Analysis of Kernel Methods

Mathematical Analysis of Machine Learning Algorithms (Chapter 9)

Linear Models with L_{2} Regularization

Linear Models in Feature Representation

$$
\begin{equation*}
\mathcal{F}=\{f(w, x): f(w, x)=\langle w, \psi(x)\rangle\} \tag{1}
\end{equation*}
$$

where $\psi(x)$ is a pre-defined (possibly infinite dimensional) feature vector for the input variable $x \in \mathcal{X}$, and $\langle\cdot, \cdot\rangle$ denotes an inner product in the feature vector space.

Regularized ERM, with L_{2} Regularization

$$
\begin{equation*}
\hat{w}=\arg \min _{w}\left[\frac{1}{n} \sum_{i=1}^{n} L\left(\left\langle w, \psi\left(X_{i}\right)\right\rangle, Y_{i}\right)+\frac{\lambda}{2}\|w\|^{2}\right], \tag{2}
\end{equation*}
$$

which employs the linear function class of (1).

Kernel

Given feature map $\psi(x)$, we define its kernel function:

$$
\begin{equation*}
k\left(x, x^{\prime}\right)=\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle . \tag{3}
\end{equation*}
$$

Given training data $\left\{\left(X_{i}, Y_{i}\right)\right\}$, we define kernel Gram matrix

$$
K_{n \times n}=\left[\begin{array}{ccc}
k\left(X_{1}, X_{1}\right) & \cdots & k\left(X_{1}, X_{n}\right) \tag{4}\\
\cdots & \cdots & \cdots \\
k\left(X_{n}, X_{1}\right) & \cdots & k\left(X_{n}, X_{n}\right)
\end{array}\right] .
$$

It is easy to check that the kernel Gram matrix $K_{n \times n}$ is always positive-semidefinite.

Kernel Trick

Proposition 1 (Prop 9.1)

Assume that (3) holds. If w has a representation

$$
w=\sum_{i=1}^{n} \alpha_{i} \psi\left(x_{i}\right), \quad \alpha=\left[\begin{array}{c}
\alpha_{1} \tag{5}\\
\cdots \\
\alpha_{n}
\end{array}\right]
$$

then $f(x)=\langle w, \psi(x)\rangle \in \mathcal{F}$ of (1) satisfies

$$
\begin{align*}
f(x) & =\sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right) \tag{6}\\
\langle w, w\rangle & =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right)=\alpha^{\top} K_{n \times n} \alpha . \tag{7}
\end{align*}
$$

The reverse is also true. If $f(x)$ satisfies (6), then with w defined by (5), we have $f(x)=\langle w, \psi(x)\rangle$, and (7) holds.

Proof of Proposition 1

Consider $f(x)=\langle w, \psi(x)\rangle$. If (5) holds, then

$$
f(x)=\langle w, \psi(x)\rangle=\sum_{i=1}^{n} \alpha_{i}\left\langle\psi\left(x_{i}\right), \psi(x)\right\rangle=\sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right)
$$

Moreover,

$$
\langle w, w\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left\langle\psi\left(x_{i}\right), \psi\left(x_{j}\right)\right\rangle .
$$

This implies (7). Similarly the reverse direction holds.

Consequence of Kernel Trick

Theorem 2 (Representer Theorem, Thm 9.2)

For real valued functions $f(x)$, the solution of (2) has the following kernel representation:

$$
\langle\hat{w}, \psi(x)\rangle=\bar{f}(\hat{\alpha}, x), \quad \bar{f}(\hat{\alpha}, x)=\sum_{i=1}^{n} \hat{\alpha}_{i} k\left(X_{i}, x\right)
$$

Therefore the solution of (2) is equivalent to the solution of the following finite dimensional kernel optimization problem:

$$
\begin{equation*}
\hat{\alpha}=\arg \min _{\alpha \in \mathbb{R}^{n}}\left[\frac{1}{n} \sum_{i=1}^{n} L\left(\bar{f}\left(\alpha, X_{i}\right), Y_{i}\right)+\frac{\lambda}{2} \alpha^{\top} K_{n \times n} \alpha\right] \tag{8}
\end{equation*}
$$

Proof of Theorem 2 (I/II)

Let

$$
Q_{1}(w)=\frac{1}{n} \sum_{i=1}^{n} L\left(\left\langle w, \psi\left(X_{i}\right)\right\rangle, Y_{i}\right)+\frac{\lambda}{2}\|w\|^{2}
$$

be the objective function of (2), and let

$$
Q_{2}(\alpha)=\frac{1}{n} \sum_{i=1}^{n} L\left(\bar{f}\left(\alpha, X_{i}\right), Y_{i}\right)+\frac{\lambda}{2} \alpha^{\top} K_{n \times n} \alpha
$$

be the objective function of (8).
The solution of (2) satisfies the following first order optimality condition:

$$
\frac{1}{n} \sum_{i=1}^{n} L_{1}^{\prime}\left(\left\langle\hat{w}, \psi\left(X_{i}\right)\right\rangle, Y_{i}\right) \psi\left(X_{i}\right)+\lambda \hat{w}=0
$$

Here $L_{1}^{\prime}(p, y)$ is the derivative of $L(p, y)$ with respect to p.

