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Rademacher Complexity and Concentration
Inequalities

Mathematical Analysis of Machine Learning Algorithms
(Chapter 6)
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Notations

Using the notations from Section 3.3, we are given a function class
G = {φ(w , z) : w ∈ Ω}, and are interested in the uniform convergence
of training error

φ(w ,Sn) =
1
n

n∑
i=1

φ(w ,Zi)

on a training data Sn = {Z1, . . . ,Zn} ∼ Dn, to the test error

φ(w ,D) = EZ∼Dφ(w ,Z )

on the test data D. In particular, in the general analysis of learning
algorithms, we want to estimate the supremum of the associated
empirical process:

sup
w∈Ω

[φ(w ,D)− φ(w ,Sn)] .
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Uniform Convergence Complexity

We introduce the following definition of one-sided uniform
convergence in expectation, which will be convenient in our analysis.

Definition 1 (Def 6.1)

Given an empirical process {φ(w ,Sn) : w ∈ Ω}, with Sn ∼ Dn. Define
the expected supremum of this empirical process as

εn(G,D) = ESn sup
w∈Ω

[φ(w ,D)− φ(w ,Sn)] ,

which will be referred to as the uniform convergence complexity of
the function class G.
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Expected Oracle Inequality

Recall approximate ERM method

φ(ŵ ,Sn) ≤ inf
w∈Ω

φ(w ,Sn) + ε′. (1)

We have

Theorem 2 (Thm 6.2)

Consider φ(w ,Z ) with Z ∼ D. Let Sn ∼ Dn be n iid samples from D.
Then the approximate ERM method of (1) satisfies

ESnφ(ŵ ,D) ≤ inf
w∈Ω

φ(w ,D) + ε′ + εn(G,D).
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Proof of Theorem 2

Given any w ∈ Ω, we have for each instance of training data Sn

φ(ŵ ,D) ≤φ(ŵ ,Sn) + sup
w∈Ω

[φ(w ,D)− φ(w ,Sn)]

≤φ(w ,Sn) + ε′ + sup
w∈Ω

[φ(w ,D)− φ(w ,Sn)].

Taking expectation with respect to Sn, and note that w does not
depend on Sn, we obtain

ESn φ(ŵ ,D) ≤ φ(w ,D) + ε′ + ESn sup
w∈Ω

[φ(w ,D)− φ(w ,Sn)].

This implies the desired bound.
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Rademacher Complexity

Definition 3 (One-sided Rademacher Complexity, Def 6.3)

Given Sn = {Z1, . . . ,Zn}, the (one-sided) empirical Rademacher
complexity of G is defined as

R(G,Sn) = Eσ sup
w∈Ω

1
n

n∑
i=1

σiφ(w ,Zi),

where σ1, . . . , σn are independent uniform {±1}-valued Bernoulli
random variables. Moreover, the expected Rademacher complexity is

Rn(G,D) = ESn∼DnR(G,Sn).
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Rademacher Complexity Bounds

Theorem 4 (Thm 6.4)

We have
εn(G,D) ≤ 2Rn(G,D).

Consequently, the approximate ERM method of (1) satisfies

ESnφ(ŵ ,D) ≤ inf
w∈Ω

φ(w ,D) + ε′ + 2Rn(G,D).
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Proof of Theorem 4

Let S ′n = {Z ′1, . . . ,Z ′n} ∼ Dn be n iid samples from D that are
independent of Sn. We have

εn(G,D) =ESn∼Dn sup
w∈Ω

[φ(w ,D)− φ(w ,Sn)]

=ESn∼Dn sup
w∈Ω

[ES′n∼Dn φ(w ,S ′n)− φ(w ,Sn)]

≤E(Sn,S′n)∼D2n sup
w∈Ω

[φ(w ,S ′n)− φ(w ,Sn)]

=E(Sn,S′n)∼D2nEσ sup
w∈Ω

1
n

n∑
i=1

[σiφ(w ,Z ′i )− σiφ(w ,Zi)]

≤E(Sn,S′n)∼D2n [R(G,Sn) + R(G,S ′n)] = 2Rn(G,D).

This proves the desired bound.
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Example

Example 5 (Expl 6.5 )

Consider a (binary-valued) VC class G such that VC(G) = d .
Consider n ≥ d . Then Sauer’s lemma implies that for any Sn, the
number of functions of φ ∈ G on Sn is no more than (en/d)d . We thus
obtain (see Theorem 10)

R(G,Sn) ≤
√

2d ln(en/d)

n
.

