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(Chapter 7)
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Algorithmic Stability

We consider a more general setting where the training algorithm may
not necessarily correspond to an ERM method.

We are still interested in bounding the difference of training error and
generalization of such an algorithm. We introduce the notation of
algorithmic stability as follows.

Definition 1
An algorithm A is ε-uniformly stable if for all Sn and S ′n that differ by
only one element:

sup
z∈Z

[EAφ(A(S ′n), z)− EAφ(A(Sn), z)] ≤ ε,

where EA denotes the expectation over the internal randomization of
the algorithm.
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Expected Generalization Bound

Theorem 2 (Thm 7.2)

If an algorithm A is ε-uniformly stable, then for Sn ∼ Dn:

ESnEAφ(A(Sn),D) ≤ ESnEAφ(A(Sn),Sn) + ε.
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Proof of Theorem 2

Consider two independent samples of size n: Sn = {Z1, . . . ,Zn} and
S ′n = {Z ′1, . . . ,Z ′n}. Let S(i)

n = {Z1, . . . ,Zi−1,Z ′i ,Zi+1, . . . ,Zn}. Let p(i)
t

be the distribution obtained by A with S(i)
n . We have

ESnEAφ(A(Sn),D)− ESnEAφ(A(Sn),Sn)

=
1
n

n∑
i=1

ES′nESnEAφ(A(S(i)
n ),Zi)−

1
n

n∑
i=1

ESnEAφ(A(Sn),Zi)

=
1
n

n∑
i=1

ES′nESn [EAφ(A(S(i)
n ),Zi)− EAφ(A(Sn),Zi)] ≤ ε.

The first equation used the fact that Zi is independent of S(i)
n , and thus

the distribution of φ(A(S(i)
n ),Zi) is the same as that of φ(A(Sn),Z )

with Z ∼ D. The inequality used the definition of uniform stability.
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Large Probability Bound

Theorem 3 (Thm 7.3)

Assume that A is ε uniformly stable. Let Sn = {Z1, . . . ,Zn} ∼ Dn and
S ′n = {Z ′1, . . . ,Z ′n} ∼ Dn be independent training and validation sets of
iid data from D. Assume that for some δ ∈ (0,1), we have the
following inequality between the expected validation loss and the
expected test loss. With probability at least 1− δ,

ESn EA φ(A(Sn),D) ≤ 1
n

n∑
i=1

ESn EA φ(A(Sn),Z ′i ) + εn(δ). (1)

Then with probability at least 1− δ:

EAφ(A(Sn),D) ≤EAφ(A(Sn),Sn)

+ εn(δ/2) + (2 + 5dlog2 ne)ε ln(2/δ) + 2ε.



6

Example

Example 4 (Expl 7.4 )

For bounded loss φ(·, ·) ∈ [0,1], we can apply the additive Chernoff
bound and let

εn(δ) =

√
ln(1/δ)

2n
in (1). This leads to the following inequality. With probability at least
1− δ:

EAφ(A(Sn),D) ≤EAφ(A(Sn),Sn) + (2 + 5dlog2 ne)ε ln(2/δ)

+ 2ε+

√
ln(2/δ)

2n
.
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Leave-One-Out Stability

Definition 5
Given datasets Sn = {Z1, . . . ,Zn} ⊂ Sn+1 = {Z1, . . . ,Zn,Zn+1}. Let
ε(·, ·) be a function Z × Zn+1 → R. The algorithm A(Sn) is ε(·, ·)
leave-one-out stable if there exists Ā(Sn+1) such that for all
(Zn+1,Sn+1):

EAφ(A(Sn),Zn+1)− EĀφ(Ā(Sn+1),Zn+1) ≤ ε(Zn+1,Sn+1),

where EA denotes the expectation over the internal randomization of
the algorithm.
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Generalization Bound

Theorem 6 (Thm 7.7)

If an algorithm A is ε(·, ·)-leave-one-out stable, then

ESnEAφ(A(Sn),D) ≤ESn+1EĀφ(Ā(Sn+1),Sn+1)

+ ESn+1

1
n + 1

∑
Z∈Sn+1

ε(Z ,Sn+1).
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Convexity

Definition 7
Given λ ≥ 0. A function φ(w) is λ-strongly convex in w if for all
w ,w ′ ∈ Ω:

φ(w ′) ≥ φ(w) +∇φ(w)>(w ′ − w) +
λ

2
‖w − w ′‖22.

A function φ(w) is convex if it is 0-strongly convex.

