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Empirical Covering Number Analysis and
Symmetrization

Mathematical Analysis of Machine Learning Algorithms
(Chapter 4)
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Metric Covering Number

We introduce metric covering numbers on a general pseudometrics
space as follows.

Definition 1 (Def 4.1)

Let (V,d) be a pseudometric space with metric d(·, ·). A finite set
G(ε) ⊂ V is an ε cover (or ε net) of G ⊂ V if, for all φ ∈ G, there exists
φ′ ∈ G(ε) so that d(φ′, φ) ≤ ε. The ε-covering number of G with metric
d is the smallest cardinality N(ε,G,d) of such G(ε). The number
ln N(ε,G,d) is called the ε-entropy.

For a function class G with seminorm Lp(D) (p ≥ 1)

‖f − f ′‖Lp(D) =
[
EZ∼D|f (Z )− f ′(Z )|p

]1/p
,

the corresponding Lp(D)-covering number is N(ε,G,Lp(D)).



3

Relation to Bracketing Number

The L∞ bracketing cover is equivalent to L∞ cover. Therefore uniform
convergence results in Chapter 3 holds for L∞ cover.

Proposition 2 (Prop 4.3)

NLB(ε,G,L1(D)) ≤ N[](ε,G,L∞(D)) = N(ε/2,G,L∞(D)).

However, one cannot derive uniform convergence result based on Lp
covering number with p <∞, although one can derive such results
with bracketing number (see Chapter 3).

We need to work with empirical/uniform Lp covering number to obtain
uniform convergence results.
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Empirical and Uniform Covering Number

Definition 3 (Def 4.4)

Given an empirical distribution Sn = {Z1, . . . ,Zn}, we define the
pseudometric d = Lp(Sn) as

d(φ, φ′) =

[
1
n

n∑
i=1

|φ(Zi)− φ′(Zi)|p
]1/p

.

The corresponding metric covering number N(ε,G,Lp(Sn)) is referred
to as the empirical Lp covering number. Given n, the largest Lp
covering number over empirical distribution Sn is referred to as the
uniform Lp covering number

Np(ε,G,n) = sup
Sn

N(ε,G,Lp(Sn)).
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Properties

Proposition 4

For 1 ≤ p ≤ q, we have

N(ε,G,Lp(Sn)) ≤ N(ε,G,Lq(Sn)),

Np(ε,G,n) ≤ Nq(ε,G,n).

We will later show that the uniform L1 covering number can be used
to obtain uniform convergence and oracle inequalities.
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Example

Example 5

Consider {0,1} valued linear classifiers in d dimension of the form
f (w , x) = 1(w>x ≥ 0), where w ∈ Ω = Rd and ∈ X = Rd . Let
Y ∈ {0,1}, then classification error is φ(w , z) = 1(f (w , x) 6= y),
where z = (x , y).
I Difficult to obtain bracketing number.
I However it is easy to obtain L∞ empirical covering number:

N∞(G, ε = 0,n) ≤ (2n)d .
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Symmetrization: Notations
Let Z = (X ,Y ). Consider
I Training data Sn = {Z1, . . . ,Zn}, drawn independently from D
I Validation data S ′n = {Z ′1, . . . ,Z ′n}, drawn independently from D.

Given a function f (Z ), define the training loss and the validation loss:

f (Sn) =
1
n

∑
Z∈Sn

f (Z ), f (S ′n) =
1
n

∑
Z∈S′n

f (Z ).

Let F be a function class. Consider n iid Bernoulli random variables
σi ∈ {±1}, where Pr(σi = 1) = Pr(σi = −1) = 0.5. The symmetrized
empirical process is

f (σ,Sn) =
1
n

n∑
i=1

σi f (Zi) f ∈ F ,

where the randomness is with respect to Sn = {Zi} and σ = {σi}.
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Symmetrization Lemma

Lemma 6 (Simplified from Lem 4.8 )

Consider a real valued function family F = {f : Z → R}. Assume
there exists a function εn : (0,1)→ R so that with probability at least
1− δ:

∀f ∈ F , f (σ,Sn) ≤ εn(δ),

where the randomness is over both Sn ∼ Dn and σ. Then with
probability at least 1− δ over independent random data
(Sn,S ′n) ∼ D2n:

∀f ∈ F , f (S ′n) ≤ f (Sn) + 2εn(δ/2).

