Rademacher Complexity and Concentration Inequalities

Mathematical Analysis of Machine Learning Algorithms (Chapter 6)

Notations

Using the notations from Section 3.3, we are given a function class $\mathcal{G}=\{\phi(w, z): w \in \Omega\}$, and are interested in the uniform convergence of training error

$$
\phi\left(w, \mathcal{S}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \phi\left(w, Z_{i}\right)
$$

on a training data $\mathcal{S}_{n}=\left\{Z_{1}, \ldots, Z_{n}\right\} \sim \mathcal{D}^{n}$, to the test error

$$
\phi(w, \mathcal{D})=\mathbb{E}_{Z \sim \mathcal{D}} \phi(w, Z)
$$

on the test data \mathcal{D}. In particular, in the general analysis of learning algorithms, we want to estimate the supremum of the associated empirical process:

$$
\sup _{w \in \Omega}\left[\phi(w, \mathcal{D})-\phi\left(w, \mathcal{S}_{n}\right)\right] .
$$

Uniform Convergence Complexity

We introduce the following definition of one-sided uniform convergence in expectation, which will be convenient in our analysis.

Definition 1 (Def 6.1)

Given an empirical process $\left\{\phi\left(w, \mathcal{S}_{n}\right): w \in \Omega\right\}$, with $\mathcal{S}_{n} \sim \mathcal{D}^{n}$. Define the expected supremum of this empirical process as

$$
\epsilon_{n}(\mathcal{G}, \mathcal{D})=\mathbb{E}_{\mathcal{S}_{n}} \sup _{w \in \Omega}\left[\phi(w, \mathcal{D})-\phi\left(w, \mathcal{S}_{n}\right)\right]
$$

which will be referred to as the uniform convergence complexity of the function class \mathcal{G}.

Expected Oracle Inequality

Recall approximate ERM method

$$
\begin{equation*}
\phi\left(\hat{w}, \mathcal{S}_{n}\right) \leq \inf _{w \in \Omega} \phi\left(w, \mathcal{S}_{n}\right)+\epsilon^{\prime} . \tag{1}
\end{equation*}
$$

We have

Theorem 2 (Thm 6.2)

Consider $\phi(w, Z)$ with $Z \sim \mathcal{D}$. Let $\mathcal{S}_{n} \sim \mathcal{D}^{n}$ be n iid samples from \mathcal{D}. Then the approximate ERM method of (1) satisfies

$$
\mathbb{E}_{\mathcal{S}_{n}} \phi(\hat{w}, \mathcal{D}) \leq \inf _{w \in \Omega} \phi(w, \mathcal{D})+\epsilon^{\prime}+\epsilon_{n}(\mathcal{G}, \mathcal{D})
$$

Proof of Theorem 2

Given any $w \in \Omega$, we have for each instance of training data \mathcal{S}_{n}

$$
\begin{aligned}
\phi(\hat{w}, \mathcal{D}) & \leq \phi\left(\hat{w}, \mathcal{S}_{n}\right)+\sup _{w \in \Omega}\left[\phi(w, \mathcal{D})-\phi\left(w, \mathcal{S}_{n}\right)\right] \\
& \leq \phi\left(w, \mathcal{S}_{n}\right)+\epsilon^{\prime}+\sup _{w \in \Omega}\left[\phi(w, \mathcal{D})-\phi\left(w, \mathcal{S}_{n}\right)\right]
\end{aligned}
$$

Taking expectation with respect to \mathcal{S}_{n}, and note that w does not depend on \mathcal{S}_{n}, we obtain

$$
\mathbb{E}_{\mathcal{S}_{n}} \phi(\hat{w}, \mathcal{D}) \leq \phi(w, \mathcal{D})+\epsilon^{\prime}+\mathbb{E}_{\mathcal{S}_{n}} \sup _{w \in \Omega}\left[\phi(w, \mathcal{D})-\phi\left(w, \mathcal{S}_{n}\right)\right]
$$

This implies the desired bound.

Rademacher Complexity

Definition 3 (One-sided Rademacher Complexity, Def 6.3)

Given $\mathcal{S}_{n}=\left\{Z_{1}, \ldots, Z_{n}\right\}$, the (one-sided) empirical Rademacher complexity of \mathcal{G} is defined as

$$
R\left(\mathcal{G}, \mathcal{S}_{n}\right)=\mathbb{E}_{\sigma} \sup _{w \in \Omega} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \phi\left(w, Z_{i}\right)
$$

where $\sigma_{1}, \ldots, \sigma_{n}$ are independent uniform $\{ \pm 1\}$-valued Bernoulli random variables. Moreover, the expected Rademacher complexity is

$$
R_{n}(\mathcal{G}, \mathcal{D})=\mathbb{E}_{\mathcal{S}_{n} \sim \mathcal{D}^{n}} R\left(\mathcal{G}, \mathcal{S}_{n}\right)
$$

Rademacher Complexity Bounds

Theorem 4 (Thm 6.4)

We have

$$
\epsilon_{n}(\mathcal{G}, \mathcal{D}) \leq 2 R_{n}(\mathcal{G}, \mathcal{D})
$$

Consequently, the approximate ERM method of (1) satisfies

$$
\mathbb{E}_{\mathcal{S}_{n}} \phi(\hat{w}, \mathcal{D}) \leq \inf _{w \in \Omega} \phi(w, \mathcal{D})+\epsilon^{\prime}+2 R_{n}(\mathcal{G}, \mathcal{D})
$$

