Uniform Convergence

Mathematical Analysis of Machine Learning Algorithms (Chapter 3)

PAC Learning: Notations

We will study Probabilistic Approximately Correct (PAC) learning.

- X : binary valued vector $X \in\{0,1\}^{d}$.
- Y : binary output $Y \in\{0,1\}$.
- f : a Boolean function: $X \in\{0,1\}^{d} \rightarrow Y \in\{0,1\}$.
- \mathcal{C} : a set of Boolean functions
- $f_{*} \in \mathcal{C}$: unknown true function that we want to learn.
- \mathcal{O} : an oracle that sample from a distribution \mathcal{D}, each sample return $X \sim \mathcal{D}$ and $Y=f\left(X_{*}\right)$

The goal of a PAC learner is to learn $f_{*}(X)$ so that generalization error

$$
\operatorname{err}_{\mathcal{D}}(f)=\mathbb{E}_{X \sim \mathcal{D}} \mathbb{1}\left(f(x) \neq f_{*}(x)\right)
$$

is no larger than ϵ.

PAC Learning: Definition

We may call the oracle $\mathcal{O} n$ times to form a training data $\mathcal{S}_{n}=\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1, \ldots, n} \sim \mathcal{D}^{n}$. The learner \mathcal{A} takes \mathcal{S}_{n} and returns a function $\hat{f} \in \mathcal{C}$.

Definition 1 (PAC Learning)

A concept class \mathcal{C} is PAC learnable if there exists a learner \mathcal{A} so that for all $f_{*} \in \mathcal{C}$, distribution \mathcal{D} on the input, approximation error $\epsilon>0$ and probability $\delta \in(0,1)$, the following statement holds. With probability at least $1-\delta$ over samples from the oracle \mathcal{O} over \mathcal{D}, the learner produces a function \hat{f} such that

$$
\operatorname{err}_{\mathcal{D}}(\hat{f}) \leq \epsilon
$$

with the computational complexity polynomial in $\left(\epsilon^{-1}, \delta^{-1}, d\right)$.
In the statistical complexity analysis of learning algorithms, the computational complexity requirement is de-emphasized.

PAC Learning: examples

Example 2 (AND Function Class)

Each member of AND function class can be written as

$$
f(x)=\prod_{j \in J} x_{j}, \quad J \subset\{1, \ldots, d\} .
$$

Example 3 (Decision List)

A decision list is a function of the following form. Let $\left\{i_{1}, \ldots, i_{d}\right\}$ be a permutation of $\{1, \ldots, d\}$, and let $a_{i}, b_{i} \in\{0,1\}$ for $i=1, \ldots, d+1$. The function $f(x)$ can be computed as follows. if $x_{i_{1}}=a_{1}$ then $f(x)=b_{1}$; else if $x_{i_{2}}=a_{2}$ then $f(x)=b_{2}, \cdots$, else if $x_{i_{d}}=a_{d}$ then $f(x)=b_{d}$; else $f(x)=b_{d+1}$.

ERM

Definition 4 (ERM)

Define the training error of $f \in \mathcal{C}$ as

$$
\widehat{\operatorname{err}}_{\mathcal{S}_{n}}(f)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(f\left(X_{i}\right) \neq Y_{i}\right)
$$

The ERM (empirical risk minimization) method finds a function $\hat{f} \in \mathcal{C}$ that minimizes the training error.

Since by the realizable assumption of PAC learning, $f_{*} \in \mathcal{C}$ achieves zero training error, the empirical minimizer \hat{f} that achieves zero training error. More generally, we may consider approximate ERM, which returns \hat{f} so that

$$
\begin{equation*}
\widehat{\operatorname{err}}_{\mathcal{S}_{n}}(\hat{f}) \leq \epsilon^{\prime} \tag{1}
\end{equation*}
$$

for some accuracy $\epsilon^{\prime}>0$.

Analysis of PAC Learning: Decomposition

We want to estimate the difference of the test error $\operatorname{err}_{\mathcal{D}}(\hat{f})$ and the optimal test error $\operatorname{err}_{\mathcal{D}}\left(f_{*}\right)$:

$$
\begin{aligned}
& \operatorname{err}_{\mathcal{D}}(\hat{f})-\operatorname{err}_{\mathcal{D}}\left(f_{*}\right) \\
& =\underbrace{\left[\operatorname{err}(\hat{\mathcal{f}})-\widehat{\operatorname{err}} \mathcal{S}_{n}(\hat{f})\right]}_{A}+\underbrace{\left[\mathrm{err}_{\mathcal{S}_{n}}(\hat{f})-\widehat{\operatorname{err}} \mathcal{S}_{n}\left(f_{*}\right)\right]}_{B}+\underbrace{\left[\widehat{\operatorname{err}}_{\mathcal{S}_{n}}\left(f_{*}\right)-\operatorname{err}_{\mathcal{D}}\left(f_{*}\right)\right]}_{C} \\
& \leq \underbrace{\sup _{t \in \mathcal{F}}\left[\operatorname{err}_{\mathcal{D}}(f)-\widehat{\operatorname{err}} \mathcal{S}_{n}(f)\right]}_{A^{\prime}}+0+\underbrace{\left[\mathrm{err}_{\mathcal{S}_{n}}\left(f_{*}\right)-\operatorname{err}_{\mathcal{D}}\left(f_{*}\right)\right]}_{C} \\
& \leq 2 \text { sup }\left|\operatorname{err}_{\mathcal{D}}(f)-\widehat{\operatorname{err}_{\mathcal{S}_{n}}}(f)\right| . \\
& \underbrace{f \in \mathcal{F}} \\
& A^{\prime \prime}
\end{aligned}
$$

The quantity A^{\prime} or $A^{\prime \prime}$ requires that the convergence of empirical mean to the true mean holds for all $f \in \mathcal{F}$.
Such a convergence result is referred to as uniform convergence.