Convergence of training error to validation error can be obtained from
uniform convergence of symmetrized empirical process.
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Proof of Lemma 7

Consider independent random samples (Sn,S ′n) ∼ D2n. The
distribution of f (Sn)− f (S ′n) is the same as that of f (σ,Sn)− f (σ,S ′n),
and the latter contains additional randomness from Bernoulli random
variables σ, drawn independently of (Sn,S ′n). It follows that

Pr
(
∃f ∈ F , f (S ′n) > f (Sn) + 2εn(δ/2)

)
= Pr

(
∃f ∈ F , f (σ,S ′n) > f (σ,Sn) + 2εn(δ/2)

)
≤2 Pr (∃f ∈ F , f (σ,Sn) > ψ(f ,Sn) + εn(δ/2)) ≤ 2(δ/2).

In the above derivation, the first equation used the fact that
f (Sn)− f (S ′n) and f (σ,Sn)− f (σ,S ′n) have the same distributions. The
first inequality used the union bound, and the symmetry of −f (σ,Sn)
and f (σ,Sn).
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From Validation Loss to Test Loss
Lemma 7 (Simplification of Lem 4.11 )

Assume that Lemma 7 holds. With probability at least 1− δ1 over
independent random data (Sn,S ′n) ∼ D2n:

∀f ∈ F , f (S ′n) ≤ f (Sn) + 2εn(δ1/2).

Moreover, assume ∀f ∈ F , we have with probability 1− δ2 over
randomly drawn S ′n ∼ D:

f (D) ≤ f (S ′n) + ε′n(δ2), (1)

where f (D) = EZ∼Df (Z ). Then the following uniform convergence
statement holds. With probability at least 1− δ1 − δ2,

∀f ∈ F : f (D) ≤ f (Sn) + 2εn(δ1/2) + ε′n(δ2).

Note that we do not need uniform convergence in (1).
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Proof of Lemma 8 (I/II)

Let Q(f ,Sn) = f (D)− f (Sn)− (2εn(δ1/2) + ε′n(δ2)), and let E be the
event that supf∈F Q(f ,Sn) ≤ 0. We pick f̂Sn ∈ F so that
I If E holds, choose f̂Sn so that Q(f̂Sn ,Sn) ≤ 0.
I If E does not hold, choose f̂Sn so that Q(f̂Sn ,Sn) > 0.

Consider sample (Sn,S ′n) ∼ D2n. The uniform convergence condition
implies that with probability at least 1− δ1, the following event holds:

E1 : f̂Sn (S ′n) ≤ f̂Sn (Sn) + 2εn(δ1/2).

The condition of the theorem also implies that with probability at least
1− δ2, the following event holds:

E2 : f̂Sn (D) ≤ f̂Sn (S ′n) + ε′n(δ2).
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Proof of Lemma 8 (II/II)

If both events E1 and E2 hold, then

f̂Sn (D) ≤f̂Sn (S ′n) + ε′n(δ2) ≤ f̂Sn (Sn) + 2εn(δ1/2) + ε′n(δ2).

From the definition of f̂Sn , we know that E holds.
Therefore

Pr(E) ≥ Pr(E1&E2) ≥ 1− δ1 − δ2.
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Uniform Convergence with Uniform L1 Covering

Using the same notations of Chapter 3, we consider a function class

G = {φ(w , z) : w ∈ Ω}.

