Uniform Convergence

Mathematical Analysis of Machine Learning Algorithms (Chapter 3)

PAC Learning: Notations

We will study Probabilistic Approximately Correct (PAC) learning.

- X: binary valued vector $X \in \{0, 1\}^d$.
- Y: binary output $Y \in \{0, 1\}$.
- ▶ *f*: a Boolean function: $X \in \{0, 1\}^d \rightarrow Y \in \{0, 1\}$.
- C: a set of Boolean functions
- ▶ $f_* \in C$: unknown true function that we want to learn.
- ▷ O: an oracle that sample from a distribution D, each sample return X ~ D and Y = f(X_{*})

The goal of a PAC learner is to learn $f_*(X)$ so that generalization error

$$\operatorname{err}_{\mathcal{D}}(f) = \mathbb{E}_{X \sim \mathcal{D}} \mathbb{1}(f(x) \neq f_*(x)).$$

is no larger than ϵ .

PAC Learning: Definition

We may call the oracle \mathcal{O} *n* times to form a training data $S_n = \{(X_i, Y_i)\}_{i=1,...,n} \sim \mathcal{D}^n$. The learner \mathcal{A} takes S_n and returns a function $\hat{f} \in \mathcal{C}$.

Definition 1 (PAC Learning)

A concept class C is PAC learnable if there exists a learner A so that for all $f_* \in C$, distribution D on the input, approximation error $\epsilon > 0$ and probability $\delta \in (0, 1)$, the following statement holds. With probability at least $1 - \delta$ over samples from the oracle O over D, the learner produces a function \hat{f} such that

$$\operatorname{err}_{\mathcal{D}}(\hat{f}) \leq \epsilon,$$

with the computational complexity polynomial in $(\epsilon^{-1}, \delta^{-1}, d)$.

In the statistical complexity analysis of learning algorithms, the computational complexity requirement is de-emphasized.

PAC Learning: examples

Example 2 (AND Function Class)

Each member of AND function class can be written as

$$f(\mathbf{x}) = \prod_{j \in J} x_j, \qquad J \subset \{1, \ldots, d\}.$$

Example 3 (Decision List)

A decision list is a function of the following form. Let $\{i_1, \ldots, i_d\}$ be a permutation of $\{1, \ldots, d\}$, and let $a_i, b_i \in \{0, 1\}$ for $i = 1, \ldots, d + 1$. The function f(x) can be computed as follows. If $x_{i_1} = a_1$ then $f(x) = b_1$; else if $x_{i_2} = a_2$ then $f(x) = b_2, \cdots$, else if $x_{i_d} = a_d$ then $f(x) = b_d$; else $f(x) = b_{d+1}$.

Definition 4 (ERM)

Define the training error of $f \in C$ as

$$\widehat{\operatorname{err}}_{\mathcal{S}_n}(f) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(f(X_i) \neq Y_i).$$

The ERM (empirical risk minimization) method finds a function $\hat{f} \in C$ that minimizes the training error.

Since by the realizable assumption of PAC learning, $f_* \in C$ achieves zero training error, the empirical minimizer \hat{f} that achieves zero training error. More generally, we may consider approximate ERM, which returns \hat{f} so that

$$\widehat{\operatorname{err}}_{\mathcal{S}_n}(\widehat{f}) \le \epsilon' \tag{1}$$

for some accuracy $\epsilon' > 0$.

Analysis of PAC Learning: Decomposition

We want to estimate the difference of the test error $\operatorname{err}_{\mathcal{D}}(\hat{f})$ and the optimal test error $\operatorname{err}_{\mathcal{D}}(f_*)$:

$$\operatorname{err}_{\mathcal{D}}(\hat{f}) - \operatorname{err}_{\mathcal{D}}(f_{*}) = \underbrace{[\operatorname{err}_{\mathcal{D}}(\hat{f}) - \widehat{\operatorname{err}}_{\mathcal{S}_{n}}(\hat{f})]}_{A} + \underbrace{[\widehat{\operatorname{err}}_{\mathcal{S}_{n}}(\hat{f}) - \widehat{\operatorname{err}}_{\mathcal{S}_{n}}(f_{*})]}_{B} + \underbrace{[\widehat{\operatorname{err}}_{\mathcal{S}_{n}}(f_{*}) - \operatorname{err}_{\mathcal{D}}(f_{*})]}_{C}$$

$$\leq \underbrace{\sup_{\substack{f \in \mathcal{F} \\ A'}}_{A'}}_{A'} \operatorname{err}_{\mathcal{S}_{n}}(f)] + 0 + \underbrace{[\widehat{\operatorname{err}}_{\mathcal{S}_{n}}(f_{*}) - \operatorname{err}_{\mathcal{D}}(f_{*})]}_{C}$$

The quantity A' or A'' requires that the convergence of empirical mean to the true mean holds for all $f \in \mathcal{F}$. Such a convergence result is referred to as *uniform convergence*.

Analysis of PAC Learning: Union Bound

The key mathematical tool to analyze uniform convergence is the *union bound*, described in Proposition 5.