Analysis of PAC Learning: Union Bound

The key mathematical tool to analyze uniform convergence is the union bound, described in Proposition 5.

Proposition 5 (Union Bound)

Consider m events $E_{1}, \ldots E_{m}$. The following probability inequality holds:

$$
\operatorname{Pr}\left(E_{1} \cup \cdots \cup E_{m}\right) \leq \sum_{j=1}^{m} \operatorname{Pr}\left(E_{j}\right)
$$

Alternative Expression of Union Bound

Assume each event E_{j} occurs with probability at least $1-\delta_{j}$ for $j=1, \ldots, m$, then with probability at least $1-\sum_{j=1}^{m} \delta_{j}$:

All of events $\left\{E_{j}\right\}$ occur simultaneously for $j=1, \ldots, m$.

Uniform Convergence Analysis

We apply the additive Chernoff bound to obtain for each fixed $f \in \mathcal{C}$:

$$
\operatorname{Pr}\left(\operatorname{err}_{\mathcal{D}}(f) \geq \widehat{\operatorname{err}}_{\mathcal{S}_{n}}(f)+\epsilon\right) \leq \exp \left(-2 n \epsilon^{2}\right) .
$$

Remarks:

- We cannot directly apply the Chernoff bound to the function \hat{f} learned from the training data \mathcal{S}_{n}, because \hat{f} is a random function that depends on \mathcal{S}_{n}.
- We need union bound to handle \hat{f}, which we will demonstrate next.

Uniform Convergence Analysis: union bound

We can now take the union bound as follows:

$$
\begin{aligned}
& \operatorname{Pr}\left(\sup _{f \in \mathcal{C}}\left[\operatorname{err}_{\mathcal{D}}(f)-\widehat{\operatorname{err}}_{\mathcal{S}_{n}}(f)\right] \geq \epsilon\right) \\
= & \operatorname{Pr}\left(\exists f \in \mathcal{C}: \operatorname{err}_{\mathcal{D}}(f) \geq \widehat{\operatorname{err}}_{\mathcal{S}_{n}}(f)+\epsilon\right) \\
\leq & \sum_{f \in \mathcal{C}} \operatorname{Pr}\left(\operatorname{err}_{\mathcal{D}}(f) \geq \widehat{\operatorname{err}_{\mathcal{S}_{n}}}(f)+\epsilon\right) \\
\leq & N \exp \left(-2 n \epsilon^{2}\right) .
\end{aligned}
$$

Such a result (which implies that with large probability, error is small for all $f \in \mathcal{C}$) is called uniform convergence.

Uniform Convergence Analysis: alternative expression

 Now by setting $N \exp \left(-2 n \epsilon^{2}\right)=\delta$ and solving for ϵ to get$$
\epsilon=\sqrt{\frac{\ln (N / \delta)}{2 n}}
$$

we obtain the following equivalent statement.

Uniform Convergence for Finite \mathcal{C}

With probability at least $1-\delta$, the following inequality holds for all $f \in \mathcal{C}$:

$$
\operatorname{err}_{\mathcal{D}}(f)<\widehat{\operatorname{err}}_{\mathcal{S}_{n}}(f)+\sqrt{\frac{\ln (N / \delta)}{2 n}}
$$

Consequence of Uniform Convergence

Given sample \mathcal{S}_{n}, a uniform convergence bound holds for all $f \in \mathcal{C}$. Therefore it holds for the output $\hat{f} \in \mathcal{C}$ from any learning algorithm.

Oracle Inequality

Oracle Inequality

With probability at least $1-\delta$, the following inequality holds for the ERM PAC learner (1) for all $\gamma>0$:

$$
\begin{equation*}
\operatorname{err}_{\mathcal{D}}(\hat{f})<\epsilon^{\prime}+\sqrt{\frac{\ln (N / \delta)}{2 n}}=(1+\gamma) \sqrt{\frac{\ln (N / \delta)}{2 n}} \tag{2}
\end{equation*}
$$

with

$$
\epsilon^{\prime}=\gamma \sqrt{\frac{\ln (N / \delta)}{2 n}}
$$

It can be expressed in another form of sample complexity bound. If we let

$$
n \geq \frac{(1+\gamma)^{2} \ln (N / \delta)}{2 \epsilon^{2}}
$$

then $\operatorname{err}_{\mathcal{D}}(\hat{f})<\epsilon$ with probability at least $1-\delta$.

Better Generalization Bound

Theorem 6 (Thm 3.6)

Consider a concept class \mathcal{C} with N elements. With probability at least $1-\delta$, the ERM PAC learner (1) with

$$
\epsilon^{\prime}=\gamma^{2} \frac{2 \ln (N / \delta)}{n}
$$

for some $\gamma>0$ satisfies

$$
\operatorname{err}_{\mathcal{D}}(\hat{f}) \leq(1+\gamma)^{2} \frac{2 \ln (N / \delta)}{n}
$$

Sample Complexity

Theorem 6 is stated in statistical convergence of $O(1 / n)$ rate. It implies the following equivalent sample complexity bound.