This implies that the approximate ERM method of (1) satisfies

ESnφ(ŵ ,D) ≤ inf
w∈Ω

φ(w ,D) + ε′ + 2

√
2d ln(en/d)

n
.

Note: a better bound can be obtained using Theorem 5.6 and
Theorem 6.25, which removes the ln n factor.
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Example

Example 6 (Expl 6.12 )

Consider regularized linear function class
FA,B = {{f (w , x) = w>ψ(x) : ‖w‖2 ≤ A, ‖ψ(x)‖2 ≤ B}. ∀λ > 0:

M(λ) = Eσ sup
w∈Rd

[
1
n

n∑
i=1

σiw>ψ(Xi)−
λ

4
‖w‖22

]

=
1
λ
Eσ

∥∥∥∥∥1
n

n∑
i=1

σiψ(Xi)

∥∥∥∥∥
2

2

=
1
λn2

n∑
i=1

‖ψ(Xi)‖22.

Let FA,B = {f (w , x) = w>ψ(x) : ‖w‖2 ≤ A, ‖ψ(x)‖2 ≤ B}, then

R(FA,B,Sn) ≤ inf
λ>0

[
M(λ) +

λ

4
A2
]
≤ inf

λ>0

[
B2

λn
+
λ

4
A2
]

= AB/
√

n.
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Concentration Inequality
Theorem 7 (McDiarmid’s Inequality, Thm 6.16)

Consider n independent random variables X1, . . . ,Xn, and a
real-valued function f (X1, . . . ,Xn) that satisfies the following inequality

sup
x1,...,xn,x ′i

|f (x1, . . . , xn)− f (x1, . . . , xi−1, x ′i , xi+1, . . . , xn)| ≤ ci

for all 1 ≤ i ≤ n. Then for all ε > 0:

Pr [f (X1, . . . ,Xn) ≥ Ef (X1, . . . ,Xn) + ε] ≤ exp

(
−2ε2∑n
i=1 c2

i

)
.

Similarly:

Pr [f (X1, . . . ,Xn) ≤ Ef (X1, . . . ,Xn)− ε] ≤ exp

(
−2ε2∑n
i=1 c2

i

)
.
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Proof of Theorem 7 (I/III)

Let X l
k = {Xk , . . . ,Xl}. Consider X n

1 , and for some 1 ≤ k ≤ n, we use
the simplified notation X̃ n

1 = {X1, . . . ,Xk−1, X̃k ,Xk+1,Xn}. Then

|EX n
k+1

f (X n
1 )− EX n

k+1
f (X̃ n

1 )| ≤ ck .

We now consider EX n
k+1

f (X n
1 ) as a random variable depending on Xk ,

conditioned on X k−1
1 . We have:

lnEXk exp[λEX n
k+1

f (X n
1 )] ≤ λEX n

k
f (X n

1 ) + λ2c2
k/8.
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Proof of Theorem 7 (II/III)

Now we may exponentiate the above inequality, and take expectation
with respect to X k−1

1 to obtain

EX k
1

exp[λEX n
k+1

f (X n
1 )] ≤ EX k−1

1
exp[λEX n

k
f (X n

1 ) + λ2c2
k/8].

By taking logarithm, we obtain

lnEX k
1

exp[λEX n
k+1

f (X n
1 )] ≤ lnEX k−1

1
exp[λEX n

k
f (X n

1 )] + λ2c2
k/8.

By summing from k = 1 to n, and canceling redundant terms:

lnEX n
1

exp[λf (X n
1 )] ≤ λEX n

1
f (X n

1 ) + λ2
n∑

k=1

c2
k/8. (2)
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Proof of Theorem 7 (III/III)

Let
δ = Pr

[
f (X n

1 ) ≥ EX n
1
f (X n

1 ) + ε
]
.

Using Markov’s inequality, we have for all positive λ

δ ≤ e
−λ(EXn

1
f (X n

1 )+ε)EX n
1
eλf (X n

1 ) ≤ exp

[
−λε+

λ2

8

n∑
k=1

c2
k

]
.

Since λ > 0 is arbitrary, we conclude that

ln δ ≤ inf
λ≥0

[
λ2

8

n∑
k=1

c2
k − λε

]
= − 2ε2∑n

k=1 c2
k
.

This implies the theorem.
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Example of McDiarmid’s Inequality

McDiarmid’s inequality is referred to as concentration inequality
because it states that the sample dependent quantity f (X1, . . . ,Xn)
does not deviate significantly from its expectation Ef (X1, . . . ,Xn).

