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Uniform Convergence

Mathematical Analysis of Machine Learning Algorithms
(Chapter 3)



2

PAC Learning: Notations

We will study Probabilistic Approximately Correct (PAC) learning.
I X : binary valued vector X ∈ {0,1}d .
I Y : binary output Y ∈ {0,1}.
I f : a Boolean function: X ∈ {0,1}d → Y ∈ {0,1}.
I C: a set of Boolean functions
I f∗ ∈ C: unknown true function that we want to learn.
I O: an oracle that sample from a distribution D, each sample

return X ∼ D and Y = f (X∗)

The goal of a PAC learner is to learn f∗(X ) so that generalization error

errD(f ) = EX∼D1(f (x) 6= f∗(x)).

is no larger than ε.
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PAC Learning: Definition

We may call the oracle O n times to form a training data
Sn = {(Xi ,Yi)}i=1,...,n ∼ Dn. The learner A takes Sn and returns a
function f̂ ∈ C.

Definition 1 (PAC Learning)

A concept class C is PAC learnable if there exists a learner A so that
for all f∗ ∈ C, distribution D on the input, approximation error ε > 0
and probability δ ∈ (0,1), the following statement holds. With
probability at least 1− δ over samples from the oracle O over D, the
learner produces a function f̂ such that

errD(f̂ ) ≤ ε,

with the computational complexity polynomial in (ε−1, δ−1,d).

In the statistical complexity analysis of learning algorithms, the
computational complexity requirement is de-emphasized.
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PAC Learning: examples

Example 2 (AND Function Class)

Each member of AND function class can be written as

f (x) =
∏
j∈J

xj , J ⊂ {1, . . . ,d}.

Example 3 (Decision List)

A decision list is a function of the following form. Let {i1, . . . , id} be a
permutation of {1, . . . ,d}, and let ai ,bi ∈ {0,1} for i = 1, . . . ,d + 1.
The function f (x) can be computed as follows. if xi1 = a1 then
f (x) = b1; else if xi2 = a2 then f (x) = b2, · · · , else if xid = ad then
f (x) = bd ; else f (x) = bd+1.
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ERM

Definition 4 (ERM)

Define the training error of f ∈ C as

êrrSn (f ) =
1
n

n∑
i=1

1(f (Xi) 6= Yi).

The ERM (empirical risk minimization) method finds a function f̂ ∈ C
that minimizes the training error.

Since by the realizable assumption of PAC learning, f∗ ∈ C achieves
zero training error, the empirical minimizer f̂ that achieves zero
training error. More generally, we may consider approximate ERM,
which returns f̂ so that

êrrSn (f̂ ) ≤ ε′ (1)

for some accuracy ε′ > 0.
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Analysis of PAC Learning: Decomposition

We want to estimate the difference of the test error errD(f̂ ) and the
optimal test error errD(f∗):

errD(f̂ )− errD(f∗)

= [errD(f̂ )− êrrSn (f̂ )]︸ ︷︷ ︸
A

+ [êrrSn (f̂ )− êrrSn (f∗)]︸ ︷︷ ︸
B

+ [êrrSn (f∗)− errD(f∗)]︸ ︷︷ ︸
C

≤ sup
f∈F

[errD(f )− êrrSn (f )]︸ ︷︷ ︸
A′

+0 + [êrrSn (f∗)− errD(f∗)]︸ ︷︷ ︸
C

≤2 sup
f∈F
|errD(f )− êrrSn (f )|︸ ︷︷ ︸

A′′

.

The quantity A′ or A′′ requires that the convergence of empirical
mean to the true mean holds for all f ∈ F .
Such a convergence result is referred to as uniform convergence.
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Analysis of PAC Learning: Union Bound
The key mathematical tool to analyze uniform convergence is the
union bound, described in Proposition 5.

Proposition 5 (Union Bound)

Consider m events E1, . . .Em. The following probability inequality
holds:

Pr (E1 ∪ · · · ∪ Em) ≤
m∑

j=1

Pr(Ej).

