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Additive and Sparse Models

Mathematical Analysis of Machine Learning Algorithms
(Chapter 10)
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Additive Models

We consider additive model of the following form:

f ([w , θ], x) =
m∑

j=1

wjψ(θj , x), (1)

where for simplicity, we consider real valued functions

ψ(θ, ·) : X → R.
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Finite Family Model Combination

Assume that Θ has only finite number of m elements {θ1, . . . , θm},
then (1) can be regarded as a linear model with respect to the model
parameter w as:

f (w , x) =
m∑

j=1

wjψj(x) = w>ψ(x),

with features ψj(x) = ψ(θj , x), and ψ(x) = [ψ1(x), . . . , ψm(x)].

We further assume that each feature ψj(x) is a prediction function

ψj(x) ∈ [0,M].
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Model Complexity

Without regularization

Model complexity is determined by the model dimensionality m.

With L2 regularization

Function class is

F ′ = {f (w , x) = w>ψ(x) : ‖w‖2 ≤ A}

Rademacher complexity is

Rn(F ′,D) ≤ A
√

m
n
EDk(x , x),

with kernel k(x , x) =
1
m

m∑
j=1

ψj(x)2.
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Model Complexity (L2 regularization)

From

EX∼Dk(X ,X ) ≤ 1
m

m∑
j=1

EX∼Dψj(X )2 ≤ M2,

we obtain the following result.

Rademacher Complexity

Rn(F ′,D) ≤
√

m
n

AM,

which depends linearly on
√

m.
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Matching Lower Bound

Proposition 1 (Prop 10.1)

Assume that the m feature functions {ψj(X )} are orthonormal when
X ∼ D. Then there exists an absolute constant c > 0 such that for
sufficiently large n,

Rn(F ′,D) ≥ c
√

m
n

A,

where F ′ is given by (10.2).

Proposition 1 implies that the factor
√

m in Rn(F ′,D) cannot be
removed in general with L2 regularization. To avoid m dependency,
one needs to use small L2 norm:

Rn(F ′′,D) ≤
√

1
n

AM, F ′′ = {f (w , x) : ‖w‖22 ≤ A2/m}.
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Sparsity

One common assumption to achieve better generalization is to
impose an additional sparsity constraint.

Definition 2
The sparsity pattern, or support of a weight vector w ∈ Rm is defined
as

supp(w) = {j : wj 6= 0},

and the L0 norm of w is defined as

‖w‖0 = |supp(w)|.



8

Example 3

Consider RBFs of the form

ψ(θ, x) = exp(−β‖x − θ‖22)

for β > 0. We can use RBFs as basis functions in additive models

f ([w , θ], x) =
m∑

j=1

wj exp(−β‖x − θj‖22).

The corresponding RKHS norm for additive model is

‖f ([w , θ], x)‖2 = m
∑
j=1

w2
j . (2)

However, even for simple 1-dimensional functions such as∑m
j=1 exp(−‖x − j‖22), the complexity measured by the RKHS norm in

(2) can be rather large.
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Sparse Learning

For each sparsity pattern F ⊂ {1, . . . ,m}, we may define the
|F |-dimensional sparse function class

GF = {φ(w , z) : supp(w) ⊂ F} ,

where φ(w , z) = L(f (w , x), y) = L(w>ψ(x), y).

We can now consider the following sparse learning method:

ŵ = arg min
w∈Rd

[
1
n

n∑
i=1

φ(w ,Zi) + r(F )

]
subject to supp(w) ⊂ F , (3)

Generalization error bound only depends logarithmically on m, and
linear only with respect to the sparsity.
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Oracle Inequality of Sparse Learning

Theorem 4 (Thm 10.4)

Assume supw,z,z′ [φ(w , z)− φ(w , z ′)] ≤ M. Let Sn be n iid samples from D.
Then with probability at least 1− δ, the following bound holds for all w ∈ Rm

and sparsity pattern F such that supp(w) ⊂ F:

φ(w ,D) ≤ φ(w ,Sn) + r(F ) + M

√
ln(1/δ)

2n
,

where

r(F ) ≥ 2R(GF ,D) + M

√
|F | ln(em/|F |) + ln(|F |+ 1)2

2n
for all F . Consider the sparse learning algorithm in (3). We have the
following oracle inequality. With probability of at least 1− δ:

φ(ŵ ,D) ≤ inf
w∈Rm,supp(w)⊂F

[φ(w ,D) + r(F )] + 2M

√
ln(2/δ)

2n
.
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Result used in the Proof of Theorem 4
Theorem 5 (Thm 8.7)

Consider the model selection algorithm in (8.3), with

R̃(θ, f ,Sn) = R̃(θ) ≥ 2Rn(F(θ),D) + M(θ)

√
ln(1/q(θ))

2n
,

where M(θ) = supf ,z,z′
∣∣φ(f , z)− φ(f , z ′)

∣∣, and q(θ) satisfies (8.1).
Then with probability at least 1− δ, for all θ and f ∈ F(θ):

φ(f ,D) ≤ φ(f ,Sn) + R̃(θ) + M(θ)

√
ln(1/δ)

2n
.