Proposition 5 (Union Bound)

Consider *m* events $E_1, \ldots E_m$. The following probability inequality holds:

$$\Pr(E_1 \cup \cdots \cup E_m) \leq \sum_{j=1}^m \Pr(E_j).$$

Alternative Expression of Union Bound

Assume each event E_j occurs with probability at least $1 - \delta_j$ for j = 1, ..., m, then with probability at least $1 - \sum_{i=1}^{m} \delta_i$:

All of events $\{E_i\}$ occur simultaneously for j = 1, ..., m.

Uniform Convergence Analysis

We apply the additive Chernoff bound to obtain for each fixed $f \in C$:

$$\Pr\left(\operatorname{err}_{\mathcal{D}}(f) \geq \widehat{\operatorname{err}}_{\mathcal{S}_n}(f) + \epsilon\right) \leq \exp(-2n\epsilon^2).$$

Remarks:

- We cannot directly apply the Chernoff bound to the function *f* learned from the training data S_n, because *f* is a random function that depends on S_n.
- We need union bound to handle f̂, which we will demonstrate next.

Uniform Convergence Analysis: union bound

We can now take the union bound as follows:

$$\Pr\left(\sup_{f \in \mathcal{C}} [\operatorname{err}_{\mathcal{D}}(f) - \widehat{\operatorname{err}}_{\mathcal{S}_n}(f)] \ge \epsilon\right)$$

=
$$\Pr\left(\exists f \in \mathcal{C} : \operatorname{err}_{\mathcal{D}}(f) \ge \widehat{\operatorname{err}}_{\mathcal{S}_n}(f) + \epsilon\right)$$

$$\leq \sum_{f \in \mathcal{C}} \Pr\left(\operatorname{err}_{\mathcal{D}}(f) \ge \widehat{\operatorname{err}}_{\mathcal{S}_n}(f) + \epsilon\right)$$

$$\leq N \exp(-2n\epsilon^2).$$

Such a result (which implies that with large probability, error is small for all $f \in C$) is called *uniform convergence*.

Uniform Convergence Analysis: alternative expression Now by setting $N \exp(-2n\epsilon^2) = \delta$ and solving for ϵ to get

$$\epsilon = \sqrt{\frac{\ln(N/\delta)}{2n}},$$

we obtain the following equivalent statement.

Uniform Convergence for Finite $\ensuremath{\mathcal{C}}$

With probability at least $1 - \delta$, the following inequality holds for all $f \in C$:

$$\operatorname{err}_{\mathcal{D}}(f) < \widehat{\operatorname{err}}_{\mathcal{S}_n}(f) + \sqrt{\frac{\ln(N/\delta)}{2n}}$$

Consequence of Uniform Convergence

Given sample S_n , a uniform convergence bound holds for all $f \in C$. Therefore it holds for the output $\hat{f} \in C$ from any learning algorithm.

Oracle Inequality

Oracle Inequality

With probability at least $1 - \delta$, the following inequality holds for the ERM PAC learner (1) for all $\gamma > 0$:

$$\operatorname{err}_{\mathcal{D}}(\hat{f}) < \epsilon' + \sqrt{\frac{\ln(N/\delta)}{2n}} = (1+\gamma)\sqrt{\frac{\ln(N/\delta)}{2n}},$$
 (2)

with

$$\epsilon' = \gamma \sqrt{\frac{\ln(N/\delta)}{2n}}$$

It can be expressed in another form of sample complexity bound. If we let

$$n \geq rac{(1+\gamma)^2 \ln(N/\delta)}{2\epsilon^2},$$

then $\operatorname{err}_{\mathcal{D}}(\hat{f}) < \epsilon$ with probability at least $1 - \delta$.

Better Generalization Bound

Theorem 6 (Thm 3.6)

Consider a concept class C with N elements. With probability at least $1 - \delta$, the ERM PAC learner (1) with

$$\epsilon' = \gamma^2 \frac{2\ln(N/\delta)}{n}$$

for some $\gamma > 0$ satisfies

$$\operatorname{err}_{\mathcal{D}}(\hat{f}) \leq (1+\gamma)^2 \frac{2\ln(N/\delta)}{n}.$$

Sample Complexity

Theorem 6 is stated in statistical convergence of O(1/n) rate. It implies the following equivalent sample complexity bound.

Sample Complexity Bound

Given $\delta \in (0, 1)$. For all sample size

$$n \ge (1+\gamma)^2 rac{2\ln(N/\delta)}{\epsilon},$$

we have with probability at least $1 - \delta$:

 $\operatorname{err}(\hat{f}) < \epsilon.$

Example

Example 7

The AND concept class C is PAC learnable. To show this, we will prove that the ERM (1) solution can be obtained in a computationally efficient way with $\epsilon' = 0$. If this is true, then Theorem 6 implies that C is PAC-learnable because the number of AND functions cannot be more than $N = 2^d$. Therefore $\ln N < d \ln 2$. In the following, we show that ERM solution can be efficiently obtained. Given $S_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\} \sim \mathcal{D}^n$, we define $\hat{J} = \{j: \forall 1 \le i \le n, X_{i,i} \ge Y_i\}$ (where X_{ij} denotes the *j*-th component of the *i*-th training data X_i) and $\hat{f}(x) = \prod_{i \in \mathcal{A}} x_i$. This choice implies that $\hat{f}(X_i) = Y_i$ when $Y_i = 1$. It can be easily verified that if the true target is $f_*(x) = \prod_{i \in J} x_i$, then $\hat{J} \supset J$. This implies that $\hat{f}(x) \leq f_*(x)$. This implies that $\hat{f}(X_i) = Y_i$ when $Y_i = 0$, and hence $\widehat{\operatorname{err}}_{S_n}(\widehat{f}) = 0.$