Alternative Expression of Union Bound

Assume each event Ej occurs with probability at least 1− δj for
j = 1, . . . ,m, then with probability at least 1−

∑m
j=1 δj :

All of events {Ej} occur simultaneously for j = 1, . . . ,m.
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Uniform Convergence Analysis

We apply the additive Chernoff bound to obtain for each fixed f ∈ C:

Pr (errD(f ) ≥ êrrSn (f ) + ε) ≤ exp(−2nε2).

Remarks:
I We cannot directly apply the Chernoff bound to the function f̂

learned from the training data Sn, because f̂ is a random function
that depends on Sn.

I We need union bound to handle f̂ , which we will demonstrate
next.
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Uniform Convergence Analysis: union bound

We can now take the union bound as follows:

Pr

(
sup
f∈C

[errD(f )− êrrSn (f )] ≥ ε
)

= Pr (∃f ∈ C : errD(f ) ≥ êrrSn (f ) + ε)

≤
∑
f∈C

Pr (errD(f ) ≥ êrrSn (f ) + ε)

≤N exp(−2nε2).

Such a result (which implies that with large probability, error is small
for all f ∈ C) is called uniform convergence.



10

Uniform Convergence Analysis: alternative expression
Now by setting N exp(−2nε2) = δ and solving for ε to get

ε =

√
ln(N/δ)

2n
,

we obtain the following equivalent statement.

Uniform Convergence for Finite C
With probability at least 1− δ, the following inequality holds for all
f ∈ C:

errD(f ) < êrrSn (f ) +

√
ln(N/δ)

2n
.

Consequence of Uniform Convergence

Given sample Sn, a uniform convergence bound holds for all f ∈ C.
Therefore it holds for the output f̂ ∈ C from any learning algorithm.
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Oracle Inequality

Oracle Inequality

With probability at least 1− δ, the following inequality holds for the
ERM PAC learner (1) for all γ > 0:

errD(f̂ ) < ε′ +

√
ln(N/δ)

2n
= (1 + γ)

√
ln(N/δ)

2n
, (2)

with

ε′ = γ

√
ln(N/δ)

2n
.

It can be expressed in another form of sample complexity bound. If
we let

n ≥ (1 + γ)2 ln(N/δ)

2ε2
,

then errD(f̂ ) < ε with probability at least 1− δ.
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Better Generalization Bound

Theorem 6 (Thm 3.6)

Consider a concept class C with N elements. With probability at least
1− δ, the ERM PAC learner (1) with

ε′ = γ2 2 ln(N/δ)

n

for some γ > 0 satisfies

errD(f̂ ) ≤ (1 + γ)2 2 ln(N/δ)

n
.
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Sample Complexity

Theorem 6 is stated in statistical convergence of O(1/n) rate.
It implies the following equivalent sample complexity bound.

Sample Complexity Bound

Given δ ∈ (0,1). For all sample size

n ≥ (1 + γ)2 2 ln(N/δ)

ε
,

we have with probability at least 1− δ:

err(f̂ ) < ε.
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Example

Example 7

The AND concept class C is PAC learnable. To show this, we will
prove that the ERM (1) solution can be obtained in a computationally
efficient way with ε′ = 0. If this is true, then Theorem 6 implies that C
is PAC-learnable because the number of AND functions cannot be
more than N = 2d . Therefore ln N ≤ d ln 2.
In the following, we show that ERM solution can be efficiently
obtained. Given Sn = {(X1,Y1), . . . , (Xn,Yn)} ∼ Dn, we define
Ĵ = {j : ∀1 ≤ i ≤ n,Xi,j ≥ Yi} (where Xij denotes the j-th
component of the i-th training data Xi ) and f̂ (x) =

∏
j∈Ĵ xj . This

choice implies that f̂ (Xi) = Yi when Yi = 1. It can be easily verified
that if the true target is f∗(x) =

∏
j∈J xj , then Ĵ ⊃ J. This implies that

f̂ (x) ≤ f∗(x). This implies that f̂ (Xi) = Yi when Yi = 0, and hence
êrrSn (f̂ ) = 0.
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Proof of Theorem 6 (I/II)

Given any f ∈ C, we have from Corollary 2.18 that

Pr (errD(f ) ≥ êrrSn (f ) + ε) ≤ exp

(
−nε2

2errD(f )

)
.