Proof of Theorem 2 (II/II)

We thus obtain the following representation as its solution:

$$
\hat{w}=\sum_{i=1}^{n} \tilde{\alpha}_{i} \psi\left(X_{i}\right),
$$

where

$$
\tilde{\alpha}_{i}=-\frac{1}{\lambda n} L_{1}^{\prime}\left(\left\langle\hat{w}, \psi\left(X_{i}\right)\right\rangle, Y_{i}\right) \quad(i=1, \ldots, n)
$$

Using this notation, we obtain from Proposition 1 that

$$
\langle\hat{w}, \psi(x)\rangle=\bar{f}(\tilde{\alpha}, x), \quad\langle\hat{w}, \hat{w}\rangle=\tilde{\alpha}^{\top} K_{n \times n} \tilde{\alpha} .
$$

This implies that

$$
Q_{1}(\hat{w})=Q_{2}(\tilde{\alpha}) \geq Q_{2}(\hat{\alpha})=Q_{1}(\tilde{w})
$$

where the last equality follows by setting $\tilde{w}=\sum_{i=1}^{n} \hat{\alpha}_{i} \psi\left(X_{i}\right)$. Proposition 1 implies that $Q_{2}(\hat{\alpha})=Q_{1}(\tilde{w})$. It follows that \tilde{w} is a solution of (2), which proves the desired result.

Example 3 (Kernel Ridge Regression, Expl 9.9)

Consider ridge regression in the feature space representation:

$$
\hat{w}=\arg \min _{w}\left[\frac{1}{n} \sum_{i=1}^{n}\left(\left\langle w, \psi\left(X_{i}\right)\right\rangle-Y_{i}\right)^{2}+\frac{\lambda}{2}\langle w, w\rangle\right] .
$$

The primal kernel formulation is:

$$
\hat{\alpha}=\arg \min _{\alpha \in \mathbb{R}^{n}}\left[\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} k\left(X_{i}, X_{j}\right) \alpha_{j}-Y_{i}\right)^{2}+\frac{\lambda}{2} \alpha^{\top} K_{n \times n} \alpha\right] .
$$

There is also a dual formulation which has the same solution:

$$
\hat{\alpha}=\arg \max _{\alpha \in \mathbb{R}^{n}}\left[-\frac{\lambda}{2} \alpha^{\top} K_{n \times n} \alpha+\lambda \alpha^{\top} \mathbf{Y}-\frac{\lambda^{2}}{4} \alpha^{\top} \alpha\right],
$$

where \mathbf{Y} is the n dimensional vector with Y_{i} as its component.

Positive-definite Kernel

Definition 4

A symmetric function $k\left(x, x^{\prime}\right)$ is called a positive-definite kernel on $\mathcal{X} \times \mathcal{X}$ if for all $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$ and $x_{1}, \ldots, x_{m} \in \mathcal{X}$, we have

$$
\sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

Reproducing Kernel Hilbert Space (RKHS)

Definition 5 (RKHS, Def 9.4)

Given a symmetric positive-definite kernel, we define a function space \mathcal{H}_{0} of the form

$$
\mathcal{H}_{0}=\left\{f(x): f(x)=\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, x\right)\right\},
$$

with inner product defined as

$$
\|f(x)\|_{\mathcal{H}}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right) .
$$

The completion of \mathcal{H}_{0} with respect to this inner product, defined as \mathcal{H}, is called the reproducing kernel Hilbert space (RKHS) of kernel k.

RKHS Norm is Well-Defined

Proposition 6 (Prop 9.5)

Assume that for all $x \in \mathcal{X}$:

$$
\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, x\right)=\sum_{i=1}^{m^{\prime}} \alpha_{i}^{\prime} k\left(x_{i}^{\prime}, x\right)
$$

then

$$
\sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right)=\sum_{i=1}^{m^{\prime}} \sum_{j=1}^{m^{\prime}} \alpha_{i}^{\prime} \alpha_{j}^{\prime} k\left(x_{i}^{\prime}, x_{j}^{\prime}\right)
$$

The result means that even when a function $f(x)$ has two different kernel representations, the RKHS norm $\|f(x)\|_{\mathcal{H}}$ computed using the two representations are identical.

Mercer's Theorem

Theorem 7 (Thm 9.6)

A symmetric kernel function $k\left(x, x^{\prime}\right)$ is positive-definite if and only if there exists a feature $\operatorname{map} \psi(x)$ so that it can be written in the form of (3). That is,

$$
k\left(x, x^{\prime}\right)=\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle
$$

Moreover, let \mathcal{H} be the RKHS of $k(\cdot, \cdot)$, then any function $f(x) \in \mathcal{H}$ can be written uniquely in the form of (1), with

$$
\|f(x)\|_{\mathcal{H}}^{2}=\langle w, w\rangle
$$

Example

Example 8

If $x \in \mathbb{R}^{d}$, then a standard choice of kernel is the RBF (radial basis function) kernel:

$$
k\left(x, x^{\prime}\right)=\exp \left[\frac{-\left\|x-x^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}\right]
$$

It is easy to check that it can be written in the form of (3) using Taylor expansion as:

$$
k\left(x, x^{\prime}\right)=\exp \left[-\frac{\|x\|_{2}^{2}}{2 \sigma^{2}}\right] \exp \left[-\frac{\left\|x^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}\right] \sum_{k=0}^{\infty} \frac{\sigma^{-2 k}}{k!}\left(x^{\top} x^{\prime}\right)^{k}
$$

ERM in RKHS

In general, we can consider abstract ERM problem in any RKHS \mathcal{H} with norm $\|\cdot\|_{\mathcal{H}}$.

