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Analysis of Kernel Methods

Mathematical Analysis of Machine Learning Algorithms
(Chapter 9)
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Linear Models with L2 Regularization

Linear Models in Feature Representation

F = {f (w , x) : f (w , x) = 〈w , ψ(x)〉}, (1)

where ψ(x) is a pre-defined (possibly infinite dimensional) feature
vector for the input variable x ∈ X , and 〈·, ·〉 denotes an inner product
in the feature vector space.

Regularized ERM, with L2 Regularization

ŵ = arg min
w

[
1
n

n∑
i=1

L(〈w , ψ(Xi)〉,Yi) +
λ

2
‖w‖2

]
, (2)

which employs the linear function class of (1).
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Kernel

Given feature map ψ(x), we define its kernel function:

k(x , x ′) = 〈ψ(x), ψ(x ′)〉. (3)

Given training data {(Xi ,Yi)}, we define kernel Gram matrix

Kn×n =

k(X1,X1) · · · k(X1,Xn)
· · · · · · · · ·

k(Xn,X1) · · · k(Xn,Xn)

 . (4)

It is easy to check that the kernel Gram matrix Kn×n is always
positive-semidefinite.
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Kernel Trick
Proposition 1 (Prop 9.1)

Assume that (3) holds. If w has a representation

w =
n∑

i=1

αiψ(xi), α =

α1
. . .
αn

 , (5)

then f (x) = 〈w , ψ(x)〉 ∈ F of (1) satisfies

f (x) =
n∑

i=1

αik(xi , x) (6)

〈w ,w〉 =
n∑

i=1

n∑
j=1

αiαjk(xi , xj) = α>Kn×nα. (7)

The reverse is also true. If f (x) satisfies (6), then with w defined by
(5), we have f (x) = 〈w , ψ(x)〉, and (7) holds.
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Proof of Proposition 1

Consider f (x) = 〈w , ψ(x)〉. If (5) holds, then

f (x) = 〈w , ψ(x)〉 =
n∑

i=1

αi〈ψ(xi), ψ(x)〉 =
n∑

i=1

αik(xi , x).

Moreover,

〈w ,w〉 =
n∑

i=1

n∑
j=1

αiαj〈ψ(xi), ψ(xj)〉.

This implies (7). Similarly the reverse direction holds.
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Consequence of Kernel Trick

Theorem 2 (Representer Theorem, Thm 9.2)

For real valued functions f (x), the solution of (2) has the following
kernel representation:

〈ŵ , ψ(x)〉 = f̄ (α̂, x), f̄ (α̂, x) =
n∑

i=1

α̂ik(Xi , x).

Therefore the solution of (2) is equivalent to the solution of the
following finite dimensional kernel optimization problem:

α̂ = arg min
α∈Rn

[
1
n

n∑
i=1

L
(
f̄ (α,Xi),Yi

)
+
λ

2
α>Kn×nα

]
. (8)
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Proof of Theorem 2 (I/II)

Let

Q1(w) =
1
n

n∑
i=1

L(〈w , ψ(Xi)〉,Yi) +
λ

2
‖w‖2

be the objective function of (2), and let

Q2(α) =
1
n

n∑
i=1

L
(
f̄ (α,Xi),Yi

)
+
λ

2
α>Kn×nα

be the objective function of (8).
The solution of (2) satisfies the following first order optimality
condition:

1
n

n∑
i=1

L′1(〈ŵ , ψ(Xi)〉,Yi)ψ(Xi) + λŵ = 0.

Here L′1(p, y) is the derivative of L(p, y) with respect to p.
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Proof of Theorem 2 (II/II)
We thus obtain the following representation as its solution:

ŵ =
n∑

i=1

α̃iψ(Xi),

where
α̃i = − 1

λn
L′1(〈ŵ , ψ(Xi)〉,Yi) (i = 1, . . . ,n).

Using this notation, we obtain from Proposition 1 that

〈ŵ , ψ(x)〉 = f̄ (α̃, x), 〈ŵ , ŵ〉 = α̃>Kn×nα̃.

This implies that

Q1(ŵ) = Q2(α̃) ≥ Q2(α̂) = Q1(w̃),

where the last equality follows by setting w̃ =
∑n

i=1 α̂iψ(Xi).
Proposition 1 implies that Q2(α̂) = Q1(w̃). It follows that w̃ is a
solution of (2), which proves the desired result.
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Example 3 (Kernel Ridge Regression, Expl 9.9 )

Consider ridge regression in the feature space representation:

ŵ = arg min
w

[
1
n

n∑
i=1

(〈w , ψ(Xi)〉 − Yi)
2 +

λ

2
〈w ,w〉

]
.