Moreover, we have oracle inequality: with probability of at least 1− δ,

φ(f̂ ,D) ≤ inf
θ,f∈F(θ)

[
φ(f ,D) + R̃(θ) + 2M(θ)

√
ln(2/δ)

2n

]
+ ε̃.
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Proof of Theorem 4
We note that(

m
s

)
≤ ms

s!
≤ ms

ss ·
ss

s!
≤ ms

ss · e
s = (me/s)s.

We can now consider each GF as a model, with

qF =
(|F |+ 1)−2

(me/|F |)|F |
≤ (|F |+ 1)−2(m

|F |
) .

Therefore we have∑
F :|F |≥1

qF ≤
∑
s≥1

1
(s + 1)2

∑
F :|F |=s

1(m
|F |
) =

∑
s≥1

1
(s + 1)2 < 1.

For each index F , we may consider ŵ as the ERM solution under the
constraint supp(w) ⊂ F . We can thus apply Theorem 5 with models
indexed by F ⊂ {1, . . . ,m} to obtain the desired bounds.
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Example 6 (Part I/II of Expl 10.5 )

Consider the linear binary classification with loss function

L(f (w , x), y) = 1(w>ψ(x)y ≤ 0).

We know from the Rademacher complexity of VC-class

R(GF ,Sn) ≤ c0

√
|F |
n

for some constant c0 > 0. Therefore we may let

r(F ) = c′
√
|F | ln m

n

for a sufficiently large constant c′, and solve

ŵ = arg min
w∈Rm

[
1
n

n∑
i=1

L(w>ψ(Xi ),Yi ) + λ
√
‖w‖0

]

with λ = c′
√

ln m
n .
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Example 7 (Part II/II of Expl 10.5 )

From Theorem 4, we obtain the following oracle inequality. With
probability at least 1− δ:

EDL(f (ŵ ,X ),Y ) ≤ inf
w∈Rm

[
EDL(f (w ,X ),Y ) + λ

√
‖w‖0

]
+ 2

√
ln(2/δ)

2n
.

The bound is linear in
√
‖w‖0, and logarithmic in m since

λ = c′
√

ln m
n
.
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L1 Regularization

Consider the general situation that Θ is infinite. For notation
simplicity, we can define the function class

Ψ = {ψ(θ, x) : θ ∈ Θ}.

Definition 8 (Convex Hull, Def 5.12)

The convex hull of a function class Ψ is defined as

CONV(Ψ) =


m∑

j=1

wjψ(θj , x) : m > 0, ‖w‖1 = 1, wj ≥ 0, θj ∈ Θ

 .

We may also include the closure of the finite sum functions above in
the convex hull with respect to an appropriately defined topology.
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L1 Norm
The non-negative L1 regularized additive models are:

F+
A,L1

(Ψ) = {af (x) : a ∈ [0,A], f (x) ∈ CONV(Ψ)}.
We may also consider L1 regularized additive models as:

FA,L1 (Ψ) =


m∑

j=1

wjψ(θj , x) : ‖w‖1 ≤ A, θj ∈ Θ, m > 0

 .

Definition 9
Let FL1 (Ψ) be point-wise closure of ∪A>0FA,L1 (Ψ), then

∀f ∈ FL1 (Ψ) : ‖f‖1 = lim
ε→0

inf

‖w‖1 : sup
x

∣∣∣∣∣∣f (x)−
m∑

j=1

wjψ(θj , x)

∣∣∣∣∣∣ ≤ ε
 .

For notational convenience, we write functions in FL1 (Ψ) as

f (x) = w>ψ(x),

where ψ(x) is the infinite dimensional vector [ψ(θ, x)]θ∈Θ, and ‖f‖1 = ‖w‖1.
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Rademacher Complexity

Theorem 10 (Thm 10.8)

We have
R(CONV(Ψ),Sn) = R(Ψ,Sn).

If either Ψ = −Ψ or 0 ∈ Ψ, then the following equality holds:

R(F+
A,L1

(Ψ),Sn) = A · R(Ψ,Sn).

If Ψ = −Ψ, then the following equality holds:

R(FA,L1(Ψ),Sn) = A · R(Ψ,Sn).
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Proof of Theorem 10 (I/II)
We prove the second equality. Since A ·Ψ ⊂ F+

A,L1
(Ψ,Sn), we have

A · R(Ψ,Sn) ≤ R(F+
A,L1

(Ψ),Sn).