Theorem 8 (Additive Bound in Thm 4.12)

Assume that φ(w , z) ∈ [0,1] for all w and z. Then given δ ∈ (0,1),
with probability at least 1− δ, the following inequality holds:

∀w ∈ Ω : φ(w ,D) ≤ φ(w ,Sn) + εn(δ),

where

εn(δ) = inf
ε>0

[
2ε+ 3

√
ln(3N1(ε,G,2n)/δ)

2n

]
.
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Proof of Theorem 9 (I/II)

Let F = {f (z) = φ(w , z)− 0.5 : w ∈ Ω}. Given Sn, we consider an
ε-L1(Sn) cover Fε(Sn) of F , of size no more N = N1(ε,G,n). We may
assume that f (Zi) ∈ [−0.5,0.5] for f ∈ Fε(Sn). From Corollary 2.27
(with ai = 0.5) and the union bound, we obtain the following uniform
convergence result over Fε(Sn). With probability 1− δ:

∀f ∈ Fε(Sn) : f (σ,Sn) ≤
√

ln(N/δ)

2n
.

Since for all f ∈ F , we can find f ′ ∈ Fε(Sn) so that
n−1∑

Z∈Sn
|f (Z )− f ′(Z )| ≤ ε for all Z ∈ Sn. It follows that

f (σ,Sn) ≤ f ′(σ,Sn) + ε ≤ ε+

√
ln(N/δ)

2n
.
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Proof of Theorem 9 (II/II)
Using Lemma 7 with ψ = 0, this uniform convergence result for the
symmetrized empirical process implies the following uniform
convergence result. With probability at least 1− δ1 over
(Sn,S ′n) ∼ D2n:

∀w ∈ Ω : φ(w ,S ′n)︸ ︷︷ ︸
validation error

≤ φ(w ,Sn)︸ ︷︷ ︸
training error

+ 2ε+

√
2 ln(2N/δ1)

n︸ ︷︷ ︸
2εn(δ1/2)

.

The standard additive Chernoff bound implies that for all w ∈ Ω, with
probability at least 1− δ2:

φ(w ,D)︸ ︷︷ ︸
test error

≤ φ(w ,S ′n)︸ ︷︷ ︸
validation error

+

√
ln(1/δ2)

2n︸ ︷︷ ︸
ε′n(δ2)

.

Therefore in Lemma 8, we can take symbols as defined above,
together with δ1 = 2δ/3 and δ2 = δ/3 to obtain the desired bound.
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Oracle Inequality

Corollary 9 (Additive Bound in Cor 4.13)

If φ(w , z) ∈ [0,1]. Let G = {φ(w , z) : w ∈ Ω}. With probability at least
1− δ, the approximate ERM method (3.3) satisfies the (additive)
oracle inequality:

EZ∼Dφ(ŵ ,Z ) ≤ inf
w∈Ω

EZ∼Dφ(w ,Z ) + ε′

+ inf
ε>0

[
2ε+

√
8 ln(4N1(ε,G,n)/δ)

n

]
.
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Example

Example 10 (Additive Bound, Expl 4.14 )

Consider the linear classifier example in Example 6. Since

ln N∞(ε,G,n) ≤ d ln(2n),

it follows that for the ERM method, we have the following oracle
inequalities. With probability at least 1− δ:

ED1(f (ŵ ,X ) 6= Y ) ≤ inf
w∈Rd

ED1(f (w ,X ) 6= Y )+

√
8(ln(4/δ) + d ln(2n))

n
.
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Example (cont)

Example 11 (Multiplicative Bound, Expl 4.14 )

With probability at least 1− δ:

ED1(f (ŵ ,X ) 6= Y ) ≤ err∗

+ C

[√
err∗

ln(δ−1) + d ln(n)

n
+

ln(δ−1) + d ln(n)

n

]
,

where C is an absolute constant and

err∗ = inf
w∈Ω

ED1(f (w ,X ) 6= Y ).

The multiplicative bound is better than the additive bound when
err∗ ≈ 0. Details of the derivation can be found in the book.
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Vapnik-Chervonenkis Dimension

Let G = {φ(w , z) : w ∈ Ω} be a {0,1} valued binary function class of
z ∈ Z indexed by w ∈ Ω.