Proof of Theorem 6 (I/II)

Given any $f \in C$, we have from Corollary 2.18 that

$$\Pr\left(\operatorname{err}_{\mathcal{D}}(f) \geq \widehat{\operatorname{err}}_{\mathcal{S}_n}(f) + \epsilon\right) \leq \exp\left(\frac{-n\epsilon^2}{2\operatorname{err}_{\mathcal{D}}(f)}\right).$$

Now by setting $\exp(-n\epsilon^2/2\text{err}_{\mathcal{D}}(f)) = \delta/N$, and solve for ϵ :

$$\epsilon = \sqrt{\frac{2\mathrm{err}_{\mathcal{D}}(f)\ln(N/\delta)}{n}},$$

we obtain the following equivalent statement. With probability at least $1 - \delta/N$:

$$\operatorname{err}_{\mathcal{D}}(f) \leq \widehat{\operatorname{err}}_{\mathcal{S}_n}(f) + \sqrt{\frac{2\operatorname{err}_{\mathcal{D}}(f)\ln(N/\delta)}{n}}$$

Proof of Theorem 6 (II/II)

The union bound thus implies the following statement. With probability at least $1 - \delta$, for all $f \in C$:

$$\operatorname{err}_{\mathcal{D}}(f) \leq \widehat{\operatorname{err}}_{\mathcal{S}_n}(f) + \sqrt{\frac{2\operatorname{err}_{\mathcal{D}}(f)\ln(N/\delta)}{n}}.$$

The inequality also holds for the ERM PAC learner solution (1). Thus

$$\operatorname{err}_{\mathcal{D}}(\hat{f}) \leq \widehat{\operatorname{err}}_{\mathcal{S}_n}(\hat{f}) + \sqrt{\frac{2\operatorname{err}_{\mathcal{D}}(\hat{f})\ln(N/\delta)}{n}}$$
$$\leq \gamma^2 \frac{2\ln(N/\delta)}{n} + \sqrt{\frac{2\operatorname{err}_{\mathcal{D}}(\hat{f})\ln(N/\delta)}{n}}$$

We can solve the above inequality for $\operatorname{err}_{\mathcal{D}}(\hat{f})$ and obtain

$$\operatorname{err}_{\mathcal{D}}(\hat{f}) \leq (\gamma^2 + 0.5 + \sqrt{\gamma^2 + 0.25}) \frac{2\ln(N/\delta)}{n}$$

which implies the desired bound as $\gamma^2 + 0.5 + \sqrt{\gamma^2 + 0.25} \le (1 + \gamma)^2$.

Empirical Process

The analysis of realizable PAC learning can be generalized to deal with

- general non-binary-valued functions
- functions classes which may contain an infinitely number of functions
- handle the non-realizable case where f_{*}(x) ∉ C or when the observation Y contains noise.

For such cases, the corresponding analysis requires the technical tool of empirical processes.

Notations

To simplify the notations, in the general setting, we may denote

- Observations as $Z_i = (X_i, Y_i) \in \mathcal{Z} = \mathcal{X} \times \mathcal{Y}$
- Loss function as $L(f(X_i), Y_i)$.
- Prediction function as f(X_i) (which is often a vector-valued-function)
- Assume further that f(x) is parametrized by $w \in \Omega$ as f(w, x)
- Hypothesis space is $\{f(w, \cdot) : w \in \Omega\}$.
- ► Training data $S_n = \{Z_i = (X_i, Y_i) : i = 1, ..., n\}.$

Notations Simplified

Definition 8

We define

$$\phi(\boldsymbol{w},\boldsymbol{z}) = L(f(\boldsymbol{w},\boldsymbol{x}),\boldsymbol{y}) - L_*(\boldsymbol{x},\boldsymbol{y}), \tag{3}$$

for $w \in \Omega$ and $z = (x, y) \in \mathbb{Z} = \mathcal{X} \times \mathcal{Y}$, and a pre-chosen $L_*(x, y)$ of z = (x, y) that does not depend on w. Define

$$\phi(\boldsymbol{w}, \mathcal{S}_n) = \frac{1}{n} \sum_{i=1}^n \phi(\boldsymbol{w}, \boldsymbol{Z}_i).$$
(4)

Moreover, for a distribution \mathcal{D} on \mathcal{Z} , we define the test loss for $w \in \Omega$

$$\phi(\boldsymbol{w}, \mathcal{D}) = \mathbb{E}_{\boldsymbol{Z} \in \mathcal{D}} \phi(\boldsymbol{w}, \boldsymbol{Z}).$$
(5)

In many cases, we can set $L_*(x, y) = 0$.

Example of Nonzero $L_*(x, y)$

Although we can set $L_*(x, y) = 0$, we can also choose it so that $\phi(w, z)$ has a small variance.

