Model Selection

Mathematical Analysis of Machine Learning Algorithms (Chapter 8)

Model Selection Problem

Model

A model is a learning algorithm $\mathcal{A}(\theta, S_n)$ that maps the training data S_n to a prediction function $f \in \mathcal{F}(\theta) = \{f(w, x) : w \in \Omega(\theta)\} \subset \mathcal{F}$, indexed by a hyperparameter $\theta \in \Theta$. For simplicity, we take $\mathcal{F} = \cup \mathcal{F}(\theta)$.

Model Selection

The goal of model selection is to find the best model hyperparameter θ so that the corresponding learning algorithm $\mathcal{A}(\theta, \cdot)$ achieves a small test error.

We also let

$$\phi(f, Z) = L(f(X), Y) \quad \phi(w, Z) = L(f(w, X), Y)$$

$$\phi(f, D) = \mathbb{E}_{Z \sim D} \phi(f, Z), \quad \phi(f, S_n) = \frac{1}{n} \sum_{Z \in S_n} \phi(f, Z).$$

Definition of Model Selection

Definition 1 (Def 8.1)

Consider a loss function $\phi(f, z) : \mathcal{F} \times \mathcal{Z} \to \mathbb{R}$, and a model family $\{\mathcal{A}(\theta, \mathcal{S}_n) : \Theta \times \mathcal{Z}^n \to \mathcal{F}, n \ge 0\}$. Consider $N \ge n \ge 0$, and iid dataset $\mathcal{S}_n \subset \mathcal{S}_N \sim \mathcal{D}^N$. A model selection algorithm $\overline{\mathcal{A}}$ maps \mathcal{S}_N to $\hat{\theta} = \hat{\theta}(\mathcal{S}_N) \in \Theta$, and then train a model $\hat{f} = \mathcal{A}(\hat{\theta}(\mathcal{S}_N), \mathcal{S}_n) = \overline{\mathcal{A}}(\mathcal{S}_N)$. It satisfies an $\epsilon_{n,N}(\cdot, \cdot)$ oracle inequality if there exists $\epsilon_{n,N}(\theta, \delta)$, such that for all $\delta \in (0, 1)$, with probability at least $1 - \delta$ over \mathcal{S}_N :

$$\phi(\mathcal{A}(\hat{\theta}(\mathcal{S}_{N}), \mathcal{S}_{n}), \mathcal{D}) \leq \inf_{\theta \in \Theta} \left[\mathbb{E}_{\mathcal{S}_{n}} \phi(\mathcal{A}(\theta, \mathcal{S}_{n}), \mathcal{D}) + \epsilon_{n, N}(\theta, \delta) \right].$$

More generally, a learning algorithm $\overline{A} : S_N \to \mathcal{F}$ is $\epsilon_{n,N}(\cdot, \cdot)$ adaptive to the model family $\{A(\theta, \cdot) : \theta \in \Theta\}$ if there exists $\epsilon_{n,N}(\theta, \delta)$, such that for all $\delta \in (0, 1)$, with probability at least $1 - \delta$ over S_N :

$$\phi(\bar{\mathcal{A}}(\mathcal{S}_{N}), \mathcal{D}) \leq \inf_{\theta \in \Theta} \left[\mathbb{E}_{\mathcal{S}_{n}} \phi(\mathcal{A}(\theta, \mathcal{S}_{n}), \mathcal{D}) + \epsilon_{n, N}(\theta, \delta) \right].$$

Model Selection Example: Hyperparameter Tuning

Consider ridge regression algorithm indexed by the regularization parameter $\lambda > 0$:

$$\hat{w}(\lambda) = \arg\min_{w \in \mathbb{R}^d} \left[\sum_{i=1}^n (w^\top X_i - Y_i)^2 + \lambda \|w\|_2^2 \right],$$

where $\{(X_1, Y_1), \ldots, (X_n, Y_n)\}$ are training data. For this problem, we have

$$\mathcal{F} = \{ \mathbf{w}^{\top} \mathbf{x} : \mathbf{w} \in \mathbb{R}^d, \mathbf{x} \in \mathbb{R}^d \}.$$

The goal is to find λ so that the test error

$$\mathbb{E}_{(X,Y)}(Y - \hat{w}(\lambda)^{ op}X)^2$$

is as small as possible. The parameter λ is called hyperparameter.