Proof of Theorem 4

Let $\mathcal{S}_{n}^{\prime}=\left\{Z_{1}^{\prime}, \ldots, Z_{n}^{\prime}\right\} \sim \mathcal{D}^{n}$ be n iid samples from \mathcal{D} that are independent of \mathcal{S}_{n}. We have

$$
\begin{aligned}
\epsilon_{n}(\mathcal{G}, \mathcal{D}) & =\mathbb{E}_{\mathcal{S}_{n} \sim \mathcal{D}^{n}} \sup _{w \in \Omega}\left[\phi(w, \mathcal{D})-\phi\left(w, \mathcal{S}_{n}\right)\right] \\
& =\mathbb{E}_{\mathcal{S}_{n} \sim \mathcal{D}^{n}} \sup _{w \in \Omega}\left[\mathbb{E}_{S_{n}^{\prime} \sim \mathcal{D}^{n}} \phi\left(w, \mathcal{S}_{n}^{\prime}\right)-\phi\left(w, \mathcal{S}_{n}\right)\right] \\
& \leq \mathbb{E}_{\left(\mathcal{S}_{n}, \mathcal{S}_{n}^{\prime}\right) \sim \mathcal{D}^{2 n}} \sup _{w \in \Omega}\left[\phi\left(w, \mathcal{S}_{n}^{\prime}\right)-\phi\left(w, \mathcal{S}_{n}\right)\right] \\
& =\mathbb{E}_{\left(\mathcal{S}_{n}, \mathcal{S}_{n}^{\prime}\right) \sim \mathcal{D}^{2 n}} \mathbb{E}_{\sigma} \sup _{w \in \Omega} \frac{1}{n} \sum_{i=1}^{n}\left[\sigma_{i} \phi\left(w, Z_{i}^{\prime}\right)-\sigma_{i} \phi\left(w, Z_{i}\right)\right] \\
& \leq \mathbb{E}_{\left(\mathcal{S}_{n}, \mathcal{S}_{n}^{\prime}\right) \sim \mathcal{D}^{2 n}}\left[R\left(\mathcal{G}, \mathcal{S}_{n}\right)+R\left(\mathcal{G}, \mathcal{S}_{n}^{\prime}\right)\right]=2 R_{n}(\mathcal{G}, \mathcal{D})
\end{aligned}
$$

This proves the desired bound.

Example

Example 5 (Expl 6.5)

Consider a (binary-valued) VC class \mathcal{G} such that $\mathrm{vC}(\mathcal{G})=d$. Consider $n \geq d$. Then Sauer's lemma implies that for any \mathcal{S}_{n}, the number of functions of $\phi \in \mathcal{G}$ on \mathcal{S}_{n} is no more than (en/d) ${ }^{d}$. We thus obtain (see Theorem 10)

$$
R\left(\mathcal{G}, \mathcal{S}_{n}\right) \leq \sqrt{\frac{2 d \ln (e n / d)}{n}} .
$$

This implies that the approximate ERM method of (1) satisfies

$$
\mathbb{E}_{\mathcal{S}_{n}} \phi(\hat{w}, \mathcal{D}) \leq \inf _{w \in \Omega} \phi(w, \mathcal{D})+\epsilon^{\prime}+2 \sqrt{\frac{2 d \ln (e n / d)}{n}} .
$$

Note: a better bound can be obtained using Theorem 5.6 and Theorem 6.25, which removes the $\ln n$ factor.

Example

Example 6 (Expl 6.12)

Consider regularized linear function class
$\mathcal{F}_{A, B}=\left\{\left\{f(w, x)=w^{\top} \psi(x):\|w\|_{2} \leq A,\|\psi(x)\|_{2} \leq B\right\} . \forall \lambda>0:\right.$

$$
\begin{aligned}
& M(\lambda)=\mathbb{E}_{\sigma} \sup _{w \in \mathbb{R}^{d}}\left[\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} w^{\top} \psi\left(X_{i}\right)-\frac{\lambda}{4}\|w\|_{2}^{2}\right] \\
& \quad=\frac{1}{\lambda} \mathbb{E}_{\sigma}\left\|\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \psi\left(X_{i}\right)\right\|_{2}^{2}=\frac{1}{\lambda n^{2}} \sum_{i=1}^{n}\left\|\psi\left(X_{i}\right)\right\|_{2}^{2}
\end{aligned}
$$

Let $\mathcal{F}_{A, B}=\left\{f(w, x)=w^{\top} \psi(x):\|w\|_{2} \leq A,\|\psi(x)\|_{2} \leq B\right\}$, then

$$
R\left(\mathcal{F}_{A, B}, \mathcal{S}_{n}\right) \leq \inf _{\lambda>0}\left[M(\lambda)+\frac{\lambda}{4} A^{2}\right] \leq \inf _{\lambda>0}\left[\frac{B^{2}}{\lambda n}+\frac{\lambda}{4} A^{2}\right]=A B / \sqrt{n}
$$

Concentration Inequality

Theorem 7 (McDiarmid's Inequality, Thm 6.16)

Consider n independent random variables X_{1}, \ldots, X_{n}, and a real-valued function $f\left(X_{1}, \ldots, X_{n}\right)$ that satisfies the following inequality

$$
\sup _{x_{1}, \ldots, x_{n}, x_{i}^{\prime}}\left|f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i-1}, x_{i}^{\prime}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

for all $1 \leq i \leq n$. Then for all $\epsilon>0$:

$$
\operatorname{Pr}\left[f\left(X_{1}, \ldots, X_{n}\right) \geq \mathbb{E} f\left(X_{1}, \ldots, X_{n}\right)+\epsilon\right] \leq \exp \left(\frac{-2 \epsilon^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

Similarly:

$$
\operatorname{Pr}\left[f\left(X_{1}, \ldots, X_{n}\right) \leq \mathbb{E} f\left(X_{1}, \ldots, X_{n}\right)-\epsilon\right] \leq \exp \left(\frac{-2 \epsilon^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

Proof of Theorem 7 (I/III)

