Covering Number Estimates

Mathematical Analysis of Machine Learning Algorithms
(Chapter 5)



Packing Number

Definition 1 (Packing Number)

Let (V, d) be a pseudometric space with metric d(-, -). A finite subset
G(e) C G is an e-packing of G if d(¢, ¢’) > € for all ¢, ¢’ € G(€). The
e-packing number of G, denoted by M(e, G, d), is the largest
cardinality of e-packing of G.



Covering Number versus Packing Number

Theorem 2 (Thm 5.2)

For all e > 0, we have

N(e,G,d) < M(e,G,d) < N(e/2,G, d).

It is often convenient to use packing number because an e-packing
always belong to G. This means that any assumption of G holds for
an e-packing of G.



Proof of Theorem 2

Let G(e) = {¢1,...,0m} C G be a maximal e-packing of G. Given any
¢ € G, by the definition of maximality, we know that there exists

¢j € G(e) so that d(¢;, ¢) < e. This means that G(¢) is also an e cover
of G. Therefore N(e, G, d) < M. This proves the first inequality.

On the other hand, let G'(¢/2) be an /2 cover of G. By definition, for
any ¢; € G(e), there exists g(¢;) € G'(¢/2) such that

d(g(¢;y), ¢j) < €/2. For j # i, we know that d(¢;, #;) > €, and thus
triangle inequality implies that

d(a(e)), éi) = d(9i, &;) — d(9(e)), 7) > €/2 = d(9(ei), ¢1)-

Therefore g(¢;) # 9(¢#;). This implies the map
¢j € G(€) — 9(¢)) € G'(¢/2) is one to one. Therefore
|G(€)| < |G'(e/2)|. This proves the second inequality.



Finite Dimensional Space

Theorem 3 (Thm 5.3)

Let|| - || be a seminorm onRX. Let B(r) = {z ¢ R¥ : ||z|| < r} be the
|| - ||-ball with radius r. Then
M(e, B(r), || - 1I) < (1 +2r/e)".
Moreover,
N(e, B(r), || -

) = (r/e)".



Proof of Theorem 3 (I/1l)

Let {z1,...,2zm} C B(r) be a maximal e packing of B(r). Let
B ={z e R¥: ||z - z]| < ¢/2}, then Bjn B, = ( for j # k and
B; C B(r + ¢/2) for all j. It follows that

M
Z volume(B;) = volume(Uj’\i1 B;) < volume(B(r + ¢/2)).
j=1

Let v = volume(B(1)). Since volume(B;) = (¢/2)*v and
volume(B(r + ¢/2)) = (r + ¢/2)kv, we have

M(e/2)Kv < (r + ¢/2)kv.

This implies the first bound.



Proof of Theorem 3 (ll/II)

Let {z,...,zn} C R¥ be a cover of B(r). If we define
B ={z e RK: ||z - zj]| < €}, then B(r) C U;B;. Therefore

N

volume(B(r)) < volume(U}L By) < Zvolume(Bj).

=

Let v = volume(B(1)). Since volume(B;) = (¢)kv and
volume(B(r)) = rkv, we have

rkv < Nekv.

This implies the second bound.



Lipschitz Function Class

Theorem 4 (Thm 5.4)

Consider

{o(w,2) : w e Q}, (1)

where Q C R¥ is a compact set.
Assume that Q c R¥ is a compact set so that Q € B(r) with respect to

anorm || - ||. Assume for all z, p(w, z) is v(z) Lipschitz with respect to
w:

[p(w, 2) — ¢(W, 2)| < y(2)|w — W'|.
Givenp > 1, letyp = (Ez.p|v(Z)|P)!/P. Then

Ny(26.G, Lo(D)) < (1 + 2ypr/e)*.



Proof of Theorem 4

Let {wy,..., wy} be an e/, packing of Q. Then it is also an ¢/,
cover of Q.
Let

07 (2) = o(w;, 2) — 7(2)e/7p

and
¢/ (2) = o(w}, 2) +1(2)e/p.

