
1

Basic Probability Inequalities

Mathematical Analysis of Machine Learning Algorithms
(Chapter 2)
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Basic Probability Inequalities

We derive exponential tail probability inequalities for sums of
independent random variables. These inequalities are the basic tools
to analyze machine learning algorithms.

Let X1, . . . ,Xn be n iidrandom variables with mean

µ = EXi .

Let the empirical mean be

X̄n =
1
n

n∑
i=1

Xi .

Given ε > 0, we are interested in estimating the tail probability

Pr
(
X̄n ≥ µ+ ε

)
, Pr

(
X̄n ≤ µ− ε

)
.
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Gaussian Random Variables

Theorem 1 (Thm 2.1)

Let X1, . . . ,Xn be n iid Gaussian random variables Xi ∼ N(µ, σ2), and
let X̄n = n−1∑n

i=1 Xi . Then given any ε > 0:

0.5e−n(ε+σ/
√

n)2/2σ2 ≤ Pr(X̄n ≥ µ+ ε) ≤ 0.5e−nε2/2σ2
.

I Exponential inequality: the tail probability of a normal random
variable decays exponentially fast as ε increases.

I The result is asymptotically tight as n→∞. For any ε > 0:

lim
n→∞

1
n

ln Pr(|X̄n − µ| ≥ ε) = − ε2

2σ2 .
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Proof of Theorem 1 (Upper-bound)
Consider a standard normal random variable X ∼ N(0,1):

p(x) =
1√
2π

e−x2/2.

Given ε > 0, we can upper bound the tail probability Pr(X ≥ ε).

Pr(X ≥ ε) =

∫ ∞
ε

1√
2π

e−x2/2dx

=

∫ ∞
0

1√
2π

e−(x+ε)2/2dx ≤
∫ ∞

0

1√
2π

e−(x2+ε2)/2dx

=0.5e−ε
2/2.

Therefore we have
Pr(X ≥ ε) ≤ 0.5e−ε

2/2.

Since
√

n(X̄n − µ)/σ ∼ N(0,1), we obtain the bound from

Pr(X̄n ≥ µ+ ε) = Pr(
√

n(X̄n − µ)/σ ≥
√

nε/σ).
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Proof f of Theorem 1 (Lower-bound)
We also have the following lower bound:

Pr(X ≥ ε) =

∫ ∞
ε

1√
2π

e−x2/2dx

≥
∫ 1

0

1√
2π

e−(x+ε)2/2dx

≥
∫ 1

0

1√
2π

e−x2/2e−(2ε+ε2)/2dx ≥ 0.34e−(2ε+ε2)/2

≥0.5e−(ε+1)2/2.

Therefore we have

0.5e−(ε+1)2/2 ≤ Pr(X ≥ ε).

Since
√

n(X̄n − µ)/σ ∼ N(0,1), we obtain the bound from

Pr(X̄n ≥ µ+ ε) = Pr(
√

n(X̄n − µ)/σ ≥
√

nε/σ).
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Markov’s Inequality

More generally, we can derive tail inequality using Markov’ inequality.

Theorem 2 (Markov’s Inequality, Thm 2.2)

Given any non-negative function h(x) ≥ 0, and a set S ⊂ R, we have

Pr(X̄n ∈ S) ≤ E h(X̄n)

infx∈S h(x)
.

Proof of Theorem 2.
Since h(x) is non-negative, we have

E h(X̄n) ≥ EX̄n∈S h(X̄n) ≥ EX̄n∈S hS = Pr(X̄n ∈ S) hS,

where hS = infx∈S h(x). This leads to the desired bound.
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Example: Chebyshev’s Inequality

Corollary 3 (Chebyshev’s Inequality)

We have
Pr(|X̄n − µ| ≥ ε) ≤

Var(X1)

nε2
. (1)

Proof of Corollary 3.

Let h(x) = x2, then

E h(X̄n − µ) = E(X̄n − µ)2 =
1
n

Var(X1).