Given an RKHS \mathcal{H}, one may consider a norm constrained ERM problem in \mathcal{H} as follows:

$$
\begin{equation*}
\hat{f}(\cdot)=\arg \min _{f(\cdot) \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L\left(f\left(X_{i}\right), Y_{i}\right) \quad \text { subject to }\|f(\cdot)\|_{\mathcal{H}} \leq A . \tag{9}
\end{equation*}
$$

The corresponding soft-regularized formulation with appropriate $\lambda>0$ is

$$
\begin{equation*}
\hat{f}(\cdot)=\arg \min _{f(\cdot) \in \mathcal{H}}\left[\frac{1}{n} \sum_{i=1}^{n} L\left(f\left(X_{i}\right), Y_{i}\right)+\frac{\lambda}{2}\|f(\cdot)\|_{\mathcal{H}}^{2}\right] . \tag{10}
\end{equation*}
$$

Equivalence Theorem

Theorem 9 (Thm 9.8)

Consider any kernel function $k\left(x, x^{\prime}\right)$ and feature map $\psi(x)$ that satisfies (3). Let \mathcal{H} be the RKHS of $k(\cdot, \cdot)$. Then any $f(x) \in \mathcal{H}$ can be written in the form

$$
f(x)=\langle w, \psi(x)\rangle, \quad\|f(x)\|_{\mathcal{H}}^{2}=\inf \{\langle w, w\rangle: f(x)=\langle w, \psi(x)\rangle\}
$$

Consequently, the solution of (10)

$$
\hat{f}(\cdot)=\arg \min _{f(\cdot) \in \mathcal{H}}\left[\frac{1}{n} \sum_{i=1}^{n} L\left(f\left(X_{i}\right), Y_{i}\right)+\frac{\lambda}{2}\|f(\cdot)\|_{\mathcal{H}}^{2}\right]
$$

is equivalent to the solution of (2)

$$
\hat{w}=\arg \min _{w}\left[\frac{1}{n} \sum_{i=1}^{n} L\left(\left\langle w, \psi\left(X_{i}\right)\right\rangle, Y_{i}\right)+\frac{\lambda}{2}\|w\|^{2}\right] .
$$

Example 10 (Expl 9.10)

Consider support vector machines for binary classification, where label $Y_{i} \in\{ \pm 1\}$. Consider the following method in feature space:

$$
\hat{w}=\arg \min _{w}\left[\frac{1}{n} \sum_{i=1}^{n} \max \left(0,1-\left\langle w, \psi\left(X_{i}\right)\right\rangle Y_{i}\right)+\frac{\lambda}{2}\langle w, w\rangle\right] .
$$

The primal kernel formulation is:

$$
\hat{w}=\arg \min _{\alpha}\left[\frac{1}{n} \sum_{i=1}^{n} \max \left(0,1-\sum_{j=1}^{n} \alpha_{j} k\left(X_{i}, X_{j}\right) Y_{i}\right)+\frac{\lambda}{2} \alpha^{\top} K_{n \times n} \alpha\right] .
$$

The equivalent dual kernel formulation is:
$\hat{\alpha}=\arg \max _{\alpha \in \mathbb{R}^{n}}\left[-\frac{\lambda}{2} \alpha^{\top} K_{n \times n} \alpha+\lambda \alpha^{\top} \mathbf{Y}\right]$, subject to $\alpha_{i} Y_{i} \in[0,1 /(\lambda n)]$.

Variation of Representer Theorem

Proposition 11 (Prop 9.11)

Let \mathcal{H} be the RKHS of a kernel $k\left(x, x^{\prime}\right)$ defined on a discrete set of n points X_{1}, \ldots, X_{n}. Let $K_{n \times n}$ be the Gram matrix defined on these points in (4), and K^{+}be its pseudo-inverse. Then for any function $f \in \mathcal{H}$, we have

$$
\|f\|_{\mathcal{H}}^{2}=\mathbf{f}^{\top} K_{n \times n}^{+} \mathbf{f}, \quad \text { where } \quad \mathbf{f}=\left[\begin{array}{c}
f\left(X_{1}\right) \\
\vdots \\
f\left(X_{n}\right)
\end{array}\right] .
$$

Proof

We can express $f(x)=\sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right)$. Let $\alpha=\left[\alpha_{1}, \ldots, \alpha_{n}\right]^{\top}$, we have $\mathbf{f}=\mathbf{K}_{\mathbf{n} \times \mathbf{n}} \alpha$. It follows that

$$
\|f\|_{\mathcal{H}}^{2}=\alpha^{\top} K_{n \times n} \alpha=\alpha^{\top} K_{n \times n} K_{n \times n}^{+} K_{n \times n} \alpha=\mathbf{f}^{\top} K_{n \times n}^{+} \mathbf{f} .
$$

This proves the desired result.