Let $X_{k}^{\prime}=\left\{X_{k}, \ldots, X_{l}\right\}$. Consider X_{1}^{n}, and for some $1 \leq k \leq n$, we use the simplified notation $\tilde{X}_{1}^{n}=\left\{X_{1}, \ldots, X_{k-1}, \tilde{X}_{k}, X_{k+1}, X_{n}\right\}$. Then

$$
\left|\mathbb{E}_{X_{k+1}^{n}} f\left(X_{1}^{n}\right)-\mathbb{E}_{X_{k+1}^{n}} f\left(\tilde{X}_{1}^{n}\right)\right| \leq c_{k} .
$$

We now consider $\mathbb{E}_{X_{k+1}^{n}} f\left(X_{1}^{n}\right)$ as a random variable depending on X_{k}, conditioned on X_{1}^{k-1}. We have:

$$
\ln \mathbb{E}_{X_{k}} \exp \left[\lambda \mathbb{E}_{X_{k+1}^{n}} f\left(X_{1}^{n}\right)\right] \leq \lambda \mathbb{E}_{X_{k}^{n}} f\left(X_{1}^{n}\right)+\lambda^{2} c_{k}^{2} / 8
$$

Proof of Theorem 7 (II/III)

Now we may exponentiate the above inequality, and take expectation with respect to X_{1}^{k-1} to obtain

$$
\mathbb{E}_{X_{1}^{k}} \exp \left[\lambda \mathbb{E}_{X_{k+1}^{n}} f\left(X_{1}^{n}\right)\right] \leq \mathbb{E}_{X_{1}^{k-1}} \exp \left[\lambda \mathbb{E}_{X_{k}^{n}} f\left(X_{1}^{n}\right)+\lambda^{2} c_{k}^{2} / 8\right] .
$$

By taking logarithm, we obtain

$$
\ln \mathbb{E}_{X_{1}^{k}} \exp \left[\lambda \mathbb{E}_{X_{k+1}^{n}} f\left(X_{1}^{n}\right)\right] \leq \ln \mathbb{E}_{X_{1}^{k-1}} \exp \left[\lambda \mathbb{E}_{X_{k}^{n}} f\left(X_{1}^{n}\right)\right]+\lambda^{2} c_{k}^{2} / 8
$$

By summing from $k=1$ to n, and canceling redundant terms:

$$
\begin{equation*}
\ln \mathbb{E}_{X_{1}^{n}} \exp \left[\lambda f\left(X_{1}^{n}\right)\right] \leq \lambda \mathbb{E}_{X_{1}^{n}} f\left(X_{1}^{n}\right)+\lambda^{2} \sum_{k=1}^{n} c_{k}^{2} / 8 \tag{2}
\end{equation*}
$$

Proof of Theorem 7 (III/III)

Let

$$
\delta=\operatorname{Pr}\left[f\left(X_{1}^{n}\right) \geq \mathbb{E}_{X_{1}^{n}} f\left(X_{1}^{n}\right)+\epsilon\right]
$$

Using Markov's inequality, we have for all positive λ

$$
\delta \leq e^{-\lambda\left(\mathbb{E}_{X_{1}^{n}} f\left(X_{1}^{n}\right)+\epsilon\right)} \mathbb{E}_{X_{1}^{n}} e^{\lambda f\left(X_{1}^{n}\right)} \leq \exp \left[-\lambda \epsilon+\frac{\lambda^{2}}{8} \sum_{k=1}^{n} c_{k}^{2}\right]
$$

Since $\lambda>0$ is arbitrary, we conclude that

$$
\ln \delta \leq \inf _{\lambda \geq 0}\left[\frac{\lambda^{2}}{8} \sum_{k=1}^{n} c_{k}^{2}-\lambda \epsilon\right]=-\frac{2 \epsilon^{2}}{\sum_{k=1}^{n} c_{k}^{2}}
$$

This implies the theorem.

Example of McDiarmid's Inequality

McDiarmid's inequality is referred to as concentration inequality because it states that the sample dependent quantity $f\left(X_{1}, \ldots, X_{n}\right)$ does not deviate significantly from its expectation $\mathbb{E} f\left(X_{1}, \ldots, X_{n}\right)$.

Additive Chernoff Bound

Note that if we take

$$
f\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

and assume that $x_{i} \in[0,1]$, then we can take $c_{i}=1 / n$ in McDiarmid's inequality. This implies

$$
\operatorname{Pr}\left[f\left(X_{1}, \ldots, X_{n}\right) \geq \mathbb{E} f\left(X_{1}, \ldots, X_{n}\right)+\epsilon\right] \leq \exp \left(-2 n \epsilon^{2}\right)
$$

McDiarmid's inequality is a generalization of additive Chernoff bound.

Uniform Convergence

We can apply McDiarmid's inequality to obtain the following uniform convergence result in large probability.

Corollary 8 (Simplification with $h(\cdot)=0$, Cor 6.19)

Assume that for some $M \geq 0$:

$$
\sup _{w \in \Omega} \sup _{z, z^{\prime}}\left[\phi(w, z)-\phi\left(w, z^{\prime}\right)\right] \leq M .
$$

Then with probability at least $1-\delta$: for all $w \in \Omega$,

$$
\begin{aligned}
\phi(w, \mathcal{D}) & \leq \phi\left(w, \mathcal{S}_{n}\right)+\epsilon_{n}(\mathcal{G}, \mathcal{D})+M \sqrt{\frac{\ln (1 / \delta)}{2 n}} \\
& \leq \phi\left(w, \mathcal{S}_{n}\right)+2 R_{n}(\mathcal{G}, \mathcal{D})+M \sqrt{\frac{\ln (1 / \delta)}{2 n}}
\end{aligned}
$$

