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Model Selection

Mathematical Analysis of Machine Learning Algorithms
(Chapter 8)
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Model Selection Problem
Model
A model is a learning algorithm A(θ,Sn) that maps the training data
Sn to a prediction function f ∈ F(θ) = {f (w , x) : w ∈ Ω(θ)} ⊂ F ,
indexed by a hyperparameter θ ∈ Θ. For simplicity, we take
F = ∪F(θ).

Model Selection
The goal of model selection is to find the best model hyperparameter
θ so that the corresponding learning algorithm A(θ, ·) achieves a
small test error.

We also let

φ(f ,Z ) = L(f (X ),Y ) φ(w ,Z ) = L(f (w ,X ),Y )

φ(f ,D) = EZ∼D φ(f ,Z ), φ(f ,Sn) =
1
n

∑
Z∈Sn

φ(f ,Z ).
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Definition of Model Selection
Definition 1 (Def 8.1)

Consider a loss function φ(f , z) : F × Z → R, and a model family
{A(θ,Sn) : Θ×Zn → F ,n ≥ 0}. Consider N ≥ n ≥ 0, and iid dataset
Sn ⊂ SN ∼ DN . A model selection algorithm Ā maps SN to
θ̂ = θ̂(SN) ∈ Θ, and then train a model f̂ = A(θ̂(SN),Sn) = Ā(SN). It
satisfies an εn,N(·, ·) oracle inequality if there exists εn,N(θ, δ), such
that for all δ ∈ (0,1), with probability at least 1− δ over SN :

φ(A(θ̂(SN),Sn),D) ≤ inf
θ∈Θ

[
ESnφ(A(θ,Sn),D) + εn,N(θ, δ)

]
.

More generally, a learning algorithm Ā : SN → F is εn,N(·, ·) adaptive
to the model family {A(θ, ·) : θ ∈ Θ} if there exists εn,N(θ, δ), such that
for all δ ∈ (0,1), with probability at least 1− δ over SN :

φ(Ā(SN),D) ≤ inf
θ∈Θ

[
ESnφ(A(θ,Sn),D) + εn,N(θ, δ)

]
.
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Model Selection Example: Hyperparameter Tuning

Consider ridge regression algorithm indexed by the regularization
parameter λ > 0:

ŵ(λ) = arg min
w∈Rd

[
n∑

i=1

(w>Xi − Yi)
2 + λ‖w‖22

]
,

where {(X1,Y1), . . . , (Xn,Yn)} are training data. For this problem, we
have

F = {w>x : w ∈ Rd , x ∈ Rd}.

The goal is to find λ so that the test error

E(X ,Y )(Y − ŵ(λ)>X )2

is as small as possible. The parameter λ is called hyperparameter.
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Model Selection on Validation Set

Split a labeled data into training data of size n and test data of size m
I training data: Sn

I validation data: S̄m

Given model hyperprameter θ, we train a prediction function

f̂θ = A(θ,Sn) ∈ F

based on training data Sn.

We then select θ̂ based on validation data S̄ so that the test error

EDφ(f̂θ̂,Z )

is small.
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Model Selection Algorithm

Let {q(θ) ≥ 0} be a sequence of non-negative numbers that satisfies
the inequality

∞∑
θ=1

q(θ) ≤ 1. (1)

Consider the following model selection algorithm that selects θ̂ to
approximately minimize:

Q(θ̂,A(θ̂,Sn), S̄m) ≤ inf
θ

Q(θ,A(θ,Sn), S̄m) + ε̃, (2)

where

Q(θ, f , S̄m) =φ(f , S̄m) + rm(q(θ)).
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Discrete Model Selection Result
Theorem 2 (Model Selction on Validation Data, Thm 8.2)

Assume supZ ,Z ′ [φ(f ,Z )− φ(f ,Z ′)] ≤ M. Consider (2) with

rm(q) = M

√
ln(1/q)

2m
.

Then with probability at least 1− δ over the random selection of Sm:

φ(A(θ̂,Sn),D) ≤ inf
θ

Q(θ,A(θ,Sn), S̄m) + ε̃+ M

√
ln(1/δ)

2m
.