Semi-Supervised Learning Formulation

Corollary 12 (Cor 9.12)

Assume that we have labeled data X_{1}, \ldots, X_{n}, and unlabeled data X_{n+1}, \ldots, X_{n+m}. Let $K=K_{(n+m) \times(n+m)}$ be the kernel Gram matrix of a kernel k on these $m+n$ points, and let \mathcal{H} be the corresponding RKHS. Then (10)

$$
\hat{f}(\cdot)=\arg \min _{f(\cdot) \in \mathcal{H}}\left[\frac{1}{n} \sum_{i=1}^{n} L\left(f\left(X_{i}\right), Y_{i}\right)+\frac{\lambda}{2}\|f(\cdot)\|_{\mathcal{H}}^{2}\right]
$$

defined on these data points is equivalent to

$$
\hat{f}(\cdot)=\arg \min _{\mathbf{f} \in \mathbb{R}^{n+m}}\left[\frac{1}{n} \sum_{i=1}^{n} L\left(f\left(X_{i}\right), Y_{i}\right)+\frac{\lambda}{2} \mathbf{f}^{\top} K^{+} \mathbf{f}\right], \quad \mathbf{f}=\left[\begin{array}{c}
f\left(X_{1}\right) \\
\vdots \\
f\left(X_{n+m}\right)
\end{array}\right] .
$$

Universal Approximation

Definition 13

A kernel $k\left(x, x^{\prime}\right)$ is called a universal kernel on $\mathcal{X} \subset \mathbb{R}^{d}$ (under the uniform convergence topology) if for any continuous function $f(x)$ on \mathcal{X}, and any $\epsilon>0$, there exists $g(x) \in \mathcal{H}$ such that

$$
\forall x \in \mathcal{X}:|f(x)-g(x)| \leq \epsilon,
$$

where \mathcal{H} is the RKHS of kernel $k(\cdot, \cdot)$.

Theorem 14 (Approximation of Lipschitz Functions, Thm 9.14)

Consider a positive definite translation invariant kernel

$$
k\left(x, x^{\prime}\right)=h\left(\left\|x-x^{\prime}\right\| / \sigma\right)
$$

where $\|\cdot\|$ is a norm on \mathbb{R}^{d}. Assume that $h(\cdot) \in[0,1]$, and

$$
c_{0}=\int h(\|x\|) d x \in(0, \infty), \quad c_{1}=\int\|x\| h(\|x\|) d x<\infty
$$

Assume that f is Lipschitz with respect to the norm $\|\cdot\|: \exists \gamma>0$ such that $\left|f(x)-f\left(x^{\prime}\right)\right| \leq \gamma\left\|x-x^{\prime}\right\|$ for all $x, x^{\prime} \in \mathbb{R}^{d}$. If

$$
\|f\|_{1}=\int|f(x)| d x<\infty
$$

then for any $\epsilon>0$ and $\sigma=\epsilon \mathcal{C}_{0} /\left(\gamma \mathcal{C}_{1}\right)$, there exists $\psi_{\sigma}(x) \in \mathcal{H}$, where \mathcal{H} is the RKHS of $k(\cdot)$, so that $\left\|\psi_{\sigma}(x)\right\|_{\mathcal{H}} \leq\left(c_{0} \sigma^{d}\right)^{-1}\|f\|_{1}$ and

$$
\forall x:\left|f(x)-\psi_{\sigma}(x)\right| \leq \epsilon
$$

Approximation Using Polynomials

Theorem 15 (Thm 9.15)

Consider a compact set \mathcal{X} in \mathbb{R}^{d}. Assume that a kernel function $k\left(x, x^{\prime}\right)$ on $\mathcal{X} \times \mathcal{X}$ has a feature representation

$$
k\left(x, x^{\prime}\right)=\sum_{i=1}^{\infty} c_{i} \psi_{i}(x) \psi_{i}\left(x^{\prime}\right),
$$

where each $\psi_{i}(x)$ is a real valued function, and $c_{i}>0$. Assume the feature maps $\left\{\psi_{i}(x): i=1, \ldots\right\}$ contain all monomials of the form

$$
\left\{g(x)=\prod_{j=1}^{d} x_{j}^{\alpha_{j}}: x=\left[x_{1}, \ldots, x_{d}\right], \alpha_{j} \geq 0\right\} .
$$

Then $k\left(x, x^{\prime}\right)$ is universal on \mathcal{X}.

Proof

Let \mathcal{H} be the RKHS of $k(\cdot, \cdot)$. Note that according to Theorem 9, a function of the form $g(x)=\sum_{j=1}^{\infty} w_{i} \psi_{i}(x)$ has RKHS norm as

$$
\|g\|_{\mathcal{H}}^{2} \leq \sum_{i=1}^{\infty} w_{i}^{2} / c_{i}
$$

It follows from the assumption of the theorem that all monomials $p(x)$ has RKHS norm $\|p\|_{\mathcal{H}}^{2}<\infty$. Therefore \mathcal{H} contains all polynomials. The result of the theorem is now a direct consequence of the Stone-Weierstrass theorem.