The desired bound follows from the Markov inequality with
S = {|X̄n − µ| ≥ ε}.
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Exponential Tail Inequality

In order to obtain exponential tail bounds, we will need to choose

h(z) = eλnz

in Markov’s inequality with some tuning parameter λ ∈ R.

Given ε > 0, then the Markov inequality of Theorem 2 with
S = {X̄n − µ ≥ ε} becomes

Pr(X̄n ≥ µ+ ε) ≤ EeλnX̄n

eλn(µ+ε)
=

Eeλ
∑n

i=1 Xi

eλn(µ+ε)

=
E
∏n

i=1 eλXi

eλn(µ+ε)
= e−λn(µ+ε)

[
EeλX1

]n
.

Note that in order to use this estimate, we have to assume that
Eeλ(X1−µ) <∞ for some λ > 0.
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Rate Function

Definition 4
Given a random variable X , we may define its logarithmic moment
generating function as

ΛX (λ) = lnEeλX .

Moreover, given z ∈ R, the rate function IX (z) is defined as

IX (z) =


supλ>0 [λz − ΛX (λ)] z > µ

0 z = µ

supλ<0 [λz − ΛX (λ)] z < µ,

where µ = E[X ].
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Upper Bound

Theorem 5 (Thm 2.5)

For any n and ε > 0:

1
n

ln Pr(X̄n ≥ µ+ ε) ≤− IX1(µ+ ε) = inf
λ>0

[
−λ(µ+ ε) + lnEeλX1

]
,

1
n

ln Pr(X̄n ≤ µ− ε) ≤− IX1(µ− ε) = inf
λ<0

[
−λ(µ− ε) + lnEeλX1

]
.

The first inequality of Theorem 5 can be rewritten as

Pr(X̄n ≥ µ+ ε) ≤ exp[−nIX1(µ+ ε)].

It shows that the tail probability of the empirical mean decays
exponentially fast, if the rate function IX1(·) is finite.
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Proof

We choose h(z) = eλnz in Theorem 2 with S = {X̄n − µ ≥ ε}. For
λ > 0, we have

Pr(X̄n ≥ µ+ ε) ≤ EeλnX̄n

eλn(µ+ε)
=

Eeλ
∑n

i=1 Xi

eλn(µ+ε)

=
E
∏n

i=1 eλXi

eλn(µ+ε)
= e−λn(µ+ε)

[
EeλX1

]n
.

The last equation used the independence of Xi as well as they are
identically distributed. Therefore by taking logarithm, we obtain

ln Pr(X̄n ≥ µ+ ε) ≤ n
[
−λ(µ+ ε) + lnE eλX1

]
.

Taking inf over λ > 0 on the right hand side, we obtain the first
desired bound. Similarly, we can obtain the second bound.
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Example: Gaussian Random Variable

Assume that Xi ∼ N(µ, σ2), then the exponential moment is

Eeλ(X1−µ) =

∫ ∞
−∞

1√
2πσ

eλxe−x2/2σ2
dx

=

∫ ∞
−∞

1√
2π

eλ
2σ2/2e−(x/σ−λσ)2/2dx/σ = eλ

2σ2/2.

Therefore,

IX1(µ+ ε) = sup
λ>0

[
λε− lnEeλ(X1−µ)

]
= sup

λ>0

[
λε− λ2σ2

2

]
=

ε2

2σ2 ,

where the optimal λ is achieved at λ = ε/σ2. Therefore

Pr(X̄n ≥ µ+ ε) ≤ exp[−nIX1(µ+ ε)] = exp

[
−nε2

2σ2

]
.
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Lower Bound

In the large deviation situation, the exponential Markov inequality is
asymptotically tight in the following sense.

Theorem 6 (Thm 2.7)

For all ε′ > ε > 0:

limn→∞
1
n

ln Pr(X̄n ≥ µ+ ε) ≥ −IX1(µ+ ε′).