Proof of Theorem 8

Consider $\mathcal{S}_{n}=\left\{Z_{1}, \ldots, Z_{n}\right\}$ and $\mathcal{S}_{n}^{\prime}=\left\{Z_{1}, \ldots, Z_{i-1}, Z_{i}^{\prime}, Z_{i+1}, \ldots, Z_{n}\right\}$. Let $f\left(\mathcal{S}_{n}\right)=\sup _{w \in \Omega}\left[\phi(w, \mathcal{D})-\phi\left(w, \mathcal{S}_{n}\right)\right]$. For simplicity, we assume that the sup can be achieved at \hat{w} as

$$
\hat{w}=\arg \max _{w \in \Omega}\left[\phi(w, \mathcal{D})-\phi\left(w, \mathcal{S}_{n}\right)\right] .
$$

Then

$$
\begin{aligned}
& f\left(\mathcal{S}_{n}\right)-f\left(\mathcal{S}_{n}^{\prime}\right) \\
= & {\left[\phi(\hat{w}, \mathcal{D})-\phi\left(\hat{w}, \mathcal{S}_{n}\right)\right]-\sup _{w \in \Omega}\left[\phi(w, \mathcal{D})-\phi\left(w, \mathcal{S}_{n}^{\prime}\right)\right] } \\
\leq & {\left[\phi(\hat{w}, \mathcal{D})-\phi\left(\hat{w}, \mathcal{S}_{n}\right)\right]-\left[\phi(\hat{w}, \mathcal{D})-\phi\left(\hat{w}, \mathcal{S}_{n}^{\prime}\right)\right] \leq M / n . }
\end{aligned}
$$

Similarly, $f\left(\mathcal{S}_{n}^{\prime}\right)-f\left(\mathcal{S}_{n}\right) \leq M / n$. Therefore we may take $c_{i}=M / n$ in Theorem 7, which implies the first desired result. The second bound follows from the estimate $\epsilon_{n}(\mathcal{G}, \mathcal{D}) \leq 2 R_{n}(\mathcal{G}, \mathcal{D})$ of Theorem 4.

Oracle Inequality

Corollary 9 (Simplification with $h(\cdot)=0$, Cor 6.21)

Assume that for some $M \geq 0$:

$$
\sup _{w \in \Omega} \sup _{z, z^{\prime}}\left[\phi(w, z)-\phi\left(w, z^{\prime}\right)\right] \leq M .
$$

Then the approximate ERM method

$$
\begin{equation*}
\phi\left(\hat{w}, \mathcal{S}_{n}\right) \leq \min _{w \in \Omega} \phi\left(w, \mathcal{S}_{n}\right)+\epsilon^{\prime} \tag{3}
\end{equation*}
$$

satisfies the following oracle inequality. With probability at least $1-\delta$:

$$
\begin{aligned}
\phi(\hat{w}, \mathcal{D}) & \leq \inf _{w \in \Omega} \phi(w, \mathcal{D})+\epsilon^{\prime}+\epsilon_{n}(\mathcal{G}, \mathcal{D})+2 M \sqrt{\frac{\ln (2 / \delta)}{2 n}} \\
& \leq \inf _{w \in \Omega} \phi(w, \mathcal{D})+\epsilon^{\prime}+2 R_{n}(\mathcal{G}, \mathcal{D})+2 M \sqrt{\frac{\ln (2 / \delta)}{2 n}}
\end{aligned}
$$

Proof of Corollary 9

Given any $w \in \Omega$, from the Chernoff bound, we know that with probability $1-\delta / 2$,

$$
\begin{equation*}
\phi\left(w, \mathcal{S}_{n}\right) \leq \phi(w, \mathcal{D})+M \sqrt{\frac{\ln (2 / \delta)}{2 n}} . \tag{4}
\end{equation*}
$$

Taking the union bound with the inequality of Corollary 8 at $\delta / 2$, we obtain at probability $1-\delta$,

$$
\begin{aligned}
\phi(\hat{w}, \mathcal{D}) & \leq \phi\left(\hat{w}, \mathcal{S}_{n}\right)+\epsilon_{n}(\mathcal{G}, \mathcal{D})+M \sqrt{\frac{\ln (2 / \delta)}{2 n}} \\
& \leq \phi(w, \mathcal{D})+\epsilon^{\prime}+\epsilon_{n}(\mathcal{G}, \mathcal{D})+2 M \sqrt{\frac{\ln (2 / \delta)}{2 n}} .
\end{aligned}
$$

In the above derivation, the first inequality used Corollary 8 . The second inequality used (4). This proves the first desired bound. The second desired bound employs Theorem 4.

Estimating Rademacher Complexity

Theorem 10 (First Inequality of Thm 6.23)

If \mathcal{G} is a finite function class with $|\mathcal{G}|=N$, then

$$
R\left(\mathcal{G}, \mathcal{S}_{n}\right) \leq \sup _{g \in \mathcal{G}}\|g\|_{L_{2}\left(\mathcal{S}_{n}\right)} \cdot \sqrt{\frac{2 \ln N}{n}}
$$

Proof of Theorem 10

Let $B=\sup _{g \in \mathcal{G}}\|g\|_{L_{2}\left(\mathcal{S}_{n}\right)}$. Then we have for all $\lambda>0$:

$$
\begin{aligned}
R\left(\mathcal{G}, \mathcal{S}_{n}\right) & =\mathbb{E}_{\sigma} \sup _{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} g\left(Z_{i}\right) \\
& \stackrel{(a)}{\leq} \mathbb{E}_{\sigma} \frac{1}{\lambda n} \ln \sum_{g \in \mathcal{G}} \exp \left[\lambda \sum_{i=1}^{n} \sigma_{i} g\left(Z_{i}\right)\right] \\
& \stackrel{(b)}{\leq} \frac{1}{\lambda n} \ln \mathbb{E}_{\sigma} \sum_{g \in \mathcal{G}} \exp \left[\lambda \sum_{i=1}^{n} \sigma_{i} g\left(Z_{i}\right)\right] \\
& =\frac{1}{\lambda n} \ln \sum_{g \in \mathcal{G}} \prod_{i=1}^{n} \mathbb{E}_{\sigma_{i}} \exp \left[\lambda \sigma_{i} g\left(Z_{i}\right)\right] \\
& \stackrel{(c)}{\leq} \frac{1}{\lambda n} \ln \sum_{g \in \mathcal{G}} \prod_{i=1}^{n} \exp \left[\lambda^{2} g\left(Z_{i}\right)^{2} / 2\right] \leq \frac{1}{\lambda n} \ln N \exp \left[\lambda^{2} n B^{2} / 2\right]
\end{aligned}
$$

Now we can obtain the desired bound by optimizing over $\lambda>0$.