Sample Complexity Bound

Given $\delta \in(0,1)$. For all sample size

$$
n \geq(1+\gamma)^{2} \frac{2 \ln (N / \delta)}{\epsilon}
$$

we have with probability at least $1-\delta$:

$$
\operatorname{err}(\hat{f})<\epsilon
$$

Example

Example 7

The AND concept class \mathcal{C} is PAC learnable. To show this, we will prove that the ERM (1) solution can be obtained in a computationally efficient way with $\epsilon^{\prime}=0$. If this is true, then Theorem 6 implies that \mathcal{C} is PAC-learnable because the number of AND functions cannot be more than $N=2^{d}$. Therefore $\ln N \leq d \ln 2$.
In the following, we show that ERM solution can be efficiently obtained. Given $\mathcal{S}_{n}=\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right\} \sim \mathcal{D}^{n}$, we define $\hat{\jmath}=\left\{j: \quad \forall 1 \leq i \leq n, X_{i, j} \geq Y_{i}\right\}$ (where $X_{i j}$ denotes the j-th component of the i-th training data X_{i}) and $\hat{f}(x)=\prod_{j \in \hat{J}} x_{j}$. This choice implies that $\hat{f}\left(X_{i}\right)=Y_{i}$ when $Y_{i}=1$. It can be easily verified that if the true target is $f_{*}(x)=\prod_{j \in J} x_{j}$, then $\hat{J} \supset J$. This implies that $\hat{f}(x) \leq f_{*}(x)$. This implies that $\hat{f}\left(X_{i}\right)=Y_{i}$ when $Y_{i}=0$, and hence $\widehat{\operatorname{err}}_{\mathcal{S}_{n}}(\hat{f})=0$.

Proof of Theorem 6 (I/II)

Given any $f \in \mathcal{C}$, we have from Corollary 2.18 that

$$
\operatorname{Pr}\left(\operatorname{err}_{\mathcal{D}}(f) \geq \widehat{\operatorname{err}}_{\mathcal{S}_{n}}(f)+\epsilon\right) \leq \exp \left(\frac{-n \epsilon^{2}}{2 \operatorname{err}_{\mathcal{D}}(f)}\right)
$$

Now by setting $\exp \left(-n \epsilon^{2} / 2 \operatorname{err}_{\mathcal{D}}(f)\right)=\delta / N$, and solve for ϵ :

$$
\epsilon=\sqrt{\frac{2 \operatorname{err}_{\mathcal{D}}(f) \ln (N / \delta)}{n}}
$$

we obtain the following equivalent statement. With probability at least $1-\delta / N$:

$$
\operatorname{err}_{\mathcal{D}}(f) \leq \widehat{\operatorname{err}}_{\mathcal{S}_{n}}(f)+\sqrt{\frac{2 \operatorname{err}_{\mathcal{D}}(f) \ln (N / \delta)}{n}}
$$

Proof of Theorem 6 (II/II)

The union bound thus implies the following statement. With probability at least $1-\delta$, for all $f \in \mathcal{C}$:

$$
\operatorname{err}_{\mathcal{D}}(f) \leq \widehat{\operatorname{err}}_{\mathcal{S}_{n}}(f)+\sqrt{\frac{2 \operatorname{err}}{\mathcal{D}}(f) \ln (N / \delta)}{ }^{n} .
$$

The inequality also holds for the ERM PAC learner solution (1). Thus

$$
\begin{aligned}
\operatorname{err}_{\mathcal{D}}(\hat{f}) & \leq \widehat{\operatorname{err}}_{\mathcal{S}_{n}}(\hat{f})+\sqrt{\frac{2 \operatorname{err}(\hat{\mathcal{D}}(\hat{f}) \ln (N / \delta)}{n}} \\
& \leq \gamma^{2} \frac{2 \ln (N / \delta)}{n}+\sqrt{\frac{2 \operatorname{err}_{\mathcal{D}}(\hat{f}) \ln (N / \delta)}{n}} .
\end{aligned}
$$

We can solve the above inequality for $\operatorname{err}_{\mathcal{D}}(\hat{f})$ and obtain

$$
\operatorname{err}_{\mathcal{D}}(\hat{f}) \leq\left(\gamma^{2}+0.5+\sqrt{\gamma^{2}+0.25}\right) \frac{2 \ln (N / \delta)}{n},
$$

which implies the desired bound as $\gamma^{2}+0.5+\sqrt{\gamma^{2}+0.25} \leq(1+\gamma)^{2}$.

Empirical Process

The analysis of realizable PAC learning can be generalized to deal with

- general non-binary-valued functions
- functions classes which may contain an infinitely number of functions
- handle the non-realizable case where $f_{*}(x) \notin C$ or when the observation Y contains noise.

For such cases, the corresponding analysis requires the technical tool of empirical processes.

Notations

To simplify the notations, in the general setting, we may denote

- Observations as $Z_{i}=\left(X_{i}, Y_{i}\right) \in \mathcal{Z}=\mathcal{X} \times \mathcal{Y}$
- Loss function as $L\left(f\left(X_{i}\right), Y_{i}\right)$.
- Prediction function as $f\left(X_{i}\right)$ (which is often a vector-valued-function)
- Assume further that $f(x)$ is parametrized by $w \in \Omega$ as $f(w, x)$
- Hypothesis space is $\{f(w, \cdot): w \in \Omega\}$.
- Training data $\mathcal{S}_{n}=\left\{Z_{i}=\left(X_{i}, Y_{i}\right): i=1, \ldots, n\right\}$.

Notations Simplified

Definition 8

We define

$$
\begin{equation*}
\phi(w, z)=L(f(w, x), y)-L_{*}(x, y) \tag{3}
\end{equation*}
$$

for $w \in \Omega$ and $z=(x, y) \in \mathcal{Z}=\mathcal{X} \times \mathcal{Y}$, and a pre-chosen $L_{*}(x, y)$ of $z=(x, y)$ that does not depend on w. Define

$$
\begin{equation*}
\phi\left(w, \mathcal{S}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \phi\left(w, Z_{i}\right) \tag{4}
\end{equation*}
$$

Moreover, for a distribution \mathcal{D} on \mathcal{Z}, we define the test loss for $w \in \Omega$

$$
\begin{equation*}
\phi(w, \mathcal{D})=\mathbb{E}_{Z \in \mathcal{D}} \phi(w, Z) \tag{5}
\end{equation*}
$$

In many cases, we can set $L_{*}(x, y)=0$.

