼q uh(θ>x). (8)

I The NTK approximation of two-layer NN does not have a
continuous integral formulation due to the 1/

√
m normalization.

32

Continuous Mean-Field Optimization

Consider ERM with entropy regularization for mean-field:

min
q

[
1
n

n∑
i=1

L(fmf(q,Xi),Yi) + E[u,θ]∼qr(u, θ) + λE[u,θ]∼q ln q([u, θ])

]
,

where fmf(q, x) is given by (8), and r([u, θ]) is an appropriately
chosen regularization term such as L2 regularization.

Theorem 19 (Informal Version of Thm 11.20)

Assume that L(f , y) is convex in f . Under suitable conditions, noisy
GD to solve entropy regularized ERM with continuous mean-field
formulation converges to the global optimal solution.

33

Rademacher Complexity
Proposition 20 (Prop 11.23)

Let Fmf
A = {E[u,θ]∼q uh(θ>x) : Eu∼q |u| ≤ A}, then

R(Fmf
A ,Sn) ≤ AM

32
√

d + 1√
n

.

Corollary 21 (Cor 11.25)

Let Fmf
A,m =

 1
m

m∑
j=1

ujh(θ>j x) : ‖u‖1 ≤ mA

 .

Assume that h(·) ∈ [−M,M] and h(·) is monotone. Then

R(Fmf
A,m,Sn) ≤ AM

32
√

d + 1√
n

.

34

L1 Regularized Deep Neural Networks

We define a deep function class deep neural networks recursively:

F (1) = {θ>x : θ ∈ Θ},

and for k = 2, . . . ,K , using the notation of Section 10.2, we define

F (k) =FAk ,L1(h ◦ F (k−1)) (9)

=


m∑

j=1

wjh(fj(x)) : ‖w‖1 ≤ Ak , fj ∈ F (k−1),m > 0

 .

When A1, . . . ,Ak are sufficiently large, then it is clear that any
function f (x) that can be represented by a deep K layer neural
network that belongs to F (K).

The representation allows an arbitrary large m, and thus can handle
continuous deep neural networks.

35

Rademacher Complexity of L1 Regularized DNN

Theorem 22 (Thm 11.26)

Consider K -layer neural networks defined by (9). Assume that
h(θ>x) ∈ [−M,M] for all θ ∈ Θ and x ∈ X . Assume also that h is
1-Lipschitz and monotone. Then there exists a constant C, such that
for all distribution D on X , we have

R(F (k),Sn) ≤ AM
32
√

d + 1√
n

,

where A = 2k−2∏k
`=2 A`.

36

Proof of Theorem 22

We prove the statement by induction. The case k = 2 follows from
Corollary 9.

Assume the statement holds at layer k − 1, then at layer k . We have

R(F (k),Sn) ≤Ak [R(h ◦ F (k−1),Sn) + R(−h ◦ F (k−1),Sn)]

≤2AkR(F (k−1),Sn).

The first inequality used Theorem 10.8. The second inequality used
Theorem 6.28 (Rademacher comparison) with γi = 1 and h = 0. Now
by using induction, we obtain the desired bound.

37

Consequences

I For the ReLu function, the L1 regularization can be moved to the
top layer, which simplifies the theory.

I The learning complexity for the function composition example
considered in Theorem 4 is still high if we measure it by L1
regularization. This is not surprising because functions with
exponentially many crossing numbers are complex.

I The generalization bound in Theorem 22 is that the
generalization performance does not depend on the number of
neurons. Therefore the more neurons we use, the better. This is
consistent with the practical observations.

38

Double Descent

loss

effective model dimension

test loss

training loss

overparameterized regime
(benign overfitting)

classical regime
(bias variance tradeoff)

training data size

Figure: Double descent curve

39

A Simple Model

We consider the following simple problem in the Bayesian setting with
(X ,Y) ∈ Rd × R: 

Y = w>∗ X + ε

X ∼ N(0, Id×d)

ε ∼ N(0, σ2)

w∗ ∼ N
(

0, τ
2

d Id×d

) (10)

We consider least squares regression in the overparameterized
setting, where we observe n� d training data
{(Xi ,Yi) : i = 1, . . . ,n}.

40

Ridge Regression Method

The optimal Bayes estimator that minimizes the quantity is given by
ridge regression:

ŵ = arg min
w

[
n∑

i=1

(w>Xi − Yi)
2 + λd‖w‖22

]
(11)

with λ = σ2/τ2.

We consider general ridge regression with different λ, and we want to
achieve small test loss

E(X ,Y)∼D(ŵ>X − Y)2 = ‖ŵ − w∗‖22 + σ2.

41

Theorem 23 (Overparameterized Regime of Thm 11.27)

Consider (10) with fixed τ, σ and n� d.
Let X = [X1, . . . ,Xn] be the d × n data matrix with response
Y = [Y1, . . . ,Yn]>. Given any δ ∈ (0,1), let

c =

√
n
d

+

√
2 ln(2/δ)

d
< 1.

Then with probability 1− δ over the random choice of X , the following
statements hold for the ridge regression estimator (11). There exists
c′, c′′ ∈ [−c, c] such that

E
[

1
n
‖X>ŵ − Y‖22

∣∣∣∣X] =
λ2(τ2(1 + c′)2 + σ2)

((1 + c′)2 + λ)2 ,

E
[
‖ŵ − w∗‖22 + σ2

∣∣∣∣X] =σ2 +
(

1− n
d

)
τ2 +

n
d
· (λ2τ2 + (1 + c′′)2σ2)

((1 + c′′)2 + λ)2 .

The conditional expectation is with respect to both w∗ and {Yi}.

42

Consequence: Optimal λ

Consider the overparameterized regime, where n/d � 1 and c ≈ 0.
The expected test loss is minimized with λ = σ2/τ2, which
corresponds to the choice of the optimal Bayes estimator. With
λ = σ2/τ2 and c ≈ 0, we have

training loss ≈ σ4

τ2 + σ2 ,

test loss ≈σ2 +
n/d

1 + σ2/τ2σ
2 +

(
1− n

d

)
τ2.

If σ � τ , then the training loss is approximately σ2(σ/τ)2. It is
significantly smaller than the test loss, which is approximately
(1 + n/d)σ2 + (1− n/d)τ2.
I Significant overfitting is necessary to achieve optimal

performance.
I Variance term becomes (n/d)σ2 in the overparameterized case.

43

Compare to Minimum Norm Estimator

Let λ = 0, corresponding to the minimum norm estimator, which is
the focus in the recent literature.

Training loss is zero, while while test loss decreases as d increases.

training loss =0,

test loss =σ2 +
n/d

(1 + c′′)2σ
2 +

(
1− n

d

)
τ2.

When σ/τ is small, the test loss achieved at λ = 0 is close to the
optimal test loss achieved at λ = σ2/τ2 up to a difference of
O((n/d)σ2).

The phenomenon that overfitting the noise is required to achieve near
optimal test performance is often referred to as benign overfitting.

44

Summary (Chapter 11)

I Neural Network Formulations
I Universal Approximation: shallow
I Benefit of Deep networks: more compact approximation
I Random Feature Approach: L2 versus L1 Regularization
I NTK Formulation (L2 and kernel analysis)
I Mean Field Formulation (L1 and entropy analysis)
I Deep Neural Networks with L1 analysis
I Double Descent and Benign Overfitting