Example 9

Consider linear model $f(w, x) = w^{\top}x$, and let $L(f(w, x), y) = (w^{\top}x - y)^2$ be the least squares loss. Then with $L_*(x, y) = 0$, we have $\phi(w, z) = (w^{\top}x - y)^2$ for z = (x, y).

If we further assume that the problem is realizable by linear model, and w_* is the true weight vector: $\mathbb{E}[y|x] = w_*^\top x$. It follows that we may take $L_*(x, y) = (w_*^\top x - y)^2$, and

$$\phi(\boldsymbol{w},\boldsymbol{z}) = (\boldsymbol{w}^{\top}\boldsymbol{x} - \boldsymbol{y})^2 - (\boldsymbol{w}_*^{\top}\boldsymbol{x} - \boldsymbol{y})^2,$$

which has a small variance when $w \approx w_*$ because $\lim_{w \to w_*} \phi(w, z) = 0$.

Uniform Convergence

Definition 10 (Uniform Convergence)

Given a model space Ω , and distribution \mathcal{D} . Let $S_n \sim \mathcal{D}^n$ be *n* iid examples sampled from \mathcal{D} on \mathcal{Z} . We say that $\phi(w, S_n)$ ($w \in \Omega$) converges to $\phi(w, \mathcal{D})$ uniformly in probability if for all $\epsilon > 0$:

$$\lim_{n \to \infty} \Pr\left(\sup_{\pmb{w} \in \Omega} |\phi(\pmb{w}, \mathcal{S}_n) - \phi(\pmb{w}, \mathcal{D})| > \epsilon\right) = \mathbf{0},$$

where the probability is over iid samples of $S_n \sim D^n$.

Approximate ERM

We consider a more general form of ERM, approximate ERM, which satisfies the following inequality for some $\epsilon' > 0$:

$$\frac{1}{n}\sum_{i=1}^{n}L(f(\hat{w},X_i),Y_i)\leq \inf_{w\in\Omega}\left[\frac{1}{n}\sum_{i=1}^{n}L(f(w,X_i),Y_i)\right]+\epsilon'.$$
 (6)

The quantity $\epsilon' > 0$ indicates how accurately we solve the ERM problem.

Since L_* is independent of w, the approximate ERM method (6) becomes

$$\phi(\hat{w}, \mathcal{S}_n) \le \inf_{w \in \Omega} \phi(w, \mathcal{S}_n) + \epsilon'$$
(7)

in our notation.

Uniform Convergence Implies Oracle Inequality

Lemma 11 (Simplification of Lem 3.11)

Assume that for any $\delta \in (0, 1)$, the following uniform convergence result holds. With probability at least $1 - \delta_1$,

 $\forall \boldsymbol{w} \in \Omega: \ \phi(\boldsymbol{w}, \mathcal{D}) \leq \phi(\boldsymbol{w}, \mathcal{S}_n) + \epsilon_n(\delta_1, \boldsymbol{w}).$

Moreover, $\forall w \in \Omega$, the following inequality holds. With probability at least $1 - \delta_2$,

$$\phi(\mathbf{w}, \mathcal{S}_n) \leq \phi(\mathbf{w}, \mathcal{D}) + \epsilon'_n(\delta_2, \mathbf{w}).$$

Then the following statement holds. With probability at least $1 - \delta_1 - \delta_2$, the approximate ERM method (7) satisfies the oracle inequality:

$$\phi(\hat{\boldsymbol{w}}, \mathcal{D}) \leq \inf_{\boldsymbol{w} \in \Omega} \left[\phi(\boldsymbol{w}, \mathcal{D}) + \epsilon'_n(\delta_2, \boldsymbol{w}) \right] + \epsilon' + \epsilon_n(\delta_1, \hat{\boldsymbol{w}}).$$

A more general version is presented in the book.

Proof of Lemma 11

Consider an arbitrary $w \in \Omega$. We have with probability at least $1 - \delta_1$:

$$\phi(\hat{\boldsymbol{w}}, \mathcal{D}) \leq \phi(\hat{\boldsymbol{w}}, \mathcal{S}_n) + \epsilon_n(\delta_1, \hat{\boldsymbol{w}})$$

$$\leq \phi(\boldsymbol{w}, \mathcal{S}_n) + \epsilon' + \epsilon_n(\delta_1, \hat{\boldsymbol{w}}).$$
 (8)

Moreover, with probability at least $1 - \delta_2$:

$$\phi(\boldsymbol{w}, \mathcal{S}_n) \le \phi(\boldsymbol{w}, \mathcal{D}) + \epsilon'_n(\delta_2, \boldsymbol{w}).$$
(9)

Taking the union bound of the two events, we obtain with probability at least $1 - \delta_1 - \delta_2$, both (8) and (9) hold. It follows that

$$\begin{split} \phi(\hat{\boldsymbol{w}},\mathcal{D}) \leq & \phi(\boldsymbol{w},\mathcal{S}_n) + \epsilon' + \epsilon_n(\delta_1,\hat{\boldsymbol{w}}) \\ \leq & \phi(\boldsymbol{w},\mathcal{D}) + \epsilon'_n(\delta_2,\boldsymbol{w}) + \epsilon' + \epsilon_n(\delta_1,\hat{\boldsymbol{w}}). \end{split}$$

Since w is arbitrary, we let w approach the minimum of the right hand side, and obtain the desired bound.