The primal kernel formulation is:

α̂ = arg min
α∈Rn

1
n

n∑
i=1

 n∑
j=1

k(Xi ,Xj)αj − Yi

2

+
λ

2
α>Kn×nα

 .
There is also a dual formulation which has the same solution:

α̂ = arg max
α∈Rn

[
−λ

2
α>Kn×nα + λα>Y− λ2

4
α>α

]
,

where Y is the n dimensional vector with Yi as its component.
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Positive-definite Kernel

Definition 4
A symmetric function k(x , x ′) is called a positive-definite kernel on
X × X if for all α1, . . . , αm ∈ R and x1, . . . , xm ∈ X , we have

m∑
i=1

m∑
j=1

αiαjk(xi , xj) ≥ 0.
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Reproducing Kernel Hilbert Space (RKHS)

Definition 5 (RKHS, Def 9.4)

Given a symmetric positive-definite kernel, we define a function
space H0 of the form

H0 =

{
f (x) : f (x) =

m∑
i=1

αik(xi , x)

}
,

with inner product defined as

‖f (x)‖2H =
m∑

i=1

m∑
j=1

αiαjk(xi , xj).

The completion of H0 with respect to this inner product, defined as H,
is called the reproducing kernel Hilbert space (RKHS) of kernel k .
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RKHS Norm is Well-Defined

Proposition 6 (Prop 9.5)

Assume that for all x ∈ X :

m∑
i=1

αik(xi , x) =
m′∑
i=1

α′ik(x ′i , x),

then
m∑

i=1

m∑
j=1

αiαjk(xi , xj) =
m′∑
i=1

m′∑
j=1

α′iα
′
jk(x ′i , x

′
j ).

The result means that even when a function f (x) has two different
kernel representations, the RKHS norm ‖f (x)‖H computed using the
two representations are identical.



13

Mercer’s Theorem

Theorem 7 (Thm 9.6)

A symmetric kernel function k(x , x ′) is positive-definite if and only if
there exists a feature map ψ(x) so that it can be written in the form of
(3). That is,

k(x , x ′) = 〈ψ(x), ψ(x ′)〉.

Moreover, let H be the RKHS of k(·, ·), then any function f (x) ∈ H
can be written uniquely in the form of (1), with

‖f (x)‖2H = 〈w ,w〉.
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Example

Example 8

If x ∈ Rd , then a standard choice of kernel is the RBF (radial basis
function) kernel:

k(x , x ′) = exp

[
−‖x − x ′‖22

2σ2

]
.

It is easy to check that it can be written in the form of (3) using Taylor
expansion as:

k(x , x ′) = exp

[
−
‖x‖22
2σ2

]
exp

[
−
‖x ′‖22
2σ2

] ∞∑
k=0

σ−2k

k !
(x>x ′)k .
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ERM in RKHS

In general, we can consider abstract ERM problem in any RKHS H
with norm ‖ · ‖H.

Given an RKHS H, one may consider a norm constrained ERM
problem in H as follows:

f̂ (·) = arg min
f (·)∈H

1
n

n∑
i=1

L(f (Xi),Yi) subject to ‖f (·)‖H ≤ A. (9)

The corresponding soft-regularized formulation with appropriate
λ > 0 is

f̂ (·) = arg min
f (·)∈H

[
1
n

n∑
i=1

L(f (Xi),Yi) +
λ

2
‖f (·)‖2H

]
. (10)
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Equivalence Theorem
Theorem 9 (Thm 9.8)

Consider any kernel function k(x , x ′) and feature map ψ(x) that
satisfies (3). Let H be the RKHS of k(·, ·). Then any f (x) ∈ H can be
written in the form

f (x) = 〈w , ψ(x)〉, ‖f (x)‖2H = inf{〈w ,w〉 : f (x) = 〈w , ψ(x)〉}.

Consequently, the solution of (10)

f̂ (·) = arg min
f (·)∈H

[
1
n

n∑
i=1

L(f (Xi),Yi) +
λ

2
‖f (·)‖2H

]

is equivalent to the solution of (2)

ŵ = arg min
w

[
1
n

n∑
i=1

L(〈w , ψ(Xi)〉,Yi) +
λ

2
‖w‖2

]
.