Model Selection on Validation Set

Split a labeled data into training data of size *n* and test data of size *m*

- training data: S_n
- ▶ validation data: \bar{S}_m

Given model hyperprameter θ , we train a prediction function

$$\hat{f}_{ heta} = \mathcal{A}(heta, \mathcal{S}_{n}) \in \mathcal{F}$$

based on training data S_n .

We then select $\hat{\theta}$ based on validation data \bar{S} so that the test error

$$\mathbb{E}_{\mathcal{D}}\phi(\hat{f}_{\hat{ heta}}, Z)$$

is small.

Model Selection Algorithm

Let $\{q(\theta) \ge 0\}$ be a sequence of non-negative numbers that satisfies the inequality

$$\sum_{\theta=1}^{\infty} q(\theta) \le 1.$$
 (1)

Consider the following model selection algorithm that selects $\hat{\theta}$ to approximately minimize:

$$Q(\hat{\theta}, \mathcal{A}(\hat{\theta}, \mathcal{S}_n), \bar{\mathcal{S}}_m) \leq \inf_{\theta} Q(\theta, \mathcal{A}(\theta, \mathcal{S}_n), \bar{\mathcal{S}}_m) + \tilde{\epsilon},$$
(2)

where

$$Q(\theta, f, \bar{\mathcal{S}}_m) = \phi(f, \bar{\mathcal{S}}_m) + r_m(q(\theta)).$$

Discrete Model Selection Result

Theorem 2 (Model Selction on Validation Data, Thm 8.2)

Assume $\sup_{Z,Z'}[\phi(f,Z) - \phi(f,Z')] \le M$. Consider (2) with

$$r_m(q)=M\sqrt{\frac{\ln(1/q)}{2m}}.$$

Then with probability at least $1 - \delta$ over the random selection of S_m :

$$\phi(\mathcal{A}(\hat{\theta}, \mathcal{S}_n), \mathcal{D}) \leq \inf_{\theta} \mathcal{Q}(\theta, \mathcal{A}(\theta, \mathcal{S}_n), \bar{\mathcal{S}}_m) + \tilde{\epsilon} + M \sqrt{\frac{\ln(1/\delta)}{2m}}.$$

This implies the following oracle inequality. With probability at least $1 - \delta$ over the random sampling of \bar{S}_m :

$$\phi(\mathcal{A}(\hat{\theta}, \mathcal{S}_n), \mathcal{D}) \leq \inf_{\theta} [\phi(\mathcal{A}(\theta, \mathcal{S}_n), \mathcal{D}) + r_m(q(\theta))] + \tilde{\epsilon} + M \sqrt{\frac{2\ln(2/\delta)}{m}},$$

where $q(\theta)$ satisfies (1).

Proof of Theorem 2

For each model θ , let $\hat{f}_{\theta} = \mathcal{A}(\theta, S_n)$. We obtain from the additive Chernoff bound that with probability at least $1 - q(\theta)\delta$:

$$egin{aligned} \mathbb{E}_{\mathcal{Z}\sim\mathcal{D}}\phi(\hat{f}_{ heta}, Z) &\leq &rac{1}{m}\sum_{Z\in ar{\mathcal{S}}_m}\phi(\hat{f}_{ heta}, Z) + M\sqrt{rac{\ln(1/(q(heta)\delta))}{2m}}\ &\leq &rac{1}{m}\sum_{Z\in ar{\mathcal{S}}_m}\phi(\hat{f}_{ heta}, Z) + M\sqrt{rac{\ln(1/q(heta))}{2m}} + M\sqrt{rac{\ln(1/\delta)}{2m}}. \end{aligned}$$