Now by setting exp(−nε2/2errD(f )) = δ/N, and solve for ε:

ε =

√
2errD(f ) ln(N/δ)

n
,

we obtain the following equivalent statement. With probability at least
1− δ/N:

errD(f ) ≤ êrrSn (f ) +

√
2errD(f ) ln(N/δ)

n
.
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Proof of Theorem 6 (II/II)
The union bound thus implies the following statement. With
probability at least 1− δ, for all f ∈ C:

errD(f ) ≤ êrrSn (f ) +

√
2errD(f ) ln(N/δ)

n
.

The inequality also holds for the ERM PAC learner solution (1). Thus

errD(f̂ ) ≤êrrSn (f̂ ) +

√
2errD(f̂ ) ln(N/δ)

n

≤γ2 2 ln(N/δ)

n
+

√
2errD(f̂ ) ln(N/δ)

n
.

We can solve the above inequality for errD(f̂ ) and obtain

errD(f̂ ) ≤ (γ2 + 0.5 +
√
γ2 + 0.25)

2 ln(N/δ)

n
,

which implies the desired bound as γ2 + 0.5 +
√
γ2 + 0.25 ≤ (1 + γ)2.
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Empirical Process

The analysis of realizable PAC learning can be generalized to deal
with
I general non-binary-valued functions
I functions classes which may contain an infinitely number of

functions
I handle the non-realizable case where f∗(x) /∈ C or when the

observation Y contains noise.

For such cases, the corresponding analysis requires the technical
tool of empirical processes.
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Notations

To simplify the notations, in the general setting, we may denote
I Observations as Zi = (Xi ,Yi) ∈ Z = X × Y
I Loss function as L(f (Xi),Yi).
I Prediction function as f (Xi) (which is often a

vector-valued-function)
I Assume further that f (x) is parametrized by w ∈ Ω as f (w , x)

I Hypothesis space is {f (w , ·) : w ∈ Ω}.
I Training data Sn = {Zi = (Xi ,Yi) : i = 1, . . . ,n}.
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Notations Simplified

Definition 8
We define

φ(w , z) = L(f (w , x), y)− L∗(x , y), (3)

for w ∈ Ω and z = (x , y) ∈ Z = X × Y, and a pre-chosen L∗(x , y) of
z = (x , y) that does not depend on w . Define

φ(w ,Sn) =
1
n

n∑
i=1

φ(w ,Zi). (4)

Moreover, for a distribution D on Z, we define the test loss for w ∈ Ω

φ(w ,D) = EZ∈Dφ(w ,Z ). (5)

In many cases, we can set L∗(x , y) = 0.
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Example of Nonzero L∗(x , y)

Although we can set L∗(x , y) = 0, we can also choose it so that
φ(w , z) has a small variance.

Example 9

Consider linear model f (w , x) = w>x , and let
L(f (w , x), y) = (w>x − y)2 be the least squares loss. Then with
L∗(x , y) = 0, we have φ(w , z) = (w>x − y)2 for z = (x , y).

If we further assume that the problem is realizable by linear model,
and w∗ is the true weight vector: E[y |x ] = w>∗ x . It follows that we may
take L∗(x , y) = (w>∗ x − y)2, and

φ(w , z) = (w>x − y)2 − (w>∗ x − y)2,

which has a small variance when w ≈ w∗ because
limw→w∗ φ(w , z) = 0.



21

Uniform Convergence

Definition 10 (Uniform Convergence)

Given a model space Ω, and distribution D. Let Sn ∼ Dn be n iid
examples sampled from D on Z. We say that φ(w ,Sn) (w ∈ Ω)
converges to φ(w ,D) uniformly in probability if for all ε > 0:

lim
n→∞

Pr

(
sup
w∈Ω
|φ(w ,Sn)− φ(w ,D)| > ε

)
= 0,

where the probability is over iid samples of Sn ∼ Dn.
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Approximate ERM

We consider a more general form of ERM, approximate ERM, which
satisfies the following inequality for some ε′ > 0:

1
n

n∑
i=1

L(f (ŵ ,Xi),Yi) ≤ inf
w∈Ω

[
1
n

n∑
i=1

L(f (w ,Xi),Yi)

]
+ ε′. (6)

The quantity ε′ > 0 indicates how accurately we solve the ERM
problem.
Since L∗ is independent of w , the approximate ERM method (6)
becomes

φ(ŵ ,Sn) ≤ inf
w∈Ω

φ(w ,Sn) + ε′ (7)

in our notation.
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Uniform Convergence Implies Oracle Inequality
Lemma 11 (Simplification of Lem 3.11 )

Assume that for any δ ∈ (0,1), the following uniform convergence
result holds. With probability at least 1− δ1,

∀w ∈ Ω : φ(w ,D) ≤ φ(w ,Sn) + εn(δ1,w).