Moreover, consider any function
m∑

j=1

wjψ(θj , x) : ‖w‖1 ≤ A, wj ≥ 0, θj ∈ Θ

and σi ∈ {±1}, we know that under the conditions of the theorem,
n∑

i=1

σi

m∑
j=1

wjψ(θj ,Xi) =
m∑

j=1

wj

n∑
i=1

σiψ(θj ,Xi)

≤
m∑

j=1

wj sup
j ′

n∑
i=1

σiψ(θj ′ ,Xi)

=‖w‖1 sup
j

n∑
i=1

σiψ(θj ,Xi).

The first inequality used wj ≥ 0.
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Proof of Theorem 10 (II/II)
Continue from the previous slide, we have

· · · =‖w‖1 sup
j

n∑
i=1

σiψ(θj ,Xi)

≤‖w‖1 sup
ψ∈Ψ

n∑
i=1

σiψ(Xi) ≤ A sup
ψ∈Ψ

n∑
i=1

σiψ(Xi).

The last inequality used the fact that ‖w‖1 ≤ A and
supψ∈Ψ

∑n
i=1 σiψ(Xi) ≥ 0. This implies that

R(F+
A,L1

(Ψ),Sn) ≤ A · R(Ψ,Sn),

and thus we obtain the second desired equality of the theorem. The
proof of the first equality of the theorem is similar. The third equality
of the theorem holds because the condition implies that

R(FA,L1(Ψ),Sn) = R(F+
A,L1

(Ψ),Sn).

This proves the desired result.
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Example 11

Assume that |Ψ| = N, then |Ψ ∪ −Ψ| ≤ 2N. From Rademacher
complexity of finite function class, we have

R(FA,L1(Ψ),Sn) ≤ A sup
ψ∈Ψ
‖ψ‖L2(Sn) ·

√
2 ln(2N)

n
.

If |ψ(x)| ≤ B for all ψ ∈ Ψ, then

R(FA,L1(Ψ),Sn) ≤ AB

√
2 ln(2N)

n
.
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Example 12

Assume that Ψ is a binary function class with VC dimension d , then
we know that from Example 6.26 that

R(Ψ,Sn) ≤ 16

√
d
n
.

It follows that

R(FA,L1(Ψ),Sn) ≤ AR(Ψ,Sn) + AR(−Ψ,Sn) ≤ 32A

√
d
n
.
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Example 13

In two-layer NN, let Ψ be an L2-regularized ReLU function class:

Ψ =
{
ψ(θ, x) = max(0, θ>x) : ‖θ‖2 ≤ α, ‖x‖2 ≤ β

}
,

and the corresponding L1 regularized two-layer NN can be expressed
as

f (x) =
m∑

j=1

wjψ(θj , x) : ‖w‖1 ≤ A, ‖θ‖2 ≤ α, ‖x‖2 ≤ β.

This function class belongs to FA,L1(Ψ). We thus obtain the following
bound for L1 regularized two-layer NN:

R(FA,L1(Ψ),Sn) ≤2AR(Ψ,Sn) (Theorem 10)

≤2Aαβ/
√

n, (Corollary 9.21)

where we note that max(0, f ) is 1-Lipschitz in f .



23

Lasso

We now consider the following hard-constrained L1 regularized
learning:

ŵ = arg min
w

1
n

n∑
i=1

L(w>ψ(Xi),Yi) ‖w‖1 ≤ A. (4)

Similarly, we may consider the soft-regularized version as:

ŵ = arg min
w

1
n

n∑
i=1

L(w>ψ(Xi),Yi) + λ‖w‖1. (5)
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Generalization Analysis of L1 Regularization

Corollary 14 (Cor 10.12)

Assume that L(p, y) ∈ [0,M] is γ Lipschitz with respect to p. For fixed A > 0,
with probability at least 1− δ: for all f (x) = w>ψ(x) such that ‖w‖1 ≤ A:

EDL(w>ψ(X ),Y ) ≤ 1
n

n∑
i=1

L(w>ψ(Xi ),Yi ) + 2γARn(Ψ±,D) + M

√
ln(1/δ)

2n
,

where Ψ± = {ψ(x) : ψ(x) ∈ Ψ or −ψ(x) ∈ Ψ}. Moreover, for (4), if we solve
it approximately up to sub-optimality of ε′, then we have with probability at
least 1− δ:

EDL(ŵ>ψ(X ),Y ) ≤ inf
‖w‖1≤A

EDL(w>ψ(X ),Y ) + 2γARn(Ψ±,D) + ε′

+ M

√
2 ln(2/δ)

n
.
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Example

Example 15

If Ψ contains m functions {ψ1(x), . . . , ψm(x)}, each |ψj(x)| ≤ B, then

Rn(Ψ±,D) ≤ B

√
2 ln(2m)

n
.

