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Covering Number Estimates

Mathematical Analysis of Machine Learning Algorithms
(Chapter 5)
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Packing Number

Definition 1 (Packing Number)

Let (V,d) be a pseudometric space with metric d(·, ·). A finite subset
G(ε) ⊂ G is an ε-packing of G if d(φ, φ′) > ε for all φ, φ′ ∈ G(ε). The
ε-packing number of G, denoted by M(ε,G,d), is the largest
cardinality of ε-packing of G.
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Covering Number versus Packing Number

Theorem 2 (Thm 5.2)

For all ε > 0, we have

N(ε,G,d) ≤ M(ε,G,d) ≤ N(ε/2,G,d).

It is often convenient to use packing number because an ε-packing
always belong to G. This means that any assumption of G holds for
an ε-packing of G.
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Proof of Theorem 2

Let G(ε) = {φ1, . . . , φM} ⊂ G be a maximal ε-packing of G. Given any
φ ∈ G, by the definition of maximality, we know that there exists
φj ∈ G(ε) so that d(φj , φ) ≤ ε. This means that G(ε) is also an ε cover
of G. Therefore N(ε,G,d) ≤ M. This proves the first inequality.
On the other hand, let G′(ε/2) be an ε/2 cover of G. By definition, for
any φj ∈ G(ε), there exists g̃(φj) ∈ G′(ε/2) such that
d(g̃(φj), φj) ≤ ε/2. For j 6= i , we know that d(φi , φj) > ε, and thus
triangle inequality implies that

d(g̃(φj), φi) ≥ d(φi , φj)− d(g̃(φj), φj) > ε/2 ≥ d(g̃(φi), φi).

Therefore g̃(φi) 6= g̃(φj). This implies the map
φj ∈ G(ε)→ g̃(φj) ∈ G′(ε/2) is one to one. Therefore
|G(ε)| ≤ |G′(ε/2)|. This proves the second inequality.
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Finite Dimensional Space

Theorem 3 (Thm 5.3)

Let ‖ · ‖ be a seminorm on Rk . Let B(r) = {z ∈ Rk : ‖z‖ ≤ r} be the
‖ · ‖-ball with radius r . Then

M(ε,B(r), ‖ · ‖) ≤ (1 + 2r/ε)k .

Moreover,
N(ε,B(r), ‖ · ‖) ≥ (r/ε)k .
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Proof of Theorem 3 (I/II)

Let {z1, . . . , zM} ⊂ B(r) be a maximal ε packing of B(r). Let
Bj = {z ∈ Rk : ‖z − zj‖ ≤ ε/2}, then Bj ∩ Bk = ∅ for j 6= k and
Bj ⊂ B(r + ε/2) for all j . It follows that

M∑
j=1

volume(Bj) = volume(∪M
j=1Bj) ≤ volume(B(r + ε/2)).

Let v = volume(B(1)). Since volume(Bj) = (ε/2)kv and
volume(B(r + ε/2)) = (r + ε/2)kv , we have

M(ε/2)kv ≤ (r + ε/2)kv .

This implies the first bound.
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Proof of Theorem 3 (II/II)

Let {z1, . . . , zN} ⊂ Rk be a cover of B(r). If we define
Bj = {z ∈ Rk : ‖z − zj‖ ≤ ε}, then B(r) ⊂ ∪jBj . Therefore

volume(B(r)) ≤ volume(∪N
j=1Bj) ≤

N∑
j=1

volume(Bj).

Let v = volume(B(1)). Since volume(Bj) = (ε)kv and
volume(B(r)) = r kv , we have

r kv ≤ Nεkv .

This implies the second bound.
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Lipschitz Function Class

Theorem 4 (Thm 5.4)

Consider
{φ(w ,Z ) : w ∈ Ω} , (1)

where Ω ⊂ Rk is a compact set.
Assume that Ω ⊂ Rk is a compact set so that Ω ∈ B(r) with respect to
a norm ‖ · ‖. Assume for all z, φ(w , z) is γ(z) Lipschitz with respect to
w:

|φ(w , z)− φ(w ′, z)| ≤ γ(z)‖w − w ′‖.

Given p ≥ 1, let γp = (EZ∼D|γ(Z )|p)1/p. Then

N[](2ε,G,Lp(D)) ≤ (1 + 2γpr/ε)k .
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Proof of Theorem 4

Let {w1, . . . ,wM} be an ε/γp packing of Ω. Then it is also an ε/γp
cover of Ω.
Let

φL
j (z) = φ(wj , z)− γ(z)ε/γp

and
φU

j (z) = φ(wj , z) + γ(z)ε/γp.