Then {[¢f,¢]'] :j=1,..., M} is an 2¢ Ly(D)-bracketing cover.

We can now apply Theorem 3 to obtain the desired result.



Empirical L; Covering of VC-class

Theorem 5 (Thm 5.5)

If a binary valued function class G = {¢(w,Z) : w € Q} is a VC class,
then fore < 1:

In M(e, G, L1(Sn)) < 3d + dIn(In(4/€)/e).



Proof of Theorem 5 (I/1l)
Given Sp ={Zy,....Zs}. Let Q = {¢1,...,¢m} be a maximal e L1(Sp)
packing of G. Qs also an Ly e-cover of G. Consider the empirical
distribution, denoted by S,, which puts a probability of 1/n on each
Z;. We have for j # k:

Pr161(2) = ok(2)] =1~ Ezes,|6(2) — ol 2)| <1 e

Now consider random sample with replacement from S, for T times
to obtain samples {Z;,,...,Z.}. We have

Pri{vl: ¢;(Z,) = ex(Z))) < (1 —e)T < e 7"
That is, with probability larger than 1 — e~ ¢,
3 : 9i(Z,) # ok(Ziy).-

Taking the union bound for all j # k, we have with probability larger
than 1 — () - e~ T<, for all j # k:

3 ¢i(Z,) # ¢k(Z)-



Proof of Theorem 5 (lI/1I)

If we take T = [In(m?)/c], then e~ "¢(%]) < 1. Then there exists T
samples {Z;, : £ =1,..., T} such that ¢; # ¢ for all j # k when
restricted to these samples. Since VC(G) = d, we obtain from
Sauer’s lemma:

m < max[2, eT/d]? < max[2, e(1 + In(m?)/€)/d]°.
The theorem holds automatically when m < 29. Otherwise,

Inm < dlIn(1/€) + dIn((ee/d) + (2e/d) In(m)).

Letu=d "Inm—In(1/e) —Inin(4/¢) and let e < 1, we can obtain the
following bound by using the upper bound of In m:
u<—1InIn(4/¢) +In((ee/d) +2e(u + In(1/€) + InIn(4/¢)))
. 2e(u+ 0.5+ 1In(1/€) +InIn(4/¢))
In(4/€)
where the last inequality is obtained by taking sup over € € (0, 1]. By

solving this inequality we obtain a bound u < 3. This implies the
desired result.

< < In(4u+7),




A More Refined Result

Theorem 6 ([Haussler, 1995], Thm 5.6)

Let G be a binary valued function class with vc(G) = d. Then

In M(e, G, L1(Sn)) < 1+ In(d + 1) + dIn(2e/e).

D. Haussler (1995). “Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-Chervonenkis

dimension”. In: Journal of Combinatorial Theory, Series A 69.2, pp. 217-232 .

Corollary 7 (Cor 5.7)

Ifvc(G) = d, then for all distributions D over Z, we have

InN(e, G, Lp(D)) < 1+ In(d + 1) + dIn(2e/cP)

fore € (0,1] andp € [1, ).



VC-Subgraph Class

One may extend the concept of VC dimension to real valued
functions by introducing the definition of VC subgraph class.

Definition 8

A real valued function class of z € Z
G={o(w.2): weQ}
is a VC-subgraph class, if the binary function class
Gsubgraph = {1(t < ¢(w, 2)) : w € Q}

defined on (z,t) € Z x Ris a VC class. The VC dimension (some
times also called pseudo-dimension) of G is

VC(g) = VC(gsub—graph)-



Example: Linear Functions

Example 9
The d dimensional linear functions of the form

fu(X) =w'

X
is VC subgraph class of VC dimension d + 1.

This is because w' x — t is linear function in d + 1 dimension, and we
have shown that it has VC dimension d + 1.



Example: Composition with Monotone Function

Example 10

If 7 = {f(w,x): we Q}is aVC subgraph class and h is monotone
function, then
hoF = {h(f(w,x)): we Q}

is a VC subgraph class with

VC(ho F) < VC(F).