Taking the union bound over θ , we know that the above claim holds for all $\theta \ge 1$ with probability at least $1 - \delta$. This result, combined with the definition of $\hat{\theta}$ in (2), leads to the first desired bound. Now by applying the Chernoff bound for an arbitrary θ that does not depend on \bar{S}_m , we obtain with probability at least $1 - \delta/2$:

$$Q(\theta, \hat{f}_{\theta}, \bar{\mathcal{S}}_m) \leq \mathbb{E}_{Z \sim \mathcal{D}} \phi(\hat{f}_{\theta}, Z) + r_m(q(\theta)) + M \sqrt{\frac{\ln(2/\delta)}{2m}}.$$

By combining this inequality with the first bound of the theorem, we obtain the second desired inequality.

Approximate ERM Learner

Consider a countable family of approximate ERM algorithms

$$\{\mathcal{A}(\theta,\cdot): \theta=1,2,\ldots\},\$$

each characterized by its model space $\mathcal{F}(\theta)$.

The approximate ERM algorithm $\mathcal{A}(\theta, \cdot)$ returns a function $\hat{f}_{\theta} \in \mathcal{F}(\theta)$ such that

$$\phi(\hat{f}, \mathcal{S}_n) \le \inf_{f \in \mathcal{F}(\theta)} \phi(f, \mathcal{S}_n) + \epsilon', \tag{3}$$

where we use the notation of Definition 1.

Oracle Inequality for Approximate ERM Learner

Corollary 3 (Cor 8.3)

Consider approximate ERM Learner (3). Assume further that $\sup_{Z,Z'}[\phi(f,Z) - \phi(f,Z')] \le M$ for all *f*, and we use (2) to select $\hat{\theta}$:

$$r_m(q) = M\sqrt{rac{\ln(1/q)}{2m}}$$

Then the following result holds with probability at least $1 - \delta$ over random selection of S_n and \overline{S}_m :

$$\phi(\mathcal{A}(\hat{\theta}, \mathcal{S}_n), \mathcal{D}) \leq \inf_{\theta} \left[\inf_{f \in \mathcal{F}(\theta)} \phi(f, \mathcal{D}) + 2R_n(\mathcal{G}(\theta), \mathcal{D}) + r_m(q(\theta)) \right] \\ + \tilde{\epsilon} + \epsilon' + M\sqrt{\frac{2\ln(4/\delta)}{n}} + M\sqrt{\frac{2\ln(4/\delta)}{m}},$$

where $R_n(\mathcal{G}(\theta), \mathcal{D})$ is the Rademacher complexity of $\mathcal{G}(\theta) = \{\phi(f, \cdot) : f \in \mathcal{F}(\theta)\}$ and $q(\theta)$ satisfies (1).

Result used in the Proof of Corollary 3

Corollary 4 (Cor 6.21)

Assume that for some $M \ge 0$:

$$\sup_{w\in\Omega}\sup_{z,z'}\left[\phi(w,z)-\phi(w,z')\right]\leq M.$$

Then the approximate ERM method

$$\phi(\hat{\boldsymbol{w}}, \mathcal{S}_n) \leq \min_{\boldsymbol{w} \in \Omega} \phi(\boldsymbol{w}, \mathcal{S}_n) + \epsilon'$$

satisfies the following oracle inequality. With probability at least $1 - \delta$:

$$\phi(\hat{\boldsymbol{w}}, \mathcal{D}) \leq \inf_{\boldsymbol{w} \in \Omega} \phi(\boldsymbol{w}, \mathcal{D}) + \epsilon' + 2R_n(\mathcal{G}, \mathcal{D}) + 2M\sqrt{\frac{\ln(2/\delta)}{2n}}$$

Proof of Corollary 3

Consider any model θ . We have from Theorem 2 that with probability $1 - \delta/2$,

$$\phi(\mathcal{A}(\hat{\theta}, \mathcal{S}_n), \mathcal{D}) \leq [\phi(\mathcal{A}(\theta, \mathcal{S}_n), \mathcal{D}) + r_m(q(\theta))] + \tilde{\epsilon} + M\sqrt{\frac{2\ln(4/\delta)}{m}}.$$