Similarly,

limn→∞
1
n

ln Pr(X̄n ≤ µ− ε) ≥ −IX1(µ− ε′).
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Rate Function: Some Intuitions
Proposition 7

Given a random variable with finite variance. We have:

ΛX (λ)

∣∣∣∣
λ=0

= 0,
dΛX (λ)

dλ

∣∣∣∣
λ=0

= E[X ],
d2ΛX (λ)

dλ2

∣∣∣∣
λ=0

= Var[X ].

ΛX (λ) = λµ+
λ2

2
Var[X ] + o(λ2),

where µ = E[X ]. Therefore

IX (µ+ ε) = sup
λ>0

[
λ(µ+ ε)− λµ− λ2

2
Var[X ]− o(λ2)

]
≈ ε2

2Var[X ]
− o(ε2).

Pr(X̄n ≥ µ+ ε) . exp

[
− nε2

2Var[X1]
+ o(nε2)

]
. (2)
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Sub-Gaussian Random Variables
Definition 8
A sub-Gaussian random variable X1 has quadratic logarithmic
moment generating function:

lnEeλX1 ≤ λµ+
λ2

2
b. (3)

In this case, we have for any z > µ:

−IX1(z) = inf
λ>0

(−λz + λµ+
λ2

2
b).

We have the following condition at the optimal λ∗:

−z + µ = λ∗b =⇒ λ∗ = (µ− z)/b,

which implies that

IX1(z) =
(z − µ)2

2b
.
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Tail Inequality for Sub-Gaussians

Theorem 9 (Thm 2.12)

If X1 is sub-Gaussian as in (3), then for all ε > 0:

Pr(X̄n ≥ µ+ ε) ≤e−nε2/2b

Pr(X̄n ≤ µ− ε) ≤e−nε2/2b.

Example 10 (Gaussian)

Gaussian random variable X1 ∼ N(µ, σ2) is sub-Gaussian with
b = σ2.

Example 11 (from Chernoff bound)

Consider a bounded random variable: X1 ∈ [α, β]. Then X1 is
sub-Gaussian with b = (β − α)2/4.
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Alternative Expression of Tail Bounds

The tail probability inequality of Theorem 9 can also be expressed in
a different form. Consider δ ∈ (0,1) such that

Pr(X̄n ≥ µ+ ε) ≤ exp(−nε2/2b) = δ.

We can solve for
ε =

√
(2b/n) ln(1/δ).

This implies that we can alternatively express the bound of
Theorem 9 as follows.

Alternative Expression

With probability at least 1− δ, we have

X̄n < µ+

√
2b ln(1/δ)

n
.
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A Generic Estimate on Rate Function

Lemma 12 (Lem 2.9 )

Consider a random variable X so that E[X ] = µ. Assume that there
exists α > 0 and β ≥ 0 such that for λ ∈ [0, β−1):

ΛX (λ) ≤ λµ+
αλ2

2(1− βλ)
, (4)

then for ε > 0:

− IX (µ+ ε) ≤ − ε2

2(α + βε)
,

− IX

(
µ+ ε+

βε2

2α

)
≤ − ε

2

2α
.
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Tail Probability Bound

Lemma 12 implies the following generic theorem.

Theorem 13 (Thm 2.10)

If X1 has a logarithmic moment generating function that satisfies (4)
for λ > 0, then all ε > 0:

Pr(X̄n ≥ µ+ ε) ≤ exp

[
−nε2

2(α + βε)

]
.

Moreover, for t > 0, we have

Pr

(
X̄n ≥ µ+

√
2αt
n

+
βt
n

)
≤ e−t .
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Chernoff Bound

We consider a random variable X ∈ [0,1] and EX = µ. Chernoff
bound, or Hoeffding’s inequality, is an exponential tail inequality for
bounded random variables.

Theorem 14 (Additive Chernoff bounds, Thm 2.16)

Assume that X1 ∈ [0,1]. Then for all ε > 0:

Pr(X̄n ≥ µ+ ε) ≤e−2nε2

Pr(X̄n ≤ µ− ε) ≤e−2nε2 .
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Proof: Moment Generation Function

Lemma 15 (Lem 2.15 )

Consider a random variable X ∈ [0,1] and EX = µ. We have the
following inequality:

lnEeλX ≤ ln[(1− µ)e0 + µeλ] ≤ λµ+ λ2/8.