Additive Chernoff Bound
Note that if we take

f (x1, . . . , xn) =
1
n

n∑
i=1

xi ,

and assume that xi ∈ [0,1], then we can take ci = 1/n in McDiarmid’s
inequality. This implies

Pr [f (X1, . . . ,Xn) ≥ Ef (X1, . . . ,Xn) + ε] ≤ exp
(
−2nε2

)
.

McDiarmid’s inequality is a generalization of additive Chernoff bound.
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Uniform Convergence

We can apply McDiarmid’s inequality to obtain the following uniform
convergence result in large probability.

Corollary 8 (Simplification with h(·) = 0, Cor 6.19)

Assume that for some M ≥ 0:

sup
w∈Ω

sup
z,z′

[
φ(w , z)− φ(w , z ′)

]
≤ M.

Then with probability at least 1− δ: for all w ∈ Ω,

φ(w ,D) ≤φ(w ,Sn) + εn(G,D) + M

√
ln(1/δ)

2n

≤φ(w ,Sn) + 2Rn(G,D) + M

√
ln(1/δ)

2n
.
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Proof of Theorem 8

Consider Sn = {Z1, . . . ,Zn} and S ′n = {Z1, . . . ,Zi−1,Z ′i ,Zi+1, . . . ,Zn}.
Let f (Sn) = supw∈Ω[φ(w ,D)− φ(w ,Sn)]. For simplicity, we assume
that the sup can be achieved at ŵ as

ŵ = arg max
w∈Ω

[φ(w ,D)− φ(w ,Sn)].

Then

f (Sn)− f (S ′n)

=[φ(ŵ ,D)− φ(ŵ ,Sn)]− sup
w∈Ω

[φ(w ,D)− φ(w ,S ′n)]

≤[φ(ŵ ,D)− φ(ŵ ,Sn)]− [φ(ŵ ,D)− φ(ŵ ,S ′n)] ≤ M/n.

Similarly, f (S ′n)− f (Sn) ≤ M/n. Therefore we may take ci = M/n in
Theorem 7, which implies the first desired result. The second bound
follows from the estimate εn(G,D) ≤ 2Rn(G,D) of Theorem 4.
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Oracle Inequality
Corollary 9 (Simplification with h(·) = 0, Cor 6.21)

Assume that for some M ≥ 0:

sup
w∈Ω

sup
z,z′

[
φ(w , z)− φ(w , z ′)

]
≤ M.

Then the approximate ERM method

φ(ŵ ,Sn) ≤ min
w∈Ω

φ(w ,Sn) + ε′ (3)

satisfies the following oracle inequality. With probability at least 1− δ:

φ(ŵ ,D) ≤ inf
w∈Ω

φ(w ,D) + ε′ + εn(G,D) + 2M

√
ln(2/δ)

2n

≤ inf
w∈Ω

φ(w ,D) + ε′ + 2Rn(G,D) + 2M

√
ln(2/δ)

2n
.
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Proof of Corollary 9

Given any w ∈ Ω, from the Chernoff bound, we know that with
probability 1− δ/2,

φ(w ,Sn) ≤ φ(w ,D) + M

√
ln(2/δ)

2n
. (4)

Taking the union bound with the inequality of Corollary 8 at δ/2, we
obtain at probability 1− δ,

φ(ŵ ,D) ≤φ(ŵ ,Sn) + εn(G,D) + M

√
ln(2/δ)

2n

≤φ(w ,D) + ε′ + εn(G,D) + 2M

√
ln(2/δ)

2n
.

In the above derivation, the first inequality used Corollary 8. The
second inequality used (4). This proves the first desired bound. The
second desired bound employs Theorem 4.
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Estimating Rademacher Complexity

Theorem 10 (First Inequality of Thm 6.23)

If G is a finite function class with |G| = N, then

R(G,Sn) ≤ sup
g∈G
‖g‖L2(Sn) ·

√
2 ln N

n
.
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Proof of Theorem 10
Let B = supg∈G ‖g‖L2(Sn). Then we have for all λ > 0:

R(G,Sn) =Eσ sup
g∈G

1
n

n∑
i=1

σig(Zi)

(a)

≤Eσ
1
λn

ln
∑
g∈G

exp

[
λ

n∑
i=1

σig(Zi)

]
(b)

≤ 1
λn

lnEσ
∑
g∈G

exp

[
λ

n∑
i=1

σig(Zi)

]

=
1
λn

ln
∑
g∈G

n∏
i=1

Eσi exp [λσig(Zi)]

(c)

≤ 1
λn

ln
∑
g∈G

n∏
i=1

exp[λ2g(Zi)
2/2] ≤ 1

λn
ln N exp[λ2nB2/2].

