Model Selection

Mathematical Analysis of Machine Learning Algorithms (Chapter 8)

Model Selection Problem

Model

A model is a learning algorithm $\mathcal{A}\left(\theta, \mathcal{S}_{n}\right)$ that maps the training data \mathcal{S}_{n} to a prediction function $f \in \mathcal{F}(\theta)=\{f(w, x): w \in \Omega(\theta)\} \subset \mathcal{F}$, indexed by a hyperparameter $\theta \in \Theta$. For simplicity, we take $\mathcal{F}=\cup \mathcal{F}(\theta)$.

Model Selection

The goal of model selection is to find the best model hyperparameter θ so that the corresponding learning algorithm $\mathcal{A}(\theta, \cdot)$ achieves a small test error.

We also let

$$
\begin{aligned}
& \phi(f, Z)=L(f(X), Y) \quad \phi(w, Z)=L(f(w, X), Y) \\
& \phi(f, \mathcal{D})=\mathbb{E}_{Z \sim \mathcal{D}} \phi(f, Z), \quad \phi\left(f, \mathcal{S}_{n}\right)=\frac{1}{n} \sum_{Z \in \mathcal{S}_{n}} \phi(f, Z) .
\end{aligned}
$$

Definition of Model Selection

Definition 1 (Def 8.1)

Consider a loss function $\phi(f, z): \mathcal{F} \times \mathcal{Z} \rightarrow \mathbb{R}$, and a model family $\left\{\mathcal{A}\left(\theta, \mathcal{S}_{n}\right): \Theta \times \mathcal{Z}^{n} \rightarrow \mathcal{F}, n \geq 0\right\}$. Consider $N \geq n \geq 0$, and iid dataset $\mathcal{S}_{n} \subset \mathcal{S}_{N} \sim \mathcal{D}^{N}$. A model selection algorithm $\overline{\mathcal{A}}$ maps \mathcal{S}_{N} to $\hat{\theta}=\hat{\theta}\left(\mathcal{S}_{N}\right) \in \Theta$, and then train a model $\hat{f}=\mathcal{A}\left(\hat{\theta}\left(\mathcal{S}_{N}\right), \mathcal{S}_{n}\right)=\overline{\mathcal{A}}\left(\mathcal{S}_{N}\right)$. It satisfies an $\epsilon_{n, N}(\cdot, \cdot)$ oracle inequality if there exists $\epsilon_{n, N}(\theta, \delta)$, such that for all $\delta \in(0,1)$, with probability at least $1-\delta$ over \mathcal{S}_{N} :

$$
\phi\left(\mathcal{A}\left(\hat{\theta}\left(\mathcal{S}_{N}\right), \mathcal{S}_{n}\right), \mathcal{D}\right) \leq \inf _{\theta \in \Theta}\left[\mathbb{E}_{\mathcal{S}_{n}} \phi\left(\mathcal{A}\left(\theta, \mathcal{S}_{n}\right), \mathcal{D}\right)+\epsilon_{n, \mathcal{N}}(\theta, \delta)\right] .
$$

More generally, a learning algorithm $\overline{\mathcal{A}}: \mathcal{S}_{N} \rightarrow \mathcal{F}$ is $\epsilon_{n, N}(\cdot, \cdot)$ adaptive to the model family $\{\mathcal{A}(\theta, \cdot): \theta \in \Theta\}$ if there exists $\epsilon_{n, N}(\theta, \delta)$, such that for all $\delta \in(0,1)$, with probability at least $1-\delta$ over \mathcal{S}_{N} :

$$
\phi\left(\overline{\mathcal{A}}\left(\mathcal{S}_{N}\right), \mathcal{D}\right) \leq \inf _{\theta \in \Theta}\left[\mathbb{E}_{\mathcal{S}_{n}} \phi\left(\mathcal{A}\left(\theta, \mathcal{S}_{n}\right), \mathcal{D}\right)+\epsilon_{n, N}(\theta, \delta)\right] .
$$

Model Selection Example: Hyperparameter Tuning

Consider ridge regression algorithm indexed by the regularization parameter $\lambda>0$:

$$
\hat{w}(\lambda)=\arg \min _{w \in \mathbb{R}^{d}}\left[\sum_{i=1}^{n}\left(w^{\top} X_{i}-Y_{i}\right)^{2}+\lambda\|w\|_{2}^{2}\right],
$$

where $\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right\}$ are training data. For this problem, we have

$$
\mathcal{F}=\left\{w^{\top} x: w \in \mathbb{R}^{d}, x \in \mathbb{R}^{d}\right\} .
$$

The goal is to find λ so that the test error

$$
\mathbb{E}_{(X, Y)}\left(Y-\hat{w}(\lambda)^{\top} X\right)^{2}
$$

is as small as possible. The parameter λ is called hyperparameter.