Covering Number (Bracketing Number)

If Ω is finite, then we can use union bound to obtain uniform convergence of empirical processes. If Ω is infinite, then we can approximate the function class

$$\mathcal{G} = \{\phi(w, z) : w \in \Omega\}$$

using a finite function class.

Definition 12 (Lower Bracketing Cover)

Given a distribution \mathcal{D} . A finite function class $\mathcal{G}(\epsilon) = \{\phi_1(z), \dots, \phi_N(z)\}$ is an ϵ lower bracketing cover of \mathcal{G} (with $L_1(\mathcal{D})$ metric) if for all $w \in \Omega$, there exists j = j(w) such that

$$\forall z : \phi_j(z) \leq \phi(w, z), \qquad \mathbb{E}_{Z \sim D} \phi_j(Z) \geq \mathbb{E}_{Z \sim D} \phi(w, Z) - \epsilon.$$

The ϵ -lower bracketing number of \mathcal{G} , denoted by $N_{LB}(\epsilon, \mathcal{G}, L_1(\mathcal{D}))$, is the smallest cardinality of such $\mathcal{G}(\epsilon)$. The quantity $\ln N_{LB}(\epsilon, \mathcal{G}, L_1(\mathcal{D}))$ is referred to as the ϵ -lower bracketing entropy.

The functions $\phi_i(z)$ may not necessarily belong to \mathcal{G} .

Uniform Convergence Analysis

Theorem 13 (Simplification of Thm 3.14)

Assume that $\phi(w, z) \in [0, 1]$ for all $w \in \Omega$ and $z \in \mathcal{Z}$. Let $\mathcal{G} = \{\phi(w, z) : w \in \Omega\}$. Then given $\delta \in (0, 1)$, with probability at least $1 - \delta$, the following inequality holds:

 $\forall \boldsymbol{w} \in \Omega: \ \phi(\boldsymbol{w}, \mathcal{D}) \leq \left[\phi(\boldsymbol{w}, \mathcal{S}_n) + \epsilon_n(\delta, \mathcal{G}, \mathcal{D})\right],$

where

$$\epsilon_n(\delta, \mathcal{G}, \mathcal{D}) = \inf_{\epsilon > 0} \left[\epsilon + \sqrt{\frac{\ln(N_{LB}(\epsilon, \mathcal{G}, L_1(\mathcal{D}))/\delta)}{2n}} \right]$$

This result employs additive Chernoff bound. There is also a version using multiplicative Chernoff bound (see Theorem 3.14).

Proof of Theorem 13 (I/II)

For any $\epsilon > 0$, let $\mathcal{G}(\epsilon) = \{\phi_1(z), \dots, \phi_N(z)\}$ be an ϵ lower bracketing cover of \mathcal{G} with $N = N_{LB}(\epsilon, \mathcal{G}, L_1(\mathcal{D}))$. We may assume that $\phi_j(z) \in [0, 1]$ for all *j* because otherwise, we may set $\phi_j(z)$ to

 $\min(1, \max(0, \phi_j(z))).$

In the following, we let j = j(w) for simplified notation:

$$\frac{1}{n}\sum_{i=1}^{n}\phi(w,Z_i) - \mathbb{E}_{Z\sim\mathcal{D}}\phi(w,Z)$$
$$\geq \frac{1}{n}\sum_{i=1}^{n}\phi_j(Z_i) - \mathbb{E}_{Z\sim\mathcal{D}}\phi_j(Z) - \epsilon.$$
(10)

Proof of Theorem 13 (II/II)

Let $\epsilon'' = \sqrt{\ln(N/\delta)/2n}$. It follows from the union bound on *j* that

$$\Pr\left(\exists w \in \Omega : \left[\frac{1}{n} \sum_{i=1}^{n} \phi(w, Z_i) - \mathbb{E}_{Z \sim D} \phi(w, Z) + \epsilon + \epsilon''\right] \le 0\right)$$
$$\le \Pr\left(\exists j : \left[\frac{1}{n} \sum_{i=1}^{n} \phi_j(Z_i) - \mathbb{E}_{Z \sim D} \phi_j(Z) + \epsilon''\right] \le 0\right)$$
$$\le \sum_{j=1}^{N} \Pr\left(\frac{1}{n} \sum_{i=1}^{n} \phi_j(Z_i) - \mathbb{E}_{Z \sim D} \phi_j(Z) + \epsilon'' \le 0\right)$$
$$\le N \exp(-2n(\epsilon'')^2) = \delta.$$

This implies the desired bound.

Generalization (Oracle Inequality)

The uniform convergence bounds in Theorem 13 imply generalization bounds as follows.

Corollary 14 (Simplification of Cor 3.15)

Assume that $\phi(w, z) \in [0, 1]$ for all $w \in \Omega$ and $z \in \mathbb{Z}$. Let $\mathcal{G} = \{\phi(w, z) : w \in \Omega\}$. With probability at least $1 - \delta$, the approximate ERM method (7) satisfies the (additive) oracle inequality:

$$\phi(\hat{w}, \mathcal{D}) \leq \inf_{w \in \Omega} \phi(w, \mathcal{D}) + \epsilon' + \inf_{\epsilon > 0} \left[\epsilon + \sqrt{\frac{2\ln(2N_{LB}(\epsilon, \mathcal{G}, L_1(\mathcal{D}))/\delta)}{n}} \right]$$

We may take $\phi(w, z) = L(f(w, x), y)$ with $L_*(x, y) = 0$ to obtain an oracle inequality for the approximate ERM method (6).