Compare with Covering Number Results

Consider $\phi(w, Z) \in[0,1]$ and $|\mathcal{G}|=N$. With probability $1-\delta$. We have the following uniform convergence results for all w. If we use the union of Chernoff bound (covering number) method, then

$$
\phi(w, \mathcal{D}) \leq \phi\left(w, \mathcal{S}_{n}\right)+\sqrt{\frac{\ln (N / \delta)}{2 n}}
$$

which implies that

$$
\phi(w, \mathcal{D}) \leq \phi\left(w, \mathcal{S}_{n}\right)+\sqrt{\frac{\ln (N)}{2 n}}+\sqrt{\frac{\ln (1 / \delta)}{2 n}}
$$

Rademacher bound from Corollary 8 (with Rademacher complexity estimate from Theorem 10):

$$
\phi(w, \mathcal{D}) \leq \phi\left(w, \mathcal{S}_{n}\right)+4 \sqrt{\frac{\ln (N)}{2 n}}+\sqrt{\frac{\ln (1 / \delta)}{2 n}}
$$

which leads to similar result.

Chaining

Chapter 4 employs empirical L_{1} covering number bound to obtain uniform convergence of

$$
\inf _{\epsilon>0}\left[\epsilon+\sup _{\mathcal{S}_{n}} \sqrt{\frac{\ln N\left(\epsilon / 2, G, L_{1}\left(\mathcal{S}_{n}\right)\right)}{n}}\right] .
$$

This can be improved by considering multiple approximation scales with empirical L_{2} covering numbers, instead of a single scale.

Theorem 11 (Thm 6.25)

We have

$$
R\left(\mathcal{G}, \mathcal{S}_{n}\right) \leq \inf _{\epsilon \geq 0}\left[4 \epsilon+12 \int_{\epsilon}^{\infty} \sqrt{\frac{\ln N\left(\epsilon^{\prime}, \mathcal{G}, L_{2}\left(\mathcal{S}_{n}\right)\right)}{n}} d \epsilon^{\prime}\right] .
$$

Proof of Theorem 11 (I/II)

Let $B=\sup _{g \in \mathcal{G}}\|g\|_{L_{2}\left(\mathcal{S}_{n}\right)}$, and let $\epsilon_{\ell}=2^{-\ell} B$ for $\ell=0,1, \ldots$. Let \mathcal{G}_{ℓ} be an ϵ_{ℓ}-cover of \mathcal{G} with metric $L_{2}\left(\mathcal{S}_{n}\right)$, and $N_{\ell}=\left|\mathcal{G}_{\ell}\right|=N\left(\epsilon_{\ell}, \mathcal{G}, L_{2}\left(\mathcal{S}_{n}\right)\right)$. We may let $\mathcal{G}_{0}=\{0\}$ at scale $\epsilon_{0}=B$.
For each $g \in \mathcal{G}$, we consider $g_{\ell}(g) \in \mathcal{G}_{\ell}$ so that $\left\|g-g_{\ell}(g)\right\|_{L_{2}\left(S_{n}\right)} \leq \epsilon_{\ell}$. The key idea in chaining is to rewrite $g \in \mathcal{G}$ using the following multi-scale decomposition:

$$
g=\left(g-g_{L}(g)\right)+\sum_{\ell=1}^{L}\left(g_{\ell}(g)-g_{\ell-1}(g)\right) .
$$

We also have

$$
\begin{equation*}
\left\|g_{\ell}(g)-g_{\ell-1}(g)\right\|_{L_{2}\left(\mathcal{S}_{n}\right)} \leq\left\|g_{\ell}(g)-g\right\|_{L_{2}\left(\mathcal{S}_{n}\right)}+\left\|g_{\ell-1}(g)-g\right\|_{L_{2}\left(\mathcal{S}_{n}\right)} \leq 3 \epsilon_{\ell} . \tag{5}
\end{equation*}
$$

The number of distinct $g_{\ell}(g)-g_{\ell-1}(g)$ is no more than $N_{\ell} N_{\ell-1}$.

Proof of Theorem 11 (II/II)

It implies that

$$
\begin{aligned}
& R\left(\mathcal{G}, \mathcal{S}_{n}\right)=\mathbb{E}_{\sigma} \sup _{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\left[\left(g-g_{L}(g)\right)\left(Z_{i}\right)+\sum_{\ell=1}^{L}\left(g_{\ell}(g)-g_{\ell-1}(g)\right)\left(Z_{i}\right)\right] \\
& \leq \mathbb{E}_{\sigma} \sup _{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\left(g-g_{L}(g)\right)\left(Z_{i}\right)+\sum_{\ell=1}^{L} \mathbb{E}_{\sigma} \sup _{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}\left(g_{\ell}(g)-g_{\ell-1}(g)\right)\left(Z_{i}\right) \\
& \stackrel{(a)}{\leq} \epsilon_{L}+\sum_{\ell=1}^{L} \sup _{g \in \mathcal{G}}\left\|g_{\ell}(g)-g_{\ell-1}(g)\right\|_{L_{2}\left(\mathcal{S}_{n}\right)} \sqrt{\frac{2 \ln \left[N_{\ell} N_{\ell-1}\right]}{n}} \\
& \stackrel{(b)}{\leq}_{\leq} \epsilon_{L}+3 \sum_{\ell=1}^{L} \epsilon_{\ell} \sqrt{\frac{2 \ln \left[N_{\ell} N_{\ell-1}\right]}{n}} \\
& \leq \epsilon_{L}+12 \sum_{\ell=1}^{L}\left(\epsilon_{\ell}-\epsilon_{\ell+1}\right) \sqrt{\frac{\ln \left[N_{\ell}\right]}{n}} \\
& \leq \epsilon_{L}+12 \int_{\epsilon_{L} / 2}^{\infty} \sqrt{\frac{\ln N\left(\epsilon^{\prime}, \mathcal{G}, L_{2}\left(\mathcal{S}_{n}\right)\right)}{n}} d \epsilon^{\prime} .
\end{aligned}
$$