Model Selection on Validation Set

Split a labeled data into training data of size n and test data of size m

- training data: \mathcal{S}_{n}
- validation data: $\overline{\mathcal{S}}_{m}$

Given model hyperprameter θ, we train a prediction function

$$
\hat{f}_{\theta}=\mathcal{A}\left(\theta, \mathcal{S}_{n}\right) \in \mathcal{F}
$$

based on training data \mathcal{S}_{n}.
We then select $\hat{\theta}$ based on validation data $\overline{\mathcal{S}}$ so that the test error

$$
\mathbb{E}_{\mathcal{D}} \phi\left(\hat{f}_{\widehat{\theta}}, Z\right)
$$

is small.

Model Selection Algorithm

Let $\{q(\theta) \geq 0\}$ be a sequence of non-negative numbers that satisfies the inequality

$$
\begin{equation*}
\sum_{\theta=1}^{\infty} q(\theta) \leq 1 \tag{1}
\end{equation*}
$$

Consider the following model selection algorithm that selects $\hat{\theta}$ to approximately minimize:

$$
\begin{equation*}
Q\left(\hat{\theta}, \mathcal{A}\left(\hat{\theta}, \mathcal{S}_{n}\right), \overline{\mathcal{S}}_{m}\right) \leq \inf _{\theta} Q\left(\theta, \mathcal{A}\left(\theta, \mathcal{S}_{n}\right), \overline{\mathcal{S}}_{m}\right)+\tilde{\epsilon} \tag{2}
\end{equation*}
$$

where

$$
Q\left(\theta, f, \overline{\mathcal{S}}_{m}\right)=\phi\left(f, \overline{\mathcal{S}}_{m}\right)+r_{m}(q(\theta))
$$

Discrete Model Selection Result

Theorem 2 (Model Selction on Validation Data, Thm 8.2)

Assume $\sup _{Z, Z^{\prime}}\left[\phi(f, Z)-\phi\left(f, Z^{\prime}\right)\right] \leq M$. Consider (2) with

$$
r_{m}(q)=M \sqrt{\frac{\ln (1 / q)}{2 m}}
$$

Then with probability at least $1-\delta$ over the random selection of \mathcal{S}_{m} :

$$
\phi\left(\mathcal{A}\left(\hat{\theta}, \mathcal{S}_{n}\right), \mathcal{D}\right) \leq \inf _{\theta} Q\left(\theta, \mathcal{A}\left(\theta, \mathcal{S}_{n}\right), \overline{\mathcal{S}}_{m}\right)+\tilde{\epsilon}+M \sqrt{\frac{\ln (1 / \delta)}{2 m}}
$$

This implies the following oracle inequality. With probability at least $1-\delta$ over the random sampling of $\overline{\mathcal{S}}_{m}$:

$$
\phi\left(\mathcal{A}\left(\hat{\theta}, \mathcal{S}_{n}\right), \mathcal{D}\right) \leq \inf _{\theta}\left[\phi\left(\mathcal{A}\left(\theta, \mathcal{S}_{n}\right), \mathcal{D}\right)+r_{m}(q(\theta))\right]+\tilde{\epsilon}+M \sqrt{\frac{2 \ln (2 / \delta)}{m}}
$$

where $q(\theta)$ satisfies (1).

Proof of Theorem 2

For each model θ, let $\hat{f}_{\theta}=\mathcal{A}\left(\theta, \mathcal{S}_{n}\right)$. We obtain from the additive Chernoff bound that with probability at least $1-q(\theta) \delta$:

$$
\begin{aligned}
\mathbb{E}_{Z \sim \mathcal{D}} \phi\left(\hat{f}_{\theta}, Z\right) & \leq \frac{1}{m} \sum_{Z \in \overline{\mathcal{S}}_{m}} \phi\left(\hat{f}_{\theta}, Z\right)+M \sqrt{\frac{\ln (1 /(q(\theta) \delta))}{2 m}} \\
& \leq \frac{1}{m} \sum_{Z \in \overline{\mathcal{S}}_{m}} \phi\left(\hat{f}_{\theta}, Z\right)+M \sqrt{\frac{\ln (1 / q(\theta))}{2 m}}+M \sqrt{\frac{\ln (1 / \delta)}{2 m}}
\end{aligned}
$$