Moreover, ∀w ∈ Ω, the following inequality holds. With probability at
least 1− δ2,

φ(w ,Sn) ≤ φ(w ,D) + ε′n(δ2,w).

Then the following statement holds. With probability at least
1− δ1 − δ2, the approximate ERM method (7) satisfies the oracle
inequality:

φ(ŵ ,D) ≤ inf
w∈Ω

[
φ(w ,D) + ε′n(δ2,w)

]
+ ε′ + εn(δ1, ŵ).

A more general version is presented in the book.



24

Proof of Lemma 11

Consider an arbitrary w ∈ Ω. We have with probability at least 1− δ1:

φ(ŵ ,D) ≤φ(ŵ ,Sn) + εn(δ1, ŵ)

≤φ(w ,Sn) + ε′ + εn(δ1, ŵ). (8)

Moreover, with probability at least 1− δ2:

φ(w ,Sn) ≤ φ(w ,D) + ε′n(δ2,w). (9)

Taking the union bound of the two events, we obtain with probability
at least 1− δ1 − δ2, both (8) and (9) hold. It follows that

φ(ŵ ,D) ≤φ(w ,Sn) + ε′ + εn(δ1, ŵ)

≤φ(w ,D) + ε′n(δ2,w) + ε′ + εn(δ1, ŵ).

Since w is arbitrary, we let w approach the minimum of the right hand
side, and obtain the desired bound.
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Covering Number (Bracketing Number)
If Ω is finite, then we can use union bound to obtain uniform
convergence of empirical processes. If Ω is infinite, then we can
approximate the function class

G = {φ(w , z) : w ∈ Ω}
using a finite function class.

Definition 12 (Lower Bracketing Cover)

Given a distribution D. A finite function class
G(ε) = {φ1(z), . . . , φN(z)} is an ε lower bracketing cover of G (with
L1(D) metric) if for all w ∈ Ω, there exists j = j(w) such that

∀z : φj(z) ≤ φ(w , z), EZ∼Dφj(Z ) ≥ EZ∼Dφ(w ,Z )− ε.

The ε-lower bracketing number of G, denoted by NLB(ε,G,L1(D)), is
the smallest cardinality of such G(ε). The quantity ln NLB(ε,G,L1(D))
is referred to as the ε-lower bracketing entropy.

The functions φj(z) may not necessarily belong to G.
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Uniform Convergence Analysis

Theorem 13 (Simplification of Thm 3.14)

Assume that φ(w , z) ∈ [0,1] for all w ∈ Ω and z ∈ Z. Let
G = {φ(w , z) : w ∈ Ω}. Then given δ ∈ (0,1), with probability at least
1− δ, the following inequality holds:

∀w ∈ Ω : φ(w ,D) ≤ [φ(w ,Sn) + εn(δ,G,D)] ,

where

εn(δ,G,D) = inf
ε>0

[
ε+

√
ln(NLB(ε,G,L1(D))/δ)

2n

]
.

This result employs additive Chernoff bound. There is also a version
using multiplicative Chernoff bound (see Theorem 3.14).
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Proof of Theorem 13 (I/II)

For any ε > 0, let G(ε) = {φ1(z), . . . , φN(z)} be an ε lower bracketing
cover of G with N = NLB(ε,G,L1(D)).
We may assume that φj(z) ∈ [0,1] for all j because otherwise, we
may set φj(z) to

min(1,max(0, φj(z))).