Then {[φL
j , φ

U
j ] : j = 1, . . . ,M} is an 2ε Lp(D)-bracketing cover.

We can now apply Theorem 3 to obtain the desired result.



10

Empirical L1 Covering of VC-class

Theorem 5 (Thm 5.5)

If a binary valued function class G = {φ(w ,Z ) : w ∈ Ω} is a VC class,
then for ε ≤ 1:

ln M(ε,G,L1(Sn)) ≤ 3d + d ln(ln(4/ε)/ε).
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Proof of Theorem 5 (I/II)
Given Sn = {Z1, . . . ,Zn}. Let Q = {φ1, . . . , φm} be a maximal ε L1(Sn)
packing of G. Q is also an L1 ε-cover of G. Consider the empirical
distribution, denoted by Sn, which puts a probability of 1/n on each
Zi . We have for j 6= k :

Pr
Z∼Sn

[φj(Z ) = φk (Z )] = 1− EZ∼Sn |φj(Z )− φk (Z )| < 1− ε.

Now consider random sample with replacement from Sn for T times
to obtain samples {Zi1 , . . . ,ZiT }. We have

Pr({∀` : φj(Zi`) = φk (Zi`)}) < (1− ε)T ≤ e−T ε.

That is, with probability larger than 1− e−T ε,

∃` : φj(Zi`) 6= φk (Zi`).

Taking the union bound for all j 6= k , we have with probability larger
than 1−

(m
2

)
· e−T ε, for all j 6= k :

∃` : φj(Zi`) 6= φk (Zi`).



12

Proof of Theorem 5 (II/II)
If we take T = dln(m2)/εe, then e−T ε(m

2

)
≤ 1. Then there exists T

samples {Zi` : ` = 1, . . . ,T} such that φj 6= φk for all j 6= k when
restricted to these samples. Since VC(G) = d , we obtain from
Sauer’s lemma:

m ≤ max[2,eT/d ]d ≤ max[2,e(1 + ln(m2)/ε)/d ]d .

The theorem holds automatically when m ≤ 2d . Otherwise,

ln m ≤ d ln(1/ε) + d ln((eε/d) + (2e/d) ln(m)).

Let u = d−1 ln m− ln(1/ε)− ln ln(4/ε) and let ε ≤ 1, we can obtain the
following bound by using the upper bound of ln m:

u ≤− ln ln(4/ε) + ln((eε/d) + 2e(u + ln(1/ε) + ln ln(4/ε)))

≤ ln
2e(u + 0.5 + ln(1/ε) + ln ln(4/ε))

ln(4/ε)
≤ ln(4u + 7),

where the last inequality is obtained by taking sup over ε ∈ (0,1]. By
solving this inequality we obtain a bound u ≤ 3. This implies the
desired result.
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A More Refined Result

Theorem 6 ([Haussler, 1995], Thm 5.6)

Let G be a binary valued function class with VC(G) = d. Then

ln M(ε,G,L1(Sn)) ≤ 1 + ln(d + 1) + d ln(2e/ε).

D. Haussler (1995). “Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-Chervonenkis

dimension”. In: Journal of Combinatorial Theory, Series A 69.2, pp. 217–232 .

Corollary 7 (Cor 5.7)

If VC(G) = d, then for all distributions D over Z , we have

ln N(ε,G,Lp(D)) ≤ 1 + ln(d + 1) + d ln(2e/εp)

for ε ∈ (0,1] and p ∈ [1,∞).
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VC-Subgraph Class

One may extend the concept of VC dimension to real valued
functions by introducing the definition of VC subgraph class.

Definition 8
A real valued function class of z ∈ Z

G = {φ(w ,Z ) : w ∈ Ω}

is a VC-subgraph class, if the binary function class

Gsubgraph = {1(t < φ(w , z)) : w ∈ Ω}

defined on (z, t) ∈ Z × R is a VC class. The VC dimension (some
times also called pseudo-dimension) of G is

VC(G) = VC(Gsub−graph).
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Example: Linear Functions

Example 9

The d dimensional linear functions of the form

fw (x) = w>x

is VC subgraph class of VC dimension d + 1.
This is because w>x − t is linear function in d + 1 dimension, and we
have shown that it has VC dimension d + 1.
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Example: Composition with Monotone Function

Example 10

If F = {f (w , x) : w ∈ Ω} is a VC subgraph class and h is monotone
function, then

h ◦ F = {h(f (w , x)) : w ∈ Ω}

is a VC subgraph class with

VC(h ◦ F) ≤ VC(F).