Taking the union bound over θ, we know that the above claim holds for all $\theta \geq 1$ with probability at least $1-\delta$. This result, combined with the definition of $\hat{\theta}$ in (2), leads to the first desired bound.
Now by applying the Chernoff bound for an arbitrary θ that does not depend on $\overline{\mathcal{S}}_{m}$, we obtain with probability at least $1-\delta / 2$:

$$
Q\left(\theta, \hat{f}_{\theta}, \overline{\mathcal{S}}_{m}\right) \leq \mathbb{E}_{Z \sim \mathcal{D}} \phi\left(\hat{f}_{\theta}, Z\right)+r_{m}(q(\theta))+M \sqrt{\frac{\ln (2 / \delta)}{2 m}}
$$

By combining this inequality with the first bound of the theorem, we obtain the second desired inequality.

Approximate ERM Learner

Consider a countable family of approximate ERM algorithms

$$
\{\mathcal{A}(\theta, \cdot): \theta=1,2, \ldots\},
$$

each characterized by its model space $\mathcal{F}(\theta)$.
The approximate ERM algorithm $\mathcal{A}(\theta, \cdot)$ returns a function $\hat{f}_{\theta} \in \mathcal{F}(\theta)$ such that

$$
\begin{equation*}
\phi\left(\hat{f}, \mathcal{S}_{n}\right) \leq \inf _{f \in \mathcal{F}(\theta)} \phi\left(f, \mathcal{S}_{n}\right)+\epsilon^{\prime}, \tag{3}
\end{equation*}
$$

where we use the notation of Definition 1.

Oracle Inequality for Approximate ERM Learner

Corollary 3 (Cor 8.3)

Consider approximate ERM Learner (3). Assume further that $\sup _{Z, Z^{\prime}}\left[\phi(f, Z)-\phi\left(f, Z^{\prime}\right)\right] \leq M$ for all f, and we use (2) to select $\hat{\theta}$:

$$
r_{m}(q)=M \sqrt{\frac{\ln (1 / q)}{2 m}} .
$$

Then the following result holds with probability at least 1 - δ over random selection of \mathcal{S}_{n} and $\overline{\mathcal{S}}_{m}$:

$$
\begin{aligned}
\phi\left(\mathcal{A}\left(\hat{\theta}, \mathcal{S}_{n}\right), \mathcal{D}\right) \leq & \inf _{\theta}\left[\inf _{f \in \mathcal{F}(\theta)} \phi(f, \mathcal{D})+2 R_{n}(\mathcal{G}(\theta), \mathcal{D})+r_{m}(q(\theta))\right] \\
& +\tilde{\epsilon}+\epsilon^{\prime}+M \sqrt{\frac{2 \ln (4 / \delta)}{n}}+M \sqrt{\frac{2 \ln (4 / \delta)}{m}}
\end{aligned}
$$

where $R_{n}(\mathcal{G}(\theta), \mathcal{D})$ is the Rademacher complexity of $\mathcal{G}(\theta)=\{\phi(f, \cdot): f \in \mathcal{F}(\theta)\}$ and $q(\theta)$ satisfies (1).

Result used in the Proof of Corollary 3

Corollary 4 (Cor 6.21)

Assume that for some $M \geq 0$:

$$
\sup _{w \in \Omega} \sup _{z, z^{\prime}}\left[\phi(w, z)-\phi\left(w, z^{\prime}\right)\right] \leq M
$$

Then the approximate ERM method

$$
\phi\left(\hat{w}, \mathcal{S}_{n}\right) \leq \min _{w \in \Omega} \phi\left(w, \mathcal{S}_{n}\right)+\epsilon^{\prime}
$$

satisfies the following oracle inequality. With probability at least $1-\delta$:

$$
\phi(\hat{w}, \mathcal{D}) \leq \inf _{w \in \Omega} \phi(w, \mathcal{D})+\epsilon^{\prime}+2 R_{n}(\mathcal{G}, \mathcal{D})+2 M \sqrt{\frac{\ln (2 / \delta)}{2 n}}
$$

Proof of Corollary 3

Consider any model θ. We have from Theorem 2 that with probability $1-\delta / 2$,

$$
\phi\left(\mathcal{A}\left(\hat{\theta}, \mathcal{S}_{n}\right), \mathcal{D}\right) \leq\left[\phi\left(\mathcal{A}\left(\theta, \mathcal{S}_{n}\right), \mathcal{D}\right)+r_{m}(q(\theta))\right]+\tilde{\epsilon}+M \sqrt{\frac{2 \ln (4 / \delta)}{m}} .
$$

