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Introduction

Mathematical Analysis of Machine Learning Algorithms
(Chapter 1)
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Machine Learning Analysis

The goal of mathematical analysis of machine learning algorithms:
I Study the statistical behavior of learning algorithms.
I Study computationally efficient algorithms.

This course mainly focuses on the analysis of two common learning
models:
I Supervised learning
I Online learning and sequential prediction
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Supervised Learning

In supervised learning, we
I Observe an input random variable (feature vector) X ∈ Rd that

represents the known information,
I Interested in output variable (label) Y that represents the

unknown information which we want to predict.
The goal is to predict Y based on X .

Example 1 (Image Classification)

Predict whether an image (represented as input vector X ) contains a
cat or a dog (label Y ).
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Theoretical Questions

A mathematical theory for supervised learning answers the following
basic questions, where we take linear model as example.

Theoretical Question for Supervised Learning

I (Generalization bound) Suppose that we learn a d-dimensional
linear classifier with n training data by minimizing the training
error. Assume that the training error is 10%. What is the
classifier’s test error on the test data? The test error in this setting
is also referred to as the generalization error.

I (Oracle inequality) Can we learn a linear classifier that has a test
error nearly as small as the optimal linear classifier?

I (Computational efficiency) Is there a computationally efficient
procedure to find a linear classifier with small test error?
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Online Learning

In online learning, we are interested in the sequential prediction
problem, where we repeat the following process sequentially
I Train a statistical model using historic data
I Apply it to the data observed in the next time step.
I Observes the true outcome after prediction

Example 2 (Stock Prediction)

The opening prices of a certain stock at each trading day are
p1,p2, . . . . At the beginning of each day t , we observe p1, . . . ,pt , and
want to predict pt+1 on day t + 1, so that we use this prediction to
trade the stock.
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Theoretical Questions

A mathematical theory for online learning needs to answer the
following basic questions, where we again take linear model as an
example.

Theoretical Question for Online Learning (Regret Analysis)

In the online sequential prediction setting. Given a time step t , can
we construct an online learning algorithm that predicts nearly as well
as the optimal linear classifier up to time step t?



7

Model for Supervised Learning

In supervised learning, we have:
I Input random variable (feature vector) X ∈ Rd that represents the

known information
I Output variable (label) Y that represents the unknown information

which we want to predict.
I Prediction function f (w , ·) : Rd → Rk , with model parameter w
I Loss function L(f (w ,X ),Y ).

The goal is to minimize loss L(f (w ,X ),Y ) on test data.
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Prediction Model Class
In practice, the set of prediction rules are derived by parametrized
functions f (w , ·):
I w ∈ Ω is the model parameter that can be learned on the training

data.
The prediction quality is measured by a loss function L(f (x), y): the
smaller the loss, the better the prediction accuracy.

Example 3

For k -class classification problem, where Y ∈ {1, . . . , k}, we predict
Y using the following prediction rule given function
f (w , x) = [f1(w , x), . . . , fk (w , x)] ∈ Rk :

q(x) = arg max
`∈{1,...,k}

f`(w , x).

Loss can be the classification error:

L(f (x), y) = 1(q(x) 6= y).
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Learning Algorithm

The supervised learning approach is to estimate ŵ ∈ Ω based on
observed (labeled) historical data Dn = {(X1,Y1), . . . , (Xn,Yn)}.

Definition 4
A supervised learning algorithm A takes a set of training data Dn as
input, and outputs a function f (ŵ , ·), where ŵ = A(Dn) ∈ Ω.

The most common algorithm, which we will focus in this course, is
empirical risk minimization (ERM):

ŵ = arg min
w∈Ω

n∑
i=1

L(f (w ,Xi),Yi). (1)
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Training versus Test

In the standard theoretical model for analyzing supervised learning,
we assume that the training data {(Xi ,Yi) : i = 1, . . . ,n} are iid
(independent and identically distributed) according to an unknown
underlying distribution D.

training-loss(ŵ) =
1
n

n∑
i=1

L(f (ŵ ,Xi),Yi).

Moreover, we assume that the test data (X ,Y ) (future unseen data)
are also taken from the same distribution D.