In the following, we let j = j(w) for simplified notation:

1
n

n∑
i=1

φ(w ,Zi)− EZ∼Dφ(w ,Z )

≥1
n

n∑
i=1

φj(Zi)− EZ∼Dφj(Z )− ε. (10)
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Proof of Theorem 13 (II/II)

Let ε′′ =
√

ln(N/δ)/2n. It follows from the union bound on j that

Pr

(
∃w ∈ Ω :

[
1
n

n∑
i=1

φ(w ,Zi)− EZ∼Dφ(w ,Z ) + ε+ ε′′

]
≤ 0

)

≤Pr

(
∃j :

[
1
n

n∑
i=1

φj(Zi)− EZ∼Dφj(Z ) + ε′′

]
≤ 0

)

≤
N∑

j=1

Pr

(
1
n

n∑
i=1

φj(Zi)− EZ∼Dφj(Z ) + ε′′ ≤ 0

)
≤N exp(−2n(ε′′)2) = δ.

This implies the desired bound.
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Generalization (Oracle Inequality)

The uniform convergence bounds in Theorem 13 imply generalization
bounds as follows.

Corollary 14 (Simplification of Cor 3.15)

Assume that φ(w , z) ∈ [0,1] for all w ∈ Ω and z ∈ Z. Let
G = {φ(w , z) : w ∈ Ω}. With probability at least 1− δ, the
approximate ERM method (7) satisfies the (additive) oracle
inequality:

φ(ŵ ,D) ≤ inf
w∈Ω

φ(w ,D) + ε′ + inf
ε>0

[
ε+

√
2 ln(2NLB(ε,G,L1(D))/δ)

n

]
.

We may take φ(w , z) = L(f (w , x), y) with L∗(x , y) = 0 to obtain an
oracle inequality for the approximate ERM method (6).
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Proof

We can take εn(δ/2,w) = εn(δ/2,G,D), as defined in Theorem 13.
We then use the additive Chernoff bound

ε′n(δ/2,w) =

√
ln(2/δ)

2n
≤
√

ln(2NLB(ε,G,L1(D))/δ)

2n

for an arbitrary ε > 0.
The conditions of Lemma 11 hold.
We can then use the above upper bound on ε′n(δ/2,w) to simplify the
result of Lemma 11, and take the minimum over ε to obtain the first
desired bound of the corollary.
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A Simple Example
We consider a one dimensional classification problem, where the
input x is uniformly distributed in [0,1], and the output y ∈ {±1} is
generated according to

Pr(y = 1|x) =

{
p if x ≥ w∗
(1− p) otherwise

(11)

for some unknown w∗ ∈ [0,1] and p ∈ (0.5,1]. See Figure 1.

x
Pr(y = 1|x) = 1− p

Pr(y = 1|x) = p

0 w∗ 1

1

Figure: Conditional probability Pr(y = 1|x) as a function of x
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A Simple Example (cont)

We don’t know w∗, and consider a family of classifiers

f (w , x) = 21(x ≥ w)− 1 =

{
1 if x ≥ w
−1 otherwise

,

where w ∈ Ω = [0,1] is the model parameter to be learned from the
training data. Here 1(·) is the binary indicator function.
In this example, we consider the following classification error loss

L(f (x), y) = 1(f (x) 6= y).

In this case, the optimal Bayes classifier is f∗(x) = 21(x ≥ w∗)− 1,
and the optimal Bayes error is

EX ,Y L(f (w∗,X ),Y ) = 1− p.
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Lower Bracketing Cover

Given any ε > 0, we let wj = 0 + jε for j = 1, . . . , d1/εe. Let

φj(z) =

{
0 if x ∈ [wj − ε,wj ]

φ(wj , z) otherwise,

where z = (x , y). Note that φj /∈ G.
It follows that for any w ∈ [0,1], if we let wj be the smallest j such that
wj ≥ w , then we have φj(z) = 0 ≤ φ(w , z) when x ∈ [wj − ε,wj ], and
φj(z) = φ(w , z) otherwise, where z = (x , y). Moreover,

EZ∼D[φj(Z )− φ(w ,Z )] = EX∈[wj−ε,wj ][0− φ(w ,Z )] ≥ −ε.