17

Example 10 (Expl 9.10 )

Consider support vector machines for binary classification, where
label Yi ∈ {±1}. Consider the following method in feature space:

ŵ = arg min
w

[
1
n

n∑
i=1

max(0,1− 〈w , ψ(Xi)〉Yi) +
λ

2
〈w ,w〉

]
.

The primal kernel formulation is:

ŵ = arg min
α

1
n

n∑
i=1

max

0,1−
n∑

j=1

αjk(Xi ,Xj)Yi

+
λ

2
α>Kn×nα

 .
The equivalent dual kernel formulation is:

α̂ = arg max
α∈Rn

[
−λ

2
α>Kn×nα + λα>Y

]
, subject to αiYi ∈ [0,1/(λn)].
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Variation of Representer Theorem

Proposition 11 (Prop 9.11)

Let H be the RKHS of a kernel k(x , x ′) defined on a discrete set of n
points X1, . . . ,Xn. Let Kn×n be the Gram matrix defined on these
points in (4), and K+ be its pseudo-inverse. Then for any function
f ∈ H, we have

‖f‖2H = f>K+
n×nf, where f =

f (X1)
...

f (Xn)

 .
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Proof

We can express f (x) =
∑n

i=1 αik(xi , x). Let α = [α1, . . . , αn]>, we
have f = Kn×nα. It follows that

‖f‖2H = α>Kn×nα = α>Kn×nK+
n×nKn×nα = f>K+

n×nf.

This proves the desired result.
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Semi-Supervised Learning Formulation

Corollary 12 (Cor 9.12)

Assume that we have labeled data X1, . . . ,Xn, and unlabeled data
Xn+1, . . . ,Xn+m. Let K = K(n+m)×(n+m) be the kernel Gram matrix of
a kernel k on these m + n points, and let H be the corresponding
RKHS. Then (10)

f̂ (·) = arg min
f (·)∈H

[
1
n

n∑
i=1

L(f (Xi),Yi) +
λ

2
‖f (·)‖2H

]

defined on these data points is equivalent to

f̂ (·) = arg min
f∈Rn+m

[
1
n

n∑
i=1

L(f (Xi),Yi) +
λ

2
f>K+f

]
, f =

 f (X1)
...

f (Xn+m)

 .
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Universal Approximation

Definition 13
A kernel k(x , x ′) is called a universal kernel on X ⊂ Rd (under the
uniform convergence topology) if for any continuous function f (x) on
X , and any ε > 0, there exists g(x) ∈ H such that

∀x ∈ X : |f (x)− g(x)| ≤ ε,

where H is the RKHS of kernel k(·, ·).
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Theorem 14 (Approximation of Lipschitz Functions, Thm 9.14)

Consider a positive definite translation invariant kernel

k(x , x ′) = h(‖x − x ′‖/σ),

where ‖ · ‖ is a norm on Rd . Assume that h(·) ∈ [0,1], and

c0 =

∫
h(‖x‖)dx ∈ (0,∞), c1 =

∫
‖x‖h(‖x‖)dx <∞.

Assume that f is Lipschitz with respect to the norm ‖ · ‖: ∃γ > 0 such that
|f (x)− f (x ′)| ≤ γ‖x − x ′‖ for all x , x ′ ∈ Rd . If

‖f‖1 =

∫
|f (x)|dx <∞,

then for any ε > 0 and σ = εc0/(γc1), there exists ψσ(x) ∈ H, where H is
the RKHS of k(·), so that ‖ψσ(x)‖H ≤ (c0σ

d )−1‖f‖1 and

∀x : |f (x)− ψσ(x)| ≤ ε.
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Approximation Using Polynomials

Theorem 15 (Thm 9.15)

Consider a compact set X in Rd . Assume that a kernel function
k(x , x ′) on X × X has a feature representation

k(x , x ′) =
∞∑

i=1

ciψi(x)ψi(x ′),

where each ψi(x) is a real valued function, and ci > 0. Assume the
feature maps {ψi(x) : i = 1, . . .} contain all monomials of the formg(x) =

d∏
j=1

xαj
j : x = [x1, . . . , xd ], αj ≥ 0

 .

Then k(x , x ′) is universal on X .
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Proof

Let H be the RKHS of k(·, ·). Note that according to Theorem 9, a
function of the form g(x) =

∑∞
j=1 wiψi(x) has RKHS norm as

‖g‖2H ≤
∞∑

i=1

w2
i /ci .