Proof

We can take $\epsilon_n(\delta/2, w) = \epsilon_n(\delta/2, \mathcal{G}, \mathcal{D})$, as defined in Theorem 13. We then use the additive Chernoff bound

$$\epsilon'_n(\delta/2, w) = \sqrt{\frac{\ln(2/\delta)}{2n}} \le \sqrt{\frac{\ln(2N_{LB}(\epsilon, \mathcal{G}, L_1(\mathcal{D}))/\delta)}{2n}}$$

for an arbitrary $\epsilon > 0$.

The conditions of Lemma 11 hold.

We can then use the above upper bound on $\epsilon'_n(\delta/2, w)$ to simplify the result of Lemma 11, and take the minimum over ϵ to obtain the first desired bound of the corollary.

A Simple Example

We consider a one dimensional classification problem, where the input *x* is uniformly distributed in [0, 1], and the output $y \in \{\pm 1\}$ is generated according to

$$\Pr(y = 1|x) = \begin{cases} p & \text{if } x \ge w_* \\ (1-p) & \text{otherwise} \end{cases}$$
(11)

for some unknown $w_* \in [0, 1]$ and $p \in (0.5, 1]$. See Figure 1.

Figure: Conditional probability Pr(y = 1 | x) as a function of x

A Simple Example (cont)

We don't know w_* , and consider a family of classifiers

$$f(w,x) = 2\mathbb{1}(x \ge w) - 1 = \begin{cases} 1 & \text{if } x \ge w \\ -1 & \text{otherwise} \end{cases}$$

where $w \in \Omega = [0, 1]$ is the model parameter to be learned from the training data. Here $\mathbb{1}(\cdot)$ is the binary indicator function. In this example, we consider the following classification error loss

$$L(f(x), y) = \mathbb{1}(f(x) \neq y).$$

In this case, the optimal Bayes classifier is $f_*(x) = 2\mathbb{1}(x \ge w_*) - 1$, and the optimal Bayes error is

$$\mathbb{E}_{X,Y} L(f(w_*,X),Y) = 1 - \rho.$$

Lower Bracketing Cover

Given any $\epsilon > 0$, we let $w_j = 0 + j\epsilon$ for $j = 1, \dots, \lceil 1/\epsilon \rceil$. Let

$$\phi_j(z) = \begin{cases} 0 & \text{if } x \in [w_j - \epsilon, w_j] \\ \phi(w_j, z) & \text{otherwise,} \end{cases}$$

where z = (x, y). Note that $\phi_j \notin G$. It follows that for any $w \in [0, 1]$, if we let w_j be the smallest j such that $w_j \ge w$, then we have $\phi_j(z) = 0 \le \phi(w, z)$ when $x \in [w_j - \epsilon, w_j]$, and $\phi_j(z) = \phi(w, z)$ otherwise, where z = (x, y). Moreover,

$$\mathbb{E}_{Z \sim \mathcal{D}}[\phi_j(Z) - \phi(w, Z)] = \mathbb{E}_{X \in [w_j - \epsilon, w_j]}[0 - \phi(w, Z)] \geq -\epsilon.$$

We thus have

$$N_{LB}(\epsilon, \mathcal{G}, L_1(\mathcal{D})) \leq 1 + \epsilon^{-1}.$$

Oracle Inequality

We have (by picking $\epsilon = 2/n$):

$$\inf_{\epsilon>0}\left[\epsilon+\sqrt{\frac{2\ln(2N_{LB}(\epsilon,\mathcal{G},L_1(\mathcal{D}))/\delta)}{n}}\right]\leq \frac{2}{n}+\sqrt{\frac{2\ln((n+2)/\delta)}{n}}.$$

This implies the following additive oracle inequality from Corollary 14 with $\phi(w, z) = L(f(w, x), y)$.

Oracle Inequality

With probability at least $1 - \delta$,

$$\mathbb{E}_{(X,Y)\sim\mathcal{D}}L(f(\hat{w},X),Y) \leq (1-p) + \frac{2}{n} + \sqrt{\frac{2\ln((n+2)/\delta)}{n}}$$

Better Bounds with Variance Condition

In this section, we show that better bounds can be obtained with Bernstein's inequality under the following condition.

Definition 15 (Variance Condition)

Given a function class \mathcal{G} . We say it satisfies the variance condition if there exists $c_0, c_1 > 0$ such that for all $\phi(z) \in \mathcal{G}$:

$$\operatorname{Var}_{Z \sim \mathcal{D}}(\phi(Z)) \leq c_0^2 + c_1 \mathbb{E}_{Z \sim \mathcal{D}} \phi(Z), \tag{12}$$

where we require that $\mathbb{E}_{Z\sim\mathcal{D}}\phi(Z)\geq -c_0^2/c_1$ for all $\phi\in\mathcal{G}$.