Example of Nonzero $L_{*}(x, y)$

Although we can set $L_{*}(x, y)=0$, we can also choose it so that $\phi(w, z)$ has a small variance.

Example 9

Consider linear model $f(w, x)=w^{\top} x$, and let $L(f(w, x), y)=\left(w^{\top} x-y\right)^{2}$ be the least squares loss. Then with $L_{*}(x, y)=0$, we have $\phi(w, z)=\left(w^{\top} x-y\right)^{2}$ for $z=(x, y)$.
If we further assume that the problem is realizable by linear model, and w_{*} is the true weight vector: $\mathbb{E}[y \mid x]=w_{*}^{\top} x$. It follows that we may take $L_{*}(x, y)=\left(w_{*}^{\top} x-y\right)^{2}$, and

$$
\phi(w, z)=\left(w^{\top} x-y\right)^{2}-\left(w_{*}^{\top} x-y\right)^{2},
$$

which has a small variance when $w \approx w_{*}$ because $\lim _{w \rightarrow w_{*}} \phi(w, z)=0$.

Uniform Convergence

Definition 10 (Uniform Convergence)

Given a model space Ω, and distribution \mathcal{D}. Let $\mathcal{S}_{n} \sim \mathcal{D}^{n}$ be n iid examples sampled from \mathcal{D} on \mathcal{Z}. We say that $\phi\left(w, \mathcal{S}_{n}\right)(w \in \Omega)$ converges to $\phi(w, \mathcal{D})$ uniformly in probability if for all $\epsilon>0$:

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\sup _{w \in \Omega}\left|\phi\left(w, \mathcal{S}_{n}\right)-\phi(w, \mathcal{D})\right|>\epsilon\right)=0
$$

where the probability is over iid samples of $\mathcal{S}_{n} \sim \mathcal{D}^{n}$.

Approximate ERM

We consider a more general form of ERM, approximate ERM, which satisfies the following inequality for some $\epsilon^{\prime}>0$:

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} L\left(f\left(\hat{w}, X_{i}\right), Y_{i}\right) \leq \inf _{w \in \Omega}\left[\frac{1}{n} \sum_{i=1}^{n} L\left(f\left(w, X_{i}\right), Y_{i}\right)\right]+\epsilon^{\prime} \tag{6}
\end{equation*}
$$

The quantity $\epsilon^{\prime}>0$ indicates how accurately we solve the ERM problem.
Since L_{*} is independent of w, the approximate ERM method (6) becomes

$$
\begin{equation*}
\phi\left(\hat{w}, \mathcal{S}_{n}\right) \leq \inf _{w \in \Omega} \phi\left(w, \mathcal{S}_{n}\right)+\epsilon^{\prime} \tag{7}
\end{equation*}
$$

in our notation.

Uniform Convergence Implies Oracle Inequality

Lemma 11 (Simplification of Lem 3.11)

Assume that for any $\delta \in(0,1)$, the following uniform convergence result holds. With probability at least $1-\delta_{1}$,

$$
\forall w \in \Omega: \phi(w, \mathcal{D}) \leq \phi\left(w, \mathcal{S}_{n}\right)+\epsilon_{n}\left(\delta_{1}, w\right)
$$

Moreover, $\forall w \in \Omega$, the following inequality holds. With probability at least $1-\delta_{2}$,

$$
\phi\left(w, \mathcal{S}_{n}\right) \leq \phi(w, \mathcal{D})+\epsilon_{n}^{\prime}\left(\delta_{2}, w\right)
$$

Then the following statement holds. With probability at least $1-\delta_{1}-\delta_{2}$, the approximate ERM method (7) satisfies the oracle inequality:

$$
\phi(\hat{w}, \mathcal{D}) \leq \inf _{w \in \Omega}\left[\phi(w, \mathcal{D})+\epsilon_{n}^{\prime}\left(\delta_{2}, w\right)\right]+\epsilon^{\prime}+\epsilon_{n}\left(\delta_{1}, \hat{w}\right) .
$$

A more general version is presented in the book.

Proof of Lemma 11

Consider an arbitrary $w \in \Omega$. We have with probability at least $1-\delta_{1}$:

$$
\begin{align*}
\phi(\hat{w}, \mathcal{D}) & \leq \phi\left(\hat{w}, \mathcal{S}_{n}\right)+\epsilon_{n}\left(\delta_{1}, \hat{w}\right) \\
& \leq \phi\left(w, \mathcal{S}_{n}\right)+\epsilon^{\prime}+\epsilon_{n}\left(\delta_{1}, \hat{w}\right) . \tag{8}
\end{align*}
$$

Moreover, with probability at least $1-\delta_{2}$:

$$
\begin{equation*}
\phi\left(w, \mathcal{S}_{n}\right) \leq \phi(w, \mathcal{D})+\epsilon_{n}^{\prime}\left(\delta_{2}, w\right) . \tag{9}
\end{equation*}
$$

Taking the union bound of the two events, we obtain with probability at least $1-\delta_{1}-\delta_{2}$, both (8) and (9) hold. It follows that

$$
\begin{aligned}
\phi(\hat{w}, \mathcal{D}) & \leq \phi\left(w, \mathcal{S}_{n}\right)+\epsilon^{\prime}+\epsilon_{n}\left(\delta_{1}, \hat{w}\right) \\
& \leq \phi(w, \mathcal{D})+\epsilon_{n}^{\prime}\left(\delta_{2}, w\right)+\epsilon^{\prime}+\epsilon_{n}\left(\delta_{1}, \hat{w}\right) .
\end{aligned}
$$

Since w is arbitrary, we let w approach the minimum of the right hand side, and obtain the desired bound.