Therefore the bound of Corollary 14 implies the oracle inequality

EDL(ŵ>ψ(X ),Y ) ≤ inf
‖w‖1≤A

EDL(w>ψ(X ),Y ) + 2γAB

√
2 ln(2m)

n

+ M

√
2 ln(2/δ)

n
.

This has a logarithmic dependency on m, similar to that of the
sparsity constraint in Example 6.



26

L1 Penalty Regularization: Uniform Convergence

Corollary 16 (Uniform Convergence in Cor 10.14)

Assume that L(p, y) ≥ 0 is γ Lipschitz, M0 = supy L(0, y), and
B = supx ,ψ∈Ψ |ψ(x)|. Consider A0 > 0, then with probability at least
1− δ: the following inequality holds for all w:

EDL(w>ψ(X ),Y ) ≤ 1
n

n∑
i=1

L(w>ψ(Xi),Yi) + 4γ(A0 + ‖w‖1)Rn(Ψ±,D)

+ (M0 + 2γB(A0 + ‖w‖1))


√√√√ ln

(
2 + log2

(
1 + ‖w‖1

A0

))
n

+

√
ln
(1
δ

)
2n

 .
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Proof of Corollary 16

Let Aθ = 2θA0, with q(θ) = (1 + θ)−2 for θ = 1,2, . . ., and let f (x) = w>ψ(x).
Consider F(1) = {w>ψ(x) : ‖w‖1 ≤ A1}, and
F(θ) = {w>ψ(x) : Aθ−1 ≤ ‖w‖1 ≤ Aθ} for θ > 1. We have

Rn(F(θ),D) ≤ γAθRn(Ψ±,D).

Given any w , let θ be the smallest number such that
f (w , x) = w>Ψ(x) ∈ F(θ), then Aθ ≤ 2(A0 + ‖w‖1). Therefore

L(f (x), y) ≤ L(0, y) + γ|f (x)| ≤ M0 + γAθB ≤ M0 + 2γ(A0 + ‖w‖1)B.

In Theorem 5, we take M(θ) ≤ M0 + 2γ(A0 + ‖w‖1)B, and
1/q(θ) ≤ (2 + log2(1 + ‖w‖1/A0))2. Let

R̃(θ, f ,Sn) =4γ(A0 + ‖w‖1)Rn(Ψ±,D)

+ (M0 + 2γB(A0 + ‖w‖1))

√
ln(2 + log2(1 + ‖w‖1/A0))

n
. (6)

This implies the desired uniform convergence result.
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L1 Penalty Regularization: Oracle Inequality

Corollary 17 (Oracle Inequality in Cor 10.14)

Assume that L(p, y) ≥ 0 is γ Lipschitz, M0 = supy L(0, y), and
B = supx,ψ∈Ψ |ψ(x)|. Consider A0 > 0, and (5) with

λ ≥ 4γRn(Ψ±,D) + 2γB

√
ln(2 + log2(1 + M0/(λA0)))

n
.

We have the following oracle inequality. With probability at least 1− δ:

EDL(ŵ>ψ(X ),Y ) ≤ inf
w

[
EDL(w>ψ(X ),Y ) +

(
λ+ 4γB

√
ln(2/δ)

2n

)
‖w‖1

]
+ εn(δ), where

εn(δ) = 4γA0Rn(Ψ±,D) + (M0 + 2γA0B)

√
ln((2 + log2(1 + M0/(λA0))))

n

+ (2M0 + 4γA0B)

√
ln(2/δ)

2n
.
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Proof of Corollary 17

Following the proof of Corollary 16. With the condition of λ, we have
‖ŵ‖1 ≤ M0/λ, and by considering ‖w‖1 ≤ M0/λ, we can redefine

R̃(θ) = R̃(θ, f ,Sn) =λ‖w‖1 + 4γA0Rn(Ψ±,D)

+ (M0 + 2γA0B)

√
ln(2 + log2(1 + M0/(λA0)))

n
.

This definition of R̃(θ) is an upper bound of (6). We can thus apply
Theorem 5 again to obtain the desired oracle inequality, where we
also use 2M0 + 4γA0B + 4γB‖w‖1 as an upper bound for 2M(θ).
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Example 18

Consider (5) with a function class Ψ of finite VC-dimension (or
pseudo-dimension) VC(Ψ±) = d , which includes the two-layer neural
network as a special case.

Under the assumptions of Corollary 17, we have Rn(Ψ±,D) = O(B
√

d/n)
(see Example 6.26). We can take A0 = M0/(γB) and set

λ = Õ

(
γB

√
d
n

)

to obtain

EDL(ŵ>ψ(X ),Y ) ≤ inf
w

[
EDL(w>ψ(X ),Y ) + Õ

(
γB

√
d + ln(1/δ)

n
‖w‖1

)]

+ Õ

(
M0

√
d + ln(1/δ)

n

)
.