Properties of convexity can be found in Appendix A.
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Stability of ERM under Strong Convexity

Theorem 8 (Simplification with h(·) = 0, Thm 7.8)

Assume that φ(w , z) is G(z)-Lipschitz in w on a closed convex set Ω.
The training loss φ(w ,Sn) is λ strongly convex. Then the regularized
empirical risk minimization method

A(Sn) = arg min
w∈Ω

φ(w ,Sn)

is ε(Zn+1,Sn+1) = G(Zn+1)2/(λ(n + 1)) leave-one-out stable. If
moreover we have supz G(z) ≤ G, then it is ε = 2G2/(λn) uniformly
stable.
Then the following expected oracle inequality holds:

ESnφ(A(Sn),D) ≤ inf
w∈Ω

[φ(w ,D)] +
EZ G(Z )2

λ(n + 1)
.
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Example: Stability of SVM
We consider the binary linear support vector machine (SVM)
formulation with y ∈ {±1}, which employs the hinge loss

L(f (w , x), y) = max(1− f (w , x)y ,0), g(w) =
λ

2
‖w‖22,

with linear function class {f (w , x) = w>ψ(x) : w ∈ Rd}, where
ψ(x) ∈ Rd is a known feature vector. Let

φ(w , z) = L(f (w , x), y) + g(w).

We will prove G(Z ) = ‖ψ(X )‖2 +
√

2λ Lipschitz result for the ERM
solutions, which implies the following result from Theorem 8.

SVM Generalization Bound

ESnφ(A(Sn),D) ≤ inf
w∈Rd

φ(w ,D) +
EX (‖ψ(X )‖2 +

√
2λ)2

λ(n + 1)
.
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Stability of SVM: Lipschitz Constant for ERM Solutions

The loss φ(w , z) = L(f (w , x), y) + g(w) is λ strongly convex.
Moreover, the empirical minimizer A(Sn) satisfies

φ(A(Sn),Sn) ≤ φ(0,Sn) = 1.

Therefore ‖A(Sn)‖2 ≤
√

2/λ. This implies that we may consider the
restriction of SVM to

Ω =
{

w : ‖w‖2 ≤
√

2/λ
}

without changing the solution. It is clear that on Ω, φ(w ,Z ) with
Z = (X ,Y ) is

G(Z ) = ‖ψ(X )‖2 +
√

2λ

Lipschitz.
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Stochastic Gradient Descent (SGD)

One advantage of stability analysis is that it can be applied to
computational procedures such as SGD, which cannot be handled
directly by empirical process analysis.

Let Ω be a convex set, the projected SGD method is described below.

Algorithm 1: Stochastic Gradient Descent Algorithm
Input: Sn, φ̄(w , z), w0, learning rates {ηt}
Output: wT

1 for t = 1,2, . . . ,T do
2 Randomly pick Z ∼ Sn
3 Let wt = projΩ(wt−1 − ηt∇φ̄(wt−1,Z ))

4 where projΩ(v) = arg minu∈Ω ‖u − v‖22
Return: wT



14

Contraction of SGD

Definition 9
A function φ̄(w) : Rd → R is L-smooth and λ-strongly convex if
∀w ,w ′ ∈ Rd :

λ

2
‖w − w ′‖22 ≤ φ̄(w ′)− φ̄(w)−∇φ̄(w)>(w ′ − w) ≤ L

2
‖w − w ′‖22.

The following contraction property of SGD used to derive its stability.

Lemma 10 (SGD contraction, Lem 7.12 )

Assume φ̄(w) is an L-smooth and λ-strongly convex function of w on
Rd . Then for all w ,w ′ ∈ Rd and η ∈ [0,1/L]:

‖projΩ(w − η∇φ̄(w))− projΩ(w ′ − η∇φ̄(w ′))‖2 ≤ (1− λη)‖w − w ′‖2.
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Uniform Stability of SGD

We have the following uniform stability result for the SGD procedure
under convex loss functions.

Theorem 11 (Thm 7.13)

Assume that φ̄(w , z) = φ(w , z) + h(w) is λ-strongly convex and
L-smooth in w on Rd . Moreover, assume φ(w , z) is G Lipschitz on Ω.
Define b0 = 0, and for t ≥ 1:

bt = (1− ηtλ)bt−1 +
2ηt

n
G2,

where ηt ∈ [0,1/L]. Then after T steps, Algorithm 1 is ε = bT
uniformly stable with respect to φ(w , z).