It follows from the assumption of the theorem that all monomials p(x)
has RKHS norm ‖p‖2H <∞. Therefore H contains all polynomials.
The result of the theorem is now a direct consequence of the
Stone-Weierstrass theorem.
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Example

Example 16 (Expl 9.16 )

Let α > 0 be an arbitrary constant. Consider the kernel function

k(x , x ′) = exp(αx>x ′)

on a compact set of Rd . Since

k(x , x ′) = exp(−α)
∞∑

i=0

αi

i!
(x>x ′ + 1)i .

It is clear that the expansion of (x>x ′ + 1)i contains all monomials of
order i . Therefore Theorem 15 implies that k(x , x ′) is universal.
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Compositions of Universal Kernels

Theorem 17 (Thm 9.17)

Assume k(x , x ′) is a universal kernel on X . Let k ′(x , x ′) be any other
kernel function on X × X , then k(x , x ′) + k ′(x , x ′) is a universal
kernel on X .
Moreover, let u(x) be a real-valued continuous function on X so that

sup
x∈X

u(x) <∞, inf
x∈X

u(x) > 0.

Then k ′(x , x ′) = k(x , x ′)u(x)u(x ′) is a universal kernel on X .
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Proof of Theorem 17

Let k(x , x ′) = 〈ψ(x), ψ(x ′)〉H with the corresponding RKHS denoted
by H, and let k ′(x , x ′) = 〈ψ′(x), ψ′(x ′)〉H′ with RKHS H′.

k(x , x ′) + k ′(x , x ′) = 〈ψ(x), ψ(x ′)〉H + 〈ψ′(x), ψ′(x ′)〉H′ .

Using feature representation, we can represent functions in the
RKHS of k(x , x ′) + k ′(x , x ′) by 〈w , ψ(x)〉H + 〈w ′, ψ′(x)〉H′ , and thus it
contains H⊕H′. This implies the first result.

For the second result, we know that
k ′(x , x ′) = 〈ψ(x)u(x), ψ(x ′)u(x ′)〉H, and thus its RHKS can be
represented by 〈w , ψ(x)u(x)〉H. Since the universality of k(x , x ′)
implies that for any continuous f (x), f (x)/u(x) can be uniformly
approximated by 〈w , ψ(x)〉H, we obtain the desired result.
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Example

Example 18

Consider the RBF kernel function

k(x , x ′) = exp(−α‖x − x ′‖22).

Since
k(x , x ′) = exp(2αx>x ′)u(x)u(x ′),

where u(x) = exp(−α‖x‖22), Theorem 17 and Example 16 imply that
k(x , x ′) is universal on any compact set X ⊂ Rd .
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Property of Universal Kernel

Theorem 19 (Thm 9.19)

Let k(x , x ′) be a universal kernel on X . Consider n different data
points X1, . . . ,Xn ∈ X , and let Kn×n be the Gram matrix defined in
Theorem 2. Then Kn×n is full-rank.
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Generalization Analysis: Constrained RKHS
Consider feature representation

f (x) = 〈w , ψ(x)〉,

with the induced RKHS. Theorem 9 implies the following.

Equivalent Representations

If we define the function class

F(A) = {f (x) ∈ H : ‖f‖2H ≤ A2},

then for any feature map that satisfies (3), F(A) can be equivalently
written in the linear feature representation form as:

F(A) = {f (x) = 〈w , ψ(x)〉 : 〈w ,w〉 ≤ A2}. (11)

That is, a function with RKHS regularization is equivalent to linear
model with L2 regularization.
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Rademacher Complexity

Theorem 20 (The First Inequality of Thm 9.20)

Consider F(A) defined in (11). We have the following bound for its
Rademacher complexity:

R(F(A),Sn) ≤ A

√√√√ 1
n2

n∑
i=1

k(Xi ,Xi).
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Proof of Theorem 20
For convenience, let ‖w‖ =

√
〈w ,w〉. We have

Rλ =Eσ sup
w

[
1
n

n∑
i=1

σi〈w , ψ(Xi)〉 −
λ

4
〈w ,w〉

]

=Eσ sup
w

[
〈w , 1

n

n∑
i=1

σiψ(Xi)〉 −
λ

4
〈w ,w〉

]

=Eσ
1
λ

∥∥∥∥∥1
n

n∑
i=1

σiψ(Xi)

∥∥∥∥∥
2

=
1
λn2

n∑
i=1

‖ψ(Xi)‖2 =
1
λn2

n∑
i=1

k(Xi ,Xi).