We use the notation Õ(·) to hide log-factors.
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Posterior Averaging as Additive Model
In a continuous additive model, with features ψ(θ, x) (θ ∈ Θ),

f (w , x) =

∫
w(θ)ψ(θ, x) dµ(θ),

where dµ(θ) is a measure on Θ.

As a special case, we consider w(θ)dµ(θ) as a probability measure.
We use q(θ) instead of w(θ) to denote the fact that this is a
probability measure.

Model Averaging

Our goal is to find a distribution q on Θ (also referred to as posterior
distribution), such that the additive model is

f (q, x) =

∫
ψ(θ, x)q(θ)dθ = Eθ∼q(·)ψ(θ, x). (7)
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Entropy Regularization

We consider the entropy regularization to regularize the posterior
distribution q:

KL(q||q0) =

∫
q(x) ln

q(θ)

q0(θ)
dθ.

Corollary 19 (Cor 10.17)

Let FA = {f (q, x) : KL(q||q0) ≤ A2} be entropy regularized functions
of (7). Then

R(FA,Sn) ≤
√

2
n

A sup
θ

√√√√1
n

n∑
i=1

ψ(θ,Xi)2 .
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Proof of Corollary 19
We have

Eσ sup
q

[
1
n

n∑
i=1

σiEθ∼qψ(θ,Xi )−
λ

2
KL(q||q0)

]

=
λ

2
Eσ lnEθ∼q0 exp

[
2
λn

n∑
i=1

σiψ(θ,Xi )

]

≤λ
2

lnEθ∼q0Eσ exp

[
2
λn

n∑
i=1

σiψ(θ,Xi )

]

≤λ
2

lnEθ∼q0 exp

[
2

λ2n2

n∑
i=1

ψ(θ,Xi )
2

]
.

The first equation follows from Proposition 7.16. The first inequality used
Jensen’s inequality and the concavity of ln(·). The second inequality follows
from the sub-Gaussian exponential inequality. It follows that

R(FA,Sn) ≤ λ

2
A2 +

1
λn2 sup

θ

n∑
i=1

ψ(θ,Xi )
2.

By optimizing over λ, we obtain the desired bound.



34

Example: Finite Function Family

Corollary 19 holds for general function classes. In the case of finite
family with Θ = {θ1, . . . , θm}, and q0(θ) = 1/m for all θ, the following
inequality always holds:

KL(q||q0) ≤ ln m

for all q. Therefore entropy regularization implies a bound for L1
regularization with nonnegative constraint

∑m
j=1 wj = 1 and wj ≥ 0.

Since this is exactly the convex hull of Ψ = {ψ(θ, x)}, Corollary 19
implies that

R (CONV(Ψ),Sn) ≤
√

2 ln m
n

sup
θ
‖ψ(θ, ·)‖L2(Sn),

which is identical to the Rademacher complexity of convex hull of
finite function class obtained earlier.
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Information Theoretical Analysis

We now consider the notations introduced in Section 3.3, where we
are interested in minimizing a loss function

φ(w , z) : Ω×Z → R.

Randomized Prediction
We consider a general randomized algorithm A : Zn → ∆(Ω), where
∆(Ω) denotes probability measures on Ω.
In this setting, given training data Sn, A(Sn) returns a posterior
distribution q̂ on Ω. It then randomly draws a model from q̂ to make
prediction.

We want to derive information theoretical generalization bound for an
arbitrary randomized learning algorithm.
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Information Theoretical Uniform Convergence Bound

Theorem 20 (Expected Generalization Bound in Thm 10.18)

Consider a randomized algorithm A that returns a distribution
q̂(w |Sn) on the parameter space Ω for each training data Sn ∈ Zn.
Then for any data independent distribution q0 on Ω and λ > 0:

ESnEw∼q̂(·|Sn)Λ (1/(λn),w) ≤ESnEw∼q̂(·|Sn)
1
n

n∑
i=1

φ(w ,Zi)

+ λESnKL(q̂||q0),

where
Λ(λ,w) = −1

λ
lnEZ∼D exp( −λφ(w ,Z )).