Moreover, from Corollary 4, we know that with probability at least $1 - \delta/2$:

$$\phi(\mathcal{A}(\theta, \mathcal{S}_n), \mathcal{D}) \leq \inf_{f \in \mathcal{F}(\theta)} \phi(f, \mathcal{D}) + \epsilon' + 2R_n(\mathcal{G}(\theta), \mathcal{D}) + 2M\sqrt{\frac{\ln(4/\delta)}{2n}}.$$

Taking the union bound, both inequalities hold with probability at least $1 - \delta$, which leads to the desired bound.

Example

Example 5 (Expl 8.4)

Consider a {0,1} valued binary classification problem, with binary classifiers $\mathcal{F}(\theta) = \{f_{\theta}(w, x) \in \{0, 1\} : w \in \Omega(\theta)\}$ of VC-dimension $d(\theta)$. The Rademacher complexity of $\mathcal{G}(\theta)$ is no larger than $(16\sqrt{d(\theta)})/\sqrt{n}$ (See Example 6.26). Take $q(\theta) = 1/(\theta + 1)^2$. Then we have from Corollary 3 that

$$\mathbb{E}_{\mathcal{D}}\mathbbm{1}(f_{\hat{ heta}}(\hat{w},X)
eq Y)\leq \inf_{ heta,w\in\Omega(heta)}\left[\mathbb{E}_{\mathcal{D}}\mathbbm{1}(f_{ heta}(w,X)
eq Y)+rac{32\sqrt{d(heta)}}{\sqrt{n}}
ight.
onumber \ +\sqrt{rac{\ln(heta+1)}{m}}
ight]+ ilde{\epsilon}+\epsilon'+\sqrt{rac{2\ln(4/\delta)}{n}}+\sqrt{rac{2\ln(4/\delta)}{m}}.$$

This result shows that the model selection algorithm of (2) can automatically balance the model accuracy $\mathbb{E}_{\mathcal{D}} \mathbb{1}(f_{\theta}(w, X) \neq Y)$ and model dimension $d(\theta)$. it can adaptively choose the optimal model θ , up to a penalty of $O(\sqrt{\ln(\theta + 1)/n})$.

Model Selection on Training Data

If we have a training data dependent generalization bound, then we can obtain a model selection algorithm that minimize the generalization bound on the training data without training/validation split.

Consider the following model selection algorithm, which simultaneously finds the model hyperparameter $\hat{\theta}$ and model function $\hat{f} \in \mathcal{F}(\hat{\theta})$ on the training data S_n :

$$Q(\hat{\theta}, \hat{f}, \mathcal{S}_n) \leq \inf_{\theta, f \in \mathcal{F}(\theta)} Q(\theta, f, \mathcal{S}_n) + \tilde{\epsilon},$$
(4)

where for $f \in \mathcal{F}(\theta)$,

$$Q(\theta, f, \mathcal{S}_n) = \phi(f, \mathcal{S}_n) + \tilde{R}(\theta, f, \mathcal{S}_n),$$

where \tilde{R} is an appropriately chosen sample dependent upper bound of the complexity for family $\mathcal{F}(\theta)$.

Theorem 6 (Uniform Convergence, Simplified from Thm 8.5)

Let $\{q(\theta) \ge 0\}$ be a sequence of numbers that satisfy (1). Assume that for each model θ , we have uniform convergence result as follows. With probability at least $1 - \delta$, for all $f \in \mathcal{F}(\theta)$,

$$\phi(f,\mathcal{D}) \leq \phi(f,\mathcal{S}_n) + \hat{\epsilon}(\theta,f,\mathcal{S}_n) + M(\theta) \sqrt{\frac{\ln(c_0/\delta)}{n}},$$

for some constants $M(\theta) > 0$ and $c_0 \ge 1$. If we choose

$$ilde{R}(heta, f, \mathcal{S}_n) \geq \hat{\epsilon}(heta, f, \mathcal{S}_n) + M(heta) \sqrt{rac{\ln(c_0/q(heta))}{n}},$$

then with probability at least $1 - \delta$, for all θ and $f \in \mathcal{F}(\theta)$:

$$\phi(f,\mathcal{D}) \leq \phi(f,\mathcal{S}_n) + \tilde{R}(\theta,f,\mathcal{S}_n) + M(\theta)\sqrt{\frac{\ln(1/\delta)}{n}}$$