Definition 12 (VC-dimension)

We say that G shatters Sn if the number of elements |G(Sn)| is 2n.
That is, we can always find w ∈ Ω so that φ(w , z) matches any
arbitrary possible choice of {0,1}n values at the n points.
The maximum n such that G shatters at least one instance of
Sn ∈ Zn, denoted by VC(G), is called the VC-dimension of G.
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Sauer’s Lemma

Lemma 13 (Sauer’s Lemma, Lem 4.16 )

If VC(G) = d, then we have for all n > 0 and empirical samples
Sn = {Z1, . . . ,Zn} ∈ Zn:

|G(Sn)| ≤
d∑
`=0

(
n
`

)
≤ max(2,en/d)d .
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Proof of Lemma 14 (I/III)

First, we prove the statement under the assumption that |G(Sn)| is
upper bounded by the number of subsets of Sn (including the empty
set) that are shattered by G.
Under this assumption, since any subset shattered by G cannot be
larger than d by the definition of VC-dimension, and the number of
subsets of size ` is

(n
`

)
, we know that the number of subsets

shattered by G cannot be more than
∑d

`=1
(n
`

)
.

When n ≥ d , we have (see Exercise 4.1)

d∑
`=0

(
n
`

)
≤ (en/d)d . (2)

When n ≤ d , we have
∑d

`=0
(n
`

)
≤ 2d . This implies the desired result.
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Proof of Lemma 14 (II/III)
In the following, we only need to prove the statement that |G(Sn)| is
upper bounded by the number of subsets of Sn that are shattered by
G. This can be proved by induction on n. When n = 1, one can check
that the claim holds trivially.

Now assume that the claim holds for all empirical samples of size no
more than n − 1. Consider n samples {Z1, . . . ,Zn}. We define

φ(w ,Sk ) =[φ(w ,Z1), . . . , φ(w ,Zk )],

Gn−1(Sn) = {[φ(w ,Sn−1),1] : [φ(w ,Sn−1),0], [φ(w ,Sn−1,1] ∈ G(Sn)} .

Using the induction hypothesis, we know that |Gn−1(Sn)| is bounded
by the number of shattered subset S ⊂ Sn−1; for each shattered
S ⊂ Sn−1, S ∪ {Zn} is shattered by G(Sn) because both
[φ(w ,Sn−1),1] and [φ(w ,Sn−1),0] belong to G(Sn).
Therefore |Gn−1(Sn)| is no more than the number of shattered
subsets of Sn that contains Zn.
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Proof of Lemma 14 (III/III)

Moreover, since for φ(w , ·) ∈ G(Sn)− Gn−1(Sn), φ(w ,Zn) is uniquely
determined by its values at Sn−1

1, it follows that |G(Sn)− Gn−1(Sn)| is
no more than |G(Sn−1)|.
By induction hypothesis, |G(Sn−1)| is no more than the number of
shattered subsets of Sn that does not contain Zn.

By combining the above two facts, |G(Sn)| is no more than the
number of shattered subsets of Sn.

1If not, then both [φ(w ,Sn−1), 0] and [φ(w ,Sn−1), 1] can be achieved in
G(Sn)− Gn−1(Sn), which is impossible because by definition, we should have put
[φ(w ,Sn−1), 1] in Gn−1(Sn)
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Example of Finite VC Dimension

Proposition 14 (Prop 4.18)

Consider d-dimensional {0,1} valued linear classifiers of the form

F = {fw (x) = 1(w>x ≥ 0),w ∈ Rd},

we have VC(F) = d.
This implies that d-dimensional linear classifier

G = {1(fw (X ) 6= Y ),w ∈ Rd}

has VC dimension VC(G) = d.
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Proof of Proposition 15
Consider d + 1 points x1, . . . , xd+1. There exists d + 1 real valued
coefficients [a1, . . . ,ad+1] 6= 0 such that ∃aj > 0 and

a1x1 + · · ·+ ad+1xd+1 = 0. (3)

In order to show that x1, . . . , xd+1 cannot be shattered, we only need
to show that there is no w ∈ Rd such that

1(w>xi ≥ 0) = 0 (ai > 0); 1(w>xi ≥ 0) = 1 (ai ≤ 0).