We thus have
NLB(ε,G,L1(D)) ≤ 1 + ε−1.
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Oracle Inequality

We have (by picking ε = 2/n):

inf
ε>0

[
ε+

√
2 ln(2NLB(ε,G,L1(D))/δ)

n

]
≤ 2

n
+

√
2 ln((n + 2)/δ)

n
.

This implies the following additive oracle inequality from Corollary 14
with φ(w , z) = L(f (w , x), y).

Oracle Inequality

With probability at least 1− δ,

E(X ,Y )∼DL(f (ŵ ,X ),Y ) ≤(1− p) +
2
n

+

√
2 ln((n + 2)/δ)

n
.
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Better Bounds with Variance Condition

In this section, we show that better bounds can be obtained with
Bernstein’s inequality under the following condition.

Definition 15 (Variance Condition)

Given a function class G. We say it satisfies the variance condition if
there exists c0, c1 > 0 such that for all φ(z) ∈ G:

VarZ∼D(φ(Z )) ≤ c2
0 + c1EZ∼Dφ(Z ), (12)

where we require that EZ∼Dφ(Z ) ≥ −c2
0/c1 for all φ ∈ G.

In applications, the following modification of the variance condition is
often more convenient to employ

EZ∼D[φ(Z )2] ≤ c2
0 + c1EZ∼Dφ(Z ). (13)
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Example I

Example 16 (Bounded Function)

Let G = {φ(·) : ∀z, φ(z) ∈ [0,1]}. Then G satisfies the variance
condition (13) with c0 = 0 and c1 = 1.
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Example II

Example 17 (Convex Least Squares)

Consider the least squares method L(f (x), y) = (f (x)− y)2, with
bounded response: L(f (x), y) ≤ M2 for some M > 0. Let F be a
convex function class (that is, for any f1, f2 ∈ F , and α ∈ (0,1),
αf1 + (1− α)f2 ∈ F), and define the optimal function in F as:

fopt = arg min
f∈F

E(x ,y)∼DL(f (x), y). (14)

Let z = (x , y), and

G = {φ(·) : φ(z) = L(f (x), y)− L(fopt(x), y), f (x) ∈ F}.

Then G satisfies the variance condition (13) with c0 = 0, and
c1 = 4M2.
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Example III

Example 18 (Non-convex Least Squares)

More generally, if F is bounded nonconvex function class with
f (x) ∈ [0,M] for all f ∈ F . If we assume that y ∈ [0,M], then the
variance condition may not hold with fopt in (14). However, if we
replace fopt by f∗(x) = E[Y |X = x ] in the definition of G as follows:

G = {φ(·) : φ(z) = L(f (x), y)− L(f∗(x), y), f (x) ∈ F},

then all functions in G satisfy the variance condition (13) with c0 = 0,
and c1 = 2M2. Note that in general f∗ may not belong to F . However
if the problem is well-specified (that is, f∗(x) ∈ F), then the variance
condition holds with fopt = f∗.



39

Uniform Convergence (Bernstein)

Theorem 19 (Simplification of Thm 3.21)

Assume condition (12) is satisfied with c0 = 0. Moreover, assume
that the condition of Bernstein inequality is satisfied with b > 0 and
V = Var(φ(Z )), and EZ∼Dφ(Z ) ≥ 0.
Then ∀δ ∈ (0,1), with probability at least 1− δ, the following
inequality holds for all γ ∈ (0,1) and w ∈ Ω:

(1− γ)φ(w ,D) ≤ φ(w ,Sn) + εγn(δ,G,D),

εγn(δ,G,D) = inf
ε∈[0,ε0]

[
(1− γ)ε+

(3c1 + 2γb) ln(NLB(ε,G,L1(D))/δ)

6γn

]
.

Note that we obtain an O(1/n) uniform convergence rate.

Theorem 3.21 also handles c0 6= 0.
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Oracle Inequality (Bernstein)

Corollary 20 (Cor 3.22)

Let
w∗ = arg min

w∈Ω
E(X ,Y )∼DL(f (w ,X ),Y ),

and assume that the conditions of Theorem 19 hold with

φ(w , z) = L(f (w , x), y)− L(f (w∗, x), y).