Example

Example 16 (Expl 9.16)

Let $\alpha>0$ be an arbitrary constant. Consider the kernel function

$$
k\left(x, x^{\prime}\right)=\exp \left(\alpha x^{\top} x^{\prime}\right)
$$

on a compact set of \mathbb{R}^{d}. Since

$$
k\left(x, x^{\prime}\right)=\exp (-\alpha) \sum_{i=0}^{\infty} \frac{\alpha^{i}}{i!}\left(x^{\top} x^{\prime}+1\right)^{i}
$$

It is clear that the expansion of $\left(x^{\top} x^{\prime}+1\right)^{i}$ contains all monomials of order i. Therefore Theorem 15 implies that $k\left(x, x^{\prime}\right)$ is universal.

Compositions of Universal Kernels

Theorem 17 (Thm 9.17)

Assume $k\left(x, x^{\prime}\right)$ is a universal kernel on \mathcal{X}. Let $k^{\prime}\left(x, x^{\prime}\right)$ be any other kernel function on $\mathcal{X} \times \mathcal{X}$, then $k\left(x, x^{\prime}\right)+k^{\prime}\left(x, x^{\prime}\right)$ is a universal kernel on \mathcal{X}.
Moreover, let $u(x)$ be a real-valued continuous function on \mathcal{X} so that

$$
\sup _{x \in \mathcal{X}} u(x)<\infty, \quad \inf _{x \in \mathcal{X}} u(x)>0
$$

Then $k^{\prime}\left(x, x^{\prime}\right)=k\left(x, x^{\prime}\right) u(x) u\left(x^{\prime}\right)$ is a universal kernel on \mathcal{X}.

Proof of Theorem 17

Let $k\left(x, x^{\prime}\right)=\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$ with the corresponding RKHS denoted by \mathcal{H}, and let $k^{\prime}\left(x, x^{\prime}\right)=\left\langle\psi^{\prime}(x), \psi^{\prime}\left(x^{\prime}\right)\right\rangle_{\mathcal{H}^{\prime}}$ with RKHS \mathcal{H}^{\prime}.

$$
k\left(x, x^{\prime}\right)+k^{\prime}\left(x, x^{\prime}\right)=\left\langle\psi(x), \psi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}+\left\langle\psi^{\prime}(x), \psi^{\prime}\left(x^{\prime}\right)\right\rangle_{\mathcal{H}^{\prime}} .
$$

Using feature representation, we can represent functions in the RKHS of $k\left(x, x^{\prime}\right)+k^{\prime}\left(x, x^{\prime}\right)$ by $\langle w, \psi(x)\rangle_{\mathcal{H}}+\left\langle w^{\prime}, \psi^{\prime}(x)\right\rangle_{\mathcal{H}^{\prime}}$, and thus it contains $\mathcal{H} \oplus \mathcal{H}^{\prime}$. This implies the first result.
For the second result, we know that $k^{\prime}\left(x, x^{\prime}\right)=\left\langle\psi(x) u(x), \psi\left(x^{\prime}\right) u\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$, and thus its RHKS can be represented by $\langle w, \psi(x) u(x)\rangle_{\mathcal{H}}$. Since the universality of $k\left(x, x^{\prime}\right)$ implies that for any continuous $f(x), f(x) / u(x)$ can be uniformly approximated by $\langle\boldsymbol{w}, \psi(x)\rangle_{\mathcal{H}}$, we obtain the desired result.

Example

Example 18

Consider the RBF kernel function

$$
k\left(x, x^{\prime}\right)=\exp \left(-\alpha\left\|x-x^{\prime}\right\|_{2}^{2}\right)
$$

Since

$$
k\left(x, x^{\prime}\right)=\exp \left(2 \alpha x^{\top} x^{\prime}\right) u(x) u\left(x^{\prime}\right)
$$

where $u(x)=\exp \left(-\alpha\|x\|_{2}^{2}\right)$, Theorem 17 and Example 16 imply that $k\left(x, x^{\prime}\right)$ is universal on any compact set $\mathcal{X} \subset \mathbb{R}^{d}$.

Property of Universal Kernel

Theorem 19 (Thm 9.19)

Let $k\left(x, x^{\prime}\right)$ be a universal kernel on \mathcal{X}. Consider n different data points $X_{1}, \ldots, X_{n} \in \mathcal{X}$, and let $K_{n \times n}$ be the Gram matrix defined in Theorem 2. Then $K_{n \times n}$ is full-rank.

Generalization Analysis: Constrained RKHS

Consider feature representation

$$
f(x)=\langle w, \psi(x)\rangle
$$

with the induced RKHS. Theorem 9 implies the following.

Equivalent Representations

If we define the function class

$$
\mathcal{F}(A)=\left\{f(x) \in \mathcal{H}:\|f\|_{\mathcal{H}}^{2} \leq A^{2}\right\}
$$

then for any feature map that satisfies $(3), \mathcal{F}(A)$ can be equivalently written in the linear feature representation form as:

$$
\begin{equation*}
\mathcal{F}(A)=\left\{f(x)=\langle w, \psi(x)\rangle:\langle w, w\rangle \leq A^{2}\right\} . \tag{11}
\end{equation*}
$$

That is, a function with RKHS regularization is equivalent to linear model with L_{2} regularization.