High probability result, referred to as PAC-Bayes analysis, can also
be obtained (see Theorem 10.18).
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Proof of Theorem 20

Let ∆(Sn) = sup
q̂

[
Ew∼q̂(·|Sn)

(
Λ(1/(λn),w)− 1

n

n∑
i=1

φ(w ,Zi )

)
− λKL(q̂||q0)

]
,

then

λ−1ESn∼Dn ∆(Sn) ≤ lnESn∼Dn exp(λ−1∆(Sn)) (Jensen’s inequality)

= lnESn∼Dn exp

[
lnEw∼q0 exp

(
λ−1Λ(1/(λn),w)− λ−1

n

n∑
i=1

φ(w ,Zi )

)]
(Proposition 7.16)

= lnEw∼q0

[
exp

(
λ−1Λ(1/(λn),w)

)
ESn∼Dn exp

(
−λ
−1

n

n∑
i=1

φ(w ,Zi )

)]

= lnEw∼q0

[
exp

(
λ−1Λ(1/(λn),w)

)(
EZ∼D exp

(
−λ
−1

n
φ(w ,Z )

))n]
(Independence of Zi )

= lnEw∼q0

[
exp

(
λ−1Λ(1/(λn),w)

)(
exp

(
− 1
λn

Λ(1/(λn),w)

))n]
= 0.
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Example: Bounded Function Class

Example 21 (Expl 10.19 )

Assume that φ(w ,Z ) ∈ [0,M]. Then

∀w ∈ Ω : −Λ(λ,w) ≤ −φ(w ,D) +
λM2

8
.

Then we obtain from Theorem 20 the following generalization bound.
For any λ > 0 and learning algorithm q̂:

EEw∼q̂(·|Sn)φ(w ,D) ≤E
[
Ew∼q̂(·|Sn)φ(w ,Sn) + λKL(q̂||q0) +

M2

8λn

]
.
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Mutual Information Bound
Define the mutual information of A and Sn as follows:

I(A,Sn) = ESnEw∼q̂(·|Sn) ln
q̂(w |Sn)

q̂(w)
, q̂(w) = ESn q̂(w |Sn).

Corollary 22 (Mutual Information Bound, Cor 10.22)

Under the assumptions of Theorem 10.18, we have the following
expected generalization bound for all λ > 0:

ESnEAΛ(λ,D) ≤ESnEA
1
n

n∑
i=1

φ(w ,Zi) + λI(A,Sn),

where EA denotes the expectation over the randomization of
algorithm A: that is, w ∼ q̂(·|Sn).

Mutual information optimizes the expected KL divergence over prior q0:

I(A,Sn) = inf
q0

ESn KL(q̂||q0).
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Example: Bounded Function Class

Example 23

Assume that φ(w , z) ∈ [0,M]. Then

Λ(λ) ≤ λ2M2

8
.

We obtain from Corollary 22:

ESnEAφ(w ,D) ≤ESnEA
1
n

n∑
i=1

φ(w ,Zi) + inf
λ>0

[
λI(A,Sn) +

M2

8λn

]

=ESnEA
1
n

n∑
i=1

φ(w ,Zi) + M

√
I(A,Sn)

2n
.



41

Gibbs Algorithm
We now consider the Gibbs Algorithm

q̂(w |Sn) ∝ q0(θ) exp

(
− 1
λn

n∑
i=1

φ(w ,Zi)

)
. (8)

Corollary 24 (Cor 10.25)

The following expected oracle inequality holds for the Gibbs
distribution (8):

ESnEw∼q̂Λ(1/(λn),w) ≤ inf
q

[Ew∼qφ(w ,D) + λKL(q||q0)] ,

where Λ(·) is defined as

Λ(λ,w) = −1
λ

lnEZ∼D exp( −λφ(w ,Z ))

in Theorem 20.
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Proof of Corollary 24
From Proposition 7.16, q̂ is the solution of the following regularized
empirical risk minimization problem:

q̂ = arg min
q

[
Eθ∼q

1
n

n∑
i=1

φ(w ,Zi) + λKL(q||q0)

]
. (9)

Therefore for any q, we obtain from Theorem 20

ESnEw∼q̂Λ(1/(λn),w) ≤ESn

[
Ew∼q̂

1
n

n∑
i=1

φ(w ,Zi) + λKL(q̂||q0)

]

≤ESn

[
Ew∼q

1
n

n∑
i=1

φ(w ,Zi) + λKL(q||q0)

]
= [Ew∼qφ(w ,D) + λKL(q||q0)] .

The first inequality used Theorem 20. The second inequality used (9).
The last equation used the fact that Zi ∼ D. This implies the result.
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Conditional Density Estimation

Corollary 25 (α = 0.5 in Cor 10.26)

Consider the following Gibbs algorithm:

q̂(w |Sn) ∝ q0(θ) exp

(
0.5

n∑
i=1

ln p(Yi |w ,Xi )

)
.