In particular, if f(w, x) = w' x is a d-dimensional linear function, then
h(f(w, x)) has VC dimension d + 1.



Covering Number of VC-Subgraph Class

Theorem 11 (Thm 5.11)

Assume that G is a VC subgraph class, with VC dimension d, and all
¢ € G are bounded: ¢(Z) € [0,1]. Then for any distribution D over Z,
e€ (0,1l andp € [1,00), we have

InN(e, G, Lp(D)) < 1+ In(d + 1) + dIn(2e/cP).

Moreover,
In N (e, G, n) < dInmax[2, en/(de)].



Proof of Theorem 11 (I/Il)

Let U be a random variable distributed uniformly over [0, 1]. Then for
allae (0,1): Ey1(U < a) = a. Thus for all ¢, ¢’ € G:

Ep|p(Z) - ¢/(2)IP
=Ep|Ey[1(U < ¢(2)) - 1(U < ¢ (2))]IP
<EpEy|L(U < ¢(2)) — 1(U < ¢'(2)) .

The last inequality used the Jensen’s inequality. Therefore
InN(e, G, Lp(D)) < In N(e, Gsubgraph; Lp(DP x U(0, 1))).

This leads to the first desired bound.



Proof of Theorem 11 (ll/II)

The second bound can be proved by discretizing U into intervals with
thresholds min(1,¢(2k + 1)) for k = 0,1, ... with no more than
[(2¢)~"] < 1/e thresholds. This gives an e-cover of U in Euclidean
distance.

We can then approximate E by average over the thresholds to get e
L., cover with the discretization. Let the set of thresholds be U'.

If D contain n data points, then D x U’ contains at most n|U’| < n/e
points, and one may apply Sauer’s lemma to obtain a cover on these
points. This implies the second bound.



Regularized Linear Function Class

F={f(w,x)=w'y(x): weQ xeX} )
where (x) is a known feature vector.
Theorem 12 (Thm 5.18)

Letw = [wy,Ws,...] € R™® and ¢(x) = [¢1(X), Y2(X),...] € R™. Let
Q= {w: ||w|2 < A}. Given a distribution D on X. Assume there
exists By > B, > --- such that

Ex~p Y %i(x)? < B?.

izj

Define d(e) = min{j > 0 : ABj 4 < ¢}. Then the function class F of
(2) satisfies:

In N(e, F, La(D)) < d(e/2) In <1 0 4A€B1) .



Proof of Theorem 12 )
Given ¢ > 0. Consider j = d(¢/2) such that AB; 1 < ¢/2. Let

Fy = {Zj: wihi(x) : w € Q}
i=1
.7:2 = {Z Wﬂb,‘(X) TWe Q} .

i>f

Since ||fl|,py < €/2 for all f € F>, we have N(e/2, F, Lo(D)) = 1.
Moreover, Theorem 3 implies that

InN(e/2, Fy, La(D)) < d(e/2) In (1 + 4/‘630) :
Note that F C Fy + F>», we have
In N(e, F, Lo(D)) < In N(e/2, Fy, La(D)) + In N(e/2, Fa, Lo(D)).

This implies the result.



Example

Example 13

Assume that B; = j~9, then
In N(e, F, Lo(D)) = O (e 9In(1/e)) .

If B; = O(c!) for some ¢ € (0, 1), then

In N(e, F, Lp(D)) = O ((ln(1 /e))2> :



L> Regularized Empirical L., Covering Number

Theorem 14 (Thm 5.20)

Assume that Q = {w : |w||2 < A} and ||¢)(x)||2 < B, then the function
class (2) has the following covering number bound:

36A2B?

In N(F, € Lo(Sn)) < =—5— In[2[(4AB/e) + 2]n+ 1].

Empirical L, covering number bounds can be used in margin
analysis and can be used to derive better bounds in multiclass
classification.



Summary (Chapter 5)

» Packing number and relationship with covering number
» Finite dimensional function classes

» L, covering for VC class.

» VC-subgraph class.

» Regularized linear function class.