Covering Number (Bracketing Number)

If Ω is finite, then we can use union bound to obtain uniform convergence of empirical processes. If Ω is infinite, then we can approximate the function class

$$
\mathcal{G}=\{\phi(w, z): w \in \Omega\}
$$

using a finite function class.

Definition 12 (Lower Bracketing Cover)

Given a distribution \mathcal{D}. A finite function class
$\mathcal{G}(\epsilon)=\left\{\phi_{1}(z), \ldots, \phi_{N}(z)\right\}$ is an ϵ lower bracketing cover of \mathcal{G} (with $L_{1}(\mathcal{D})$ metric) if for all $w \in \Omega$, there exists $j=j(w)$ such that

$$
\forall z: \phi_{j}(z) \leq \phi(w, z), \quad \mathbb{E}_{Z \sim \mathcal{D}} \phi_{j}(Z) \geq \mathbb{E}_{Z \sim \mathcal{D}} \phi(w, Z)-\epsilon
$$

The ϵ-lower bracketing number of \mathcal{G}, denoted by $N_{L B}\left(\epsilon, \mathcal{G}, L_{1}(\mathcal{D})\right)$, is the smallest cardinality of such $\mathcal{G}(\epsilon)$. The quantity $\ln N_{L B}\left(\epsilon, \mathcal{G}, L_{1}(\mathcal{D})\right)$ is referred to as the ϵ-lower bracketing entropy.

The functions $\phi_{j}(z)$ may not necessarily belong to \mathcal{G}.

Uniform Convergence Analysis

Theorem 13 (Simplification of Thm 3.14)

Assume that $\phi(w, z) \in[0,1]$ for all $w \in \Omega$ and $z \in \mathcal{Z}$. Let $\mathcal{G}=\{\phi(w, z): w \in \Omega\}$. Then given $\delta \in(0,1)$, with probability at least $1-\delta$, the following inequality holds:

$$
\forall w \in \Omega: \phi(w, \mathcal{D}) \leq\left[\phi\left(w, \mathcal{S}_{n}\right)+\epsilon_{n}(\delta, \mathcal{G}, \mathcal{D})\right]
$$

where

$$
\epsilon_{n}(\delta, \mathcal{G}, \mathcal{D})=\inf _{\epsilon>0}\left[\epsilon+\sqrt{\frac{\ln \left(N_{L B}\left(\epsilon, \mathcal{G}, L_{1}(\mathcal{D})\right) / \delta\right)}{2 n}}\right]
$$

This result employs additive Chernoff bound. There is also a version using multiplicative Chernoff bound (see Theorem 3.14).

Proof of Theorem 13 (I/II)

For any $\epsilon>0$, let $\mathcal{G}(\epsilon)=\left\{\phi_{1}(z), \ldots, \phi_{N}(z)\right\}$ be an ϵ lower bracketing cover of \mathcal{G} with $N=N_{L B}\left(\epsilon, \mathcal{G}, L_{1}(\mathcal{D})\right)$.
We may assume that $\phi_{j}(z) \in[0,1]$ for all j because otherwise, we may set $\phi_{j}(z)$ to

$$
\min \left(1, \max \left(0, \phi_{j}(z)\right)\right)
$$

In the following, we let $j=j(w)$ for simplified notation:

$$
\begin{align*}
& \frac{1}{n} \sum_{i=1}^{n} \phi\left(w, Z_{i}\right)-\mathbb{E}_{Z \sim \mathcal{D}} \phi(w, Z) \\
\geq & \frac{1}{n} \sum_{i=1}^{n} \phi_{j}\left(Z_{i}\right)-\mathbb{E}_{Z \sim \mathcal{D}} \phi_{j}(Z)-\epsilon \tag{10}
\end{align*}
$$

Proof of Theorem 13 (II/II)

Let $\epsilon^{\prime \prime}=\sqrt{\ln (N / \delta) / 2 n}$. It follows from the union bound on j that

$$
\begin{aligned}
& \operatorname{Pr}\left(\exists w \in \Omega:\left[\frac{1}{n} \sum_{i=1}^{n} \phi\left(w, Z_{i}\right)-\mathbb{E}_{Z \sim \mathcal{D}} \phi(w, Z)+\epsilon+\epsilon^{\prime \prime}\right] \leq 0\right) \\
\leq & \operatorname{Pr}\left(\exists j:\left[\frac{1}{n} \sum_{i=1}^{n} \phi_{j}\left(Z_{i}\right)-\mathbb{E}_{Z \sim \mathcal{D}} \phi_{j}(Z)+\epsilon^{\prime \prime}\right] \leq 0\right) \\
\leq & \sum_{j=1}^{N} \operatorname{Pr}\left(\frac{1}{n} \sum_{i=1}^{n} \phi_{j}\left(Z_{i}\right)-\mathbb{E}_{Z \sim \mathcal{D}} \phi_{j}(Z)+\epsilon^{\prime \prime} \leq 0\right) \\
\leq & N \exp \left(-2 n\left(\epsilon^{\prime \prime}\right)^{2}\right)=\delta .
\end{aligned}
$$

This implies the desired bound.

Generalization (Oracle Inequality)

The uniform convergence bounds in Theorem 13 imply generalization bounds as follows.