In applications, the following modification of the variance condition is often more convenient to employ

$$\mathbb{E}_{Z\sim\mathcal{D}}[\phi(Z)^2] \le c_0^2 + c_1 \mathbb{E}_{Z\sim\mathcal{D}}\phi(Z). \tag{13}$$

Example I

Example 16 (Bounded Function)

Let $\mathcal{G} = \{\phi(\cdot) : \forall z, \phi(z) \in [0, 1]\}$. Then \mathcal{G} satisfies the variance condition (13) with $c_0 = 0$ and $c_1 = 1$.

Example II

Example 17 (Convex Least Squares)

Consider the least squares method $L(f(x), y) = (f(x) - y)^2$, with bounded response: $L(f(x), y) \le M^2$ for some M > 0. Let \mathcal{F} be a convex function class (that is, for any $f_1, f_2 \in \mathcal{F}$, and $\alpha \in (0, 1)$, $\alpha f_1 + (1 - \alpha) f_2 \in \mathcal{F}$), and define the optimal function in \mathcal{F} as:

$$f_{\text{opt}} = \arg\min_{f \in \mathcal{F}} \mathbb{E}_{(x,y) \sim \mathcal{D}} L(f(x), y).$$
(14)

Let z = (x, y), and

$$\mathcal{G} = \{\phi(\cdot) : \phi(z) = L(f(x), y) - L(f_{opt}(x), y), f(x) \in \mathcal{F}\}.$$

Then G satisfies the variance condition (13) with $c_0 = 0$, and $c_1 = 4M^2$.

Example III

Example 18 (Non-convex Least Squares)

More generally, if \mathcal{F} is bounded nonconvex function class with $f(x) \in [0, M]$ for all $f \in \mathcal{F}$. If we assume that $y \in [0, M]$, then the variance condition may not hold with f_{opt} in (14). However, if we replace f_{opt} by $f_*(x) = \mathbb{E}[Y|X = x]$ in the definition of \mathcal{G} as follows:

$$\mathcal{G} = \{\phi(\cdot) : \phi(z) = L(f(x), y) - L(f_*(x), y), f(x) \in \mathcal{F}\},\$$

then all functions in \mathcal{G} satisfy the variance condition (13) with $c_0 = 0$, and $c_1 = 2M^2$. Note that in general f_* may not belong to \mathcal{F} . However if the problem is well-specified (that is, $f_*(x) \in \mathcal{F}$), then the variance condition holds with $f_{opt} = f_*$.

Uniform Convergence (Bernstein)

Theorem 19 (Simplification of Thm 3.21)

Assume condition (12) is satisfied with $c_0 = 0$. Moreover, assume that the condition of Bernstein inequality is satisfied with b > 0 and $V = \operatorname{Var}(\phi(Z))$, and $\mathbb{E}_{Z \sim \mathcal{D}} \phi(Z) \ge 0$. Then $\forall \delta \in (0, 1)$, with probability at least $1 - \delta$, the following inequality holds for all $\gamma \in (0, 1)$ and $w \in \Omega$:

$$(1 - \gamma)\phi(\mathbf{w}, \mathcal{D}) \leq \phi(\mathbf{w}, \mathcal{S}_n) + \epsilon_n^{\gamma}(\delta, \mathcal{G}, \mathcal{D}),$$

$$\epsilon_n^{\gamma}(\delta,\mathcal{G},\mathcal{D}) = \inf_{\epsilon \in [0,\epsilon_0]} \left[(1-\gamma)\epsilon + \frac{(3c_1 + 2\gamma b)\ln(N_{LB}(\epsilon,\mathcal{G},L_1(\mathcal{D}))/\delta)}{6\gamma n} \right].$$

Note that we obtain an O(1/n) uniform convergence rate.

Theorem 3.21 also handles $c_0 \neq 0$.

Oracle Inequality (Bernstein)

Corollary 20 (Cor 3.22)

Let

$$w_* = \arg\min_{w \in \Omega} \mathbb{E}_{(X,Y) \sim \mathcal{D}} L(f(w,X),Y),$$

and assume that the conditions of Theorem 19 hold with

$$\phi(\mathbf{w}, \mathbf{z}) = L(f(\mathbf{w}, \mathbf{x}), \mathbf{y}) - L(f(\mathbf{w}_*, \mathbf{x}), \mathbf{y}).$$

Then, with probability at least $1 - \delta$, the approximate ERM method (6) satisfies the following oracle inequality

 $\mathbb{E}_{(X,Y)\sim\mathcal{D}}L(f(\hat{w},X),Y) \leq \mathbb{E}_{(X,Y)\sim\mathcal{D}}L(f(w_*,X),Y) + 2(\epsilon_n^{0.5}(\delta,\mathcal{G},\mathcal{D}) + \epsilon'),$ where $\epsilon_n^{\gamma}(\delta,\mathcal{G},\mathcal{D})$ is defined in Theorem 19.