Rademacher Complexity

Theorem 20 (The First Inequality of Thm 9.20)

Consider $\mathcal{F}(A)$ defined in (11). We have the following bound for its Rademacher complexity:

$$
R\left(\mathcal{F}(A), \mathcal{S}_{n}\right) \leq A \sqrt{\frac{1}{n^{2}} \sum_{i=1}^{n} k\left(X_{i}, X_{i}\right)} .
$$

Proof of Theorem 20

For convenience, let $\|w\|=\sqrt{\langle w, w\rangle}$. We have

$$
\begin{aligned}
R_{\lambda} & =\mathbb{E}_{\sigma} \sup _{w}\left[\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\left\langle w, \psi\left(X_{i}\right)\right\rangle-\frac{\lambda}{4}\langle w, w\rangle\right] \\
& =\mathbb{E}_{\sigma} \sup _{w}\left[\left\langle w, \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \psi\left(X_{i}\right)\right\rangle-\frac{\lambda}{4}\langle w, w\rangle\right] \\
& =\mathbb{E}_{\sigma} \frac{1}{\lambda}\left\|\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \psi\left(X_{i}\right)\right\|^{2} \\
& =\frac{1}{\lambda n^{2}} \sum_{i=1}^{n}\left\|\psi\left(X_{i}\right)\right\|^{2}=\frac{1}{\lambda n^{2}} \sum_{i=1}^{n} k\left(X_{i}, X_{i}\right) .
\end{aligned}
$$

This proves the second bound. For the first bound, we note that

$$
R\left(\mathcal{F}(A), \mathcal{S}_{n}\right) \leq R_{\lambda}+\frac{\lambda A^{2}}{4} \leq \frac{1}{\lambda n^{2}} \sum_{i=1}^{n} k\left(X_{i}, X_{i}\right)+\frac{\lambda A^{2}}{4}
$$

Optimize over $\lambda>0$, we obtain the desired result.

Lipschitz Loss

Corollary 21 (The First Two Inequalities of Cor 9.21)

Let $\mathcal{G}(A)=\{L(f(x), y): f(x) \in \mathcal{F}(A)\}$, where $\mathcal{F}(A)$ is defined in (11). If $L(p, y)$ is γ Lipschitz in p, then

$$
\begin{aligned}
& R\left(\mathcal{G}(A), \mathcal{S}_{n}\right) \leq A \gamma \sqrt{\frac{1}{n^{2}} \sum_{i=1}^{n} k\left(X_{i}, X_{i}\right)}, \\
& R_{n}(\mathcal{G}(A), \mathcal{D}) \leq A \gamma \sqrt{\frac{\mathbb{E}_{X \sim \mathcal{D}} k(X, X)}{n}} .
\end{aligned}
$$

Result used in the Proof of Corollary 21

Theorem 22 (Rademacher Comparison, Thm 6.28)

Let $\left\{\phi_{i}\right\}_{i=1}^{n}$ be functions with Lipschitz constants $\left\{\gamma_{i}\right\}_{i=1}^{n}$ respectively. That is, $\forall i \in[n]$:

$$
\left|\phi_{i}(\theta)-\phi_{i}\left(\theta^{\prime}\right)\right| \leq \gamma_{i}\left|\theta-\theta^{\prime}\right| .
$$

Then

$$
\mathbb{E}_{\sigma} \sup _{f \in \mathcal{F}}\left[\sum_{i=1}^{n} \sigma_{i} \phi_{i}\left(f\left(Z_{i}\right)\right)\right] \leq \mathbb{E}_{\sigma} \sup _{f \in \mathcal{F}}\left[\sum_{i=1}^{n} \sigma_{i} \gamma_{i} f\left(Z_{i}\right)\right] .
$$

Proof of Corollary 21

The first inequality follows from Theorem 20 and the Rademacher comparison theorem in Theorem 22.
The second inequality follows from the following derivation:

$$
\begin{aligned}
R_{n}(\mathcal{G}(A), \mathcal{D}) & =\mathbb{E}_{\mathcal{S}_{n}} R\left(\mathcal{G}, \mathcal{S}_{n}\right) \leq A \gamma \mathbb{E}_{\mathcal{S}_{n}} \sqrt{\frac{1}{n^{2}} \sum_{i=1}^{n} k\left(X_{i}, X_{i}\right)} \\
& \stackrel{(a)}{\leq} A \gamma \sqrt{\frac{1}{n^{2}} \mathbb{E}_{\mathcal{S}_{n}} \sum_{i=1}^{n} k\left(X_{i}, X_{i}\right)} \\
& =A \gamma \sqrt{\frac{1}{n} \mathbb{E}_{\mathcal{D}} k(X, X)} .
\end{aligned}
$$

The derivation of (a) used Jensen's inequality and the concavity of $\sqrt{ }$.