In particular, if f (w , x) = w>x is a d-dimensional linear function, then
h(f (w , x)) has VC dimension d + 1.
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Covering Number of VC-Subgraph Class

Theorem 11 (Thm 5.11)

Assume that G is a VC subgraph class, with VC dimension d, and all
φ ∈ G are bounded: φ(Z ) ∈ [0,1]. Then for any distribution D over Z ,
ε ∈ (0,1] and p ∈ [1,∞), we have

ln N(ε,G,Lp(D)) ≤ 1 + ln(d + 1) + d ln(2e/εp).

Moreover,
ln N∞(ε,G,n) ≤ d ln max[2,en/(dε)].
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Proof of Theorem 11 (I/II)

Let U be a random variable distributed uniformly over [0,1]. Then for
all a ∈ (0,1): EU1(U ≤ a) = a. Thus for all φ, φ′ ∈ G:

ED|φ(Z )− φ′(Z )|p

=ED|EU [1(U ≤ φ(Z ))− 1(U ≤ φ′(Z ))]|p

≤EDEU |1(U ≤ φ(Z ))− 1(U ≤ φ′(Z ))|p.

The last inequality used the Jensen’s inequality. Therefore

ln N(ε,G,Lp(D)) ≤ ln N(ε,Gsubgraph,Lp(D × U(0,1))).

This leads to the first desired bound.
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Proof of Theorem 11 (II/II)

The second bound can be proved by discretizing U into intervals with
thresholds min(1, ε(2k + 1)) for k = 0,1, . . . with no more than
d(2ε)−1e ≤ 1/ε thresholds. This gives an ε-cover of U in Euclidean
distance.

We can then approximate EU by average over the thresholds to get ε
L∞ cover with the discretization. Let the set of thresholds be U ′.

If D contain n data points, then D × U ′ contains at most n|U ′| ≤ n/ε
points, and one may apply Sauer’s lemma to obtain a cover on these
points. This implies the second bound.
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Regularized Linear Function Class

F = {f (w , x) = w>ψ(x) : w ∈ Ω, x ∈ X} (2)

where ψ(x) is a known feature vector.

Theorem 12 (Thm 5.18)

Let w = [w1,w2, . . .] ∈ R∞ and ψ(x) = [ψ1(x), ψ2(x), . . .] ∈ R∞. Let
Ω = {w : ‖w‖2 ≤ A}. Given a distribution D on X . Assume there
exists B1 ≥ B2 ≥ · · · such that

Ex∼D
∑
i≥j

ψi(x)2 ≤ B2
j .

Define d̃(ε) = min{j ≥ 0 : ABj+1 ≤ ε}. Then the function class F of
(2) satisfies:

ln N(ε,F ,L2(D)) ≤ d̃(ε/2) ln

(
1 +

4AB1

ε

)
.
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Proof of Theorem 12
Given ε > 0. Consider j = d̃(ε/2) such that ABj+1 ≤ ε/2. Let

F1 =


j∑

i=1

wiψi(x) : w ∈ Ω


F2 =

∑
i>j

wiψi(x) : w ∈ Ω

 .

Since ‖f‖L2(D) ≤ ε/2 for all f ∈ F2, we have N(ε/2,F ,L2(D)) = 1.
Moreover, Theorem 3 implies that

ln N(ε/2,F1,L2(D)) ≤ d̃(ε/2) ln

(
1 +

4AB0

ε

)
.

Note that F ⊂ F1 + F2, we have

ln N(ε,F ,L2(D)) ≤ ln N(ε/2,F1,L2(D)) + ln N(ε/2,F2,L2(D)).

This implies the result.
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Example

Example 13

Assume that Bj = j−q, then

ln N(ε,F ,L2(D)) = O
(
ε−q ln(1/ε)

)
.

If Bj = O(c j) for some c ∈ (0,1), then

ln N(ε,F ,L2(D)) = O
(

(ln(1/ε))2
)
.
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L2 Regularized Empirical L∞ Covering Number

Theorem 14 (Thm 5.20)

Assume that Ω = {w : ‖w‖2 ≤ A} and ‖ψ(x)‖2 ≤ B, then the function
class (2) has the following covering number bound:

ln N(F , ε,L∞(Sn)) ≤ 36A2B2

ε2
ln[2d(4AB/ε) + 2en + 1].

Empirical L∞ covering number bounds can be used in margin
analysis and can be used to derive better bounds in multiclass
classification.
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Summary (Chapter 5)

I Packing number and relationship with covering number
I Finite dimensional function classes
I Lp covering for VC class.
I VC-subgraph class.
I Regularized linear function class.