The result also holds for an arbitrary convex combination of the form∑T
t=0 αtwt as the output of Algorithm 1.
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Proof of Theorem 11 (I/II)
Let wt be the intermediate steps of SGD on Sn, and w ′t be the
intermediate steps of SGD on S ′n = (Sn \ {Zn})∪ {Z ′n}. We consider a
coupling of wt and w ′t , with the same randomization for wt and w ′t ,
except when we choose Z = Z ′n for update of w ′t , we choose Z = Zn
for updating of wt with i drawn uniformly from [n].
It follows from Lemma 10 that with this coupling, at each t , with
probability n−1

n , we choose the same Zi to update both wt and w ′t :

‖wt − w ′t ‖2 ≤ (1− ληt )‖wt−1 − w ′t−1‖2.

With probability 1/n, we have

‖wt − w ′t ‖2 ≤‖[wt−1 − ηt∇φ̄(wt−1,Zn)]− [w ′t−1 − ηt∇φ̄(w ′t−1,Zn)]‖2
+ ηt‖∇φ̄(w ′t−1,Zn)−∇φ̄(w ′t−1,Z

′
n)‖2

≤(1− ληt )‖wt−1 − w ′t−1‖2 + 2Gηt ,

where i is uniformly from [n]. The second inequality used Lemma 10
again.
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Proof of Theorem 11 (II/II)
Therefore

EA‖wt − w ′t ‖2 ≤(1− ηtλ)EA‖wt−1 − w ′t−1‖2 +
2ηtG

n
.

We now define
st = EA ‖wt − w ′t ‖2G,

then we have

st ≤(1− ηtλ)st−1 +
2ηt

n
G.

It follows from the definition of bt that st ≤ bt . Therefore

EA ‖wT − w ′T‖2G ≤ bT . (2)

Let ε(Z ) = EAφ(A(Sn),Z )− EAφ(A(S ′n),Z ), then from the Lipschitz
condition of φ(w ,Z ) and (2), we obtain

ε(Z ) ≤ EA‖A(Sn)−A(S ′n)‖2G ≤ bT .

This proves the desired result.
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Example (Example 7.15 in the Book)
Convergence of SGD (Thm 14.5 in the Book)

Consider a constant learning rate η for T steps, and a final estimator
wt from Algorithm 1, with t drawn uniformly from 0 to T − 1.
Algorithm 1 approximately solves the ERM problem with λ = 0:

EAφ(A(Sn),Sn) ≤ inf
w∈Ω

[
φ(w ,Sn) +

‖w0 − w‖22
2Tη

]
+
η

2
G2,

where we assume that ‖∇φ(w , z)‖2 ≤ G.

We can take bt = 2ηtG2/n in Theorem 11 with λ = 0. This implies a
generalization bound

ESnEAφ(A(Sn),D) ≤ inf
w∈Ω

[
φ(w ,D) +

‖w0 − w‖22
2Tη

]
+
η

2
G2 +

2ηTG2

n
.

Note that Example 7.15 uses leave-one-out stability bound (Thm 7.14
in the book), leading to a slightly better result.
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Gibbs Algorithm for Nonconvex Loss
For nonconvex problems, ERM is not necessarily stable.

Gibbs Algorithm

Gibbs algorithm is a learning algorithm that randomly draws w from
the following “posterior distribution”, also referred to as the Gibbs
distribution:

p(w |Sn) ∝ p0(w) exp

−β ∑
Z∈Sn

φ(w ,Z )

 , (3)

where β > 0 is a tuning parameter, p0(w) is a prior on Ω.

The test performance of Gibbs algorithm is measured by the
expectation:

EAφ(A(Sn),D) = Ew∼p(w |Sn)φ(w ,D).
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Uniform Stability of Gibbs Algorithm

Theorem 12 (Thm 7.17)

Consider the Gibbs algorithm A described in (3). If for all z:

sup
w∈Ω

φ(w , z)− inf
w∈Ω

φ(w , z) ≤ M,

then A is ε = 0.5(e2βM − 1)M uniformly stable.
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Proof of Theorem 12 (I/II)

Consider Sn and S ′n that differ by one element. It follows that for any
w :

exp(−βM) ≤ exp(−βφ(w ,S ′n))

exp(−βφ(w ,Sn))
≤ exp(βM).

This implies that

exp(−βM) ≤
Ew∼p0 exp(−βφ(w ,S ′n))

Ew∼p0 exp(−βφ(w ,Sn))
≤ exp(βM).

Therefore

p(w |S ′n)

p(w |Sn)
=

exp(−βφ(w ,S ′n))

exp(−βφ(w ,Sn))

Ew∼p0 exp(−βφ(w ,Sn))

Ew∼p0 exp(−βφ(w ,S ′n))
≤ e2βM .
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Proof of Theorem 12 (II/II)

This implies that∣∣∣∣p(w |S ′n)

p(w |Sn)
− 1
∣∣∣∣ ≤ max

(
1− e−2βM ,e2βM − 1

)
≤ e2βM − 1.