Moreover, from Corollary 4, we know that with probability at least $1-\delta / 2$:

$$
\phi\left(\mathcal{A}\left(\theta, \mathcal{S}_{n}\right), \mathcal{D}\right) \leq \inf _{\epsilon \in \mathcal{F}(\theta)} \phi(f, \mathcal{D})+\epsilon^{\prime}+2 R_{n}(\mathcal{G}(\theta), \mathcal{D})+2 M \sqrt{\frac{\ln (4 / \delta)}{2 n}} .
$$

Taking the union bound, both inequalities hold with probability at least $1-\delta$, which leads to the desired bound.

Example

Example 5 (Expl 8.4)

Consider a $\{0,1\}$ valued binary classification problem, with binary classifiers $\mathcal{F}(\theta)=\left\{f_{\theta}(w, x) \in\{0,1\}: w \in \Omega(\theta)\right\}$ of VC-dimension $d(\theta)$. The Rademacher complexity of $\mathcal{G}(\theta)$ is no larger than $(16 \sqrt{d(\theta)}) / \sqrt{n}\left(\right.$ See Example 6.26). Take $q(\theta)=1 /(\theta+1)^{2}$. Then we have from Corollary 3 that

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{D}} \mathbb{1}\left(f_{\hat{\theta}}(\hat{w}, X) \neq Y\right) \leq \inf _{\theta, w \in \Omega(\theta)}\left[\mathbb{E}_{\mathcal{D}} \mathbb{1}\left(f_{\theta}(w, X) \neq Y\right)+\frac{32 \sqrt{d(\theta)}}{\sqrt{n}}\right. \\
& \left.\quad+\sqrt{\frac{\ln (\theta+1)}{m}}\right]+\tilde{\epsilon}+\epsilon^{\prime}+\sqrt{\frac{2 \ln (4 / \delta)}{n}}+\sqrt{\frac{2 \ln (4 / \delta)}{m}}
\end{aligned}
$$

This result shows that the model selection algorithm of (2) can automatically balance the model accuracy $\mathbb{E}_{\mathcal{D}} \mathbb{1}\left(f_{\theta}(w, X) \neq Y\right)$ and model dimension $d(\theta)$. it can adaptively choose the optimal model θ, up to a penalty of $O(\sqrt{\ln (\theta+1) / n})$.

Model Selection on Training Data

If we have a training data dependent generalization bound, then we can obtain a model selection algorithm that minimize the generalization bound on the training data without training/validation split.
Consider the following model selection algorithm, which simultaneously finds the model hyperparameter $\hat{\theta}$ and model function $\hat{f} \in \mathcal{F}(\hat{\theta})$ on the training data \mathcal{S}_{n} :

$$
\begin{equation*}
Q\left(\hat{\theta}, \hat{f}, \mathcal{S}_{n}\right) \leq \inf _{\theta, f \in \mathcal{F}(\theta)} Q\left(\theta, f, \mathcal{S}_{n}\right)+\tilde{\epsilon} \tag{4}
\end{equation*}
$$

where for $f \in \mathcal{F}(\theta)$,

$$
Q\left(\theta, f, \mathcal{S}_{n}\right)=\phi\left(f, \mathcal{S}_{n}\right)+\tilde{R}\left(\theta, f, \mathcal{S}_{n}\right)
$$

where \tilde{R} is an appropriately chosen sample dependent upper bound of the complexity for family $\mathcal{F}(\theta)$.

Theorem 6 (Uniform Convergence, Simplified from Thm 8.5)

Let $\{q(\theta) \geq 0\}$ be a sequence of numbers that satisfy (1). Assume that for each model θ, we have uniform convergence result as follows. With probability at least $1-\delta$, for all $f \in \mathcal{F}(\theta)$,

$$
\phi(f, \mathcal{D}) \leq \phi\left(f, \mathcal{S}_{n}\right)+\hat{\epsilon}\left(\theta, f, \mathcal{S}_{n}\right)+M(\theta) \sqrt{\frac{\ln \left(c_{0} / \delta\right)}{n}}
$$

for some constants $M(\theta)>0$ and $c_{0} \geq 1$. If we choose

$$
\tilde{R}\left(\theta, f, \mathcal{S}_{n}\right) \geq \hat{\epsilon}\left(\theta, f, \mathcal{S}_{n}\right)+M(\theta) \sqrt{\frac{\ln \left(c_{0} / q(\theta)\right)}{n}}
$$

then with probability at least $1-\delta$, for all θ and $f \in \mathcal{F}(\theta)$:

$$
\phi(f, \mathcal{D}) \leq \phi\left(f, \mathcal{S}_{n}\right)+\tilde{R}\left(\theta, f, \mathcal{S}_{n}\right)+M(\theta) \sqrt{\frac{\ln (1 / \delta)}{n}}
$$