Then

ESn∼DnEw∼q̂EX∼DH(p∗(·|X )||p(·|w ,X ))2

≤ inf
q

[
Ew∼qEX∼DKL(p∗(·|X )||p(·|w ,X )) +

2KL(q||q0)

n

]
,

where H(·) is the Hellinger distance:

H(p(·|X )||p′(·|X ))2 = EY∼p(·|X)

(√
p′(Y |X )

p(Y |X )
− 1

)2
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Proof of Corollary 25

The Gibbs algorithm is equivalent to

φ(w ,Z ) = (ln p∗(Y |X )− ln p(Y |w ,X ))

and λ = 2/n in Corollary 24.

Λ(1/(λn),w) =− 2 lnE(X ,Y )∼D

(
p(Y |w ,X )

p∗(Y |X )

)0.5

=− 2 ln
[
1− 0.5EX∼DH(p(·|X )||p′(·|X ))2

]
≥EX∼DH(p(·|X )||p′(·|X ))2.

Moreover,
EDφ(w ,Z ) = EX KL(p∗(·|X )||p(·|w ,X )).

The desired bound follows directly from Corollary 24.
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Boosting

Boosting is a popular method to learn both wj and θj in (1)
sequentially for j = 1,2, . . .

In AdaBoost, we consider binary classification problem ψ ∈ {±1} and
Yi ∈ {±1}.
Assume we have an algorithm A that can learn θ̂ = A(S̃n) from any
weighted version of data S̃n = {(ρi ,Xi ,Yi) : i = 1, . . . ,n}:

θ̂ ≈ arg min
θ∈Θ

n∑
i=1

ρi1(ψ(θ,Xi) 6= Yi), (10)

where ρi ≥ 0.
The learner A is often referred to as a weak learner. AdaBoost finds
a strong learner using a sequence of fitting with the weak learner A.
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AdaBoost

Algorithm 1: AdaBoost
Input: Sn, Ψ
Output: f (T )(x)

1 Let f (0)(x) = 0
2 Let ρ1 = · · · = ρn = 1/n
3 for t = 1,2, . . . ,T do
4 Find θt by approximately solving
5 θt ≈ arg minθ∈Θ

∑n
i=1 ρi1(ψ(θ,Xi)Yi ≤ 0)

6 Let rt =
∑n

i=1 ρiψ(θt ,Xi)Yi

7 Let wt = 1
2 ln((1 + rt )/(1− rt ))

8 Let ρi = ρi · exp(−wtψ(θt ,Xi)Yi) for i = 1, . . . ,n.
9 Normalize ρi so that

∑n
i=1 ρi = 1

10 Let f (t)(x) = f (t−1)(x) + wtψ(θt , x)

Return: f (T )(x)
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AdaBoost is Greedy Algorithm
Theorem 26 (Thm 10.29)

Assume that Ψ = Ψ±, ψ(θ, x) ∈ {±1}, and y ∈ {±1}. Then AdaBoost
implements the greedy algorithm to minimize the loss function

L(f (x), y) = exp(−f (x)y).

That is, at each time t, AdaBoost (with exact minimization in Line 5 of
Algorithm 1) solves the following problem:

[wt , θt ] = arg min
w ,θ

n∑
i=1

e−(f (t−1)(Xi )+wψ(θ,Xi ))Yi .

Moreover, the prediction function f (T ) obtained by Algorithm 1
satisfies

1
n

n∑
i=1

e−f (T )(Xi )Yi ≤
T∏

t=1

√
1− r2

t .
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Margin Bound for AdaBoost

Corollary 27 (Cor 10.30)

Under the assumptions of Theorem 26, and assume further that Ψ has
VC-dimension d. Let ‖f (T )‖1 =

∑T
t=1 wt . Assume that for t = 1, . . . ,T , we

have rt ≥ r0 > 0 in Algorithm 1. Then ∃C > 0 so that with probability at least
1− δ:

E(X ,Y )∼D1(f (T )(X )Y ≤ 0) ≤ 1.5
n

n∑
i=1

1(f (T )(Xi )Yi ≤ 1)︸ ︷︷ ︸
margin error

+ C
(‖f (T )‖1 + 1)2d ln n ln(n + ‖f (T )‖1) + ln(1/δ)

n
,

where margin error is upper bounded by

exp

(
1− 0.4

T∑
t=1

min(1,w2
t )

)
≤ exp

(
1− T

10
min

(
2, ln

1 + r0

1− r0

)2
)
.
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Gradient Boosting for General Loss Function
More generally, we assume that the weak learner (or base learner) A
can approximately solve the least squares regression problem:

min
w∈R,θ∈Θ

n∑
i=1

[wψ(θ,Xi) + gi ]
2

This leads to the following algorithm.