Uniform Convergence and Oracle Inequality

Corollary 23 (Cor 9.22)

Assume that $\sup \left[L(p, y)-L\left(p^{\prime}, y^{\prime}\right)\right] \leq M$, and $L(p, y)$ is γ Lipschitz with respect to p. Then with probability at least $1-\delta$: for all $f \in \mathcal{H}$ with $\|f\|_{\mathcal{H}} \leq A$:
$\mathbb{E}_{\mathcal{D}} L(f(X), Y) \leq \frac{1}{n} \sum_{i=1}^{n} L\left(f\left(X_{i}\right), Y_{i}\right)+2 \gamma A \sqrt{\frac{\mathbb{E}_{\mathcal{D}} k(X, X)}{n}}+M \sqrt{\frac{\ln (1 / \delta)}{2 n}}$.
Moreover, for (9), if we solve it approximately up to sub-optimality of ϵ^{\prime}, then we have with probability at least $1-\delta$:

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}} L(\hat{f}(X), Y) \leq \inf _{\|f\|_{\mathcal{H}} \leq A} & \mathbb{E}_{\mathcal{D}} L(f(X), Y)+\epsilon^{\prime}+2 \gamma A \sqrt{\frac{\mathbb{E}_{\mathcal{D}} k(X, X)}{n}} \\
& +M \sqrt{\frac{2 \ln (2 / \delta)}{n}}
\end{aligned}
$$

Consistency

In Corollary 23, as $A \rightarrow \infty$, we have

$$
\inf _{\|f\| \leq A} \mathbb{E}_{\mathcal{D}} L(f(X), Y) \rightarrow \inf _{\|f\|_{\mathcal{H}}<\infty} \mathbb{E}_{\mathcal{D}} L(f(X), Y) .
$$

If $k(\cdot, \cdot)$ is a universal kernel, then

$$
\lim _{A \rightarrow \infty} \inf _{\|f\|_{\mathcal{H}} \leq A} \mathbb{E}_{\mathcal{D}} L(f(X), Y) \rightarrow \inf _{\text {measurable } f} \mathbb{E}_{\mathcal{D}} L(f(X), Y) .
$$

Combine this with the generalization result of kernel method in Corollary 23, we know that as $n \rightarrow \infty$, and let $A \rightarrow \infty$, the following result is valid.

Consistency

With probability 1 ,

$$
\mathbb{E}_{\mathcal{D}} L(\hat{f}(X), Y) \rightarrow \inf _{\text {measurable } f} \mathbb{E}_{\mathcal{D}} L(f(X), Y) .
$$

Example 24 (Rademacher Complexity Margin Bound)

For binary classification problem with $y \in\{ \pm 1\}$, we consider classifier induced by a real valued function $f(x)$: predict $y=1$ if $f(x) \geq 0$ and $y=-1$ otherwise. If $f(x)$ is taken from an RKHS, then with probability $1-\delta$, for all $f \in \mathcal{H}$ with $\|f\|_{\mathcal{H}} \leq A$:

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}} \mathbb{1}(f(X) Y \leq 0) \leq & \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(f\left(X_{i}\right) Y_{i} \leq \gamma\right)+\frac{2 A}{\gamma} \sqrt{\frac{\mathbb{E}_{\mathcal{D}} k(X, X)}{n}} \\
& +\sqrt{\frac{\ln (1 / \delta)}{2 n}} .
\end{aligned}
$$

It says that if we can find a classifier with a small margin error, then we can achieve a good test classification error.

The bound can be obtained as a direct consequence of Corollary 23, using a loss function $L(p, y)=\min (1, \max (0,1-p y / \gamma))$, which is γ^{-1} Lipschitz. In this case, $\mathbb{1}(f(x) y \leq 0) \leq L(f(x), y) \leq \mathbb{1}(f(x) y \leq \gamma)$.

Example: SVM Loss

Example 25

For SVM loss, $\gamma=1$. With hard regularization, we can take $M=(1+A B)$, where we assume that $k(x, x) \leq B^{2}$. Consider \hat{f} that solves (9), which we restate here as

$$
\hat{f}(\cdot)=\arg \min _{f(\cdot) \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L\left(f\left(X_{i}\right), Y_{i}\right) \quad \text { subject to }\|f(\cdot)\|_{\mathcal{H}} \leq A,
$$

up to an accuracy of $\epsilon^{\prime}>0$. From Corollary 23, we obtain with probability at least $1-\delta$,
$\mathbb{E}_{\mathcal{D}} L(\hat{f}(X), Y) \leq \inf _{\|f\|_{\mathcal{H}} \leq A} \mathbb{E}_{\mathcal{D}} L(f(X), Y)+\epsilon^{\prime}+\frac{2 A B}{\sqrt{n}}+(1+A B) \sqrt{\frac{2 \ln (2 / \delta)}{n}}$.

Vector Valued Functions

We now consider vector valued functions (such as multi-class classification) using kernels.

Feature Space Representation of Vector Valued Functions

Consider $f(x): \mathcal{X} \rightarrow \mathbb{R}^{q}$ for some $q>1$. Let $f(x)=\left[f_{1}(x), \ldots, f_{q}(x)\right]$, then

$$
\begin{equation*}
f_{\ell}(x)=\langle\boldsymbol{w}, \psi(x, \ell)\rangle . \tag{12}
\end{equation*}
$$

Similar to (2), we have the following formulation in feature representation:

$$
\begin{equation*}
\hat{w}=\arg \min _{w \in \mathcal{H}}\left[\frac{1}{n} \sum_{i=1}^{n} L\left(\left\langle w, \psi\left(X_{i}, \cdot\right)\right\rangle, Y_{i}\right)+\frac{\lambda}{2}\|w\|^{2}\right], \tag{13}
\end{equation*}
$$

where $\left\langle w, \psi\left(X_{i}, \cdot\right)\right\rangle$ denotes the q-dimensional vector with $\left\langle w, \psi\left(X_{i}, \ell\right)\right\rangle$ as its ℓ-th component.