VC-Class Example: Rademacher Complexity

Example 12

If a binary-valued function class \mathcal{G} (or a VC-subgraph class with values in $[0,1]$) has VC-dimension d, then (see Corollary 5.7)

$$
\ln N_{2}(\epsilon, \mathcal{G}, n) \leq 1+\ln (d+1)+d \ln \left(2 e / \epsilon^{2}\right) .
$$

Therefore

$$
\begin{aligned}
12 \int_{0}^{\infty} \sqrt{\ln N_{2}(\epsilon, \mathcal{G}, n)} d \epsilon & \leq 12 \int_{0}^{0.5} \sqrt{1+\ln (d+1)+d \ln \left(2 e / \epsilon^{2}\right)} d \epsilon \\
& \leq 16 \sqrt{d} .
\end{aligned}
$$

It follows that

$$
R\left(\mathcal{G}, \mathcal{S}_{n}\right) \leq \frac{16 \sqrt{d}}{\sqrt{n}} .
$$

VC-Class Example: Uniform Convergence

The Rademacher complexity result of VC-subgraph class and Corollary 8 imply the following uniform convergence result.

Uniform Convergence of VC-subgraph Class

Let $\mathcal{G}=\{\phi(w, \cdot): w \in \Omega\}$ be a VC-subgraph class with VC-dimension d. With probability at least $1-\delta$, for all $w \in \Omega$,

$$
\phi(w, \mathcal{D}) \leq \phi\left(w, \mathcal{S}_{n}\right)+\frac{32 \sqrt{d}}{\sqrt{n}}+\sqrt{\frac{\ln (1 / \delta)}{2 n}} .
$$

This bound removes a $\ln n$ factor from the additive uniform convergence bound in Theorem 4.17 which employs the L_{1} empirical covering number analysis.

Example: Nonparameteric Function Class

Example 13

If $\ln N_{2}(\epsilon, \mathcal{G}, n) \leq 1 / \epsilon^{q}$ for $q \in(0,2)$, then

$$
\int_{0}^{\infty} \sqrt{\ln N_{2}(\epsilon, \mathcal{G}, n)} d \epsilon<\infty .
$$

Therefore there exists $C>0$ such that

$$
R\left(\mathcal{G}, \mathcal{S}_{n}\right) \leq \frac{C}{\sqrt{n}}
$$

If $\ln N_{2}(\epsilon, \mathcal{G}, n) \leq 1 / \epsilon^{q}$ for $q>2$, then

$$
R\left(\mathcal{G}, \mathcal{S}_{n}\right) \leq O\left(\inf _{\epsilon>0}\left(\epsilon+\frac{\epsilon^{1-q / 2}}{\sqrt{n}}\right)\right)=O\left(n^{-1 / q}\right)
$$

This implies a convergence slower than $1 / \sqrt{n}$.

Lipschitz Composition

Let $\left\{\phi_{i}\right\}$ be a set of functions, each characterized by a Lipschitz constant γ_{i}, namely

$$
\left|\phi_{i}(\theta)-\phi_{i}\left(\theta^{\prime}\right)\right| \leq \gamma_{i}\left|\theta-\theta^{\prime}\right|
$$

Then the result implies a bound on the Rademacher complexity of the function composition $\phi \circ f$.

Theorem 14 (Simplified with $h(\cdot)=0$, Thm 6.28)

Let $\left\{\phi_{i}\right\}_{i=1}^{n}$ be functions with Lipschitz constants $\left\{\gamma_{i}\right\}_{i=1}^{n}$ respectively. That is, $\forall i \in[n]$:

$$
\left|\phi_{i}(\theta)-\phi_{i}\left(\theta^{\prime}\right)\right| \leq \gamma_{i}\left|\theta-\theta^{\prime}\right| .
$$

Then for any $\mathcal{S}_{n}=\left\{Z_{1}, \ldots, Z_{n}\right\} \subset \mathcal{Z}^{n}$, we have

$$
\mathbb{E}_{\sigma} \sup _{f \in \mathcal{F}}\left[\sum_{i=1}^{n} \sigma_{i} \phi_{i}\left(f\left(Z_{i}\right)\right)\right] \leq \mathbb{E}_{\sigma} \sup _{f \in \mathcal{F}}\left[\sum_{i=1}^{n} \sigma_{i} \gamma_{i} f\left(Z_{i}\right)\right] .
$$

Proof of Theorem 14

The result is a direct consequence of the Lemma 15, where we simply set $c(w)=0, g_{i}(w)=\phi_{i}\left(f\left(Z_{i}\right)\right)$, and $\tilde{g}_{i}(w)=\gamma_{i} f\left(Z_{i}\right)$.

