Basic Probability Inequalities

Mathematical Analysis of Machine Learning Algorithms
(Chapter 2)



Basic Probability Inequalities
We derive exponential tail probability inequalities for sums of
independent random variables. These inequalities are the basic tools
to analyze machine learning algorithms.
Let Xi,..., X, be niidrandom variables with mean
uw=EX;.

Let the empirical mean be

_ 1
X, = - Z X
i=1
Given ¢ > 0, we are interested in estimating the tail probability

Pr()_(n2u+e), Pr()_(ng,u—e).



Gaussian Random Variables

Theorem 1 (Thm 2.1)

Let Xi,..., Xn be n iid Gaussian random variables X; ~ N(p, 0?), and
let Xn = n=13"7_, X;. Then given any e > 0:

0.5e~"(eto/VE/20% < pr(X, > ;i + €) < 0.5e7"/20%,

» Exponential inequality: the tail probability of a normal random
variable decays exponentially fast as e increases.

» The result is asymptotically tight as n — oo. For any e > 0:

€2
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1 s a-
nll_>ngo - InPr(|Xn — | > €) 552



Proof of Theorem 1 (Upper-bound)

Consider a standard normal random variable X ~ N(0,1):

1 e_X2/2_

Given ¢ > 0, we can upper bound the tail probability Pr(X > ).

Pr(X > €) :/ \/127e‘xz/2dx
€ T
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B b (xte2)2 / —(x24+e2)/2

— e dx < —e ax
/0 Var —Jo 21

—0.56/2,

Therefore we have ,
Pr(X >¢) <0.5e /2.

Since v/n(X, — p)/o ~ N(0, 1), we obtain the bound from

Pr(Xn > i+ €) = Pr(v/n(Xp — ) /o > Vne/o).



Proof f of Theorem 1 (Lower-bound)
We also have the following lower bound:

(X > €) / e */2dx
T

1
o[ rrrzgy

~Jo Ver
. /01 \/1279X2/26(26+62)/2dx > 0.34g~(2+e)/2
>0.5e (<+1%/2
Therefore we have
0.5 (“+1%/2 < pr(X > ¢).
Since v/n(X, — p)/o ~ N(0, 1), we obtain the bound from

Pr(Xn > pn+€) = Pr(v/n(Xp — ) /o > Vne/o).



Markov’s Inequality

More generally, we can derive tail inequality using Markov’ inequality.

Theorem 2 (Markov’s Inequality, Thm 2.2)

Given any non-negative function h(x) > 0, and a set S C R, we have

E h(Xs)
infxes h(X) ’

Proof of Theorem 2.

Since h(x) is non-negative, we have

Pr()_(n € S) S

E h(Xn) > Ex cg h(Xn) > Ex g hs = Pr(X, € S) hs,

where hg = inf,cg h(x). This leads to the desired bound. O



Example: Chebyshev’s Inequality

Corollary 3 (Chebyshev’s Inequality)

We have

Proof of Corollary 3.

Let h(x) = x2, then
. . 1
E h(X, — p) = E(Xp — p)? = —Var(Xy).

The desired bound follows from the Markov inequality with
S={|X—pul >e}. O



Exponential Tail Inequality

In order to obtain exponential tail bounds, we will need to choose
h(z) = ™

in Markov’s inequality with some tuning parameter \ € R.

Given € > 0, then the Markov inequality of Theorem 2 with
S ={X,— pu > ¢} becomes

. Eer*  EerXii X
Pr(Xn 2 ,LL + 6) <

=g n(ute) —  ghn(ute)
X.
_Elli, e [T, e — g Mute) []EeAX1]n
e \n(ite) '

Note that in order to use this estimate, we have to assume that
EerXi—1) < ~ for some \ > 0.



Rate Function

Definition 4

Given a random variable X, we may define its logarithmic moment
generating function as

Ax(\) = InEe*X.
Moreover, given z € R, the rate function Ix(z) is defined as

supxso [AZ = Ax(A)] z>p
Ix(z)=<0 Z=u
suprco N2 — Ax(N] Z < g,

where i = E[X].