Corollary 14 (Simplification of Cor 3.15)

Assume that $\phi(w, z) \in[0,1]$ for all $w \in \Omega$ and $z \in \mathcal{Z}$. Let $\mathcal{G}=\{\phi(w, z): w \in \Omega\}$. With probability at least $1-\delta$, the approximate ERM method (7) satisfies the (additive) oracle inequality:

$$
\phi(\hat{w}, \mathcal{D}) \leq \inf _{w \in \Omega} \phi(w, \mathcal{D})+\epsilon^{\prime}+\inf _{\epsilon>0}\left[\epsilon+\sqrt{\frac{2 \ln \left(2 N_{L B}\left(\epsilon, \mathcal{G}, L_{1}(\mathcal{D})\right) / \delta\right)}{n}}\right]
$$

We may take $\phi(w, z)=L(f(w, x), y)$ with $L_{*}(x, y)=0$ to obtain an oracle inequality for the approximate ERM method (6).

Proof

We can take $\epsilon_{n}(\delta / 2, w)=\epsilon_{n}(\delta / 2, \mathcal{G}, \mathcal{D})$, as defined in Theorem 13. We then use the additive Chernoff bound

$$
\epsilon_{n}^{\prime}(\delta / 2, w)=\sqrt{\frac{\ln (2 / \delta)}{2 n}} \leq \sqrt{\frac{\ln \left(2 N_{L B}\left(\epsilon, \mathcal{G}, L_{1}(\mathcal{D})\right) / \delta\right)}{2 n}}
$$

for an arbitrary $\epsilon>0$.
The conditions of Lemma 11 hold.
We can then use the above upper bound on $\epsilon_{n}^{\prime}(\delta / 2, w)$ to simplify the result of Lemma 11, and take the minimum over ϵ to obtain the first desired bound of the corollary.

A Simple Example

We consider a one dimensional classification problem, where the input x is uniformly distributed in $[0,1]$, and the output $y \in\{ \pm 1\}$ is generated according to

$$
\operatorname{Pr}(y=1 \mid x)= \begin{cases}p & \text { if } x \geq w_{*} \tag{11}\\ (1-p) & \text { otherwise }\end{cases}
$$

for some unknown $w_{*} \in[0,1]$ and $p \in(0.5,1]$. See Figure 1 .

Figure: Conditional probability $\operatorname{Pr}(y=1 \mid x)$ as a function of x

A Simple Example (cont)

We don't know w_{*}, and consider a family of classifiers

$$
f(w, x)=2 \mathbb{1}(x \geq w)-1= \begin{cases}1 & \text { if } x \geq w \\ -1 & \text { otherwise }\end{cases}
$$

where $w \in \Omega=[0,1]$ is the model parameter to be learned from the training data. Here $\mathbb{1}(\cdot)$ is the binary indicator function. In this example, we consider the following classification error loss

$$
L(f(x), y)=\mathbb{1}(f(x) \neq y) .
$$

In this case, the optimal Bayes classifier is $f_{*}(x)=2 \mathbb{1}\left(x \geq w_{*}\right)-1$, and the optimal Bayes error is

$$
\mathbb{E}_{X, Y} L\left(f\left(w_{*}, X\right), Y\right)=1-p .
$$

Lower Bracketing Cover

Given any $\epsilon>0$, we let $w_{j}=0+j \epsilon$ for $j=1, \ldots,\lceil 1 / \epsilon\rceil$. Let

$$
\phi_{j}(z)= \begin{cases}0 & \text { if } x \in\left[w_{j}-\epsilon, w_{j}\right] \\ \phi\left(w_{j}, z\right) & \text { otherwise }\end{cases}
$$

where $z=(x, y)$. Note that $\phi_{j} \notin \mathcal{G}$.
It follows that for any $w \in[0,1]$, if we let w_{j} be the smallest j such that $w_{j} \geq w$, then we have $\phi_{j}(z)=0 \leq \phi(w, z)$ when $x \in\left[w_{j}-\epsilon, w_{j}\right]$, and $\phi_{j}(z)=\phi(w, z)$ otherwise, where $z=(x, y)$. Moreover,

$$
\mathbb{E}_{Z \sim \mathcal{D}}\left[\phi_{j}(Z)-\phi(w, Z)\right]=\mathbb{E}_{X \in\left[w_{j}-\epsilon, w_{j}\right.}[0-\phi(w, Z)] \geq-\epsilon
$$

We thus have

$$
N_{L B}\left(\epsilon, \mathcal{G}, L_{1}(\mathcal{D})\right) \leq 1+\epsilon^{-1}
$$

Oracle Inequality

We have (by picking $\epsilon=2 / n$):

$$
\inf _{\epsilon \rightarrow 0}\left[\epsilon+\sqrt{\frac{2 \ln \left(2 N_{L B}\left(\epsilon, \mathcal{G}, L_{1}(\mathcal{D})\right) / \delta\right)}{n}}\right] \leq \frac{2}{n}+\sqrt{\frac{2 \ln ((n+2) / \delta)}{n}} .
$$

This implies the following additive oracle inequality from Corollary 14 with $\phi(w, z)=L(f(w, x), y)$.

Oracle Inequality

With probability at least $1-\delta$,

$$
\mathbb{E}_{(X, Y) \sim \mathcal{D}} L(f(\hat{w}, X), Y) \leq(1-p)+\frac{2}{n}+\sqrt{\frac{2 \ln ((n+2) / \delta)}{n}}
$$

Better Bounds with Variance Condition

In this section, we show that better bounds can be obtained with Bernstein's inequality under the following condition.