Now we can obtain the desired bound by optimizing over λ > 0.
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Compare with Covering Number Results
Consider φ(w ,Z ) ∈ [0,1] and |G| = N. With probability 1− δ. We
have the following uniform convergence results for all w . If we use the
union of Chernoff bound (covering number) method, then

φ(w ,D) ≤ φ(w ,Sn) +

√
ln(N/δ)

2n
,

which implies that

φ(w ,D) ≤ φ(w ,Sn) +

√
ln(N)

2n
+

√
ln(1/δ)

2n
.

Rademacher bound from Corollary 8 (with Rademacher complexity
estimate from Theorem 10):

φ(w ,D) ≤ φ(w ,Sn) + 4

√
ln(N)

2n
+

√
ln(1/δ)

2n
,

which leads to similar result.



23

Chaining

Chapter 4 employs empirical L1 covering number bound to obtain
uniform convergence of

inf
ε>0

[
ε+ sup

Sn

√
ln N(ε/2,G,L1(Sn))

n

]
.

This can be improved by considering multiple approximation scales
with empirical L2 covering numbers, instead of a single scale.

Theorem 11 (Thm 6.25)

We have

R(G,Sn) ≤ inf
ε≥0

[
4ε+ 12

∫ ∞
ε

√
ln N(ε′,G,L2(Sn))

n
dε′
]
.



24

Proof of Theorem 11 (I/II)

Let B = supg∈G ‖g‖L2(Sn), and let ε` = 2−`B for ` = 0,1, . . .. Let G` be
an ε`-cover of G with metric L2(Sn), and N` = |G`| = N(ε`,G,L2(Sn)).
We may let G0 = {0} at scale ε0 = B.
For each g ∈ G, we consider g`(g) ∈ G` so that ‖g − g`(g)‖L2(Sn) ≤ ε`.
The key idea in chaining is to rewrite g ∈ G using the following
multi-scale decomposition:

g = (g − gL(g)) +
L∑
`=1

(g`(g)− g`−1(g)).

We also have

‖g`(g)−g`−1(g)‖L2(Sn) ≤ ‖g`(g)−g‖L2(Sn) +‖g`−1(g)−g‖L2(Sn) ≤ 3ε`.
(5)

The number of distinct g`(g)− g`−1(g) is no more than N`N`−1.
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Proof of Theorem 11 (II/II)
It implies that

R(G,Sn) = Eσ sup
g∈G

1
n

n∑
i=1

σi

[
(g − gL(g))(Zi ) +

L∑
`=1

(g`(g)− g`−1(g))(Zi )

]

≤Eσ sup
g∈G

1
n

n∑
i=1

σi (g − gL(g))(Zi ) +
L∑
`=1

Eσ sup
g∈G

1
n

n∑
i=1

σi (g`(g)− g`−1(g))(Zi )

(a)

≤εL +
L∑
`=1

sup
g∈G
‖g`(g)− g`−1(g)‖L2(Sn)

√
2 ln[N`N`−1]

n

(b)

≤εL + 3
L∑
`=1

ε`

√
2 ln[N`N`−1]

n

≤εL + 12
L∑
`=1

(ε` − ε`+1)

√
ln[N`]

n

≤εL + 12
∫ ∞
εL/2

√
ln N(ε′,G,L2(Sn))

n
dε′.
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VC-Class Example: Rademacher Complexity

Example 12

If a binary-valued function class G (or a VC-subgraph class with
values in [0,1]) has VC-dimension d , then (see Corollary 5.7)

ln N2(ε,G,n) ≤ 1 + ln(d + 1) + d ln(2e/ε2).

Therefore

12
∫ ∞

0

√
ln N2(ε,G,n)dε ≤12

∫ 0.5

0

√
1 + ln(d + 1) + d ln(2e/ε2)dε

≤16
√

d .

It follows that

R(G,Sn) ≤ 16
√

d√
n
.
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VC-Class Example: Uniform Convergence

The Rademacher complexity result of VC-subgraph class and
Corollary 8 imply the following uniform convergence result.

Uniform Convergence of VC-subgraph Class

Let G = {φ(w , ·) : w ∈ Ω} be a VC-subgraph class with VC-dimension
d . With probability at least 1− δ, for all w ∈ Ω,

φ(w ,D) ≤ φ(w ,Sn) +
32
√

d√
n

+

√
ln(1/δ)

2n
.