Algorithm 2: Gradient Boosting
Input: Sn, Ψ, L(·, ·)
Output: f (T )(x)

1 Let f (0)(x) = 0
2 for t = 1,2, . . . ,T do
3 Let gi = L′1(f (t−1)(Xi),Yi) (i = 1, . . . ,n) be the functional

gradients
4 Solve for [wt , θt ] = arg minw∈R,θ∈Θ

∑n
i=1[wψ(θ,Xi) + gi ]

2

5 Let f (t)(x) = f (t−1)(x) + wtψ(θt , x)

Return: f (T )(x)
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Convergence of Gradient Boosting

Under suitable conditions, gradient boosting can find a solution
approaching the minimum of

min
f∈F

n∑
i=1

L(f (Xi),Yi),

where
F =

⋃
{A · CONV(Ψ±) : A ∈ R}

is the linear span of Ψ.
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Sparse Recovery

Consider sparse linear regression model

Y = Xw̄ + ε. (11)

I X : n × p design matrix
I Y : n dimensional observation vector.
I ε: n-dimensional zero-mean noise vector with independent

components.
I Model parameter w : p-dimensional.
I Sparsity: ‖w̄‖0 � p.

Note that due to the rescaling mentioned above, we will assume that
columns of X are bounded in 2-norms. The corresponding proper
scaling of ε is to assume that each

√
nεi is σ sub-Gaussian.
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Lasso and Sparse Recovery

L1 Regularization

Consider L1 regularization (Lasso):

ŵ = arg min
w

QL1(w); QL1(w) =
1
2
‖Xw − Y‖22 + λ‖w‖1, (12)

where λ > 0 is an appropriately chosen regularization parameter.

Under appropriate conditions, one can recover the true sparse
parameter w̄ using Lasso. This is referred to as sparse recovery.
I (Support Recovery) Whether Lasso finds the correct feature set:

supp(ŵ) = supp(w̄)? Moreover, we say the Lasso solution is sign
consistent if supp(ŵ) = supp(w̄) and sign(ŵj) = sign(w̄j) when
j ∈ supp(w̄).

I (Parameter Recovery) How good is the parameter estimation, or
how small is ‖ŵ − w̄‖2?
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Support Recovery: Irrepresentable Condition

Assumption 28

Let F̄ = supp(w̄). Assume that X>F̄ XF̄ is positive definite. Define

µ = sup
j 6∈F̄
|X>j XF̄ (X>F̄ XF̄ )−1sign(w̄)F̄ |.

Then the condition
µ < 1

is referred to as irrepresentable condition.

It is known that if elements of
√

nX have iid standard normal
distributions, then for any fixed w̄ , such that ‖w̄‖0 = s, the
irrepresentable condition holds with high probability when
n = Ω(s ln p).
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Support Recovery: Theory
Theorem 29 (Thm 10.37)

Assume that the irrepresentable condition holds:

µ = sup
j 6∈F̄
|X>j XF̄ (X>F̄ XF̄ )−1sign(w̄)F̄ | < 1.

Assume that we choose a sufficiently large λ so that

λ > (1− µ)−1 sup
j 6∈F̄
|X>j (XF̄ (X>F̄ XF̄ )−1X>F̄ − I)ε|.

If the weight w̄ is sufficiently large:

min
j∈F̄
|w̄j | > ‖(X>F̄ XF̄ )−1‖∞→∞(λ+ ‖X>F̄ ε‖∞),

then the solution of (12) is unique and sign consistent. Here
‖M‖∞→∞ = supu[‖Mu‖∞/‖u‖∞] is the maximum absolute row sum
of M.
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Parameter Recovery: Condition

Definition 30 (RE)

An n × p matrix X satisfies the restricted eigenvalue condition
RE(F , c0) for F ⊂ [p] if the following quantity is nonzero:

κRE(F , c0) = min
w 6=0,‖w‖1≤c0‖wF‖1

‖Xw‖2
‖w‖2

.

A more common condition is restricted isometry property (RIP),
which is related to RE.

Both RIP and RE holds for all w such that |supp(w)| = O(s) when
n = Ω(s ln p).
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Sparse Recovery: Theory

Theorem 31 (Thm 10.42)

Let F̄ = supp(w̄). Assume that the columns are normalized so that
supj ‖Xj‖2 ≤ B and (with the corresponding proper scaling)
components of

√
nε are independent zero-mean σ sub-Gaussian

noise:
lnEeλεi ≤ λ2σ2/(2n).

Assume that

λ ≥ 2σB

√
2 ln(2p/δ)

n
.

Then with probability at least 1− δ, the solution of (12) satisfies

‖ŵ − w̄‖22 ≤
16λ2‖w̄‖0
κRE(F̄ ,4)2

.
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Summary (Chapter 10)

I Additive Model
I Sparsity and L0 Regularization
I Rademacher Complexity for L0 Regularization
I L1 regularization and Rademacher Complexity
I Information Theoretical Analysis with Entropy Regularization
I Boosting and Greedy Algorithm (brief)
I Sparse Recovery (brief)