Definition 15 (Variance Condition)

Given a function class \mathcal{G}. We say it satisfies the variance condition if there exists $c_{0}, c_{1}>0$ such that for all $\phi(z) \in \mathcal{G}$:

$$
\begin{equation*}
\operatorname{Var}_{Z \sim \mathcal{D}}(\phi(Z)) \leq c_{0}^{2}+c_{1} \mathbb{E}_{Z \sim \mathcal{D}} \phi(Z) \tag{12}
\end{equation*}
$$

where we require that $\mathbb{E}_{Z \sim \mathcal{D}} \phi(Z) \geq-c_{0}^{2} / c_{1}$ for all $\phi \in \mathcal{G}$.
In applications, the following modification of the variance condition is often more convenient to employ

$$
\begin{equation*}
\mathbb{E}_{Z \sim \mathcal{D}}\left[\phi(Z)^{2}\right] \leq c_{0}^{2}+c_{1} \mathbb{E}_{Z \sim \mathcal{D}} \phi(Z) \tag{13}
\end{equation*}
$$

Example I

Example 16 (Bounded Function)

Let $\mathcal{G}=\{\phi(\cdot): \forall z, \phi(z) \in[0,1]\}$. Then \mathcal{G} satisfies the variance condition (13) with $c_{0}=0$ and $c_{1}=1$.

Example II

Example 17 (Convex Least Squares)

Consider the least squares method $L(f(x), y)=(f(x)-y)^{2}$, with bounded response: $L(f(x), y) \leq M^{2}$ for some $M>0$. Let \mathcal{F} be a convex function class (that is, for any $f_{1}, f_{2} \in \mathcal{F}$, and $\alpha \in(0,1)$, $\left.\alpha f_{1}+(1-\alpha) f_{2} \in \mathcal{F}\right)$, and define the optimal function in \mathcal{F} as:

$$
\begin{equation*}
f_{\mathrm{opt}}=\arg \min _{f \in \mathcal{F}} \mathbb{E}_{(x, y) \sim \mathcal{D}} L(f(x), y) . \tag{14}
\end{equation*}
$$

Let $z=(x, y)$, and

$$
\mathcal{G}=\left\{\phi(\cdot): \phi(z)=L(f(x), y)-L\left(f_{\mathrm{opt}}(x), y\right), f(x) \in \mathcal{F}\right\} .
$$

Then \mathcal{G} satisfies the variance condition (13) with $c_{0}=0$, and $c_{1}=4 M^{2}$.

Example III

Example 18 (Non-convex Least Squares)

More generally, if \mathcal{F} is bounded nonconvex function class with $f(x) \in[0, M]$ for all $f \in \mathcal{F}$. If we assume that $y \in[0, M]$, then the variance condition may not hold with $f_{\text {opt }}$ in (14). However, if we replace $f_{\text {opt }}$ by $f_{*}(x)=\mathbb{E}[Y \mid X=x]$ in the definition of \mathcal{G} as follows:

$$
\mathcal{G}=\left\{\phi(\cdot): \phi(z)=L(f(x), y)-L\left(f_{*}(x), y\right), f(x) \in \mathcal{F}\right\}
$$

then all functions in \mathcal{G} satisfy the variance condition (13) with $c_{0}=0$, and $c_{1}=2 M^{2}$. Note that in general f_{*} may not belong to \mathcal{F}. However if the problem is well-specified (that is, $f_{*}(x) \in \mathcal{F}$), then the variance condition holds with $f_{\text {opt }}=f_{*}$.

Uniform Convergence (Bernstein)

Theorem 19 (Simplification of Thm 3.21)

Assume condition (12) is satisfied with $c_{0}=0$. Moreover, assume that the condition of Bernstein inequality is satisfied with $b>0$ and $V=\operatorname{Var}(\phi(Z))$, and $\mathbb{E}_{Z \sim \mathcal{D}} \phi(Z) \geq 0$.
Then $\forall \delta \in(0,1)$, with probability at least $1-\delta$, the following inequality holds for all $\gamma \in(0,1)$ and $w \in \Omega$:

$$
(1-\gamma) \phi(w, \mathcal{D}) \leq \phi\left(w, \mathcal{S}_{n}\right)+\epsilon_{n}^{\gamma}(\delta, \mathcal{G}, \mathcal{D})
$$

$\epsilon_{n}^{\gamma}(\delta, \mathcal{G}, \mathcal{D})=\inf _{\epsilon \in\left[0, \epsilon_{0}\right]}\left[(1-\gamma) \epsilon+\frac{\left(3 c_{1}+2 \gamma b\right) \ln \left(N_{L B}\left(\epsilon, \mathcal{G}, L_{1}(\mathcal{D})\right) / \delta\right)}{6 \gamma n}\right]$.

Note that we obtain an $O(1 / n)$ uniform convergence rate.
Theorem 3.21 also handles $c_{0} \neq 0$.

Oracle Inequality (Bernstein)

Corollary 20 (Cor 3.22)

Let

$$
\boldsymbol{w}_{*}=\arg \min _{w \in \Omega} \mathbb{E}_{(X, Y) \sim \mathcal{D}} L(f(w, X), Y)
$$

and assume that the conditions of Theorem 19 hold with

$$
\phi(w, z)=L(f(w, x), y)-L\left(f\left(w_{*}, x\right), y\right)
$$

Then, with probability at least $1-\delta$, the approximate ERM method (6) satisfies the following oracle inequality
$\mathbb{E}_{(X, Y) \sim \mathcal{D}} L(f(\hat{w}, X), Y) \leq \mathbb{E}_{(X, Y) \sim \mathcal{D}} L\left(f\left(w_{*}, X\right), Y\right)+2\left(\epsilon_{n}^{0.5}(\delta, \mathcal{G}, \mathcal{D})+\epsilon^{\prime}\right)$,
where $\epsilon_{n}^{\gamma}(\delta, \mathcal{G}, \mathcal{D})$ is defined in Theorem 19.