Now let φ̄(z) = infw φ(w , z) + 0.5M. We know that
|φ(w , z)− φ̄(z)| ≤ 0.5M. Therefore

EAφ(A(S ′n), z)− EAφ(A(Sn), z)

=Ew∼p(·|Sn)

(
p(w |S ′n)

p(w |Sn)
− 1
)

[φ(w , z)− φ̄(z)]

≤Ew∼p(·|Sn)

∣∣∣∣p(w |S ′n)

p(w |Sn)
− 1
∣∣∣∣ |φ(w , z)− φ̄(z)|

≤(e2βM − 1) · 0.5M.

This proves the desired result.
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Example

Example 13 (Expl 7.18 )

Consider the Gibbs algorithm A described in (3) with bounded loss
as in Theorem 12. We have the following expected oracle inequality.

ESnEAφ(A(Sn),D)

≤ESnEAφ(A(Sn),Sn) + 0.5(e2βM − 1)M

≤ESn

[
Ew∼p(·|Sn)φ(w ,Sn) +

1
βn

KL(p(·|Sn)||p0)

]
+ 0.5(e2βM − 1)M

≤ inf
p

[
Ew∼pφ(w ,D) +

1
βn

KL(p||p0)

]
+ 0.5(e2βM − 1)M.

The last inequality used (Eq 7.10) in the book, which states

p(w |Sn) = arg min
p∈∆(Ω)

[
Ew∼pφ(w ,Sn) +

1
βn

KL(p||p0)

]
.
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Stochastic Gradient Langevin Dynamics

Algorithm 2: Stochastic Gradient Langevin Dynamics Algorithm
Input: Sn, φ̄(w , z), p0, learning rates {ηt}
Output: wT

1 Draw w0 ∼ p0
2 for t = 1,2, . . . ,T do
3 Randomly pick Z ∼ Sn uniformly at random
4 Randomly generate εt ∼ N(0, I)
5 Let w̃t = wt−1 − ηt∇φ̄(wt−1,Z ) +

√
2ηt/βεt

6 Let wt = projΩ(w̃t ), where projΩ(v) = arg minu∈Ω ‖u − v‖22
Return: wT

Similar to SGD, which solves ERM, the stochastic gradient Langevin
dynamics (SGLD) algorithm can be used to sample from the Gibbs
distribution.
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Stability of SGLD: Convex Functions

Theorem 14 (Thm 7.22)

Assume that φ̄(w , z) = φ(w , z) + h(w) is λ-strongly convex and
L-smooth in w on Rd . Moreover, assume φ(w , z) is G Lipschitz on Ω.
Define b0 = 0, and for t ≥ 1:

bt = (1− ηtλ)bt−1 +
2ηt

n
G2,

where ηt ∈ [0,1/L]. Then after T steps, Algorithm 2 is ε = bT
uniformly stable. The result also holds for any random convex
combinations of {wt : t ≤ T} with combination coefficients from a
known distribution.

Proof.
Since the addition of Gaussian noise is independent of the data, the
same stability analysis of SGD still holds.
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Stability of SGLD: Non-Convex Functions

It is simpler to analyze the non-stochastic version (often referred to as
unadjusted Langevin algorithm, or ULA), where line 5 of Algorithm 2
is replaced by the full gradient

w̃t = wt−1 − ηt∇φ̄(wt−1,Sn) +
√

2ηt/βεt . (4)

Theorem 15 (Thm 7.23)

Assume that for all z, z ′, φ̄(w , z)− φ̄(w , z ′) is a G-Lipschitz function
of w on Ω ⊂ Rd (but φ̄ is not necessarily convex):

‖∇φ̄(w , z)−∇φ̄(w , z ′)‖2 ≤ G.

Assume also that supw ,w ′∈Ω[φ(w , z)− φ(w ′, z)] ≤ M for all z. Then
after T steps, ULA (with line 5 of Algorithm 2 replaced by (4)) is εT
uniformly stable with εT = MG

4n

√
2β
∑T

t=1 ηt .
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Summary (Chapter 7)

I Stability can be used to derive generalization bound for any
algorithm.

I ERM with Strongly Convex Loss is stable.
I SGD with Strongly Convex Loss is stable.
I Gibbs Algorithm with Non-convex Loss is stable.
I Stochastic Gradient Langevin Dynamics