Theorem 7 (Oracle Inequality, Simplified from Thm 8.5)

Under the assumptions of Theorem 6. If moreover, we have for all θ and $f \in \mathcal{F}(\theta)$, the following concentration bound hold, with probability $1 - \delta$:

$$\phi(f,\mathcal{S}_n)+\tilde{R}(\theta,f,\mathcal{S}_n)\leq \mathbb{E}_{\mathcal{S}_n}\left[\phi(f,\mathcal{S}_n)+\tilde{R}(\theta,f,\mathcal{S}_n)\right]+\epsilon'(\theta,f,\delta).$$

Then we have the following oracle inequality for (4). With probability at least $1 - \delta$:

$$egin{aligned} \phi(\hat{f},\mathcal{D}) &\leq \inf_{ heta, f\in\mathcal{F}(heta)} \left[\phi(f,\mathcal{D}) + \mathbb{E}_{\mathcal{S}_n} \tilde{R}(heta, f,\mathcal{S}_n) + \epsilon'(heta, f, \delta/2)
ight] \ &+ ilde{\epsilon} + M(heta) \sqrt{rac{\ln(2/\delta)}{n}}. \end{aligned}$$

Proof of Theorem 6

Taking union bound over θ , each with probability $1 - 0.5q(\theta)\delta$, we obtain that with probability at least $1 - \delta/2$, for all θ and $f \in \mathcal{F}(\theta)$,

$$\begin{split} \phi(f,\mathcal{D}) \leq &\phi(f,\mathcal{S}_n) + \hat{\epsilon}(\theta,f,\mathcal{S}_n) + M(\theta)\sqrt{\frac{\ln(c_0/q(\theta))}{n} + \frac{\ln(2/\delta)}{n}} \\ \leq &\phi(f,\mathcal{S}_n) + \hat{\epsilon}(\theta,f,\mathcal{S}_n) + M(\theta)\sqrt{\frac{\ln(c_0/q(\theta))}{n}} + M(\theta)\sqrt{\frac{\ln(2/\delta)}{n}} \\ \leq &\phi(f,\mathcal{S}_n) + \tilde{R}(\theta,f,\mathcal{S}_n) + M(\theta)\sqrt{\frac{\ln(2/\delta)}{n}}. \end{split}$$

The first inequality used the union bound over all $\mathcal{F}(\theta)$. The second inequality used Jensen's inequality. The third inequality used the assumption of \tilde{R} . This proves the desired uniform convergence result.

Proof of Theorem 7

Now since \hat{f} is the solution of (4), it follows that for all θ and $f \in \mathcal{F}(\theta)$, with probability at least $1 - \delta/2$:

$$\begin{split} \phi(\hat{f},\mathcal{D}) \leq &\phi(\hat{f},\mathcal{S}_n) + \tilde{R}(\hat{\theta},\hat{f},\mathcal{S}_n) + M(\theta)\sqrt{\frac{\ln(2/\delta)}{n}} \\ \leq &\phi(f,\mathcal{S}_n) + \tilde{R}(\theta,f,\mathcal{S}_n) + M(\theta)\sqrt{\frac{\ln(2/\delta)}{n}} + \tilde{\epsilon} \end{split}$$

In addition, with probability at least $1 - \delta/2$:

$$\phi(f, \mathcal{S}_n) + \tilde{R}(\theta, f, \mathcal{S}_n) \leq \mathbb{E}_{\mathcal{S}_n} \left[\phi(f, \mathcal{S}_n) + \tilde{R}(\theta, f, \mathcal{S}_n) \right] + \epsilon'(\theta, f, \delta/2).$$

Taking the union bound, and sum of the two inequalities, we obtain the desired oracle inequality.