Simple Example Revisited

Consider Example on Slide 32, with the following modified $\phi(w, z)$:

$$\phi(\mathbf{w},\mathbf{z}) = \mathbb{1}(f(\mathbf{w},\mathbf{x})\neq\mathbf{y}) - \mathbb{1}(f(\mathbf{w}_*,\mathbf{x})\neq\mathbf{y}),$$

and the functions $\phi'_j(z) = \phi_j(z) - \mathbb{1}(f(w_*, x) \neq y)$ form an ϵ lower-bracketing cover, where $\phi_j(z)$ is defined on Slide 33 as

$$\phi_j(z) = egin{cases} \mathsf{0} & ext{if } x \in [w_j - \epsilon, w_j] \ \phi(w_j, z) & ext{otherwise}. \end{cases}$$

A slight generalized Theorem 19 (Theorem 3.21 in the book with $c_0 \neq 0$) hold for $\epsilon \leq \epsilon_0$ with $c_0^2 = O(\epsilon_0)$, $c_1 = O(1)$, b = 2. We obtain

$$\epsilon_n^{\gamma}(\delta/2,\mathcal{G},\mathcal{D}) = O\left(\frac{\ln(n/\delta)}{n}\right)$$

Simple Example Revisited: Oracle Inequality

Corollary 20 implies the following oracle inequality.

Oracle Inequality with Fast Convergence Rate

With probability at least $1 - \delta$:

$$\mathbb{E}_{(X,Y)\sim\mathcal{D}}\mathbb{1}(f(\hat{w},X)\neq Y)\leq (1-\rho)+O\left(\frac{\ln(n/\delta)}{n}\right).$$

Note also that $\mathbb{E}_{(X,Y)\sim\mathcal{D}} \mathbb{1}(f(w_*,X) \neq Y) = 1 - p$. This shows the ERM method has generalization error converging to the Bayes error at a fast rate of $O(\ln n/n)$.

Example: Parametric Model

In general, for bounded parametric function classes with *d* real-valued parameters (such as linear models $f(w, x) = w^{\top}x$ defined on a compact subset of \mathbb{R}^d), we expect the entropy (see Section 5.2 in the book) to behave as

Covering for Parametric Model

$$\ln N_{LB}(\epsilon, \mathcal{G}, L_1(\mathcal{D})) = O(d \ln(1/\epsilon)).$$

Assume that (13) holds with $c_0 = 0$ and $c_1 > 1$. Then it can be shown that the generalization bound in Corollary 20 implies

Oracle Inequality with Fast Rate

$$\mathbb{E}_{\mathcal{D}}L(f(\hat{w}, X), Y) \leq \mathbb{E}_{\mathcal{D}}L(f(w_*, X), Y) + O\left(\frac{\ln(n^d/\delta)}{n}\right)$$

General Bracketing Number

Definition 21 (Bracketing Number)

Let $\mathcal{G} = \{\phi(w, \cdot) : w \in \Omega\}$ be a real-valued function class, equipped with a pseudometric *d*. We say

$$\mathcal{G}(\epsilon) = \{ [\phi_1^L(z), \phi_1^U(z)], \dots, [\phi_N^L(z), \phi_N^U(z)] \}$$

is an ϵ -bracket of \mathcal{G} under metric d if for all $w \in \Omega$, there exists j = j(w) such that $\forall z$:

$$\phi_j^L(z) \le \phi(w, z) \le \phi_j^U(z), \qquad d(\phi_j^L, \phi_j^U) \le \epsilon.$$

The ϵ -bracketing number is the smallest cardinality $N_{[]}(\epsilon, \mathcal{G}, d)$ of such $\mathcal{G}(\epsilon)$. The quantity $\ln N_{[]}(\epsilon, \mathcal{G}, d)$ is called ϵ bracketing entropy.

L_p Bracketing

Given a distribution \mathcal{D} and $p \ge 1$, we define L_p -seminorm in function space as

$$|f - f'||_{L_p(\mathcal{D})} = \left[\mathbb{E}_{Z \sim \mathcal{D}} |f(Z) - f'(Z)|^p\right]^{1/p}.$$
(15)

It induces a pseudometric, denoted as $d = L_{p}(\mathcal{D})$, and the corresponding bracketing number is $N_{\Pi}(\epsilon, \mathcal{G}, L_{p}(\mathcal{D}))$.

Proposition 22 (Prop 3.28)

```
We have for all p \ge 1:
```

$$N_{LB}(\epsilon, \mathcal{G}, L_1(\mathcal{D})) \leq N_{[]}(\epsilon, \mathcal{G}, L_1(\mathcal{D})) \leq N_{[]}(\epsilon, \mathcal{G}, L_p(\mathcal{D})).$$

It follows that Theorem 13 and Theorem 19 apply for all $N_{[]}(\epsilon, \mathcal{G}, L_{p}(\mathcal{D}))$ with $p \geq 1$.

Summary (Chapter 3)

- PAC Learning and Uniform Convergence
- Chernoff Bound + Union Bound, logarithmic dependency on class size N
- Additive Chernoff bound: $O(1/\sqrt{n})$ convergence
- Multiplicative Chernoff bound: O(1/n) convergence (see book)
- Uniform Convergence and Oracle Inequality for ERM
- Bracketing Cover implies Uniform Convergence
- Additive Chernoff: $O(1/\sqrt{n})$ convergence rate
- Multiplicative Chernoff: O(1/n) convergence for realizable case (see book)
- Variance condition implies faster rate
- Bernstein: can lead to O(1/n) rate for non-realizable cases