Upper Bound

Theorem 5 (Thm 2.5)

Forany nande > 0:

1 Y : AX
— > < — — — 1
InPr(X, > p+e¢) Ix, (1 + €) )l\r;fo [ AMp+¢€)+InEe }

1 c AX;
— P < _ _ — _ _ 1 .
In r(Xn 1% 6) IX1 (,u 6) = )I\fl% [ /\(u 6) -+ InEe :|

The first inequality of Theorem 5 can be rewritten as
Pr(Xn > pu+e€) < exp[—nlx, (1 + €)].

It shows that the tail probability of the empirical mean decays
exponentially fast, if the rate function Iy, (-) is finite.



Proof
We choose h(z) = "% in Theorem 2 with S = { X, — i > €}. For
A > 0, we have

_ Ee/\n)_(n Ee)\ S X
Pr(Xn 2 1% + 6) <

=@ n(ute) —  ghn(ute)
X.
_Elli, e 17 e = g Anlute) []Eevﬁ]n
e \n(ite) '

The last equation used the independence of X; as well as they are
identically distributed. Therefore by taking logarithm, we obtain

InPr(Xp>pu+e)<n|-Au+e +InE e/\Xq .

Taking inf over A > 0 on the right hand side, we obtain the first
desired bound. Similarly, we can obtain the second bound.



Example: Gaussian Random Variable

Assume that X; ~ N(u, 0?), then the exponential moment is

1 25 2
Ee/\(X1 —u) :/ e)\xefx /20 dx
—co V2T

:/Oo 1 eAZUZ/Ze—(X/U—)\O')Z/ZdX/O_:e)\202/2.

') 27T

Therefore,

2.2 2
A>0 A>0 2

where the optimal \ is achieved at A = ¢/o2. Therefore

_ _ne2
Pr(Xn > 1+ €) < exp[—nlx, (1 + €)] = exp [%62] :



Lower Bound

In the large deviation situation, the exponential Markov inequality is
asymptotically tight in the following sense.

Theorem 6 (Thm 2.7)

Foralle > ¢ > 0:

1
I|m,HOO— InPr(Xn > p+¢) > —Ix, (1 +€).

Similarly,
Iiimnﬁoo1 InPr(Xn < p—€) > —Ix, (1 — €).



Rate Function: Some Intuitions

Proposition 7

Given a random variable with finite variance. We have:

_q MY AN
Ax(N) = 0. =2 e EIX], — 2 ‘A_O = Var[X].
AZ
Ax(N) = A+ S-Var[X] + 0(A?),

2
where . = E[X]. Therefore

A2 5
I+ ) =sup [ -+ )~ M g Varx] - o)

€2

~ _ 2
“2Var[X] o(€")-
ne?

2Var[X1]

Pr(Xp > i+ ¢) S exp [— + O(nez)] . (2)



Sub-Gaussian Random Variables

Definition 8

A sub-Gaussian random variable X; has quadratic logarithmic
moment generating function:

)\2
InEe™t < Ap + 5b. (3)

In this case, we have for any z > u:

_ A2
~Ix(2) = inf (=Az + A+ 5-b).

We have the following condition at the optimal \,:
—Z+pu=MAb = A =(n-—2)/b,

which implies that
(z—p)?
IX1 (Z) = 2h .




Tail Inequality for Sub-Gaussians
Theorem 9 (Thm 2.12)

If Xq is sub-Gaussian as in (3), then for all e > 0:

()_( Z ) Se—nez/Zb

Pr(Xn < ju—¢) < /2P,

Example 10 (Gaussian)

Gaussian random variable X; ~ N(u, 02) is sub-Gaussian with
b= o2

Example 11 (from Chernoff bound)

Consider a bounded random variable: Xi € [a, 5]. Then Xj is
sub-Gaussian with b = (8 — «)?/4.



Alternative Expression of Tail Bounds

The tail probability inequality of Theorem 9 can also be expressed in
a different form. Consider ¢ € (0, 1) such that

Pr(Xy > 1+ €) < exp(—ne®/2b) = 6.

We can solve for
(2b/n)In(1/96).

This implies that we can alternatively express the bound of
Theorem 9 as follows.