This implies the following oracle inequality. With probability at least
1− δ over the random sampling of S̄m:

φ(A(θ̂,Sn),D) ≤ inf
θ

[φ(A(θ,Sn),D) + rm(q(θ))] + ε̃+ M

√
2 ln(2/δ)

m
,

where q(θ) satisfies (1).
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Proof of Theorem 2
For each model θ, let f̂θ = A(θ,Sn). We obtain from the additive
Chernoff bound that with probability at least 1− q(θ)δ:

EZ∼Dφ(f̂θ,Z ) ≤ 1
m

∑
Z∈S̄m

φ(f̂θ,Z ) + M

√
ln(1/(q(θ)δ))

2m

≤ 1
m

∑
Z∈S̄m

φ(f̂θ,Z ) + M

√
ln(1/q(θ))

2m
+ M

√
ln(1/δ)

2m
.

Taking the union bound over θ, we know that the above claim holds
for all θ ≥ 1 with probability at least 1− δ. This result, combined with
the definition of θ̂ in (2), leads to the first desired bound.
Now by applying the Chernoff bound for an arbitrary θ that does not
depend on S̄m, we obtain with probability at least 1− δ/2:

Q(θ, f̂θ, S̄m) ≤ EZ∼Dφ(f̂θ,Z ) + rm(q(θ)) + M

√
ln(2/δ)

2m
.

By combining this inequality with the first bound of the theorem, we
obtain the second desired inequality.
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Approximate ERM Learner

Consider a countable family of approximate ERM algorithms

{A(θ, ·) : θ = 1,2, . . .},

each characterized by its model space F(θ).

The approximate ERM algorithm A(θ, ·) returns a function f̂θ ∈ F(θ)
such that

φ(f̂ ,Sn) ≤ inf
f∈F(θ)

φ(f ,Sn) + ε′, (3)

where we use the notation of Definition 1.
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Oracle Inequality for Approximate ERM Learner
Corollary 3 (Cor 8.3)

Consider approximate ERM Learner (3). Assume further that
supZ ,Z ′ [φ(f ,Z )− φ(f ,Z ′)] ≤ M for all f , and we use (2) to select θ̂:

rm(q) = M

√
ln(1/q)

2m
.

Then the following result holds with probability at least 1− δ over
random selection of Sn and S̄m:

φ(A(θ̂,Sn),D) ≤ inf
θ

[
inf

f∈F(θ)
φ(f ,D) + 2Rn(G(θ),D) + rm(q(θ))

]
+ ε̃+ ε′ + M

√
2 ln(4/δ)

n
+ M

√
2 ln(4/δ)

m
,

where Rn(G(θ),D) is the Rademacher complexity of
G(θ) = {φ(f , ·) : f ∈ F(θ)} and q(θ) satisfies (1).
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Result used in the Proof of Corollary 3

Corollary 4 (Cor 6.21)

Assume that for some M ≥ 0:

sup
w∈Ω

sup
z,z′

[
φ(w , z)− φ(w , z ′)

]
≤ M.

Then the approximate ERM method

φ(ŵ ,Sn) ≤ min
w∈Ω

φ(w ,Sn) + ε′

satisfies the following oracle inequality. With probability at least 1− δ:

φ(ŵ ,D) ≤ inf
w∈Ω

φ(w ,D) + ε′ + 2Rn(G,D) + 2M

√
ln(2/δ)

2n
.



12

Proof of Corollary 3

Consider any model θ. We have from Theorem 2 that with probability
1− δ/2,

φ(A(θ̂,Sn),D) ≤ [φ(A(θ,Sn),D) + rm(q(θ))] + ε̃+ M

√
2 ln(4/δ)

m
.

Moreover, from Corollary 4, we know that with probability at least
1− δ/2:

φ(A(θ,Sn),D) ≤ inf
f∈F(θ)

φ(f ,D) + ε′ + 2Rn(G(θ),D) + 2M

√
ln(4/δ)

2n
.