Simple Example Revisited

Consider Example on Slide 32, with the following modified $\phi(w, z)$:

$$
\phi(w, z)=\mathbb{1}(f(w, x) \neq y)-\mathbb{1}\left(f\left(w_{*}, x\right) \neq y\right),
$$

and the functions $\phi_{j}^{\prime}(z)=\phi_{j}(z)-\mathbb{1}\left(f\left(w_{*}, x\right) \neq y\right)$ form an ϵ lower-bracketing cover, where $\phi_{j}(z)$ is defined on Slide 33 as

$$
\phi_{j}(z)= \begin{cases}0 & \text { if } x \in\left[w_{j}-\epsilon, w_{j}\right] \\ \phi\left(w_{j}, z\right) & \text { otherwise. }\end{cases}
$$

A slight generalized Theorem 19 (Theorem 3.21 in the book with $\left.c_{0} \neq 0\right)$ hold for $\epsilon \leq \epsilon_{0}$ with $c_{0}^{2}=O\left(\epsilon_{0}\right), c_{1}=O(1), b=2$. We obtain

$$
\epsilon_{n}^{\gamma}(\delta / 2, \mathcal{G}, \mathcal{D})=O\left(\frac{\ln (n / \delta)}{n}\right) .
$$

Simple Example Revisited: Oracle Inequality

Corollary 20 implies the following oracle inequality.

Oracle Inequality with Fast Convergence Rate

With probability at least $1-\delta$:

$$
\mathbb{E}_{(X, Y) \sim \mathcal{D}} \mathbb{1}(f(\hat{w}, X) \neq Y) \leq(1-p)+O\left(\frac{\ln (n / \delta)}{n}\right)
$$

Note also that $\mathbb{E}_{(X, Y) \sim \mathcal{D}} \mathbb{1}\left(f\left(w_{*}, X\right) \neq Y\right)=1-p$. This shows the ERM method has generalization error converging to the Bayes error at a fast rate of $O(\ln n / n)$.

Example: Parametric Model

In general, for bounded parametric function classes with d real-valued parameters (such as linear models $f(w, x)=w^{\top} x$ defined on a compact subset of \mathbb{R}^{d}), we expect the entropy (see Section 5.2 in the book) to behave as

Covering for Parametric Model

$$
\ln N_{L B}\left(\epsilon, \mathcal{G}, L_{1}(\mathcal{D})\right)=O(d \ln (1 / \epsilon)) .
$$

Assume that (13) holds with $c_{0}=0$ and $c_{1}>1$. Then it can be shown that the generalization bound in Corollary 20 implies

Oracle Inequality with Fast Rate

$$
\mathbb{E}_{\mathcal{D}} L(f(\hat{w}, X), Y) \leq \mathbb{E}_{\mathcal{D}} L\left(f\left(w_{*}, X\right), Y\right)+O\left(\frac{\ln \left(n^{d} / \delta\right)}{n}\right) .
$$

General Bracketing Number

Definition 21 (Bracketing Number)

Let $\mathcal{G}=\{\phi(w, \cdot): w \in \Omega\}$ be a real-valued function class, equipped with a pseudometric d. We say

$$
\mathcal{G}(\epsilon)=\left\{\left[\phi_{1}^{L}(z), \phi_{1}^{U}(z)\right], \ldots,\left[\phi_{N}^{L}(z), \phi_{N}^{U}(z)\right]\right\}
$$

is an ϵ-bracket of \mathcal{G} under metric d if for all $w \in \Omega$, there exists $j=j(w)$ such that $\forall z$:

$$
\phi_{j}^{L}(z) \leq \phi(w, z) \leq \phi_{j}^{U}(z), \quad d\left(\phi_{j}^{L}, \phi_{j}^{U}\right) \leq \epsilon
$$

The ϵ-bracketing number is the smallest cardinality $N_{[]}(\epsilon, \mathcal{G}, d)$ of such $\mathcal{G}(\epsilon)$. The quantity $\ln N_{[]}(\epsilon, \mathcal{G}, d)$ is called ϵ bracketing entropy.

L_{p} Bracketing

Given a distribution \mathcal{D} and $p \geq 1$, we define L_{p}-seminorm in function space as

$$
\begin{equation*}
\left\|f-f^{\prime}\right\|_{L_{p}(\mathcal{D})}=\left[\mathbb{E}_{Z \sim \mathcal{D}}\left|f(Z)-f^{\prime}(Z)\right|^{p}\right]^{1 / p} \tag{15}
\end{equation*}
$$

It induces a pseudometric, denoted as $d=L_{p}(\mathcal{D})$, and the corresponding bracketing number is $N_{[]}\left(\epsilon, \mathcal{G}, L_{p}(\mathcal{D})\right)$.

Proposition 22 (Prop 3.28)

We have for all $p \geq 1$:

$$
N_{L B}\left(\epsilon, \mathcal{G}, L_{1}(\mathcal{D})\right) \leq N_{[]}\left(\epsilon, \mathcal{G}, L_{1}(\mathcal{D})\right) \leq N_{[]}\left(\epsilon, \mathcal{G}, L_{p}(\mathcal{D})\right)
$$

It follows that Theorem 13 and Theorem 19 apply for all $N_{[]}\left(\epsilon, \mathcal{G}, L_{p}(\mathcal{D})\right)$ with $p \geq 1$.

Summary (Chapter 3)

- PAC Learning and Uniform Convergence
- Chernoff Bound + Union Bound, logarithmic dependency on class size N
- Additive Chernoff bound: $O(1 / \sqrt{n})$ convergence
- Multiplicative Chernoff bound: $O(1 / n)$ convergence (see book)
- Uniform Convergence and Oracle Inequality for ERM
- Bracketing Cover implies Uniform Convergence
- Additive Chernoff: $O(1 / \sqrt{n})$ convergence rate
- Multiplicative Chernoff: $O(1 / n)$ convergence for realizable case (see book)
- Variance condition implies faster rate
- Bernstein: can lead to $O(1 / n)$ rate for non-realizable cases