Lemma 15 (Rademacher comparison lemma, Lem 6.29)

Let $\left\{g_{i}(w)\right\}$ and $\left\{\tilde{g}_{i}(w)\right\}$ be sets of functions defined for all w in some domain Ω. If for all i, w, w^{\prime},

$$
\left|g_{i}(w)-g_{i}\left(w^{\prime}\right)\right| \leq\left|\tilde{g}_{i}(w)-\tilde{g}_{i}\left(w^{\prime}\right)\right|
$$

then for any function $c(w)$,

$$
\mathbb{E}_{\sigma} \sup _{w \in \Omega}\left[c(w)+\sum_{i=1}^{n} \sigma_{i} g_{i}(w)\right] \leq \mathbb{E}_{\sigma} \sup _{w \in \Omega}\left[c(w)+\sum_{i=1}^{n} \sigma_{i} \tilde{g}_{i}(w)\right]
$$

Proof of Lemma 15 (I/II)

We prove this result by induction. The result holds for $n=0$. Assume that the result holds for $n=k$, then when $n=k+1$, we have:

$$
\begin{aligned}
& \mathbb{E}_{\sigma_{1}, \ldots, \sigma_{k+1}} \sup _{w}\left[c(w)+\sum_{i=1}^{k+1} \sigma_{i} g_{i}(w)\right] \\
& =\mathbb{E}_{\sigma_{1}, \ldots, \sigma_{k}} \sup _{w_{1}, w_{2}}\left[\frac{c\left(w_{1}\right)+c\left(w_{2}\right)}{2}+\sum_{i=1}^{k} \sigma_{i} \frac{g_{i}\left(w_{1}\right)+g_{i}\left(w_{2}\right)}{2}\right. \\
& \left.+\frac{g_{k+1}\left(w_{1}\right)-g_{k+1}\left(w_{2}\right)}{2}\right] \\
& \left.=\mathbb{E}_{\sigma_{1}, \ldots, \sigma_{k} \sup _{w_{1}, w_{2}}\left[\frac{c\left(w_{1}\right)+c\left(w_{2}\right)}{2}+\sum_{i=1}^{k} \sigma_{i} \frac{g_{i}\left(w_{1}\right)+g_{i}\left(w_{2}\right)}{2}\right.}^{+\frac{\left|g_{k+1}\left(w_{1}\right)-g_{k+1}\left(w_{2}\right)\right|}{2}}\right]
\end{aligned}
$$

$$
=A
$$

Proof of Lemma 15 (II/II)

We continue from the previous derivation, with:

$$
\begin{aligned}
& A \leq \mathbb{E}_{\sigma_{1}, \ldots, \sigma_{k}} \sup _{w_{1}, w_{2}}\left[\frac{c\left(w_{1}\right)+c\left(w_{2}\right)}{2}+\sum_{i=1}^{k} \sigma_{i} \frac{g_{i}\left(w_{1}\right)+g_{i}\left(w_{2}\right)}{2}\right. \\
& \left.+\frac{\left|\tilde{g}_{k+1}\left(w_{1}\right)-\tilde{g}_{k+1}\left(w_{2}\right)\right|}{2}\right] \\
& =\mathbb{E}_{\sigma_{1}, \ldots, \sigma_{k}} \sup _{w_{1}, w_{2}}\left[\frac{c\left(w_{1}\right)+c\left(w_{2}\right)}{2}+\sum_{i=1}^{k} \sigma_{i} \frac{g_{i}\left(w_{1}\right)+g_{i}\left(w_{2}\right)}{2}\right. \\
& \left.+\frac{\tilde{g}_{k+1}\left(w_{1}\right)-\tilde{g}_{k+1}\left(w_{2}\right)}{2}\right] \\
& =\mathbb{E}_{\sigma_{1}, \ldots, \sigma_{k}} \mathbb{E}_{\sigma_{k+1}} \sup _{w}\left[c(w)+\sigma_{k+1} \tilde{g}_{k+1}(w)+\sum_{i=1}^{k} \sigma_{i} g_{i}(w)\right] \\
& \leq \mathbb{E}_{\sigma_{1}, \ldots, \sigma_{k}} \mathbb{E}_{\sigma_{k+1}} \sup _{w}\left[c(w)+\sigma_{k+1} \tilde{g}_{k+1}(w)+\sum_{i=1}^{k} \sigma_{i} \tilde{g}_{i}(w)\right] .
\end{aligned}
$$

The last inequality follows from the induction hypothesis.

Example

Example 16 (Variation of Expl 6.30)

Consider the regularized linear prediction functions

$$
\mathcal{F}_{A, B}=\left\{\left\{f(w, x)=w^{\top} \psi(x):\|w\|_{2} \leq A,\|\psi(x)\|_{2} \leq B\right\}\right.
$$

in Example 6. Consider smoothed classification loss function

$$
L(f(x), y)=\min (1, \max (0,1-\gamma f(x) y))
$$

for some $\gamma>0$.
Let

$$
\mathcal{G}=\left\{L(f(w, x), y): f \in \mathcal{F}_{A, B}\right\} .
$$

Then $L(f, y)$ is γ Lipschitz in f. We obtain from Theorem 14:

$$
R\left(\mathcal{G}, \mathcal{S}_{n}\right) \leq \gamma R\left(\mathcal{F}_{A, B}, \mathcal{S}_{n}\right) \leq \gamma A B / \sqrt{n}
$$

Lipschitz Loss: Uniform Convergence

Theorem 17 (First Inequality of Thm 6.31)

Consider real-valued function class $\mathcal{F}=\{f(w, \cdot): w \in \Omega\}$, and

$$
\mathcal{G}=\{\phi(w, z)=L(f(w, x), y): w \in \Omega, z=(x, y)\} .
$$

Assume that $L(f, y)$ is γ-Lipschitz in $f:\left|L(f, y)-L\left(f^{\prime}, y\right)\right| \leq \gamma\left|f-f^{\prime}\right|$, and

$$
\sup _{(x, y),\left(x^{\prime}, y^{\prime}\right)}\left|L(f(w, x), y)-L\left(f\left(w, x^{\prime}\right), y^{\prime}\right)\right| \leq M .
$$

Let $\mathcal{S}_{n} \sim \mathcal{D}^{n}$. With probability at least $1-\delta$, for all $w \in \Omega$:
$\mathbb{E}_{\mathcal{D}} L(f(w, X), Y) \leq \frac{1}{n} \sum_{i=1}^{n} L\left(f\left(w, X_{i}\right), Y_{i}\right)+2 \gamma R_{n}(\mathcal{F}, \mathcal{D})+M \sqrt{\frac{\ln (1 / \delta)}{2 n}}$.