Theorem 7 (Oracle Inequality, Simplified from Thm 8.5)

Under the assumptions of Theorem 6. If moreover, we have for all θ and $f \in \mathcal{F}(\theta)$, the following concentration bound hold, with probability $1-\delta$:

$$
\phi\left(f, \mathcal{S}_{n}\right)+\tilde{R}\left(\theta, f, \mathcal{S}_{n}\right) \leq \mathbb{E}_{\mathcal{S}_{n}}\left[\phi\left(f, \mathcal{S}_{n}\right)+\tilde{R}\left(\theta, f, \mathcal{S}_{n}\right)\right]+\epsilon^{\prime}(\theta, f, \delta) .
$$

Then we have the following oracle inequality for (4). With probability at least 1 - δ :

$$
\begin{aligned}
\phi(\hat{f}, \mathcal{D}) \leq & \inf _{\theta, f \in \mathcal{F}(\theta)}\left[\phi(f, \mathcal{D})+\mathbb{E}_{\mathcal{S}_{n}} \tilde{R}\left(\theta, f, \mathcal{S}_{n}\right)+\epsilon^{\prime}(\theta, f, \delta / 2)\right] \\
& +\tilde{\epsilon}+M(\theta) \sqrt{\frac{\ln (2 / \delta)}{n}} .
\end{aligned}
$$

Proof of Theorem 6

Taking union bound over θ, each with probability $1-0.5 q(\theta) \delta$, we obtain that with probability at least $1-\delta / 2$, for all θ and $f \in \mathcal{F}(\theta)$,

$$
\begin{aligned}
\phi(f, \mathcal{D}) & \leq \phi\left(f, \mathcal{S}_{n}\right)+\hat{\epsilon}\left(\theta, f, \mathcal{S}_{n}\right)+M(\theta) \sqrt{\frac{\ln \left(c_{0} / q(\theta)\right)}{n}}+\frac{\ln (2 / \delta)}{n} \\
& \leq \phi\left(f, \mathcal{S}_{n}\right)+\hat{\epsilon}\left(\theta, f, \mathcal{S}_{n}\right)+M(\theta) \sqrt{\frac{\ln \left(c_{0} / q(\theta)\right)}{n}}+M(\theta) \sqrt{\frac{\ln (2 / \delta)}{n}} \\
& \leq \phi\left(f, \mathcal{S}_{n}\right)+\tilde{R}\left(\theta, f, \mathcal{S}_{n}\right)+M(\theta) \sqrt{\frac{\ln (2 / \delta)}{n}}
\end{aligned}
$$

The first inequality used the union bound over all $\mathcal{F}(\theta)$. The second inequality used Jensen's inequality. The third inequality used the assumption of \tilde{R}. This proves the desired uniform convergence result.

Proof of Theorem 7

Now since \hat{f} is the solution of (4), it follows that for all θ and $f \in \mathcal{F}(\theta)$, with probability at least $1-\delta / 2$:

$$
\begin{aligned}
\phi(\hat{f}, \mathcal{D}) & \leq \phi\left(\hat{f}, \mathcal{S}_{n}\right)+\tilde{R}\left(\hat{\theta}, \hat{f}, \mathcal{S}_{n}\right)+M(\theta) \sqrt{\frac{\ln (2 / \delta)}{n}} \\
& \leq \phi\left(f, \mathcal{S}_{n}\right)+\tilde{R}\left(\theta, f, \mathcal{S}_{n}\right)+M(\theta) \sqrt{\frac{\ln (2 / \delta)}{n}}+\tilde{\epsilon} .
\end{aligned}
$$

In addition, with probability at least $1-\delta / 2$:

$$
\phi\left(f, \mathcal{S}_{n}\right)+\tilde{R}\left(\theta, f, \mathcal{S}_{n}\right) \leq \mathbb{E}_{\mathcal{S}_{n}}\left[\phi\left(f, \mathcal{S}_{n}\right)+\tilde{R}\left(\theta, f, \mathcal{S}_{n}\right)\right]+\epsilon^{\prime}(\theta, f, \delta / 2) .
$$

Taking the union bound, and sum of the two inequalities, we obtain the desired oracle inequality.