This lemma shows that the random variable X1 is sub-Gaussian. We
can thus apply the sub-Gaussian tail-inequality in Theorem 9 to
obtain the Chernoff bound.
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Proof of Lemma 15
Let hL(λ) = EeλX and hR(λ) = (1− µ)e0 + µeλ. We know that
hL(0) = hR(0). Moreover, when λ ≥ 0:

h′L(λ) = EXeλX ≤ EXeλ = µeλ = h′R(λ),

and similarly h′L(λ) ≥ h′R(λ) when λ ≤ 0. This proves the first
inequality. Now we let

h(λ) = ln[(1− µ)e0 + µeλ].

It implies that

h′(λ) =
µeλ

(1− µ)e0 + µeλ
,

and

h′′(λ) =
µeλ

(1− µ)e0 + µeλ
− (µeλ)2

[(1− µ)e0 + µeλ]2

=|h′(λ)|(1− |h′(λ)|) ≤ 1/4.

Using Taylor expansion, we obtain the inequality
h(λ) ≤ h(0) + λh′(0) + λ2/8, which implies the second inequality.
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Multiplicative Chernoff Bounds

Corollary 16 (Multiplicative Chernoff Bounds, Cor 2.18)

Assume that X1 ∈ [0,1]. Then for all ε > 0:

Pr
(
X̄n ≥ (1 + ε)µ

)
≤ exp

[
−nµε2

2 + ε

]
,

Pr
(
X̄n ≤ (1− ε)µ

)
≤ exp

[
−nµε2

2

]
.

Moreover, for t > 0, we have:

Pr

(
X̄n ≥ µ+

√
2µt
n

+
t

3n

)
≤ e−t .
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Alternative Expressions
The multiplicative form of Chernoff bound can be expressed
alternatively as follows. With probability at least 1− δ:

µ < X̄n +

√
2µ ln(1/δ)

n
.

It implies that for any γ ∈ (0,1):

X̄n > (1− γ)µ− ln(1/δ)

2γn
. (5)

Moreover, with probability at least 1− δ:

X̄n < µ+

√
2µ ln(1/δ)

n
+

ln(1/δ)

3n
.

It implies that for any γ > 0:

X̄n < (1 + γ)µ+
(3 + 2γ) ln(1/δ)

6γn
. (6)
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Bennett’s Inequality
From (2), we know that the leading term of the tail inequality is

−nε2

2Var(X1)
,

which is superior to Chernoff bound when variance is small.

Theorem 17 (Bennett’s Inequality, simplification of Thm 2.21)

If X1 ≤ µ+ b, for some b > 0. Then ∀ε > 0:

Pr[X̄n ≥ µ+ ε] ≤ exp

[
−nε2

2Var(X1) + 2εb/3

]
.

Moreover, for t > 0:

Pr

[
X̄n ≥ µ+

√
2Var(X1)t

n
+

bt
3n

]
≤ e−t .
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Alternative Form

Bennett’s Inequality: Alternative Expression

Given any δ ∈ (0,1), with probability larger than 1− δ, we have

X̄n ≤ µ+

√
2Var(X1) ln(1/δ)

n
+

b ln(1/δ)

3n
.

Compared to the bound for Gaussian random variables, this form of
Bennett’s inequality has an extra term b ln(1/δ)/(3n), which is of
higher order in 1/n. It vanishes asymptotically.

Compared to the Chernoff bound, the Bennett’s inequality is superior
when Var(X1) is small.
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Proof of Theorem 17 (I/II)
Lemma 18 (Lem 2.20 )

If X − EX ≤ b, then ∀λ ≥ 0:

lnEeλX ≤ λEX + λ2φ(λb)Var(X ),

where φ(z) = (ez − z − 1)/z2.