This bound removes a ln n factor from the additive uniform
convergence bound in Theorem 4.17 which employs the L1 empirical
covering number analysis.
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Example: Nonparameteric Function Class

Example 13

If ln N2(ε,G,n) ≤ 1/εq for q ∈ (0,2), then∫ ∞
0

√
ln N2(ε,G,n)dε <∞.

Therefore there exists C > 0 such that

R(G,Sn) ≤ C√
n
.

If ln N2(ε,G,n) ≤ 1/εq for q > 2, then

R(G,Sn) ≤ O

(
inf
ε>0

(
ε+

ε1−q/2
√

n

))
= O(n−1/q).

This implies a convergence slower than 1/
√

n.



29

Lipschitz Composition
Let {φi} be a set of functions, each characterized by a Lipschitz
constant γi , namely

|φi(θ)− φi(θ
′)| ≤ γi |θ − θ′|.

Then the result implies a bound on the Rademacher complexity of the
function composition φ ◦ f .

Theorem 14 (Simplified with h(·) = 0, Thm 6.28)

Let {φi}ni=1 be functions with Lipschitz constants {γi}ni=1 respectively.
That is, ∀i ∈ [n]:

|φi(θ)− φi(θ
′)| ≤ γi |θ − θ′|.

Then for any Sn = {Z1, . . . ,Zn} ⊂ Zn, we have

Eσ sup
f∈F

[
n∑

i=1

σiφi(f (Zi))

]
≤ Eσ sup

f∈F

[
n∑

i=1

σiγi f (Zi)

]
.
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Proof of Theorem 14

The result is a direct consequence of the Lemma 15, where we
simply set c(w) = 0, gi(w) = φi(f (Zi)), and g̃i(w) = γi f (Zi).

Lemma 15 (Rademacher comparison lemma, Lem 6.29 )

Let {gi(w)} and {g̃i(w)} be sets of functions defined for all w in some
domain Ω. If for all i , w, w ′,

|gi(w)− gi(w ′)| ≤ |g̃i(w)− g̃i(w ′)|,

then for any function c(w),

Eσ sup
w∈Ω

[
c(w) +

n∑
i=1

σigi(w)

]
≤ Eσ sup

w∈Ω

[
c(w) +

n∑
i=1

σi g̃i(w)

]
.
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Proof of Lemma 15 (I/II)

We prove this result by induction. The result holds for n = 0. Assume that
the result holds for n = k , then when n = k + 1, we have:

Eσ1,...,σk+1 sup
w

[
c(w) +

k+1∑
i=1

σigi (w)

]

= Eσ1,...,σk sup
w1,w2

[
c(w1) + c(w2)

2
+

k∑
i=1

σi
gi (w1) + gi (w2)

2

+
gk+1(w1)− gk+1(w2)

2

]
= Eσ1,...,σk sup

w1,w2

[
c(w1) + c(w2)

2
+

k∑
i=1

σi
gi (w1) + gi (w2)

2

+
|gk+1(w1)− gk+1(w2)|

2

]
= A.
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Proof of Lemma 15 (II/II)
We continue from the previous derivation, with:

A ≤ Eσ1,...,σk sup
w1,w2

[
c(w1) + c(w2)

2
+

k∑
i=1

σi
gi (w1) + gi (w2)

2

+
|g̃k+1(w1)− g̃k+1(w2)|

2

]
= Eσ1,...,σk sup

w1,w2

[
c(w1) + c(w2)

2
+

k∑
i=1

σi
gi (w1) + gi (w2)

2

+
g̃k+1(w1)− g̃k+1(w2)

2

]
= Eσ1,...,σkEσk+1 sup

w

[
c(w) + σk+1g̃k+1(w) +

k∑
i=1

σigi (w)

]

≤ Eσ1,...,σkEσk+1 sup
w

[
c(w) + σk+1g̃k+1(w) +

k∑
i=1

σi g̃i (w)

]
.

The last inequality follows from the induction hypothesis.
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Example

Example 16 (Variation of Expl 6.30 )

Consider the regularized linear prediction functions

FA,B = {{f (w , x) = w>ψ(x) : ‖w‖2 ≤ A, ‖ψ(x)‖2 ≤ B}

in Example 6. Consider smoothed classification loss function

L(f (x), y) = min(1,max(0,1− γf (x)y))

for some γ > 0.
Let

G = {L(f (w , x), y) : f ∈ FA,B}.