We are interested in the generalization error of f̂ on the test data:

test-loss(ŵ) = E(X ,Y )∼DL(f (ŵ ,X ),Y ).
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Generalization Analysis

Since we only observe the training error of f̂ = f (ŵ , ·), a major goal is
to estimate the generalization error of f̂ based on its training error,
referred to as generalization bound.

Given ε ≥ 0, we want to determine δn(ε) so that:

Pr

(
E(X ,Y )∼DL(f (ŵ ,X ),Y ) ≥ 1

n

n∑
i=1

L(f (ŵ ,Xi),Yi) + ε

)
≤ δn(ε),

where the probability is with respect to the randomness over the
training data Dn.

In general, δn(ε)→ 0 as n→∞.



12

Alternative Form
In the literature, the above result is often stated in the following
alternative form.
We want to determine a function εn(δ) of δ, with the following type of
theorem statement.

With probability at least 1− δ (over training data Dn):

E(X ,Y )∼DL(f (ŵ ,X ),Y ) ≤ 1
n

n∑
i=1

L(f (ŵ ,Xi),Yi) + εn(δ). (2)

We hope εn(δ)→ 0 as n→∞.

Example 5

Let N be the number of parameters in Ω. We can take

εn(δ) = O

(√
ln(N/δ)

n

)

under suitable conditions.
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Oracle Inequality
Another type of inequalities, often referred to as oracle inequality, is
to show the following type of results.

With probability at least 1− δ (over training data Dn):

E(X ,Y )∼DL(f (ŵ ,X ),Y ) ≤ inf
w∈Ω

E(X ,Y )∼DL(f (w ,X ),Y ) + εn(δ). (3)

This shows that the test error achieved by the learning algorithm is
nearly as small as that of the optimal test error achieved by f (w , x)
with w ∈ Ω.

Example 6

Let N be the number of parameters in Ω. We can take

εn(δ) = O
(

ln(N/δ)

n

)
under suitable conditions.
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Online Learning

Definition 7
An online learning algorithm A does the following:
I Learn a model parameter ŵt at time t based on previously

observed data (X1,Y1), . . . , (Xt ,Yt ):
ŵt = A({(X1,Y1), . . . , (Xt ,Yt )}).

I Observe the next input vector Xt+1, and make prediction
f (ŵt ,Xt+1).

I After the prediction, we observe Yt+1, and then compute the loss
L(f (ŵt ,Xt+1),Yt+1).

The goal of online learning is to minimize the aggregated loss

T−1∑
t=0

L(f (ŵt ,Xt+1),Yt+1).
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Regret Analysis
In the mathematical analysis of online algorithm, we are interested in
the following inequality, referred to as regret bound.

REGT =
T−1∑
t=0

L(f (ŵt ,Xt+1),Yt+1)− inf
w∈Ω

T−1∑
t=0

L(f (w ,Xt+1),Yt+1). (4)

The regret REGT , is the extra loss of the online learning algorithm
compared to that of the optimal model at time T in retrospect. It is
analogous to oracle inequality.

Example 8

Let N be the number of parameters in Ω. We can take

REGT (δ) = O
(√

T ln N
)

under suitable conditions.
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Example

Consider the stock price prediction problem, where the opening
prices of a certain stock at each trading day are p1,p2, . . . .

At the beginning of each day t , we observe p1, . . . ,pt , and want to
predict pt+1 on day t + 1, so that we use this prediction to trade the
stock.

The input Xt+1 is a d-dimensional real valued vector in Rd that
represents the observed historical information of the stock on day t .
The output Yt+1 = ln(pt+1/pt ) will be observed on day t + 1.

We consider linear model with f (w , x) = w>x , with Ω = Rd . The
quality is measured by the least squares error

L(f (w ,Xt+1),Yt+1) = (f (w ,Xt+1)− Yt+1)2
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Example (cont)

The learning algorithm can be empirical risk minimization, where

ŵt = arg min
w∈Rd

t∑
i=1

(w>Xi − Yi)
2.