Taking the union bound, both inequalities hold with probability at least
1− δ, which leads to the desired bound.
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Example
Example 5 (Expl 8.4 )

Consider a {0,1} valued binary classification problem, with binary
classifiers F(θ) = {fθ(w , x) ∈ {0,1} : w ∈ Ω(θ)} of VC-dimension
d(θ). The Rademacher complexity of G(θ) is no larger than
(16
√

d(θ))/
√

n (See Example 6.26). Take q(θ) = 1/(θ + 1)2. Then
we have from Corollary 3 that

ED1(fθ̂(ŵ ,X ) 6= Y ) ≤ inf
θ,w∈Ω(θ)

[
ED1(fθ(w ,X ) 6= Y ) +

32
√

d(θ)√
n

+

√
ln(θ + 1)

m

]
+ ε̃+ ε′ +

√
2 ln(4/δ)

n
+

√
2 ln(4/δ)

m
.

This result shows that the model selection algorithm of (2) can
automatically balance the model accuracy ED1(fθ(w ,X ) 6= Y ) and
model dimension d(θ). it can adaptively choose the optimal model θ,
up to a penalty of O(

√
ln(θ + 1)/n).
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Model Selection on Training Data

If we have a training data dependent generalization bound, then we
can obtain a model selection algorithm that minimize the
generalization bound on the training data without training/validation
split.
Consider the following model selection algorithm, which
simultaneously finds the model hyperparameter θ̂ and model function
f̂ ∈ F(θ̂) on the training data Sn:

Q(θ̂, f̂ ,Sn) ≤ inf
θ,f∈F(θ)

Q(θ, f ,Sn) + ε̃, (4)

where for f ∈ F(θ),

Q(θ, f ,Sn) =φ(f ,Sn) + R̃(θ, f ,Sn),

where R̃ is an appropriately chosen sample dependent upper bound
of the complexity for family F(θ).
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Theorem 6 (Uniform Convergence, Simplified from Thm 8.5)

Let {q(θ) ≥ 0} be a sequence of numbers that satisfy (1). Assume
that for each model θ, we have uniform convergence result as follows.
With probability at least 1− δ, for all f ∈ F(θ),

φ(f ,D) ≤ φ(f ,Sn) + ε̂(θ, f ,Sn) + M(θ)

√
ln(c0/δ)

n
,

for some constants M(θ) > 0 and c0 ≥ 1. If we choose

R̃(θ, f ,Sn) ≥ ε̂(θ, f ,Sn) + M(θ)

√
ln(c0/q(θ))

n
,

then with probability at least 1− δ, for all θ and f ∈ F(θ):

φ(f ,D) ≤ φ(f ,Sn) + R̃(θ, f ,Sn) + M(θ)

√
ln(1/δ)

n
.
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Theorem 7 (Oracle Inequality, Simplified from Thm 8.5)

Under the assumptions of Theorem 6. If moreover, we have for all θ
and f ∈ F(θ), the following concentration bound hold, with probability
1− δ:

φ(f ,Sn) + R̃(θ, f ,Sn) ≤ESn

[
φ(f ,Sn) + R̃(θ, f ,Sn)

]
+ ε′(θ, f , δ).

Then we have the following oracle inequality for (4). With probability
at least 1− δ:

φ(f̂ ,D) ≤ inf
θ,f∈F(θ)

[
φ(f ,D) + ESnR̃(θ, f ,Sn) + ε′(θ, f , δ/2)

]
+ ε̃+ M(θ)

√
ln(2/δ)

n
.



17

Proof of Theorem 6

Taking union bound over θ, each with probability 1− 0.5q(θ)δ, we
obtain that with probability at least 1− δ/2, for all θ and f ∈ F(θ),

φ(f ,D) ≤φ(f ,Sn) + ε̂(θ, f ,Sn) + M(θ)

√
ln(c0/q(θ))

n
+

ln(2/δ)

n

≤φ(f ,Sn) + ε̂(θ, f ,Sn) + M(θ)

√
ln(c0/q(θ))

n
+ M(θ)

√
ln(2/δ)

n

≤φ(f ,Sn) + R̃(θ, f ,Sn) + M(θ)

√
ln(2/δ)

n
.