This proves the second bound. For the first bound, we note that

R(F(A),Sn) ≤ Rλ +
λA2

4
≤ 1
λn2

n∑
i=1

k(Xi ,Xi) +
λA2

4
.

Optimize over λ > 0, we obtain the desired result.
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Lipschitz Loss

Corollary 21 (The First Two Inequalities of Cor 9.21)

Let G(A) = {L(f (x), y) : f (x) ∈ F(A)}, where F(A) is defined in (11).
If L(p, y) is γ Lipschitz in p, then

R(G(A),Sn) ≤Aγ

√√√√ 1
n2

n∑
i=1

k(Xi ,Xi),

Rn(G(A),D) ≤Aγ

√
EX∼Dk(X ,X )

n
.
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Result used in the Proof of Corollary 21

Theorem 22 (Rademacher Comparison, Thm 6.28)

Let {φi}ni=1 be functions with Lipschitz constants {γi}ni=1 respectively.
That is, ∀i ∈ [n]:

|φi(θ)− φi(θ
′)| ≤ γi |θ − θ′|.

Then

Eσ sup
f∈F

[
n∑

i=1

σiφi(f (Zi))

]
≤ Eσ sup

f∈F

[
n∑

i=1

σiγi f (Zi)

]
.
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Proof of Corollary 21

The first inequality follows from Theorem 20 and the Rademacher
comparison theorem in Theorem 22.
The second inequality follows from the following derivation:

Rn(G(A),D) =ESnR(G,Sn) ≤ AγESn

√√√√ 1
n2

n∑
i=1

k(Xi ,Xi)

(a)
≤Aγ

√√√√ 1
n2ESn

n∑
i=1

k(Xi ,Xi)

=Aγ

√
1
n
EDk(X ,X ).

The derivation of (a) used Jensen’s inequality and the concavity of√
·.
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Uniform Convergence and Oracle Inequality
Corollary 23 (Cor 9.22)

Assume that sup[L(p, y)− L(p′, y ′)] ≤ M, and L(p, y) is γ Lipschitz
with respect to p. Then with probability at least 1− δ: for all f ∈ H
with ‖f‖H ≤ A:

EDL(f (X ),Y ) ≤ 1
n

n∑
i=1

L(f (Xi),Yi) + 2γA

√
EDk(X ,X )

n
+ M

√
ln(1/δ)

2n
.

Moreover, for (9), if we solve it approximately up to sub-optimality of
ε′, then we have with probability at least 1− δ:

EDL(f̂ (X ),Y ) ≤ inf
‖f‖H≤A

EDL(f (X ),Y ) + ε′ + 2γA

√
EDk(X ,X )

n

+ M

√
2 ln(2/δ)

n
.
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Consistency
In Corollary 23, as A→∞, we have

inf
‖f‖H≤A

EDL(f (X ),Y )→ inf
‖f‖H<∞

EDL(f (X ),Y ).

If k(·, ·) is a universal kernel, then

lim
A→∞

inf
‖f‖H≤A

EDL(f (X ),Y )→ inf
measurable f

EDL(f (X ),Y ).

Combine this with the generalization result of kernel method in
Corollary 23, we know that as n→∞, and let A→∞, the following
result is valid.

Consistency

With probability 1,

EDL(f̂ (X ),Y )→ inf
measurable f

EDL(f (X ),Y ).
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Example 24 (Rademacher Complexity Margin Bound)

For binary classification problem with y ∈ {±1}, we consider
classifier induced by a real valued function f (x): predict y = 1 if
f (x) ≥ 0 and y = −1 otherwise. If f (x) is taken from an RKHS, then
with probability 1− δ, for all f ∈ H with ‖f‖H ≤ A:

ED1(f (X )Y ≤ 0) ≤1
n

n∑
i=1

1(f (Xi)Yi ≤ γ) +
2A
γ

√
EDk(X ,X )

n

+

√
ln(1/δ)

2n
.

It says that if we can find a classifier with a small margin error, then
we can achieve a good test classification error.