Model Selection Using Rademacher Complexity

Theorem 8 (Thm 8.7)

Consider the model selection algorithm in (4), with

$$
\tilde{R}\left(\theta, f, \mathcal{S}_{n}\right)=\tilde{R}(\theta) \geq 2 R_{n}(\mathcal{F}(\theta), \mathcal{D})+M(\theta) \sqrt{\frac{\ln (1 / q(\theta))}{2 n}}
$$

where $M(\theta)=\sup _{f, z, z^{\prime}}\left|\phi(f, z)-\phi\left(f, z^{\prime}\right)\right|$, and $q(\theta)$ satisfies (1). Then with probability at least $1-\delta$, for all θ and $f \in \mathcal{F}(\theta)$:

$$
\phi(f, \mathcal{D}) \leq \phi\left(f, \mathcal{S}_{n}\right)+\tilde{R}(\theta)+M(\theta) \sqrt{\frac{\ln (1 / \delta)}{2 n}} .
$$

Moreover, we have oracle inequality: with probability of at least $1-\delta$,

$$
\phi(\hat{f}, \mathcal{D}) \leq \inf _{\theta, f \in \mathcal{F}(\theta)}\left[\phi(f, \mathcal{D})+\tilde{R}(\theta)+2 M(\theta) \sqrt{\frac{\ln (2 / \delta)}{2 n}}\right]+\tilde{\epsilon} .
$$

Proof of Theorem 8 (I/II)

Using Rademacher complexity, we know for any θ, with probability $1-\delta$, the following uniform convergence result holds for all $f \in \mathcal{F}(\theta)$:

$$
\phi(f, \mathcal{D}) \leq \phi\left(f, \mathcal{S}_{n}\right)+2 R_{n}(\mathcal{F}(\theta), \mathcal{D})+M(\theta) \sqrt{\frac{\ln (1 / \delta)}{2 n}}
$$

The choice of \tilde{R} satisfies the condition of Theorem 6. It implies the desired uniform convergence result.

Proof of Theorem 8 (II/II)

Given fixed θ and $f \in \mathcal{F}(\theta)$, we know that

$$
\left|\left[\phi\left(f, \mathcal{S}_{n}\right)+\tilde{R}(\theta)\right]-\left[\phi\left(f, \mathcal{S}_{n}^{\prime}\right)+\tilde{R}(\theta)\right]\right| \leq M(\theta)
$$

when \mathcal{S}_{n} and \mathcal{S}_{n}^{\prime} differ by one element. From McDiarmid's inequality, we know that with probability at least $1-\delta$,

$$
\phi\left(f, \mathcal{S}_{n}\right)+\tilde{R}(\theta) \leq \phi(f, \mathcal{D})+\tilde{R}(\theta)+M(\theta) \sqrt{\frac{\ln (1 / \delta)}{2 n}}
$$

It follows that we can take

$$
\epsilon^{\prime}(\theta, f, \delta)=M(\theta) \sqrt{\frac{\ln (1 / \delta)}{2 n}}
$$

in Theorem 7, and obtain the desired oracle inequality.

Example

Example 9

Consider the same problem considered in Example 5. We can take $M(\theta)=1$ and $h=0$ in Theorem 8. It implies that the model selection method (4) with

$$
\tilde{R}\left(\theta, f, \mathcal{S}_{n}\right)=\frac{32 \sqrt{d(\theta)}}{\sqrt{n}}+\sqrt{\frac{\ln (\theta+1)}{n}}
$$

satisfies the following oracle inequality. With probability $1-\delta$:

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}} \mathbb{1}\left(f_{\hat{\theta}}(\hat{\theta}, X) \neq Y\right) \leq & \inf _{\theta, w \in \Omega_{\theta}}\left[\mathbb{E}_{\mathcal{D}} \mathbb{1}\left(f_{\theta}(w, X) \neq Y\right)+\frac{32 \sqrt{d(\theta)}}{\sqrt{n}}\right. \\
& \left.+\sqrt{\frac{\ln (\theta+1)}{n}}\right]+\sqrt{\frac{2 \ln (2 / \delta)}{n}}
\end{aligned}
$$

The result is comparable to that of Example 5.

Summary (Chapter 8)

- Model Selection Problem
- Model Selection on Validation Data
- Model Selection on Training Data using Sample Dependent Bound