The first inequality used the union bound over all F(θ). The second
inequality used Jensen’s inequality. The third inequality used the
assumption of R̃. This proves the desired uniform convergence result.



18

Proof of Theorem 7

Now since f̂ is the solution of (4), it follows that for all θ and f ∈ F(θ),
with probability at least 1− δ/2:

φ(f̂ ,D) ≤φ(f̂ ,Sn) + R̃(θ̂, f̂ ,Sn) + M(θ)

√
ln(2/δ)

n

≤φ(f ,Sn) + R̃(θ, f ,Sn) + M(θ)

√
ln(2/δ)

n
+ ε̃.

In addition, with probability at least 1− δ/2:

φ(f ,Sn) + R̃(θ, f ,Sn) ≤ ESn

[
φ(f ,Sn) + R̃(θ, f ,Sn)

]
+ ε′(θ, f , δ/2).

Taking the union bound, and sum of the two inequalities, we obtain
the desired oracle inequality.
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Model Selection Using Rademacher Complexity
Theorem 8 (Thm 8.7)

Consider the model selection algorithm in (4), with

R̃(θ, f ,Sn) = R̃(θ) ≥ 2Rn(F(θ),D) + M(θ)

√
ln(1/q(θ))

2n
,

where M(θ) = supf ,z,z′
∣∣φ(f , z)− φ(f , z ′)

∣∣, and q(θ) satisfies (1). Then
with probability at least 1− δ, for all θ and f ∈ F(θ):

φ(f ,D) ≤ φ(f ,Sn) + R̃(θ) + M(θ)

√
ln(1/δ)

2n
.

Moreover, we have oracle inequality: with probability of at least 1− δ,

φ(f̂ ,D) ≤ inf
θ,f∈F(θ)

[
φ(f ,D) + R̃(θ) + 2M(θ)

√
ln(2/δ)

2n

]
+ ε̃.
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Proof of Theorem 8 (I/II)

Using Rademacher complexity, we know for any θ, with probability
1− δ, the following uniform convergence result holds for all f ∈ F(θ):

φ(f ,D) ≤φ(f ,Sn) + 2Rn(F(θ),D) + M(θ)

√
ln(1/δ)

2n
.

The choice of R̃ satisfies the condition of Theorem 6. It implies the
desired uniform convergence result.
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Proof of Theorem 8 (II/II)

Given fixed θ and f ∈ F(θ), we know that∣∣[φ(f ,Sn) + R̃(θ)]− [φ(f ,S ′n) + R̃(θ)]
∣∣ ≤ M(θ)

when Sn and S ′n differ by one element. From McDiarmid’s inequality,
we know that with probability at least 1− δ,

φ(f ,Sn) + R̃(θ) ≤ φ(f ,D) + R̃(θ) + M(θ)

√
ln(1/δ)

2n
.

It follows that we can take

ε′(θ, f , δ) = M(θ)

√
ln(1/δ)

2n

in Theorem 7, and obtain the desired oracle inequality.
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Example
Example 9

Consider the same problem considered in Example 5. We can take
M(θ) = 1 and h = 0 in Theorem 8. It implies that the model selection
method (4) with

R̃(θ, f ,Sn) =
32
√

d(θ)√
n

+

√
ln(θ + 1)

n

satisfies the following oracle inequality. With probability 1− δ:

ED1(fθ̂(θ̂,X ) 6= Y ) ≤ inf
θ,w∈Ωθ

[
ED1(fθ(w ,X ) 6= Y ) +

32
√

d(θ)√
n

+

√
ln(θ + 1)

n

]
+

√
2 ln(2/δ)

n
.

The result is comparable to that of Example 5.
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Summary (Chapter 8)

I Model Selection Problem
I Model Selection on Validation Data
I Model Selection on Training Data using Sample Dependent

Bound