Then, with probability at least 1− δ, the approximate ERM method
(6) satisfies the following oracle inequality

E(X ,Y )∼DL(f (ŵ ,X ),Y ) ≤ E(X ,Y )∼DL(f (w∗,X ),Y ) + 2(ε0.5n (δ,G,D) + ε′),

where εγn(δ,G,D) is defined in Theorem 19.
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Simple Example Revisited

Consider Example on Slide 32, with the following modified φ(w , z):

φ(w , z) = 1(f (w , x) 6= y)− 1(f (w∗, x) 6= y),

and the functions φ′j(z) = φj(z)− 1(f (w∗, x) 6= y) form an ε
lower-bracketing cover, where φj(z) is defined on Slide 33 as

φj(z) =

{
0 if x ∈ [wj − ε,wj ]

φ(wj , z) otherwise.

A slight generalized Theorem 19 (Theorem 3.21 in the book with
c0 6= 0) hold for ε ≤ ε0 with c2

0 = O(ε0), c1 = O(1), b = 2. We obtain

εγn(δ/2,G,D) = O
(

ln(n/δ)

n

)
.
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Simple Example Revisited: Oracle Inequality

Corollary 20 implies the following oracle inequality.

Oracle Inequality with Fast Convergence Rate

With probability at least 1− δ:

E(X ,Y )∼D1(f (ŵ ,X ) 6= Y ) ≤ (1− p) + O
(

ln(n/δ)

n

)
.

Note also that E(X ,Y )∼D 1(f (w∗,X ) 6= Y ) = 1− p. This shows the
ERM method has generalization error converging to the Bayes error
at a fast rate of O(ln n/n).
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Example: Parametric Model
In general, for bounded parametric function classes with d
real-valued parameters (such as linear models f (w , x) = w>x
defined on a compact subset of Rd ), we expect the entropy (see
Section 5.2 in the book) to behave as

Covering for Parametric Model

ln NLB(ε,G,L1(D)) = O(d ln(1/ε)).

Assume that (13) holds with c0 = 0 and c1 > 1. Then it can be shown
that the generalization bound in Corollary 20 implies

Oracle Inequality with Fast Rate

EDL(f (ŵ ,X ),Y ) ≤ EDL(f (w∗,X ),Y ) + O
(

ln(nd/δ)

n

)
.
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General Bracketing Number

Definition 21 (Bracketing Number)

Let G = {φ(w , ·) : w ∈ Ω} be a real-valued function class, equipped
with a pseudometric d . We say

G(ε) = {[φL
1(z), φU

1 (z)], . . . , [φL
N(z), φU

N(z)]}

is an ε-bracket of G under metric d if for all w ∈ Ω, there exists
j = j(w) such that ∀z:

φL
j (z) ≤ φ(w , z) ≤ φU

j (z), d(φL
j , φ

U
j ) ≤ ε.

The ε-bracketing number is the smallest cardinality N[](ε,G,d) of such
G(ε). The quantity ln N[](ε,G,d) is called ε bracketing entropy.
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Lp Bracketing

Given a distribution D and p ≥ 1, we define Lp-seminorm in function
space as

‖f − f ′‖Lp(D) =
[
EZ∼D|f (Z )− f ′(Z )|p

]1/p
. (15)

It induces a pseudometric, denoted as d = Lp(D), and the
corresponding bracketing number is N[](ε,G,Lp(D)).

Proposition 22 (Prop 3.28)

We have for all p ≥ 1:

NLB(ε,G,L1(D)) ≤ N[](ε,G,L1(D)) ≤ N[](ε,G,Lp(D)).

It follows that Theorem 13 and Theorem 19 apply for all
N[](ε,G,Lp(D)) with p ≥ 1.
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Summary (Chapter 3)

I PAC Learning and Uniform Convergence
I Chernoff Bound + Union Bound, logarithmic dependency on

class size N
I Additive Chernoff bound: O(1/

√
n) convergence

I Multiplicative Chernoff bound: O(1/n) convergence (see book)
I Uniform Convergence and Oracle Inequality for ERM
I Bracketing Cover implies Uniform Convergence
I Additive Chernoff: O(1/

√
n) convergence rate

I Multiplicative Chernoff: O(1/n) convergence for realizable case
(see book)

I Variance condition implies faster rate
I Bernstein: can lead to O(1/n) rate for non-realizable cases