Lipschitz Loss: Oracle Inequality

Theorem 18 (Simplified Second Inequality of Thm 6.31)

Under the conditions of Theorem 17, and consider the approximate regularized ERM method (3) with

$$
\phi(w, z)=L(f(w, x), y)
$$

We have with probability at least $1-\delta$:

$$
\begin{aligned}
\mathbb{E}_{\mathcal{D}} L(f(\hat{w}, X), Y) \leq & \inf _{w \in \Omega} \mathbb{E}_{\mathcal{D}} L(f(w, X), Y) \\
& +\epsilon^{\prime}+2 \gamma R_{n}(\mathcal{F}, \mathcal{D})+M \sqrt{\frac{2 \ln (2 / \delta)}{n}}
\end{aligned}
$$

where $\mathcal{F}=\{f(w, \cdot): w \in \Omega\}$.

Talagrand's Concentration Inequality

Talagrand's concentration inequality is similar to Bernstein inequality, which is needed to derive faster than $1 / \sqrt{n}$ concentration rate.

Corollary 19 (Cor 6.34)

Consider a real valued function class $\mathcal{F}=\{f(z): \mathcal{Z} \rightarrow \mathbb{R}\}$. Let \mathcal{D} be a distribution on \mathcal{Z}. Assume that there exists $M, \sigma>0$ so that $\forall f \in \mathcal{F}$, $\sigma^{2} \geq \operatorname{Var}_{Z \sim \mathcal{D}}[f(Z)]$, and $\sup _{Z^{\prime} \in \mathcal{Z}}\left[\mathbb{E}_{Z \sim \mathcal{D}} f(Z)-f\left(z^{\prime}\right)\right] \leq M$. Let
$\mathcal{S}_{n}=\left\{Z_{1}, \ldots, Z_{n}\right\}$ be n independent random variables from \mathcal{D}. Then with probability at least $1-\delta$ over \mathcal{S}_{n}, for all $f \in \mathcal{F}$,

$$
\begin{aligned}
& \mathbb{E}_{Z \sim \mathcal{D}} f(Z)-\frac{1}{n} \sum_{i=1}^{n} f\left(Z_{i}\right) \\
\leq & \epsilon_{n}(\mathcal{F}, \mathcal{D})+\sqrt{\frac{\left(4 M \epsilon_{n}(\mathcal{F}, \mathcal{D})+2 \sigma^{2}\right) \ln (1 / \delta)}{n}}+\frac{M \ln (1 / \delta)}{3 n} \\
\leq & 2 \epsilon_{n}(\mathcal{F}, \mathcal{D})+\sqrt{\frac{2 \sigma^{2} \ln (1 / \delta)}{n}}+\frac{4 M \ln (1 / \delta)}{3 n}
\end{aligned}
$$

where $\epsilon_{n}(\mathcal{F}, \mathcal{D})$ is Definition 1.

Fast Rate for Least Squares Regression (Expl 6.49)

Consider a function class \mathcal{F} and the ERM method for least squares regression:

$$
\hat{f}=\arg \min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(f\left(X_{i}\right)-Y_{i}\right)^{2},
$$

where $Z_{i}=\left(X_{i}, Y_{i}\right)$ are iid samples from \mathcal{D}. Assume that $|f(X)-Y| \in[0,1]$ for all X and Y. Example 3.18 implies that the loss function $\phi(f, Z)=\left[(f(X)-Y)^{2}-\left(f_{*}(X)-Y\right)^{2}\right]$ satisfies the variance condition if the true regression function $f_{*} \in \mathcal{F}$. Assume also that the empirical covering number of \mathcal{F} satisfies:

$$
\begin{equation*}
\ln N_{2}(\epsilon, \mathcal{F}, n) \leq \frac{c}{\epsilon^{p}} \tag{6}
\end{equation*}
$$

for some constant $c>0$ and $p>0$.

Fast Rate for Least Squares Regression (cont)

We consider the following two situations: $p \in(0,2)$ and $p \geq 2$.

- $p \in(0,2)$. We obtain with probability at least $1-\delta$:

$$
\mathbb{E}_{\mathcal{D}} L(\hat{f}(X), Y) \leq \mathbb{E}_{\mathcal{D}} L\left(f_{*}(X), Y\right)+O\left(n^{-2 /(2+p)}+\frac{\ln (1 / \delta)}{n}\right) .
$$

- $p>2$. The entropy integral of Theorem 11 implies that

$$
R_{n}\left(\mathcal{F}^{h}(b), \mathcal{D}\right) \leq \frac{\tilde{c}_{1}}{n^{1 / p}}
$$

for some constant \tilde{c}_{1}. We thus obtain a rate of convergence of

$$
\bar{r}^{h}(\alpha, \mathcal{F}, \mathcal{D})=O\left(n^{-1 / p}\right)
$$

for local Rademacher complexity of Section 6.5. It can be shown that this is the same rate as what we can obtain from the standard non-localized Rademacher complexity.

Summary (Chapter 6)

- Uniform Convergence Complexity
- Expected Uniform Convergence and Expected Oracle Inequality
- Rademacher Complexity
- Concentration Inequality
- High Probability Uniform Convergence and Oracle Inequality
- Estimate Rademacher complexity
- Chaining and Dudley's entropy Integral estimate
- Composition with Lipschitz function and comparison lemma