In regret analysis, we compare the prediction error

T−1∑
t=0

(ŵ>t Xt+1 − Yt+1)2

to the optimal prediction

inf
w∈Rd

T−1∑
t=0

(w>Xt+1 − Yt+1)2,

and want to show it is small.
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Computation

In the ERM method, the model parameter ŵ is the solution of an
optimization problem.
I If the optimization problem is convex, then the solution can be

efficiently computed.
I If the optimization problem is nonconvex, then its solution may

not be obtained easily.
Theoretically, we study two different types of complexity:
I Statistical complexity
I Computational complexity

For statistical complexity, we may ignore the complexity of
computation, and try to derive generalization bounds or regret
bounds even though the computational complexity of the underlying
learning algorithm (such as ERM) may be high.
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Computational Complexity

We are interested in computationally efficient learning algorithms with
good generalization performance or good regret bounds.

I For nonconvex models, computational complexity analysis can be
rather complexity, with problem specific approaches.

I One general approach is to use convex approximation (also
referred to convex relaxation) to solve the nonconvex problem
approximately. The theoretical question is whether such
approximation have good performance.
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Convex Relaxation: Sparse Learning Example

Example 9

In sparse learning, we want to find linear models with sparse weights

Yi = X>i w∗ + noise, subject to ‖w∗‖0 ≤ s,

where λ > 0 is a tuning parameter, and ‖w∗‖0 is the number of
nonzero elements of the true parameter w∗. This is a nonconvex
optimization problem. In practice, we can use the convex formulation
with L1 regularization as a proxy to the nonconvex L0 regularization:

ŵ = arg min
w∈Rd

n∑
i=1

(X>i w − Yi)
2 + λ‖w‖1,

where ‖w‖1 =
∑

j |wj |. A theoretical problem we are interested in is to
establish conditions under which one can obtain ŵ that is close to w∗.
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Basics of Generalization Analysis

The goal of machine learning is to find a function f (ŵ , x) that predicts
well on unseen data (test data).

However, we only observe the prediction accuracy of f (ŵ , x) on the
training data. In order to achieve high prediction accuracy, we need to
balance the following two aspects of learning:
I The prediction function should fit the training data well; that is,

achieving small training error. This requires a more expressive
model, with a larger parameter space Ω.

I Performance of the prediction function on the test data should
match that on the training data. The difference is smaller for a
less expressive model with a smaller parameter space Ω.
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Training versus Test

error

model complexity

test error

training error

low bias
high variance

high bias
low variance

Figure: Training and test errors versus model complexity

We often have a tuning parameter in the learning algorithm that
characterizes model complexity.



23

Example of Overfitting

Let X be a one-dimensional feature uniformly distributed in [−1,1],
with true class label Y = 1 when X ≥ 0 and Y = −1 when X < 0.

Given training data (Xi ,Yi) (i = 1, . . . ,n), and assume Xi are all
different. The following learning algorithm can fit data perfectly:

f̂ (X ) =

{
Yi if X = Xi for some i
1 otherwise

However, this prediction rule makes no meaningful prediction when X
is not in the training data.
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Example (cont)

Let 1(x ∈ A) be the set indicator function that takes value 1 if x ∈ A,
and 0 if x /∈ A.
Assume that we pick the function class

{f (w , x) : f (w , x) = 21(x ≥ w)− 1}

parametrized by a parameter w ∈ R.

Consider the ERM algorithm to find a classifier f (ŵ , x) that minimizes
the training error.

Using techniques of this course, it can be shown that both training
and test error of this classifier converge to zero when n→∞. This
model balances the training error and generalization performance.
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Other Sequential Decision Problems
We consider the multi-armed bandit problem with K arms. The
environment generates a sequence of reward vectors for time steps
t ≥ 1 as rt = [rt (1), . . . , rt (K )]. Each rt (a) is associated with an arm
a ∈ {1, . . . ,K}. At each time step t = 1,2, . . . ,T ,
I The player pulls one of the arms at ∈ {1, . . . ,K}.
I The environment returns the reward rt (at ), but does not reveal

information on any other arm a 6= at .
The goal is to maximize the cumulative reward

T∑
t=1

[rt (at )].

In bandits, only the reward corresponding to the pulled arm is
observed. This setting is referred to as incomplete information. In
comparison, online learning assumes that rewards for all arms
(independent of whether the arm is pulled) are observed.
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Summary (Chapter 1)

I Supervised Learning
I Online Learning
I Training versus Test
I Generalization and Model Complexity
I Other Sequential decision problems: bandits (and more

generally, reinforcement learning)