Then L(f , y) is γ Lipschitz in f . We obtain from Theorem 14:

R(G,Sn) ≤ γR(FA,B,Sn) ≤ γAB/
√

n.
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Lipschitz Loss: Uniform Convergence

Theorem 17 (First Inequality of Thm 6.31)

Consider real-valued function class F = {f (w , ·) : w ∈ Ω}, and

G = {φ(w , z) = L(f (w , x), y) : w ∈ Ω, z = (x , y)}.

Assume that L(f , y) is γ-Lipschitz in f : |L(f , y)− L(f ′, y)| ≤ γ|f − f ′|,
and

sup
(x ,y),(x ′,y ′)

|L(f (w , x), y)− L(f (w , x ′), y ′)| ≤ M.

Let Sn ∼ Dn. With probability at least 1− δ, for all w ∈ Ω:

EDL(f (w ,X ),Y ) ≤1
n

n∑
i=1

L(f (w ,Xi),Yi) + 2γRn(F ,D) + M

√
ln(1/δ)

2n
.
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Lipschitz Loss: Oracle Inequality

Theorem 18 (Simplified Second Inequality of Thm 6.31)

Under the conditions of Theorem 17, and consider the approximate
regularized ERM method (3) with

φ(w , z) = L(f (w , x), y).

We have with probability at least 1− δ:

EDL(f (ŵ ,X ),Y ) ≤ inf
w∈Ω

EDL(f (w ,X ),Y )

+ ε′ + 2γRn(F ,D) + M

√
2 ln(2/δ)

n
,

where F = {f (w , ·) : w ∈ Ω}.
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Talagrand’s Concentration Inequality
Talagrand’s concentration inequality is similar to Bernstein inequality,
which is needed to derive faster than 1/

√
n concentration rate.

Corollary 19 (Cor 6.34)

Consider a real valued function class F = {f (z) : Z → R}. Let D be a
distribution on Z. Assume that there exists M, σ > 0 so that ∀f ∈ F ,
σ2 ≥ VarZ∼D[f (Z )], and supz′∈Z [EZ∼Df (Z )− f (z ′)] ≤ M. Let
Sn = {Z1, . . . ,Zn} be n independent random variables from D. Then with
probability at least 1− δ over Sn, for all f ∈ F ,

EZ∼Df (Z )− 1
n

n∑
i=1

f (Zi )

≤εn(F ,D) +

√
(4Mεn(F ,D) + 2σ2) ln(1/δ)

n
+

M ln(1/δ)

3n

≤2εn(F ,D) +

√
2σ2 ln(1/δ)

n
+

4M ln(1/δ)

3n
,

where εn(F ,D) is Definition 1.
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Fast Rate for Least Squares Regression (Expl 6.49)

Consider a function class F and the ERM method for least squares
regression:

f̂ = arg min
f∈F

1
n

n∑
i=1

(f (Xi)− Yi)
2,

where Zi = (Xi ,Yi) are iid samples from D. Assume that
|f (X )− Y | ∈ [0,1] for all X and Y . Example 3.18 implies that the loss
function φ(f ,Z ) = [(f (X )− Y )2 − (f∗(X )− Y )2] satisfies the variance
condition if the true regression function f∗ ∈ F . Assume also that
the empirical covering number of F satisfies:

ln N2(ε,F ,n) ≤ c
εp

(6)

for some constant c > 0 and p > 0.
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Fast Rate for Least Squares Regression (cont)
We consider the following two situations: p ∈ (0,2) and p ≥ 2.
I p ∈ (0,2). We obtain with probability at least 1− δ:

EDL(f̂ (X ),Y ) ≤ EDL(f∗(X ),Y ) + O
(

n−2/(2+p) +
ln(1/δ)

n

)
.

I p > 2. The entropy integral of Theorem 11 implies that

Rn(Fh(b),D) ≤ c̃1

n1/p

for some constant c̃1. We thus obtain a rate of convergence of

r̄h(α,F ,D) = O
(

n−1/p
)

for local Rademacher complexity of Section 6.5. It can be shown
that this is the same rate as what we can obtain from the
standard non-localized Rademacher complexity.
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Summary (Chapter 6)

I Uniform Convergence Complexity
I Expected Uniform Convergence and Expected Oracle Inequality
I Rademacher Complexity
I Concentration Inequality
I High Probability Uniform Convergence and Oracle Inequality
I Estimate Rademacher complexity
I Chaining and Dudley’s entropy Integral estimate
I Composition with Lipschitz function and comparison lemma