Proof of Lemma 18.
Let X ′ = X − EX . We have

lnEeλX =λEX + lnEeλX ′ ≤ λEX + EeλX ′ − 1

=λEX + λ2E
eλX ′ − λX ′ − 1

(λX ′)2 (X ′)2

≤λEX + λ2Eφ(λb)(X ′)2.

The first inequality used ln z ≤ z − 1; the second inequality used the fact
that the function φ(z) is non-decreasing and λX ′ ≤ λb.
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Proof of Theorem 17 (II/II)

Given λ ∈ (0,3/b), it is easy to verify the following inequality using
the Taylor expansion of the exponential function

ΛX1(λ) ≤µλ+ b−2
[
eλb − λb − 1

]
Var(X1)

≤µλ+
Var(X1)λ2

2

∞∑
m=0

(λb/3)m = µλ+
Var(X1)λ2

2(1− λb/3)
. (7)

The desired bound follow from a direct application of Theorem 13
with α = Var(X1) and β = b/3.
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Bernstein’s Inequality: Moment Condition
Lemma 19 (Lem 2.22 )

If X satisfies the following moment condition for integers m ≥ 2:

E[X − c]m ≤ m!(b/3)m−2V/2,

where b,V > 0 and c is arbitrary. Then when λ ∈ (0,3/b):

lnEeλX ≤ λEX +
λ2V

2(1− λb/3)
.

Proof of Theorem 19.
It follows from the logarithmic moment generating function estimate below:

lnEeλX ≤ λc + Eeλ(X−c) − 1 ≤λEX + 0.5Vλ2
∑
m=2

(b/3)m−2λm−2

=λEX + 0.5λ2V (1− λb/3)−1.
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Bernstein’s Inequality

Theorem 20 (Thm 2.23)

Assume that X1 satisfies the moment condition in Lemma 19. Then
for all ε > 0:

Pr[X̄n ≥ µ+ ε] ≤ exp

[
−nε2

2V + 2εb/3

]
,

and for all t > 0:

Pr

[
X̄n ≥ µ+

√
2Vt
n

+
bt
3n

]
≤ e−t .

Proof of Theorem 20.
We simply set α = V and β = b/3 in Theorem 13.

Note that if the random variable X is bounded with |X | ≤ M, then the
moment condition holds with b = M/3 and V = Var(X ).
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Non-IID Case

If X1, . . . ,Xn are independent but not identically distributed random
variables, then a similar tail inequality holds.

Let X̄n = n−1∑n
i=1 Xi , and µ = EX̄n, then we have the following

bound.

Theorem 21 (Thm 2.25)

We have for all ε > 0:

Pr(X̄n ≥ µ+ ε) ≤ inf
λ>0

[
−λn(µ+ ε) +

n∑
i=1

lnEeλXi

]
.
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Sub-Gaussian Bound

Corollary 22 (Cor 2.26)

If {Xi} are independent sub-Gaussian random variables with
lnEeλXi ≤ λEXi + 0.5λ2bi , then for all ε > 0:

Pr(X̄n ≥ µ+ ε) ≤ exp

[
− n2ε2

2
∑n

i=1 bi

]
.
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Example

The following is a useful example for Rademacher average using
sub-Gaussian bound.

Corollary 23 (Cor 2.27)

Let σi = {±1} be independent random Bernoulli variables, and let ai
be fixed numbers (i = 1, . . . ,n). Then for all ε > 0:

Pr(n−1
n∑

i=1

σiai ≥ ε) ≤ exp

[
− nε2

2n−1
∑n

i=1 a2
i

]
.
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Summary (Chapter 2)

I Exponential Tail Inequalities can be used to bound the difference
of true mean and the observed empirical mean.

I Gaussian case: direct calculation
I Markov Inequality: upper bounds
I Nearly matching lower bounds.
I Chernoff bound: useful for the generation situation, with deviation

of order O(1/
√

n).
I Bennett/Bernstein’s inequality: refined bound which is useful

when variance is small, and when we want to achieve faster than
O(1/

√
n) convergence.