The bound can be obtained as a direct consequence of Corollary 23,
using a loss function L(p, y) = min(1,max(0,1− py/γ)), which is γ−1

Lipschitz. In this case, 1(f (x)y ≤ 0) ≤ L(f (x), y) ≤ 1(f (x)y ≤ γ).
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Example: SVM Loss

Example 25

For SVM loss, γ = 1. With hard regularization, we can take
M = (1 + AB), where we assume that k(x , x) ≤ B2. Consider f̂ that
solves (9), which we restate here as

f̂ (·) = arg min
f (·)∈H

1
n

n∑
i=1

L(f (Xi),Yi) subject to ‖f (·)‖H ≤ A,

up to an accuracy of ε′ > 0. From Corollary 23, we obtain with
probability at least 1− δ,

EDL(f̂ (X ),Y ) ≤ inf
‖f‖H≤A

EDL(f (X ),Y )+ε′+
2AB√

n
+(1+AB)

√
2 ln(2/δ)

n
.
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Vector Valued Functions

We now consider vector valued functions (such as multi-class
classification) using kernels.

Feature Space Representation of Vector Valued Functions

Consider f (x) : X → Rq for some q > 1. Let f (x) = [f1(x), . . . , fq(x)],
then

f`(x) = 〈w , ψ(x , `)〉. (12)

Similar to (2), we have the following formulation in feature
representation:

ŵ = arg min
w∈H

[
1
n

n∑
i=1

L(〈w , ψ(Xi , ·)〉,Yi) +
λ

2
‖w‖2

]
, (13)

where 〈w , ψ(Xi , ·)〉 denotes the q-dimensional vector with
〈w , ψ(Xi , `)〉 as its `-th component.
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Matrix Kernel for Vector-valued Function

The matrix kernel function can be defined:

ki,j(x , x ′) = 〈ψ(x , i), ψ(x ′, j)〉 (i , j = 1, . . . ,q).

and its matrix representation is

k(x , x ′) =

k1,1(x , x ′) · · · k1,q(x , x ′)
...

...
kq,1(x , x ′) · · · kq,q(x , x ′)

 .
The kernel Gram matrix becomesk(X1,X1) · · · k(X1,Xq)

...
...

k(Xq,Xq) · · · k(Xq,Xq)

 .
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Vector Representer Theorem

Theorem 26 (Thm 9.29)

Consider q-dimensional vector valued function f (x). Let f̂ (x) = 〈ŵ , ψ(x , ·)〉
with ŵ being the solution of (13). Then

f̂ (x) =
n∑

i=1

k(Xi , x)α̂i ,

〈ŵ , ŵ〉 =
n∑

i=1

n∑
j=1

α̂>i k(Xi ,Xj )α̂j .

Therefore the solution of (13) is equivalent to

α̂ = arg min
α∈Rq×n

1
n

n∑
i=1

L

 n∑
j=1

k(Xi ,Xj )αj ,Yi

+
λ

2

n∑
i=1

n∑
j=1

α>i k(Xi ,Xj )αj

 .
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Multi-class Classification Example

Example 27 (Structured SVM Loss, Expl 9.32 )

Consider the structured SVM loss function [Tsochantaridis et al.,
2005] for q-class classification problem, with y ∈ {1, . . . ,q}, and for
f ∈ Rq:

L(f , y) = max
`

[γ(y , `)− (fy − f`)],

where γ(y , y) = 0 and γ(y , `) ≥ 0. This loss tries to separate the true
class y from alternative ` 6= y with margin γ(y , `). It is Lipschitz with
respect to ‖f‖1 with γ1 = 1. For problems with k`,`(x , x) ≤ B2 for all x
and `, we have from Corollary 9.31 that

R(G,Sn) ≤ qAB√
n
.

This result employs multi-class Rademacher comparison result in
Corollary 9.31, leading to a Rademacher complexity bound of O(

√
q).
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Multi-class Classification Example (cont)

Proposition 28 (Prop 9.33)

Consider a loss function L(f , y) that is γ∞-Lipschitz in p with respect
to the L∞-norm:

|L(p, y)− L(p′, y)| ≤ γ∞‖p − p′‖∞.

Let F = {f (x) = [f1(x), . . . , fq(x)] : f`(x) = 〈w , ψ(x , `)〉, 〈w ,w〉 ≤ A2}.
Assume that supx ,`〈ψ(x , `), ψ(x , `)〉 ≤ B2. Let G = {L(f , y) : f ∈ F}.
Then there exists a constant c0 > 0 such that

R(G,Sn) ≤
c0γ∞AB ln n

√
ln(nq)√

n
.

This result requires the empirical L∞ covering number estimate of L2
regularized linear functions in Theorem 5.20.
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Summary (Chapter 9)

I Reproducing Kernel Hilbert Space
I Universal Approximation
I Generalization and Rademacher Complexity
I Vector-valued Functions.