Alternative Expression

With probability at least 1 — 4, we have

. 2b|
X, <+ bn(/5)



A Generic Estimate on Rate Function

Lemma 12 (Lem 2.9)

Consider a random variable X so that E[X] = u. Assume that there
exists o > 0 and 8 > 0 such that for A € [0, 371):

)\2
Ax(N) < A+ 5= (4)

(1-58X)
then fore > 0:

2

€
—Ix(n+e) < “2(at B

2 2
—Ix (M+€+BE> <-=
2a



Tail Probability Bound

Lemma 12 implies the following generic theorem.

Theorem 13 (Thm 2.10)

If Xi has a logarithmic moment generating function that satisfies (4)
for A > 0, then alle > 0:

- —ne?
Pr(Xn > n+e) <exp [Z(OH—BG)] ;

Moreover, fort > 0, we have

Pr (Xn>,u+w p ﬁnt> e



Chernoff Bound

We consider a random variable X € [0,1] and EX = u. Chernoff
bound, or Hoeffding’s inequality, is an exponential tail inequality for
bounded random variables.

Theorem 14 (Additive Chernoff bounds, Thm 2.16)
Assume that X € [0,1]. Then for all e > 0:

Pr(Xn > 1+ ¢€) e

Pr(Xn < p— ) <e 20,



Proof: Moment Generation Function

Lemma 15 (Lem 2.15)
Consider a random variable X € [0,1] and EX = . We have the
following inequality:

InEe* < In[(1 — p)e® + et < Au+ A2/8.

This lemma shows that the random variable Xj is sub-Gaussian. We
can thus apply the sub-Gaussian tail-inequality in Theorem 9 to
obtain the Chernoff bound.



Proof of Lemma 15
Let hy(\) = EeM and hg(\) = (1 — 1)e® + net. We know that
h;(0) = hg(0). Moreover, when A > 0:
h (\) = EXe* < EXe* = pe* = ha()),
and similarly h; (X) > hjz(X) when X < 0. This proves the first
inequality. Now we let
h(\) = In[(1 — 1)€° + pe].
It implies that
pe
(1 —p)ed + per’

H(\) =
and
pe (net)?
(1 - n)ed +puer  [(1 - p)e® + ue'2
=[HN)I1 = [HN)]) < 1/4.

Using Taylor expansion, we obtain the inequality
h()\) < h(0) + AH'(0) + A2/8, which implies the second inequality.

h//()\) —




Multiplicative Chernoff Bounds

Corollary 16 (Multiplicative Chernoff Bounds, Cor 2.18)

Assume that Xy € [0, 1]. Then for all ¢ > 0:

- —npe?
Pr(Xn > (1+¢€)p) gexp[2+€ ],
_ _ 2
Pr(Xn§(1—e)u)§exp[ nzue].

Moreover, fort > 0, we have:

= 2Mt t _t
Pr| X, > \V— +=— | < .
r< n_,LL+ n +3n>_e



Alternative Expressions
The multiplicative form of Chernoff bound can be expressed
alternatively as follows. With probability at least 1 — §:

< 211 0
< X2 n( /9)
It implies that for any v € (0, 1):
- In(1/9)
A (5)

Moreover, with probability at least 1 — §:

X < it /2,u|n,(71/6) N In(;réé)‘

It implies that for any v > 0:

(83+2y) In(1/5)'

Xn < (1 +’Y),u+ 6’7[7




Bennett’s Inequality
From (2), we know that the leading term of the tail inequality is

—ne?

2Var(X1)’

which is superior to Chernoff bound when variance is small.

Theorem 17 (Bennett’s Inequality, simplification of Thm 2.21)

If Xy < pu+ b, forsome b > 0. ThenVe > 0:

_ —ne®
PriXn = p+e <exp [2Var(X1) n 26b/3] '

Moreover, fort > 0:

<el

i oVar(Xi)t bt
> il WAL ARl



Alternative Form

Bennett’s Inequality: Alternative Expression

Given any ¢ € (0,1), with probability larger than 1 — §, we have

\/2Var(X1)In(1/(5) bln(1/6)
n * 3n

)_(nSM-i-

Compared to the bound for Gaussian random variables, this form of
Bennett’s inequality has an extra term blin(1/6)/(3n), which is of
higher order in 1/n. It vanishes asymptotically.