We prove this by contradiction. Assume the above function values
can be achieved, then aiw>xi ≤ 0 for all i . Since there is at least one
aj > 0, we know that for this j , ajw>xj < 0. Therefore

d+1∑
i=1

aiw>xi < 0,

which is a contradiction to (3).
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Example of Infinite VC Dimension

Example 15

The binary-valued function class G = {1(cos(wz) ≥ 0) : w , z ∈ R}
has infinite VC-dimension.
Given any d , we consider

{
zj = 16−jπ : j = 1, . . . ,d

}
. Let

w =
∑d

j=1(1− bj)16j , with bj ∈ {0,1}. It is easy to verify that
1(cos(w zj) ≥ 0) = bj . It follows that the set can be shattered by G.
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Uniform Convergence with Finite VC-Dimension
Corollary of Theorem 9

Assume L(·, ·) ∈ {0,1} is a binary valued loss function. Let

G = {L(f (w , x), y) : w ∈ Ω},

with a finite VC-dimension VC(G) = d . Then given δ ∈ (0,1), with
probability at least 1− δ over Sn = {(X1,Y1), . . . , (Xn,Yn)}, the
following inequality holds:

∀w ∈ Ω :EDL(f (w ,X ),Y )

≤1
n

n∑
i=1

L(f (w ,Xi),Yi) + 3

√
d ln max(2,en/d) + ln(3/δ)

2n
.

This is a direct consequence of Theorem 9 and Sauer’s lemma:

ln(N1(ε = 0,G,2n)) ≤ d ln max(2,en/d)
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Oracle Inequality Using VC-Dimension

Theorem 16 (Additive Bound in Thm 4.17)

Assume L(·, ·) ∈ {0,1} is a binary valued loss function. Let
G = {L(f (w , x), y) : w ∈ Ω}, with a finite VC-dimension VC(G) = d.
Given n ≥ d, with probability at least 1− δ, the ERM solution ŵ
satisfies:

EDL(f (ŵ ,X ),Y ) ≤ inf
w∈Ω

EDL(f (w ,X ),Y )

+

√
8d ln(en/d) + 8 ln(4/δ)

n
.

A direct consequence of Corollary 10 and Sauer’s lemma.
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Multiplicative Oracle Inequality

It is also possible to obtain multiplicative oracle inequality.

Theorem 17 (Multiplicative Bound in Theorem 4.17)

Under the assumptions of Theorem 17. For all γ ∈ (0,1), with
probability at least 1− δ, the following inequality holds

(1− γ)2EDL(f (ŵ ,X ),Y ) ≤ inf
w∈Ω

(1 + γ)EDL(f (w ,X ),Y )

+
(6− 3γ)(d ln(en/d) + ln(4/δ))

2γn
.
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Margin Bound

VC-dimension of finite dimensional linear classifiers is finite.
Theorem 17 can be applied to obtain oracle inequality.

However, for infinite dimensional linear classification problems (e.g.
support vector machines), the underlying VC dimension is∞. In such
case, one can try to minimize margin error instead of classification
error, and obtain generalization error in terms of margin error.

Margin analysis relies on L∞-covering number analysis at ε > 0,
which can be finite even for infinite-dimensional classification
problems.



31

Example of Margin Bound

Example 18 (Infinite Dimensional Classification, Expl 4.22 )

Consider binary classification with Y ∈ {±1}, and linear classifier{
f (w , x) = w>ψ(x) : ‖w‖2 ≤ A

}
,

and assume that ‖ψ(x)‖2 ≤ B. Then

1(f (X )Y ≤ 0) ≤
n∑

i=1

1(f (w ,Xi)Yi ≤ γ) + O

√A2B2 ln(n + AB/γ)

γ2n

 .

One can also obtain the following multiplicative bound for γ ∈ (0,0.5]:

1(f (X )Y ≤ 0) ≤ 4
n

n∑
i=1

1(f (w ,Xi)Yi ≤ γ) + O
(

A2B2 ln(n + AB/γ)

γn

)
.
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Summary (Chapter 4)

I Random partition of data to training versus validation.
I Uniform convergence of training error to validation error using

symmetrization.
I Uniform convergence of training error to test error.
I Uniform convergence and oracle inequality using uniform L1

covering number.
I VC dimension and Sauer’s lemma.