Model Selection Using Rademacher Complexity

Theorem 8 (Thm 8.7)

Consider the model selection algorithm in (4), with

$$ilde{R}(heta, f, \mathcal{S}_n) = ilde{R}(heta) \geq 2R_n(\mathcal{F}(heta), \mathcal{D}) + M(heta) \sqrt{rac{\ln(1/q(heta))}{2n}},$$

where $M(\theta) = \sup_{f,z,z'} |\phi(f,z) - \phi(f,z')|$, and $q(\theta)$ satisfies (1). Then with probability at least $1 - \delta$, for all θ and $f \in \mathcal{F}(\theta)$:

$$\phi(f, \mathcal{D}) \leq \phi(f, \mathcal{S}_n) + \tilde{R}(\theta) + M(\theta) \sqrt{\frac{\ln(1/\delta)}{2n}}$$

Moreover, we have oracle inequality: with probability of at least $1 - \delta$,

$$\phi(\hat{f}, \mathcal{D}) \leq \inf_{\theta, f \in \mathcal{F}(\theta)} \left[\phi(f, \mathcal{D}) + \tilde{R}(\theta) + 2M(\theta) \sqrt{\frac{\ln(2/\delta)}{2n}} \right] + \tilde{\epsilon}$$

Using Rademacher complexity, we know for any θ , with probability $1 - \delta$, the following uniform convergence result holds for all $f \in \mathcal{F}(\theta)$:

$$\phi(f,\mathcal{D}) \leq \phi(f,\mathcal{S}_n) + 2R_n(\mathcal{F}(\theta),\mathcal{D}) + M(\theta)\sqrt{\frac{\ln(1/\delta)}{2n}}.$$

The choice of \tilde{R} satisfies the condition of Theorem 6. It implies the desired uniform convergence result.

Proof of Theorem 8 (II/II)

Given fixed θ and $f \in \mathcal{F}(\theta)$, we know that

$$\left| \left[\phi(f, \mathcal{S}_n) + \tilde{R}(\theta) \right] - \left[\phi(f, \mathcal{S}'_n) + \tilde{R}(\theta) \right] \right| \leq M(\theta)$$

when S_n and S'_n differ by one element. From McDiarmid's inequality, we know that with probability at least $1 - \delta$,

$$\phi(f, \mathcal{S}_n) + \tilde{R}(\theta) \le \phi(f, \mathcal{D}) + \tilde{R}(\theta) + M(\theta) \sqrt{\frac{\ln(1/\delta)}{2n}}$$

It follows that we can take

$$\epsilon'(\theta, f, \delta) = M(\theta) \sqrt{\frac{\ln(1/\delta)}{2n}}$$

in Theorem 7, and obtain the desired oracle inequality.

Example

Example 9

Consider the same problem considered in Example 5. We can take $M(\theta) = 1$ and h = 0 in Theorem 8. It implies that the model selection method (4) with

$$\tilde{R}(\theta, f, \mathcal{S}_n) = \frac{32\sqrt{d(\theta)}}{\sqrt{n}} + \sqrt{\frac{\ln(\theta+1)}{n}}$$

satisfies the following oracle inequality. With probability 1 - δ :

$$\mathbb{E}_{\mathcal{D}}\mathbbm{1}(f_{\hat{ heta}}(\hat{ heta},X)
eq Y) \leq \inf_{ heta,w\in\Omega_{ heta}}\left[\mathbb{E}_{\mathcal{D}}\mathbbm{1}(f_{ heta}(w,X)
eq Y) + rac{32\sqrt{d(heta)}}{\sqrt{n}} + \sqrt{rac{\ln(heta+1)}{n}}
ight] + \sqrt{rac{2\ln(2/\delta)}{n}}.$$

The result is comparable to that of Example 5.

Summary (Chapter 8)

- Model Selection Problem
- Model Selection on Validation Data
- Model Selection on Training Data using Sample Dependent Bound