Compared to the Chernoff bound, the Bennett’s inequality is superior
when Var(Xj) is small.



Proof of Theorem 17 (I/Il)
Lemma 18 (Lem 2.20 )

IfX —EX < b, thenV\ > 0:

InEe™ < AEX + X\2¢(\b)Var(X),

where ¢(z) = (6% —z —1)/Z.

Proof of Lemma 18.
Let X' = X — EX. We have

InEe =AEX + InEe™’ < AEX + Ee™X’ — 1
e —AX =1
(AX")2

<AEX + N2Ep(Ab)(X')2.

=AEX + A\°E (X')?

The first inequality used In z < z — 1; the second inequality used the fact
that the function ¢(z) is non-decreasing and AX’ < \b. O



Proof of Theorem 17 (ll/II)

Given X € (0,3/b), it is easy to verify the following inequality using
the Taylor expansion of the exponential function

Ax,(\) <pA+ b2 [eAb b 1} Var(X;)

2 ©© 2
<uA+ Var(;G))\ S (Ab/3)™ = uh + m. )
m=0

The desired bound follow from a direct application of Theorem 13
with o = Var(Xj) and 5 = b/3.



Bernstein’s Inequality: Moment Condition
Lemma 19 (Lem 2.22)

If X satisfies the following moment condition for integers m > 2:

E[X — c|™ < m\(b/3)™2V /2,

where b,V > 0 and c is arbitrary. Then when X € (0,3/b):

InEe™ < AEX + va'
= 2(1 — \b/3)

Proof of Theorem 19.

It follows from the logarithmic moment generating function estimate below:

InEe™ < A+ Ee**~9) — 1 <AEX +0.5VA% ) "(b/3)™2A™2
m=2

=AEX +0.5X2V(1 — \b/3)~".



Bernstein’s Inequality
Theorem 20 (Thm 2.23)

Assume that Xy satisfies the moment condition in Lemma 19. Then
foralle > 0:

_ —ne?
Pr[Xn 2 1% aF 6] S exp |:2\/—|-26b/3:| y

and for allt > 0:

2Vt bt
> —
Pr[Xn_u—i- Sn]_e

Proof of Theorem 20.

We simply set a« = V and g = b/3 in Theorem 13. O

Note that if the random variable X is bounded with | X| < M, then the
moment condition holds with b = M/3 and V = Var(X).



Non-IID Case

If Xi,..., X, are independent but not identically distributed random
variables, then a similar tail inequality holds.

Let X, = n=' 37, X;, and u = EX), then we have the following
bound.
Theorem 21 (Thm 2.25)

We have for all e > 0:

n
_ _ X,
Pr(Xn>pu+e) < )l\r;% [—An(,u +e€)+ Z InEe

i=1



Sub-Gaussian Bound

Corollary 22 (Cor 2.26)

If{Xi} are independent sub-Gaussian random variables with
InEe*i < AXEX; 4+ 0.5\2b;, then for alle > 0:

— 2 2
Pr(Xn2u+e)§exp[— e ]

231 bi



Example

The following is a useful example for Rademacher average using
sub-Gaussian bound.

Corollary 23 (Cor 2.27)

Leto; = {+1} be independent random Bernoulli variables, and let a;
be fixed numbers (i=1,...,n). Then for all e > 0:

n ne?
Pr(n~! Za,-a,- >e)<exp|l-———75| -

1 ~—~n >
e 2n=150i 1 &



Summary (Chapter 2)

vVvyyvyy v

v

Exponential Tail Inequalities can be used to bound the difference
of true mean and the observed empirical mean.

Gaussian case: direct calculation
Markov Inequality: upper bounds
Nearly matching lower bounds.

Chernoff bound: useful for the generation situation, with deviation
of order O(1/+/n).

Bennett/Bernstein’s inequality: refined bound which is useful
when variance is small, and when we want to achieve faster than
O(1/+/n) convergence.