Matrix Kernel for Vector-valued Function

The matrix kernel function can be defined:

$$
k_{i, j}\left(x, x^{\prime}\right)=\left\langle\psi(x, i), \psi\left(x^{\prime}, j\right)\right\rangle \quad(i, j=1, \ldots, q)
$$

and its matrix representation is

$$
\mathbf{k}\left(x, x^{\prime}\right)=\left[\begin{array}{ccc}
k_{1,1}\left(x, x^{\prime}\right) & \cdots & k_{1, q}\left(x, x^{\prime}\right) \\
\vdots & & \vdots \\
k_{q, 1}\left(x, x^{\prime}\right) & \cdots & k_{q, q}\left(x, x^{\prime}\right)
\end{array}\right] .
$$

The kernel Gram matrix becomes

$$
\left[\begin{array}{ccc}
\mathbf{k}\left(X_{1}, X_{1}\right) & \cdots & \mathbf{k}\left(X_{1}, X_{q}\right) \\
\vdots & & \vdots \\
\mathbf{k}\left(X_{q}, X_{q}\right) & \cdots & \mathbf{k}\left(X_{q}, X_{q}\right)
\end{array}\right]
$$

Vector Representer Theorem

Theorem 26 (Thm 9.29)

Consider q-dimensional vector valued function $f(x)$. Let $\hat{f}(x)=\langle\hat{w}, \psi(x, \cdot)\rangle$ with \hat{w} being the solution of (13). Then

$$
\begin{gathered}
\hat{f}(x)=\sum_{i=1}^{n} \mathbf{k}\left(X_{i}, x\right) \hat{\alpha}_{i}, \\
\langle\hat{w}, \hat{w}\rangle=\sum_{i=1}^{n} \sum_{j=1}^{n} \hat{\alpha}_{i}^{\top} \mathbf{k}\left(X_{i}, X_{j}\right) \hat{\alpha}_{j} .
\end{gathered}
$$

Therefore the solution of (13) is equivalent to

$$
\hat{\alpha}=\arg \min _{\alpha \in \mathbb{R}^{q \times n}}\left[\frac{1}{n} \sum_{i=1}^{n} L\left(\sum_{j=1}^{n} \mathbf{k}\left(X_{i}, X_{j}\right) \alpha_{j}, Y_{i}\right)+\frac{\lambda}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i}^{\top} \mathbf{k}\left(X_{i}, X_{j}\right) \alpha_{j}\right] .
$$

Multi-class Classification Example

Example 27 (Structured SVM Loss, Expl 9.32)

Consider the structured SVM loss function [Tsochantaridis et al., 2005] for q-class classification problem, with $y \in\{1, \ldots, q\}$, and for $f \in \mathbb{R}^{q}$:

$$
L(f, y)=\max _{\ell}\left[\gamma(y, \ell)-\left(f_{y}-f_{\ell}\right)\right],
$$

where $\gamma(y, y)=0$ and $\gamma(y, \ell) \geq 0$. This loss tries to separate the true class y from alternative $\ell \neq y$ with margin $\gamma(y, \ell)$. It is Lipschitz with respect to $\|f\|_{1}$ with $\gamma_{1}=1$. For problems with $k_{\ell, \ell}(x, x) \leq B^{2}$ for all x and ℓ, we have from Corollary 9.31 that

$$
R\left(\mathcal{G}, \mathcal{S}_{n}\right) \leq \frac{q A B}{\sqrt{n}} .
$$

This result employs multi-class Rademacher comparison result in Corollary 9.31, leading to a Rademacher complexity bound of $O(\sqrt{q})$.

Multi-class Classification Example (cont)

Proposition 28 (Prop 9.33)

Consider a loss function $L(f, y)$ that is γ_{∞}-Lipschitz in p with respect to the L_{∞}-norm:

$$
\left|L(p, y)-L\left(p^{\prime}, y\right)\right| \leq \gamma_{\infty}\left\|p-p^{\prime}\right\|_{\infty}
$$

Let $\mathcal{F}=\left\{f(x)=\left[f_{1}(x), \ldots, f_{q}(x)\right]: f_{\ell}(x)=\langle w, \psi(x, \ell)\rangle,\langle w, w\rangle \leq A^{2}\right\}$. Assume that $\sup _{x, \ell}\langle\psi(x, \ell), \psi(x, \ell)\rangle \leq B^{2}$. Let $\mathcal{G}=\{L(f, y): f \in \mathcal{F}\}$. Then there exists a constant $c_{0}>0$ such that

$$
R\left(\mathcal{G}, \mathcal{S}_{n}\right) \leq \frac{c_{0} \gamma_{\infty} A B \ln n \sqrt{\ln (n q)}}{\sqrt{n}}
$$

This result requires the empirical L_{∞} covering number estimate of L_{2} regularized linear functions in Theorem 5.20.

Summary (Chapter 9)

- Reproducing Kernel Hilbert Space
- Universal Approximation
- Generalization and Rademacher Complexity
- Vector-valued Functions.

